{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<script async src=\"https://www.googletagmanager.com/gtag/js?id=UA-59152712-8\"></script>\n", "<script>\n", " window.dataLayer = window.dataLayer || [];\n", " function gtag(){dataLayer.push(arguments);}\n", " gtag('js', new Date());\n", "\n", " gtag('config', 'UA-59152712-8');\n", "</script>\n", "\n", "# 1D Three Wave `GiRaFFEfood` Initial Data for `GiRaFFE`\n", "\n", "## This module provides another initial data option for `GiRaFFE`, drawn from [this paper](https://arxiv.org/abs/1310.3274) .\n", "\n", "**Notebook Status:** <font color='green'><b> Validated </b></font>\n", "\n", "**Validation Notes:** This tutorial notebook has been confirmed to be self-consistent with its corresponding NRPy+ module, as documented [below](#code_validation). The initial data has validated against the original `GiRaFFE`, as documented [here](Tutorial-Start_to_Finish_UnitTest-GiRaFFEfood_NRPy.ipynb).\n", "\n", "### NRPy+ Source Code for this module: [GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_Three_Waves.py](../../edit/in_progress/GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_Three_Waves.py)\n", "\n", "## Introduction:\n", "\n", "### Three waves:\n", "\n", "This is a flat-spacetime test representing three Alfvén waves (one stationary, one left-going, and one right-going) with initial data \n", "\\begin{align}\n", "A_x &= 0 \\\\ \n", "A_y &= 3.5x H(-x) + 3.0x H(x) \\\\\n", "A_z &= y - 1.5x H(-x) - 3.0x H(x),\n", "\\end{align}\n", "where $H(x)$ is the Heaviside function, which generates the magnetic field\n", "$$\\mathbf{B}(0,x) = \\mathbf{B_a}(0,x) + \\mathbf{B_+}(0,x) + \\mathbf{B_-}(0,x)$$\n", "and uses the electric field\n", "$$\\mathbf{E}(0,x) = \\mathbf{E_a}(0,x) + \\mathbf{E_+}(0,x) + \\mathbf{E_-}(0,x),$$\n", "where subscripted $\\mathbf{a}$ corresponds to the stationary wave, subscripted $\\mathbf{+}$ corresponds to the right-going wave, and subscripted $\\mathbf{-}$ corresponds to the left-going wave, and where \n", "\\begin{align}\n", "\\mathbf{B_a}(0,x) &= \\left \\{ \\begin{array}{lll} (1.0,1.0,2.0) & \\mbox{if} & x<0 \\\\\n", "\t\t\t\t\t(1.0,1.5,2.0) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\ \n", "\\mathbf{E_a}(0,x) &= \\left \\{ \\begin{array}{lll} (-1.0,1.0,0.0) & \\mbox{if} & x<0 \\\\\n", "\t\t\t\t\t(-1.5,1.0,0.0) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\\n", "\\mathbf{B_+}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,0.0,0.0) & \\mbox{if} & x<0 \\\\\n", " (0.0,1.5,1.0) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\\n", "\\mathbf{E_+}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,0.0,0.0) & \\mbox{if} & x<0 \\\\\n", " (0.0,1.0,-1.5) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\\n", "\\mathbf{B_-}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,0.5,1.5) & \\mbox{if} & x<0 \\\\\n", " (0.0,0.0,0.0) & \\mbox{if} & x>0 \\end{array}\n", "\\right. , \\\\\n", "\\mathbf{E_-}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,-1.5,0.5) & \\mbox{if} & x<0 \\\\\n", " (0.0,0.0,0.0) & \\mbox{if} & x>0 \\end{array}\n", "\\right. . \\\\\n", "\\end{align}\n", "\n", "For the eventual purpose of testing convergence, any quantity $Q$ evolves as $Q(t,x) = Q_a(0,x) + Q_+(0,x-t) + Q_-(0,x+t)$.\n", "\n", "See the [Tutorial-GiRaFFEfood_NRPy](Tutorial-GiRaFFEfood_NRPy.ipynb) tutorial notebook for more general detail on how this is used.