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Abstract

The non-convex training landscape of a ReLU-activated neural network can be reformulated as a convex
optimization problem. This is a significant step towards achieving globally optimal interpretable results.
We examine three practical ADMM based methods for solving this reformulated problem, and examine
their performance with GPU acceleration on PyTorch and JAX. In order to meliorate the expensive primal
step bottleneck of ADMM, we incorporate a randomized block-coordinate descent (RBCD) variant. We
also experiment with NysADMM, which treats the primal update step as a linear solve with a randomized
low-rank Nystrom approximation. This project examines the scalability and acceleration of these methods, in
order to encourage applications across a wide range of statistical learning settings. Results show promising
directions for scaling ADMM with accelerated GPU techniques to optimize two-layer neural networks.

1 Introduction

Artificial Neural Networks (ANN) are one of the most popular machine learning tools, however optimizing these networks
with non-linear activation functions requires solving extensive non-convex optimization problems. Currently the tremendous
empirical success of ANN based applications are trained with variants of back-propagation and stochastic gradient descent
(SGD). Despite this, very little is understood about the non-convex optimization landscape of neural networks, which lack
global convergence guarantees and often suffer from vanishing or exploding gradients. Additionally, back-propagation is
extremely sensitive to both initialization and hyperparameter tuning, with very few heuristics present to suggest a dependable
paradigm for hyperparameter selection.

Recent work ([1], [2], [3]) has successfully leveraged a convex framework for training two-layer neural network models with
ReLU activation functions. This is achieved via a convex reformulation of the training objective, and was derived by [1]
using duality theory to show that two-layer neural networks with ReLU activations and weight decay regularization may be
re-expressed as a linear model with a group one penalty and polyhedral cone constraints. This is significant since within
a convex framework, there exists the possibility of arriving at globally optimal interpretable results. To practically solve
this convex optimization problem, this project examines varying approaches based on the Alternating Direction Method of
Multipliers (ADMM) [4]. ADMM offers several attractive advantages, such as its robustness against hyperparameter selection,
linear decomposability for distributed optimization, and immunity to vanishing/exploding gradients. Though the performance
of ADMM is promising, there are still practical challenges to overcome: namely the scalability of data size and acceleration in
solving machine learning tasks. This project seeks to make progress in overcoming these disadvantages by examining several
modified ADMM-based strategies to solve the binary classification problem on CIFAR-10. Our main contributions are as
follows:

* Deployment of a Nystrom Preconditioner with conjugate gradient to solve the linearized bottleneck primal update step of
ADMM. Comparison in performance with Randomized Block Coordinate Descent (RBCD [5]).

 Evaluation on the effect of condition number of these methods, as well as stability, scalability, and solve time.

* Acceleration of these methods on a GPU, with both PyTorch and JAX [6] experiments.

2 Problem Background
2.1 Convex Reformulation of Two-Layer ReLLU Networks

In the following sections we will refer to the multi-layer perceptrons activated by rectified linear units as ReLU-MLPs. The
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proposed non-convex formulation of a two-layer ReLU-MLP with weights w )

is then given by:
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Here, () denotes the ReLU activation function, which selects for the positive part of the argument. To train such a network,
we usually try to optimize the following regularized non-convex training objective:
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where £ is the /-2 regularization hyper-parameter. As shown in [1], the convex re-formulation enumerates all P ReLU activation
patterns on the training data matrix X € R"*¢, where P is bounded exponentially by the rank of X. These P activation
patterns act as separating hyperplanes which essentially multiply the rows of X by 0 or 1, and hence can be denoted by diagonal

matrices {D;}1., € {0,1}"". Then, the convex reformulation takes the form
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Here, ¢ is some convex loss function. As shown in [2], the optimal weights w(l)*, w®” of (1) can be recovered as a simple
rescaling on the sparse selected v*, w* of (3). In practice, a subset P; < P of the ReLU activation patterns are randomly
sampled to be learned during training. Specifically, we set D; = diag(Xh; > 0) for h; € N(0,1),7i € {1,..., Ps}.

Our project is an extension of the ADMM approach proposed by [7]. Following the notation in [7], we first denote each
sampled training feature set as F; = D; X, with the corresponding constraint map G; = (2D; — I)X. Then, we group the
primal variables u, v, and introduce slack variables s:
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We look specifically at MSE loss: £(§,y) = %|/§ — yl|3, which results in the problem:
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where ||.||2,1 is a mix of ¢-2 and ¢-1 norm to promote group sparsity in the optimal activation patterns; y is the data labels;
HZO(S) forces each slack to be positive and imposes an infinite penalty otherwise; F = [F} --- Fp —-F .-+ —Fp],
and G = blkdiag(G1,--- ,Gp,G1,- -+ ,Gp). One can now derive the Lagrangian

Llu,v,5,0,8) = ((Fw,y) + Blfollon +Lxols) + S (lu— v+ ME = INB) + S(1Gu—s+vIE = W3 )
with the dual variables
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Using (5), ADMM updates are computed to solve optimality to tolerance e as shown in Algorithm 1.