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='toc'></a>\n", "\n", "# Table of Contents:\n", "$$\\label{toc}$$\n", "\n", "This notebook is organized as follows\n", "\n", "1. [Step 1](#initializenrpy): Import core NRPy+ modules and set NRPy+ parameters\n", "1. [Step 2](#set_a_i): Set the vector $A_i$\n", "1. [Step 3](#set_vi): Calculate $v^i$ from $B^i$ and $E_i$\n", "1. [Step 4](#code_validation): Code Validation against `GiRaFFEfood_NRPy.GiRaFFEfood_NRPy` NRPy+ Module\n", "1. [Step 5](#latex_pdf_output): Output this notebook to $\\LaTeX$-formatted PDF file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='initializenrpy'></a>\n", "\n", "# Step 1: Import core NRPy+ modules and set NRPy+ parameters \\[Back to [top](#toc)\\]\n", "$$\\label{initializenrpy}$$\n", "\n", "Here, we will import the NRPy+ core modules and set the reference metric to Cartesian, set commonly used NRPy+ parameters, and set C parameters that will be set from outside the code eventually generated from these expressions. We will also set up a parameter to determine what initial data is set up, although it won't do much yet." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Step 0: Add NRPy's directory to the path\n", "# https://stackoverflow.com/questions/16780014/import-file-from-parent-directory\n", "import os,sys\n", "nrpy_dir_path = os.path.join(\"..\")\n", "if nrpy_dir_path not in sys.path:\n", " sys.path.append(nrpy_dir_path)\n", "\n", "# Step 0.a: Import the NRPy+ core modules and set the reference metric to Cartesian\n", "import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends\n", "import NRPy_param_funcs as par # NRPy+: Parameter interface\n", "import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support\n", "import GiRaFFEfood_NRPy.GiRaFFEfood_NRPy_Common_Functions as gfcf # Some useful functions for GiRaFFE initial data.\n", "\n", "import reference_metric as rfm # NRPy+: Reference metric support\n", "par.set_parval_from_str(\"reference_metric::CoordSystem\",\"Cartesian\")\n", "rfm.reference_metric()\n", "\n", "# Step 1a: Set commonly used parameters.\n", "thismodule = \"GiRaFFEfood_NRPy_1D\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### <a id='set_a_i'></a>\n", "\n", "# Step 2: Set the vector $A_i$ \\[Back to [top](#toc)\\]\n", "$$\\label{set_a_i}$$\n", "\n", "The vector potential is given as\n", "\\begin{align}\n", "A_x &= 0 \\\\ \n", "A_y &= 3.5x H(-x) + 3.0x H(x) \\\\\n", "A_z &= y - 1.5x H(-x) - 3.0x H(x),\n", "\\end{align}\n", "\n", "However, to take full advantage of NRPy+'s automated function generation capabilities, we want to write this without the `if` statements, replacing them with calls to `fabs()`. To do so, we will use the NRPy+ module `Min_Max_and_Piecewise_Expressions`. We thus get\n", "$$H(x) = \\frac{\\max(0,x)}{x}.$$\n", "This implementation is, of course, undefined for $x=0$; this problem is easily solved by adding a very small number (called `TINYDOUBLE` in our implementation) to the denominator (see [Tutorial-Min_Max_and_Piecewise_Expressions](Tutorial-Min_Max_and_Piecewise_Expressions.ipynb) for details on how this works). This is, conveniently, the exact implementation of the `coord_greater_bound()` function!\n", "\n", "\\begin{align}\n", "A_x &= 0 \\\\ \n", "A_y &= 3.5x H(-x) + 3.0x H(x) \\\\\n", "A_z &= y - 1.5x H(-x) - 3.0x H(x),\n", "\\end{align}" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import Min_Max_and_Piecewise_Expressions as noif\n", "\n", "def Ax_TW(x,y,z, **params):\n", " return sp.sympify(0)\n", "\n", "def Ay_TW(x,y,z, **params):\n", " return sp.Rational(7,2)*x*noif.coord_greater_bound(-x,0) + sp.sympify(3)*x*noif.coord_greater_bound(x,0)\n", "\n", "def Az_TW(x,y,z, **params):\n", " return y-sp.Rational(3,2)*x*noif.coord_greater_bound(-x,0) - sp.sympify(3)*x*noif.coord_greater_bound(x,0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='set_vi'></a>\n", "\n", "# Step 3: Calculate $v^i$ from $B^i$ and $E_i$ \\[Back to [top](#toc)\\]\n", "$$\\label{set_vi}$$\n", "\n", "First, we will set the three individual waves; we change all $<$ to $\\leq$ to avoid unintented behavior at $x=0$:\n", "\\begin{align}\n", "\\mathbf{B_a}(0,x) &= \\left \\{ \\begin{array}{lll} (1.0,1.0,2.0) & \\mbox{if} & x \\leq 0 \\\\\n", "\t\t\t\t\t(1.0,1.5,2.0) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\ \n", "\\mathbf{E_a}(0,x) &= \\left \\{ \\begin{array}{lll} (-1.0,1.0,0.0) & \\mbox{if} & x \\leq 0 \\\\\n", "\t\t\t\t\t(-1.5,1.0,0.0) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\\n", "\\mathbf{B_+}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,0.0,0.0) & \\mbox{if} & x \\leq 0 \\\\\n", " (0.0,1.5,1.0) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\\n", "\\mathbf{E_+}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,0.0,0.0) & \\mbox{if} & x \\leq 0 \\\\\n", " (0.0,1.0,-1.5) & \\mbox{if} & x>0 \\end{array} \n", "\\right. , \\\\\n", "\\mathbf{B_-}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,0.5,1.5) & \\mbox{if} & x \\leq 0 \\\\\n", " (0.0,0.0,0.0) & \\mbox{if} & x>0 \\end{array}\n", "\\right. , \\\\\n", "\\mathbf{E_-}(0,x) &= \\left \\{ \\begin{array}{lll} (0.0,-1.5,0.5) & \\mbox{if} & x \\leq 0 \\\\\n", " (0.0,0.0,0.0) & \\mbox{if} & x>0 \\end{array}\n", "\\right. . \\\\\n", "\\end{align}\n", "\n", "Then, we can obtain the total expressions for the magnetic and electric fields by simply adding the three waves together:\n", "\\begin{align}\n", "\\mathbf{B}(0,x) &= \\mathbf{B_a}(0,x) + \\mathbf{B_+}(0,x) + \\mathbf{B_-}(0,x) \\\\\n", "\\mathbf{E}(0,x) &= \\mathbf{E_a}(0,x) + \\mathbf{E_+}(0,x) + \\mathbf{E_-}(0,x)\n", "\\end{align}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#Step 3: Compute v^i from B^i and E_i\n", "def ValenciavU_func_TW(**params):\n", " x = rfm.xx_to_Cart[0]\n", "\n", " B_aU = ixp.zerorank1(DIM=3)\n", " E_aU = ixp.zerorank1(DIM=3)\n", " B_pU = ixp.zerorank1(DIM=3)\n", " E_pU = ixp.zerorank1(DIM=3)\n", " B_mU = ixp.zerorank1(DIM=3)\n", " E_mU = ixp.zerorank1(DIM=3)\n", "\n", " B_aU[0] = sp.sympify(1)\n", " B_aU[1] = noif.coord_leq_bound(x,0) * sp.sympify(1) + noif.coord_greater_bound(x,0) * sp.Rational(3,2)\n", " B_aU[2] = sp.sympify(2)\n", "\n", " E_aU[0] = noif.coord_leq_bound(x,0) * sp.sympify(-1) + noif.coord_greater_bound(x,0) * sp.Rational(-3,2)\n", " E_aU[1] = sp.sympify(1)\n", " E_aU[2] = sp.sympify(0)\n", "\n", " B_pU[0] = sp.sympify(0)\n", " B_pU[1] = noif.coord_leq_bound(x,0) * sp.sympify(0) + noif.coord_greater_bound(x,0) * sp.Rational(3,2)\n", " B_pU[2] = noif.coord_leq_bound(x,0) * sp.sympify(0) + noif.coord_greater_bound(x,0) * sp.sympify(1)\n", "\n", " E_pU[0] = sp.sympify(0)\n", " E_pU[1] = noif.coord_leq_bound(x,0) * sp.sympify(0) + noif.coord_greater_bound(x,0) * sp.sympify(1)\n", " E_pU[2] = noif.coord_leq_bound(x,0) * sp.sympify(0) + noif.coord_greater_bound(x,0) * sp.Rational