A natural issue with Algorithm 1 is the large linear solve of the primal v update. To naiively compute this update requires
solving a (2dPs x 2dP;) linear system, which is computationally infeasible at large problem dimensions. Accordingly, we will
consider three iterative methods to solve the large linear system in Algorithm 1 in a scalable and accelerated manner, as listed
below.

2.2 Randomized Block Coordinate Descent (RBCD)

To approximate the u update at each ADMM iteration, Randomized Block Coordinate Descent (RBCD), as outlined by [8],
only computes gradients for blocks of u, namely blocks of size 2d. While allowing for scalable data dimensions, RBCD suffers
from a convergence rate that is similar to SGD. The RBCD updates are shown in Algorithm 2. Since the RBCD gradient
calculations are much cheaper, we implement a backtracking line search to compute the step size -, at each iteration.

2.3 Conjugate Gradient (CG) with basic Preconditioner (PCG)

The Conjugate Gradient (CG) method is a strong alternative to gradient descent for solving linear systems, which can tackle large
scale problems. CG is used to iteratively solve the linear system Au**1 = b in an efficient manner. We also examine the Precon-
ditioned Conjugate Gradient (PCG) with a diagonal preconditioner (diagPCG), where M = diag(1/A11,...,1/A24p, 24p,)-
This can be formed without ever needing to compute A by considering the repeat-structure of A as blockwise samplings of the
rows of X7 X.
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Algorithm 1 ADMM MSE Loss Updates
repeat
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Algorithm 2 Randomized Block Coordinate Descent
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2.4 Nystrom-PCG (nysPCG)

In order to speed up PCG, we investigate the use of the Nystrom Preconditioner [9]. This method leverages a low-rank
formulation to derive a general preconditioner that works well across different problem domains. Since MLP classification
robust across many problem domains, it is important that the Preconditioner is robust in the same way, hence the choice of the
Nystrom Preconditioner for Conjugate Gradient (nysPCG). We form the Nystrom Preconditioner M,,,, with a rank of 100
(which lowers the condition number by a factor of 100 as shown by Figrure 2) and use Nystrom PCG to solve our primal update
according to Algorithms 4 and 5 of [9], respectively. As in CG, we can compute M, ; and run Nystrom PCG without ever
needing to explicitly compute A.

2.5 JAX Acceleration

To further support the scalability of ADMM for large problem dimensions, we aim to leverage GPU acceleration for our
optimizers due to their success in solving large linear systems. We completed our base optimizer implementations in Pytorch,
which allows for ease of access to GPUs. In order to further accelerate our optimization procedure we implement JAX as a
proof of concept for the RBCD method. Google JAX is a high performance numerical computing library with incorporated
composable function transforms. It features automatic differentiation which allows us to compute function gradients without
explicitly writing the derivative code. It is also designed to run efficiently across GPU, CPU, and TPU with just-in-time
compilation approach to optimize computations for the target hardware. This results in extremely attractive speedups for
numerical computation, as shown in [10], where JAX performed 86 times faster than NumPy on the task of calculating sum of
matrix powers. As a result, both DeepMind and OpenAl have adapted JAX to accelerate research, making it a promising tool in
optimization.

3 Experiments
3.1 Baseline Comparison of ADMM solvers

In order to characterize the quality of ADMM based training algorithms, we first implement our ADMM solvers on a small-scale
binary classifcation problem solved on CPU. We take a subset of n = 1000 images for the first two classes of CIFAR-10, with
features downsampled to d = 100, and observe the performance of our methods for Ps = 10 in Figure 1.
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Figure 1: Approximate ADMM Methods on CIFAR-10 2-Digit Classification Problem

From Figure 1, we observe that nysPCG reaches better loss and accuracies compared to the alternative conjugate gradient
methods. This is because nysPCG lowers the condition number of A significantly (in fact, the diagonal preconditioner increases
the condition number of A, as shown in Figure 2). We also observe that RBCD takes more iterations to reach similar levels of
test loss and accuracy as nysPCG, but the cost of each iteration is much lower. Moving forward, we chose to only implement
these two methods at larger scales.

169 Condition number with Nystrom Preconditioning
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Figure 2: Condition number of A as a function of the rank of the Nystrom approximation

3.2 Training at Scale for NysPCG and RBCD vs Adam-MLP

We now compare the convex ADMM-RBCD and ADMM-nysPCG methods at a larger scale for classifcation on CIFAR-10
(n = 10000, d = 3072, P, = 50). To do a Cholesky solve of our primal update at this scale would require computing and
storing all of A, which would be over 90 GiB, exceeding the memory size for most modern GPUs. As a baseline, we compare
to a non-convex MLP trained via backpropagation with an Adam optimizer. We now show implementations of RBCD, PCG,
and MLP-Adam wth acceleration via PyTorch on the GPU in Figure 3.



Scalable ADMM for Convex Neural Networks

(a) Train Loss

(b) Train Accuracy

1.000
2500
0.975
2000 0.950
0.925
1500
0.900
1000 0.875
0.850
500
0.825
0 20 40 60 80 100 120 0 20 40 60 80 100 120
(c) Test Loss (d) Test Accuracy
450 e
08
400
0.6
350
300 0.4
250 0.2
: —— ADMM-nysPCG-(gpu)
200 —— ADMM-RBCD-(gpu)
0.0 —— NCVX-Adam-(gpu)
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Solve time (s)

Solve time (s)

Figure 3: Approximate ADMM Methods on CIFAR-10 Classifcation

3.3 JAX Acceleration for RBCD Method

Since our RBCD solver scaled the best at higher dimensions, we also demonstrate further acceleration of RBCD with a JAX

framework in Figure 4.
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Figure 4: Training Loss for RBCD with JAX Acclereration on CIFAR-10 Classification

Notably, the JAX implementation shows the most significant improvement in speed, which is consistent with our expectations.

Below, we also summarize the runtimes for our methods on GPU reach at least 97% train accuracy for the problem in section
4.2. We also compare this to CPU and JAX for RBCD.
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Table 1: Solve time to 97% Train Accuracy

Method Total (s) Precomp.(s) uupdates(s) v updates(s) dual updates (s)
nysPCG (GPU) 39.484 16.321 23.119 0.043 0.001
RBCD (GPU) 23.502 0.000 23.136 0.361 0.005
RBCD (JAX-GPU) 16.243 0.000 16.118 0.125 0.000
RBCD (CPU) 185.896 0.523 181.689 3.663 0.020
Adam (GPU) 55.129 n/a n/a n/a n/a

4 Discussion

Both Figure 3 and Table 1 show that the RBCD method has the most desirable tradeoffs for approximating the full ADMM
step. The speed is much closer to the non-convex Adam-MLPs, while the test accuracy is far more stable. The PCG method
struggles with convergence, and suffers from very long CPU run-time due to heavy precomputations required to form the
Nyquist preconditioner in our implementation.

Additionally, in Figure 3, we observe that the NysPCG method does not achieve a decreasing training loss or accuracy with
further iterations at higher scale. This is likely because we did not scale the number of CG iterations with the increase in the
problem dimension, preventing CG from converging in further iterations.

We also observe that the RBCD method achieves the best train loss and accuracy out of all methods. However, it fails to
generalize well in comparison to the Adam optimizer. This is likely due the minimum number of hyperplane samples in our
training scheme, which were not tuned to best recover the equivalent optimal weights for the non-convex formulation (used to
evaluate unseen test data). Training with higher P, would likely combat this issue.

The significant improvement in speedup observed with the JAX RBCD method is both extremely promising, and consistent with
existing research in scientific computing. In our implementation the acceleration is largely due to just-in-time (JIT) compilations
using Accelerated Linear Algebra (XLA). Since JAX is fundamentally built on XL A, which is specifically designed for linear
algebra, this raises the computational speed ceiling by several orders of magnitude in comparison to NumPy. The key challenge
being adding JIT computational function transforms with consideration of low level code. This is since JAX transforms
only work with numerical functions, therefore untracked side-effects can easily throw off accuracy of intended computations.
Another disadvantage to JAX is its higher barrier to entry (versus PyTorch), resulting in significant overhead when attempting
to implement equivalent methods from Python.

5 Conclusion

The successful application of ADMM based approaches to solve the convex reformulation of a shallow neural network problem
takes a small step towards achieving more efficient, elegant, and globally optimal solutions. We examine the problem of binary
classification on the CIFAR-10 dataset, and experiment with several ADMM modifications to improve both scalability and
acceleration. Most notably, the RBCD method gave the best performance results with respect to training loss, and the JAX
RBCD implementation demonstrated a stunning speed up in terms of performance. Promising directions for future work
includes: scaling the problem up to ImageNet classification, incorporating the Nystrom Preconditioner into the RBCD method,
and adding JAX acceleration to more methods while taking advantage of JAX’s ability to automatically parallelize code across
multiple CPUs, GPUs and TPUs.

6 Appendix
All code used to generate figures can be found at the public repo: https://github. com/zachary-shah/admmNN/
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