(-3,2)\n", "\n", " B_mU[0] = sp.sympify(0)\n", " B_mU[1] = noif.coord_leq_bound(x,0) * sp.Rational(1,2) + noif.coord_greater_bound(x,0) * sp.sympify(0)\n", " B_mU[2] = noif.coord_leq_bound(x,0) * sp.Rational(3,2) + noif.coord_greater_bound(x,0) * sp.sympify(0)\n", "\n", " E_mU[0] = sp.sympify(0)\n", " E_mU[1] = noif.coord_leq_bound(x,0) * sp.Rational(-3,2) + noif.coord_greater_bound(x,0) * sp.sympify(0)\n", " E_mU[2] = noif.coord_leq_bound(x,0) * sp.Rational(1,2) + noif.coord_greater_bound(x,0) * sp.sympify(0)\n", "\n", " BU = ixp.zerorank1(DIM=3)\n", " EU = ixp.zerorank1(DIM=3)\n", " for i in range(3):\n", " BU[i] = B_aU[i] + B_pU[i] + B_mU[i]\n", " EU[i] = E_aU[i] + E_pU[i] + E_mU[i]\n", "\n", " # In flat space, ED and EU are identical, so we can still use this function.\n", " return gfcf.compute_ValenciavU_from_ED_and_BU(EU, BU)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='code_validation'></a>\n", "\n", "# Step 4: Code Validation against `GiRaFFEfood_NRPy/GiRaFFEfood_NRPy` NRPy+ module \\[Back to [top](#toc)\\]\n", "$$\\label{code_validation}$$\n", "\n", "Here, as a code validation check, we verify agreement in the SymPy expressions for the `GiRaFFE` Aligned Rotator initial data equations we intend to use between\n", "1. this tutorial and \n", "2. the NRPy+ [`GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_1D_tests.py`](../edit/GiRaFFEfood_NRPy/GiRaFFEfood_NRPy_1D_tests.py) module.\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Consistency check between GiRaFFEfood_NRPy tutorial and NRPy+ module:\n", "ValenciavU0 is in agreement!\n", "AD0 is in agreement!\n", "ValenciavU1 is in agreement!\n", "AD1 is in agreement!\n", "ValenciavU2 is in agreement!\n", "AD2 is in agreement!\n" ] } ], "source": [ "import GiRaFFEfood_NRPy.GiRaFFEfood_NRPy as gf\n", "\n", "A_twD = gfcf.Axyz_func_Cartesian(Ax_TW,Ay_TW,Az_TW,stagger_enable = True,)\n", "Valenciav_twD = ValenciavU_func_TW()\n", "gf.GiRaFFEfood_NRPy_generate_initial_data(ID_type = \"ThreeWaves\", stagger_enable = True)\n", "\n", "def consistency_check(quantity1,quantity2,string):\n", " if quantity1-quantity2==0:\n", " print(string+\" is in agreement!\")\n", " else:\n", " print(string+\" does not agree!\")\n", " sys.exit(1)\n", "\n", "print(\"Consistency check between GiRaFFEfood_NRPy tutorial and NRPy+ module:\")\n", "\n", "for i in range(3):\n", " consistency_check(Valenciav_twD[i],gf.ValenciavU[i],\"ValenciavU\"+str(i))\n", " consistency_check(A_twD[i],gf.AD[i],\"AD\"+str(i))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a id='latex_pdf_output'></a>\n", "\n", "# Step 5: Output this notebook to $\\LaTeX$-formatted PDF file \\[Back to [top](#toc)\\]\n", "$$\\label{latex_pdf_output}$$\n", "\n", "The following code cell converts this Jupyter notebook into a proper, clickable $\\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename\n", "[Tutorial-GiRaFFEfood_NRPy_1D_tests.pdf](Tutorial-GiRaFFEfood_NRPy_1D_tests.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Created Tutorial-GiRaFFEfood_NRPy-Three_Waves.tex, and compiled LaTeX file\n", " to PDF file Tutorial-GiRaFFEfood_NRPy-Three_Waves.pdf\n" ] } ], "source": [ "import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface\n", "cmd.output_Jupyter_notebook_to_LaTeXed_PDF(\"Tutorial-GiRaFFEfood_NRPy-Three_Waves\",location_of_template_file=os.path.join(\"..\"))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }