
ProxyAuth: Continuous Authentication
using Bluetooth and Mobile Devices

Author:
Ju Hong Kim

Contributors to the Project
Arslan Qamar, Anurag Bist, Sean Coutinho, Ju Hong Kim, Areeb Siddiqui, Daniel Xin Wang

Project Link
github.com/zakuArbor/proxyAuth/

Course:
CSC490 - Security Capstone Design
Instructor:
Furkan Alaca
Teaching Assistant
Anthony Tam
Institution
University of Toronto Mississauga

Mississauga, ON, Canada
April 6 2020

https://github.com/zakuArbor/proxyAuth/

Contents

Abstract 2

1 Introduction 2

1.1 Problem Statement: 2

1.2 Rationale: 3

1.3 ProxyAuth 3

1.4 Summary of Security Considerations . . . 3

2 Background and Related Work 4

2.1 Background 4

2.2 Related Works 6

3 Methodology and Design Goals 7

3.1 Methodology 7

3.2 Design Goals 9

4 Tools and Libraries Used 9

5 Project Description 12

5.1 System Overview: 12

5.2 Prerequisite For Both End Users and De-

velopers 13

5.3 PAM Implementation 14

5.3.1 Get List of Paired Devices 15

5.3.2 List of Devices Trusted by the User 15

5.3.3 Executing the De-authentication

Server 16

5.4 De-authentication Program 16

5.4.1 Checking Deauth’s Argument . . 16

5.4.2 Bluetooth Overview 16

5.4.3 Communication between

Deauth and Authenticator 18

5.4.4 Conflicting UUID due to multi-

ple instances of deauth 18

5.4.5 Checking Proximity of the Au-

thenticator 18

5.5 Android Application 19

5.5.1 MainActivity.kt 20

5.5.2 ControlActivity.kt 20

5.5.3 BluetoothInteraction.kt 21

6 Evaluation and Lessons Learned 21

6.1 Technical and Security Evaluation 21

6.1.1 Technical Evaluation 21

6.1.2 Security Evaluation 22

6.2 Timeline and Division of Responsibilities 24

6.2.1 Timeline: 24

6.2.2 Division Of Responsibilities: . . . 25

6.3 Hardware and Software Obstacles: 26

6.3.1 Recommendations 26

7 Concluding Remarks 27

8 Future Work 28

1

ProxyAuth: Continuous Authentication using Mobile Devices

Ju Hong Kim
Email: juhong.kim@mail.utoronto.ca

Project Link: github.com/zakuArbor/proxyAuth/

Abstract

Passwords are inherently insecure and easily forgot-
ten. Common passwordless authentications such as
iris scanners, fingerprints, and hardware authenti-
cators (i.e. Yubikeys) require additional costs to the
user and only perform one-time authentication. One-
time authentication relies on users to log out their
computers which is not often done due to either in-
convenience or clumsiness. This poses a huge security
risk as the computer is vulnerable to data theft and
tampering with the possibility of malicious software
to be installed without the user’s notice. Continu-
ous authentication is not widely adopted and requires
users to purchase and carry around additional hard-
ware to prevent malicious actors from accessing their
machines when users leave their system unlocked.
To address this issue, we propose ProxyAuth, an open
source continuous authentication that is cheap, con-
venient, and secure. In ProxyAuth, a user will use
their Android phone as a hardware authenticator to
authenticate their computer with zero-effort and have
their phone continually de-authenticate the system
while they are using the computer. The computer
will be locked when the user is not nearby the com-
puter. ProxyAuth detects proximity through band-
width anaylsis between Bluetooth communication of
the computer and the phone. The project is still ongo-
ing but is on a great start to replace password-based
authentication and never have a computer left un-
locked.

1 Introduction

1.1 Problem Statement:

Currently, there is no widely known passwordless au-
thentication method to log into and out of a Linux Desk-
top Environment using a mobile phone without user in-
teraction. Existing passwordless authentication requires
Linux users to have a hardware authentication device
such as a Yubikey or a fingerprint scanner. We wish to
address the Linux User base who cannot afford to buy
additional hardware with the use of a mobile phone as a
hardware authenticator instead. Furthermore, these im-
plementations do not offer an auto lockout feature and
therefore rely on the user to log out. Users do not of-
ten log out of their machines either due to inconvenience
or simply forgetting to do so. This can pose a big inter-
nal security risk to the company and the individual as the
computer would be at risk of having data being stolen
or tampered. In addition, attackers could also use this
opportunity to install malicious malware to the system
to do further damage to the organization. The solution
we propose is a cost-effective and convenient method
whereby the phone will authenticate the PC via Blue-
tooth and will continuously de-authenticate the PC when
the user is nearby the system.

The goal of the project ProxyAuth is to be an authen-
tication that is convenient, secure, and cheap. To satisfy
these goals, these are the key features that ProxyAuth
must satisfy:

• Passwordless Authentication

https://github.com/zakuArbor/proxyAuth/

• Authenticate based on proximity of the phone using
Bluetooth
• Convenient (zero-effort authentication) to increase

usability
• Continuously authenticate/de-authenticate the user

when they are within range
• Lock system once the user is a certain distance away

from their PC
• Prevent Bluetooth amplifier attacks

1.2 Rationale:

In my personal experience, I often leave my laptop un-
locked a lot during my time at IBM as I frequently visit a
co-worker, attend meetings, refill my coffee, take a walk,
or to go to the bathroom. With my password being over
15 characters, it is a pain to keep authenticating the sys-
tem each time I leave the system unattended. The project
proposal my fellow team members have proposed to me
was an excellent solution to my problem. Previously I
left my laptop unlocked because I was comfortable with
leaving my system unattended with my team in a limited
and locked room. However, I may not have the oppor-
tunity to work in a secured room when I start working
again. Many members of the group had similar issue as
me so as a group, this was an issue we wished to address.

In terms whether or not our skills were well-suited for
the project is debatable. The team had members with
different amount of skills, experiences, and motivations.
I cannot speak for others in the team but my experience
and skills were well-suited for the project. ProxyAuth
had three main components:

• PAM Module
• Android Application
• De-authentication Server: A Bluetooth server to

continuously send challenge and response to the
mobile device

My experience with working on an Android Applica-
tion with a team of 7 for an Introductory Software En-
gineering course has given me insight how Android Ap-
plication Development works. This led me to help other
members set up Android Studio and answer any ques-
tions they have pertaining to Android. Although I am
not familiar with programming Bluetooth nor know what
PAM was, I was confident that I could learn quickly.

Picking up new skills and learning new things are traits
that are expected in the industry. In addition, this project
gave me the opportunity to study more about Linux even
though it may not be in the Kernel level that I originally
wished to work on. I love using Linux and find joy pro-
gramming in C so working on the PAM module and the
Bluetooth server well matched my skills and interests.

1.3 ProxyAuth

As of the final sprint (March 29 2020), we have imple-
mented the following:

1. A Linux PAM that allows user to authenticate their
PC based on the fact that their phone is paired and
trusted by the PC (this is done by implementing a
Linux Pluggable Authentication Module - PAM)

2. An Android Device that continuously de-
authenticate the PC and locks the PC if the
phone stops sending messages to the PC

To authenticate the PC, Linux uses PAM which are
modules that are used to authenticate a user to any PAM-
aware application (in our case, we are trying to authen-
ticate to Gnome Display Manager’s login screen, the de-
fault Ubuntu login screen). PAM checks through all the
devices that are paired with the PC and cross-check the
MAC addresses with the list of MAC addresses the user
whitelisted. If PAM finds a device that is paired with the
PC and is trusted by the user, it authenticates the user
and spawns the de-authentication server that will contin-
uously send and receive messages from the paired de-
vice that authenticated the PC. If the de-authentication
server (a program that runs on the background of the PC)
detects that the device trying to communicate with the
server is not the device that authenticated with the PC or
if the trusted device stops sending messages, the program
will lock the PC and terminate itself to prevent any fur-
ther communication with any devices. The reasons why
we choose to authenticate based on Bluetooth or any de-
sign decisions can be found under Project Description.

1.4 Summary of Security Considerations

When working on the project proposal, we have thought
of the following possible attacks:

3

• Spoofing Bluetooth Addresses
• Bluetooth Amplification Attack
• Mobile phone being stolen to gain access to the sys-

tem

The project is aimed to be secured so the aim was to pre-
vent Bluetooth spoofing and Bluetooth amplification at-
tack. The only security factor that is not planned to be
addressed directly is the loss of the mobile phone (the
hardware authenticator). To test whether our project can
protect itself from Bluetooth Amplification attack, the
department has invested money to acquire two Ubertooth
One, an open source 2.4 GHz device that gives us the
flexibility to play around with Bluetooth that traditional
Bluetooth adapters do not allow. The team has tasked
two members to investigate how Ubertooth One works
and figure a method to amplify or repeat Bluetooth pack-
ets so that we can attack our system. The idea was to
amplify Bluetooth packets being sent to and from the
PC and the mobile device to gain access to the system
when the user is far enough to not realize that someone
malicious wants access to his system. Since the pack-
ets would be repeated, the communication range of the
device and the PC would be extended. Since the team
could not successfully use the Ubertooth One to attack
the system on time, the team only devised ideas on how
to counter this issue. One solution is to check the band-
width and latency of the Bluetooth packets to determine
the distance the mobile phone is from the PC.

To defend against spoofing, the team has been working
on ways to encrypt messages between the phone and the
PC to determine whether or not the device is who they
claim to be. The encryption the team decided to use was
AES with GCM to ensure integrity of the message being
sent and the authenticity of the message. However, we
have yet to test this attack as their was no time to com-
plete the project before the final sprint.

As stated earlier, there is no effective way to counter-
measure against the device being stolen. This is not what
the project will be focusing on. There are some plans
to mediate the issue but those are extra features and will
not be worked on during the duration of the development
phase of the project.

2 Background and Related Work

2.1 Background

It is not rare to see workers at a workplace leave their
computers on as they take a break. This is a grave
concern since the computer is left at a vulnerable po-
sition where the loss and tampering of data can occur.
Furthermore, the use of stolen or weak passwords is
very common. There are many incidents of security
breaches in the past decade or two simply due to the use
of common passwords. According to the 2017 Verizon
Data Breach Investigation Report, ”81% of hacking re-
lated breaches leveraged either stolen and/or weak pass-
words” [Verizon, 2017]. This opens up the question of
whether or not users have simply given up on security
and opted to create and reuse simple passwords for every
application they use. As we all know, security breaches
cost companies a loss of a lot of resources and reputation.

Passwords are often referred to as the weakest link in
security. The use of unique and strong passwords re-
quire users to be creative and often lead to forgotten pass-
word. In a survey conducted by Forrester, several large
organizations allocate over e700 000 annually just for
password-related support costs [Palfy, 2018]. Passwords
are just a pain for both client and security professionals.
It is not rare to have employees resetting their password
for their work accounts. One survey found 57% of re-
spondents have to reset their work account which affects
productivity [HYPR, 2019]. Even if a strong and memo-
rable password were to be chosen, the password is still at
risk of being phished. Phising is a common and growing
method of attack where about 33% of breaches were con-
ducted by Social Engineering in 2019 [Verizon, 2019].
Another issue with passwords is that they are not resilient
to physical observation meaning anyone can watch over
the person typing in the password. Due to all of these
factors, passwords lack both usability and security bene-
fits that a good authentication method should provide.

It is clear that password-based authentication is not the
way IT products and services should adopt. One of the
earliest works to make passwords more secure is the use
of password managers. Password managers allow users
to create strong and complicated passwords that are not

4

easily crackable and have their password managers to re-
member them. Some examples of password managers
are the browsers’ built-in encrypted password managers,
Dashlane, and LastPass. Password managers are very
simple, convenient and scalable to remember passwords
for every service one subscribes to. However, password
managers are only secure if the master password to the
password manager is both secure and memorable. Pass-
word managers do not get rid of the entire issue with
passwords. This could lead to a big compromise with the
attacker knowing all the users’ passwords if the master
password was to be stolen.

There are three main categories of methods in user
authentication [Oorschot, 2020]. Authenticate based on
what you know, what you have, and what you are. There
is another category which is where you are which will be
explained in detail later.

An example of authenticating users with what you
have is Hardware tokens. Hardware tokens such as RSA
SecurID aims to replace passwords by having the device
cryptographically generate a strong 6-digit code every 60
seconds instead of using a statically user-created pass-
word [Bonneau et al., 2012]. For the token to work with
the authentication module, the device and the module
must know the secret ”seed” that is unique to the device.
This allows the system to authenticate the user based on
what they have and to fix the issue with the poor secu-
rity of passwords due to human cognitive factors. How-
ever, some form of password still needs to be written to
authenticate the user and acquiring hardware tokens re-
quires the user to buy one.

There has been a lot of movements within the indus-
try to adopt passwordless authentication or multi-factor
authentication. It is not uncommon to see many web ser-
vices to ask users to enter a randomly generated pin code
sent to their email or phone on top of their passwords.
There also have been moves by many organizations such
as Microsoft and Apple to adopt biometric authentica-
tion such as fingerprint and iris scanner as an alterna-
tive to passwords. Biometric authentication authenticates
based on what you are and establishes your identity with
your biometric features. Multi-factor authentication has
been found to reduce your odds of being compromised

by up to 99.9% according to Microsoft 2018 Security
Research [Microsoft, 2018]. There are many forms and
implementation of Multi-factor authentication such as a
pin to enter after entering a password, biometrics, SMS,
smart cards, and hardware authentication devices such as
Yubikeys or tokens. However, the issue with all of these
implementations is that they require additional hardware
or lacks the user experience. We know from passwords
that users simply prefer convenience over security so it is
crucial for security professionals to create products that
take usability into consideration.

It is imperative for authentication methods to balance
between usability, deployability, and security as pro-
posed in the paper The Quest to Replace Passwords. The
paper does a great job of proposing a comparative evalu-
ation of different authentication schemes. In their paper,
negligible cost is one criterion of deployability that au-
thentication should strive to achieve. Hardware and bio-
metrics authentication such as iris scanner, facial recog-
nition, Yubikey, and fingerprints require the user to in-
vest money to acquire these capabilities. The project we
propose ensures no additional cost to the user to gain
passwordless authentication. Although ProxyAuth re-
quires users to have an Android Phone and for the PC
to have Bluetooth capabilities, we consider this to be a
negligible cost to the user. The reason we believe the
cost to be negligible is the fact that there are over 5 bil-
lion mobile device owners in 2019 [Silver, 2019] with
about 74% of the market using Android in December
2019 [Stats, 2020]. Iris scanners and fingerprint scan-
ners are not widely adopted in the PC market hence re-
quires additional costs to the users. Furthermore, hard-
ware authenticators such as a Yubikey, which is gaining
wide industry adoption, is not convenient to carry around
since it is not an object the average consumer carries
daily. ProxyAuth proposes users to not carry anything
additional than what they normally carry. ProxyAuth
provides the ”quasi-physically-effortless” usability ben-
efit because the average user carries around their phone
daily and so would not be an additional burden. Prox-
yAuth authenticates users based on what they have and
where they are. To authenticate a PC, the user must have
their phones with them at all times and be located within

5

the Bluetooth proximity of their device to authenticate.
There will be no way to social engineer the user to steal
the pin code or a one-time password (OTP) to access the
machine. This is an issue with multi-factor authentica-
tion because all the attackers need is the password and
OTP or pin code which can be all stolen using social en-
gineering.

We are also trying to offer ProxyAuth as an authen-
tication method that can work side by side with other
forms of authentication as well such as password-based
authentication, biometrics or other zero-effort authenti-
cation. Coupling ProxyAuth with your mobile phone’s
biometrics and a password to enter to your PC covers all
four major methods of authentication: what you know
(password), what you have (mobile phone), what you
are (fingerprint), and where you are (Bluetooth proxim-
ity check) with little to no cost. However, this is not the
major focus of the project but is a possible feature to im-
plement in the future. A proximity-based authentication
provides ease of use and passwordless authentication.
Proximity-based authentication provides all the benefits
of passwordless authentication with auto-login and auto-
lock features. These features can be extremely useful to
those who may need to quickly check the PC for infor-
mation such as those working in the hospital or the field
for surveying. A study in 2005 has found that it is not
uncommon for physicians to enter data into the wrong
patient’s record due to accessing another user’s session
without knowing [Koppel et al., 2005]. Physicians share
the same terminal so when a terminal is found to be unat-
tended, it is not rare for another physician to access the
terminal to update a patient’s record and forget to log out.

2.2 Related Works

There are a lot of works with creating continuous au-
thentication in the industry. One of the earliest works
with continuous authentication is the XYLOC products
by Ensure Technologies which uses active RF proxim-
ity to detect user’s proximity to lock or unlock their ma-
chine [Technologies, 2009]. Ensure Technologies has
been working on proximity-based authentication for an
extremely long time introducing XyLoc Secure login for
Windows 95. The company requires users to attach a

USB device called a lock which will communicate with
the key, an authenticator, (which is in the form of a
badge or a key chain) that the user will carry around.
Just like any proximity-based authentication, the system
will lock if the key is a certain configurable distance
away from the machine by calculating the strength of the
signal between the key and lock. However, the differ-
ence between XYLOC and ProxyAuth is how it deter-
mines the distance. XYZLOC products require a radio
transceiver, the lock, that is attached to the machine that
can communicate with the key in 300, 800, or 900MHz
radio frequency bands rather than using well-established
communication technologies such as Bluetooth which
uses 2.4GHz frequency [Technologies, 2009]. 2.4GHz
and Spread Spectrum technology provides more chan-
nels and makes use of more secure communication tech-
nologies [Merayyan, 2001]. ProxyAuth does not re-
quire any specialized frequency reader since it relies
on built-in Bluetooth adapters and its underlying tech-
nology to communicate with the authenticator. Using
Bluetooth instead of other radio frequency bands allows
us to not worry about dealing with frequency hopping
to switch channels to avoid interference from other de-
vices [Merayyan, 2001]. In addition, the use of an at-
tached USB device clutters one’s workspace and is in-
convenient to carry around. Traditionally, employees
will have their own working area such as a cubicle, where
the employee spends most of their time working in their
cube. However, with the improving mobile network
technology and increasing adoption of laptops, compa-
nies are increasing the use of mobile workspace, also
referred to as shared workspaces. Carrying additional
peripherals to make use of proximity-based authentica-
tion is inconvenient. Coupled with the requirement of
users to carry around a keycard or a keychain as an au-
thenticator is not a convenient solution at all. ProxyAuth
utilizes what existing technologies exist and what users
often carry which is a mobile device.

With the increasing interest in smart wearable tech-
nologies, there has been work to have wearable devices
used for proximity-based authentication. For instance, in
WatchOS 3 release, Apple Watch introduced a new fea-
ture that unlocks a user’s Mac when they are close to

6

their Macbook [Apple, 2019]. However, there does not
seem to be any feature within the Apple Watch nor any of
their ’Continuity’ features that give users an auto-unlock
feature when they are not within proximity of their Mac
and the auto-lock feature is only offered to Apple Watch
users [Apple, 2020]. This may explain why there are 3rd

party products such as Near Lock Me that provides this
feature. Near Lock Me is similar to Apple’s unlock fea-
ture but the authentication device is the iPhone instead of
the Apple Watch and also has the auto-lock feature that
ProxyAuth provides [Lock, 2015]. As usual, these fea-
tures are only offered within the Apple ecosystem and is
hardly affordable for the average consumer. Near Lock
Me is the closest product that offers the same features
as ProxyAuth with the exception that ProxyAuth targets
Linux and Android users while Near Lock Me targets the
Apple ecosystem. Similar to ProxyAuth, Near Lock Me
uses the iPhone as an authenticator. To authenticate the
PC, it requires the phone and the PC to be paired and
approximates distances using Bluetooth just like Prox-
yAuth does.

Another related project to ProxyAuth is ZEBRA.
ZEBRA is a zero-effort bilateral recurring authentica-
tion [Mare et al., 2014]. The issue ZEBRA is trying to
tackle is the prevalent behavior of users leaving their
computer terminal unlocked. To authenticate, ZEBRA
requires users to wear a bracelet that has a built-in ac-
celerometer, gyroscope, and radio on their dominant
wrist which would act as an authenticator. Unlike other
related works mentioned that will be mentioned in this
paper, ZEBRA takes this approach in a very unique way.
ZEBRA compares the wrist movement from the bracelet
to the user’s input via a keyboard or a mouse to determine
the identity of the user. Using the data gathered from the
watch such as accelerometer and gyroscope data, the re-
searchers try to correlate it with the input event which
seems a very difficult project to implement. The reason
why the team did not approach the project towards identi-
fying the user based on the user’s behavior is that it goes
against the ideals of ProxyAuth. One of the tenants of
ProxyAuth is to create continuous authentication with-
out the need for extra hardware or device. Furthermore,
the team does not have any background in data science.

Therefore, working on a project that requires classifying
data and perhaps using machine learning to help improve
identifying users is out of the scope.

One neat competitor to ProxyAuth is the use of
Glass Wearable Device as an authentication device. Re-
searchers at the Stevens Institute of Technology worked
on creating a continuous authentication scheme us-
ing glass wearable devices to aid those with disabil-
ity or provide ease of authentication for those in en-
vironments where users need to frequently authenti-
cate and log out such as those working in hospi-
tals [Damopoulos and Portokalidis, 2018]. The authen-
tication process works by using a mix of voice and the
glasses’ vision to authenticate the system. The glasses
are meant to be flexible and can have various commands
such as ”OK glass, authenticate”. Using the authenti-
cate phrase would have the system display a QR code in
which the user needs to look at to authenticate. The PC
would periodically issue authentication challenges which
are just QR code that would pop up to the screen. How-
ever, wearable glass technologies are still in development
and are not widely adopted making the use case for this
implementation to not be feasible.

3 Methodology and Design Goals

3.1 Methodology

There are three main components to the project: An-
droid Application, PAM, and a program that continu-
ally de-authenticates the PC. The idea is to split the team
into two development groups: the Android team and the
de-authentication team. We broke the problem for each
component to simple manageable parts that can be done
in each sprint. The project development cycle we chose
is to be agile, making small increments to each com-
ponent during each iteration of the cycle (i.e. sprint).
Whether or not we followed the development cycle is
another story. Each feature for each component is sup-
posed to build on top of the previous one so there were
not many tasks each member of a team could work on
in parallel. The goal was to have all members have the
flexibility to either work together or independently to fit
each other’s schedules. Having an iterative development

7

cycle allows flexibility in changes of project design and
switch around user stories depending on what seems to
be a higher priority or what can be done within the sprint
after taking into consideration other member’s sched-
ules. However, we eventually broke some members in
the project to the security team. The goal of the security
team was to work together in researching the security as-
pects of the project such as what type of encryption to
utilize and how to use the UbertoothOne to attack our
project. We dedicated a team to security once the devel-
opment of each component matured to the point where
we had a working implementation that allows a user to
authenticate using their mobile device and get locked out
if communication with the mobile device and PC ceases.

The overall criteria for the project to be considered a
success is to have the ability to authenticate a computer
through a user’s mobile phone and have the computer
locked when the user walks away from the computer.

Android Methodology: The end goal of the Android
application is to communicate with the server (the de-
authentication program). Therefore, we broke the An-
droid Development into various cycles:

1. Create a simple Hello World Application - to get an
idea of how to create an Android application using
Android Studio and how to load the application to
their mobile device

2. Find all the devices that has paired with the Android
device before

3. Display all the Bluetooth MAC addresses from the
previous user story into a list view

4. Have each item in the list lead to a new page in the
application (a new activity) with the MAC address
to be passed to the new page (an intent)

5. On the new activity, the application should open a
new RFCOMM socket (a Bluetooth protocol that
provides reliable data stream) to the device we wish
to connect to

6. Once connection is established, create a button that
sends a simple string such as ”Hello World” to the
server

7. Create another button to disconnect from the server

8. Add reading capabilities to the application

9. Create a background service activity which allows
the application to continuously read and write to the
server

10. Add encryption and decryption capability to the ap-
plication [NOT COMPLETED]

PAM Methodology: The end goal of PAM is to au-
thenticate the computer if the computer can detect the
mobile device.

1. Create a PAM that logs to a file whenever you log
in to get an idea of how to work with PAM libraries
and how to configure PAM to run your module

2. Create a simple program that scans Bluetooth de-
vices nearby

3. Incorporate Bluetooth scanning program into PAM

4. Allow the computer to be logged in if the devel-
oper’s phone is detected via Bluetooth scanning

5. Log onto the computer only if the MAC addresses
detected is one of the devices that the user trusts
(create a file that PAM will read to know which
MAC addresses are trusted by the user)

6. Create a program that utilizes D-BUS to get infor-
mation on what devices are currently paired with the
machine

7. Replace authentication to log onto the computer
if and only if one of the devices currently paired
with the machine is listed under the list of MAC
addresses the user trusts. Bluetooth scanning was
found to be to slow so we removed this feature.

8. Sanitize all addresses read from the file that contains
the list of Bluetooth addresses that the user trusts

9. Fork and execute the de-authentication server once
the user is authenticated

8

De-authentication Server Methodology: De-
authentication server is a background process running
on the computer that continuously communicates with
the authenticator (mobile device) via Bluetooth to
”de-authenticate” the PC. The end goal of the de-
authentication server is to continuously issue challenge
request to the authenticator and lock the system if the
authenticator fails to respond to the challenge.

1. A Bluetooth server that reads a single input from a
connected client

2. Add write capabilities to the server to write back a
single message to the client (the Android applica-
tion)

3. Have the server to continuously interact (read and
write) with the client

4. Create lockout feature if the computer fails to get an
input from the phone within 10 seconds

5. Only allow the server to connect and communicate
with the authenticator that authenticated PAM. If
any other device tries to communicate to the server,
have the PC locked

6. Have the de-authentication server to kill itself once
it detect the user has manually locked out of the ma-
chine. This feature was created to prevent conflicts
with another instance of de-authentication server
that gets spawned each time the user logs in.

7. Add proximity lockout feature by checking the
bandwidth of the messages being sent to the server.

8. Add encryption and decryption to the server to cre-
ate an extra layer of security on top of Bluetooth’s
encryption [Not Completed]

3.2 Design Goals

Complete Features: To summarize here are the fea-
tures that ProxyAuth should provide:

Android:

• An application that shows a list of paired MAC ad-
dresses to communicate with

• The list of paired MAC addresses should only dis-
play addresses that the user wishes to authenticate to
(i.e. should only populate a list of Computer Blue-
tooth addresses owned by the user) Not Completed
• Auto pair and communicate with the PC without

user’s intervention Not Completed
• A kill switch that simply disconnects with the de-

authentication server
• Add an extra layer of encryption when communi-

cating with the server Not Completed

PAM:

• Login if the device is paired and is trusted by the
user

• Allow customization to PAM to allow multi factor
authentication Extra Feature

De-authentication Server:

• Constantly communicate to the authenticator

• Auto lockout if the authenticator fails the challenge
response request

• Add an extra layer of encryption when communicat-
ing with the Android application Not Completed

4 Tools and Libraries Used

Hardware

• Android Mobile Device: To act as the authenti-
cation device. The minimum Android SDK Ver-
sion our Authentication Application will support is
SDK Ver. 20 which supports the majority of the
Android devices currently in use including devices
from 2014. The goal of ProxyAuth is to be a cheap
alternative compared to other authentication meth-
ods and devices. Therefore, we chose to encom-
pass a wide spectrum of Android Devices. There
are a few reasons why we choose to work with An-
droid and not alternative operating systems such as
iOS and PureOS. Firstly, to develop apps for iOS,
you need Xcode which only runs on macOS. This

9

is a big issue as this would require members to pur-
chase Macbooks as only one person in the group
runs MacOS. Other alternatives such as Blackberry
10 and PureOS are not valid choices either. Alterna-
tive operating systems are not widely adopted which
would defeat the purpose of the project. Android
OS was ideal because it is the current dominant OS
in the market by adoption and is open source with a
vibrant community in which we could consult with.
• Linux Computer: The system we wish to authen-

ticate to. The computer must have Bluetooth sup-
port and enabled. Bluetooth is essentially equipped
on every Computer being sold in the market for
a long time so this should not pose an issue on
the user. Development and testing were done on
Ubuntu 18.04 LTS since we initially wanted to work
on the lab machines. However, due to the lack of
permissions on the lab machines, we have opted to
use our laptops to test our PAM module.
• Bluetooth Adapters: Much to our surprise, the lab

machines do not have Bluetooth Adapters. How-
ever, since there was no way we would get approval
to develop our PAM module on the lab machines,
that was not an issue. But when developing and test-
ing the project, members initially used a virtual ma-
chine which required an external Bluetooth adapter
for the virtual machine to have Bluetooth capabili-
ties.
• Ubertooth One: Ubertooth One is an open source

2.4 GHz wireless development platform that is suit-
able for Bluetooth experiment. Reading up on a few
experiments others have done using Ubertooth One,
we thought we could use these neat devices to attack
our program by using a repeater attack to extend the
signal of the Bluetooth signal. Due to the limita-
tions most Bluetooth adapters have and the fact that
Bluetooth technology is not a very open technology,
Ubertooth One was the ideal candidate since it was
an open source device that will give us enough con-
trol of the hardware. Refer to Recommendations
on what our progress was with the device.

Software

• Android Studio: Required to work on the Android
Application as it comes with the required tools, plu-
gins, API. Android Studio is also the IDE of choice
by the Android Development community so there
are a lot of forums and documentation. Using other
IDE such as IntelliJ or Eclipse requires more set up
to do which would have hindered our progress with
the Project.
• GNOME Desktop Environment: ProxyAuth will

only support any Linux systems using GNOME as
their desktop environment due to the implementa-
tion of PAM and the de-authentication server using
GNOME’s D-Bus libraries.
• Ubuntu 18.04 LTS and Ubuntu 19.04: The distri-

bution of choice was Ubuntu since most members
are familiar with Ubuntu. The lab machines all use
Ubuntu 18.04 LTS so we initially thought we could
develop on those machines. Our choice for Ubuntu
propelled our implementation of ProxyAuth to sup-
port GNOME environment only
• C Compiler - gcc ver. 7.4: We chose to use gcc

simply because it was the compiler that was in-
stalled on the lab machines. Using different ver-
sions of gcc such as gcc ver. 9.2.1 should and did
not matter during development as long as the pro-
gram can compile using C11(201112L). To find the
gcc version, run the following command: gcc -dM

-E - < /dev/null | grep STDC VERSION

• Linux PAM Module: By changing the configu-
ration of GDM (GNOME Display Manager) pass-
word configuration file, we can allow users to au-
thenticate their system using our PAM Module.
PAM is what Linux uses for authentication.
• Virtual Box: Any virtual machine application such

as VMWare is acceptable. There were no restric-
tions on what virtual machine the team used. Ob-
serving the entire team, most have adopted to use
Virtual Box. Most members of the team did not
have Linux installed on their machine nor were
willing to install Linux on their machines initially.
Therefore, some have opted to use a virtual machine
to run Ubuntu. However, later in the development
stage of the project, the use of virtual machines was

10

dropped. See section Recommendations for more
details as to why we dropped the practice.
• D-Feet: A neat program to debug D-Bus messages.

D-Feet is used to visualize what objects are returned
from certain D-Bus calls during development.

Programming Language and Scripts:

• C: C was the language of choice since Linux, PAM
and a lot of libraries we used were implemented in
C. The standard language to develop PAM Mod-
ules is C. Although there are small movements to
write Linux and C programs in Rust, a program-
ming language that is garnering support within the
community due to speed and memory safety perfor-
mance, it still lacks the years of documentation that
C has. C is also the standard language to be taught at
the University of Toronto so members of the Prox-
yAuth group should be more comfortable with the
language as opposed to C++ which is very similar
to C. Since we were not working on object-oriented
programming paradigm, there was no need to work
with C++.
However, there was always the option to write most
of PAM code in other languages and have our
PAM execute our code in another language such
as Python. Polyglot programming may allow us to
complete tasks much faster by writing components
of the code in languages we are most comfortable
with but this is just simply a lazy and messy imple-
mentation when working on projects that are meant
to be coded in languages that are traditionally writ-
ten in ”lower” level languages.
The de-authentication server was also written in C.
Although the de-authentication server could have
been written in Python, I opted to write the program
in C simply because we already invested a lot of
time learning the Bluetooth Stack in C. Although
this may not be a valid reason, as the main devel-
oper for PAM and a major contributor for the de-
authentication server, I dislike Python and wanted
to practice my C skills so I opted to write the pro-
gram in C. There are a few reasons to not choose
Python for the de-authentication server such as per-

formance of Python and the fact that Python does
not have Bluetooth support as part of the standard
distribution. PyBluez is simply a Python extension
module written in C that uses the official Bluetooth
stack from C to gain Bluetooth support. The de-
authentication server will be constantly be running
so those who use laptops may notice a slight bat-
tery life drop compared to running the program in
C. This may be negligible as we envision the pro-
gram to be lightweight for both the mobile phone
and computer. See section Recommendations for
more details.
• Kotlin: Several languages that can be used when

developing Android Applications are Java, Kotlin,
Flutter or React Native. Although all members are
familiar with Java, the Android team opted to use
Kotlin rather than Java simply because Kotlin code
was more concise. There are other benefits such as
having some modern features in the language and its
built-in null safety. In addition, Kotlin is more An-
droid focus with a lot of support from the Android
Development community to adopt the language as
the primary language for Android Development.
• Perl: Perl was the scripting language of choice.

Bash while being an excellent alternative, I am more
familiar with Perl. Perl is a very versatile language
that is installed in virtually every Linux system so
there is no grave concern for users to install Perl.
However, I would agree using Perl to install de-
pendencies for PAM and de-authentication server is
overkill and can simply be implemented in Bash.

Collaboration/Project Management Tools:

• Slack: Slack was the communication tool of choice.
Slack is a team collaboration messaging platform
that allows us to create channels based on the com-
ponents of the project. For instance, the Android
Development Team Channel will be a channel to
discuss any topics, issues, or advancement in the
Android Application. Slack also offers integrating
apps to enhance our productivity. After noticing
how members were not checking Github for updates
regularly, I have integrated Github to Slack so that

11

everyone can be notified of any changes in issues,
commits, and pull requests.
• Github: Github is a platform that hosts our code

base for the project. Using git as our version con-
trol, we can allow multiple collaborators to work
on the project at the same time and make use of all
the neat features Github offers. Github is a well-
polished software platform and is the platform all
members of our group are experienced with. Famil-
iarity with the platform is the main reason we chose
to use Github over other competitors such as Git-
labs. Github has a lot of features that we took ad-
vantage of such as creating issues, creating pull re-
quests at ease, and the Github Issue Board. Github
issue board (essentially a Kanban Board) allows us
to organize user stories and be able to visualize what
user stories are being worked on and what user sto-
ries need to be worked on during the sprint. What is
neat about Github issues is that you can link issues
to pull requests and to milestones. So whenever
a pull request gets approved, all the issues on our
Kanban board would be moved to the list of tasks
that are Completed.

Additional Software Package

• Bluez: Bluez is the package that provides Bluetooth
protocol stack. Bluez is the official Linux Bluetooth
Stack kernel module and is included in the Linux
kernel since Linux 2.6. But to work with Bluetooth
in the user space, Bluez User Space package must
be installed.
• GLib: a bundle of 3 low-level system libraries writ-

ten in C. We required the use of GLib to use the
GIO (GNOME Input Output) stack for D-Bus calls.
We opted to use GDBUS, GNOME’s implementa-
tion of D-Bus is based on GIO streams simply be-
cause it seemed to be much simpler to work with D-
Bus rather than working on other implementations
of D-Bus such as libdbus, QtDBus, and sd-bus. D-
Bus calls were needed for the project to determine
whether a mobile device was paired with the system
and to check if the user’s session was locked.

• PAM(3): is a set of libraries that handles the authen-
tication tasks of applications on the system. Linux
uses PAM (Pluggable Authentication Module) mod-
ules to handle authentications of various applica-
tions such as GNOME Display Manager which is
the default login screen for Ubuntu. The libraries
must be installed on the machine to work on PAM.

Tools We Would have Used - Here is a list of tools
that could and would have been used if the project has
progressed further:

• Apache 2: The HTTP Server to host a website
where users can notify that they have lost their de-
vice. This would be useful to have the device being
blacklisted from authenticating any of the users’ de-
vices (Extra Feature)
• Router: To run the wifi network to verify that the

devices can only authenticate if they are not only
communicating with the Bluetooth server but also
on the same network.

5 Project Description

5.1 System Overview:

There are three components to ProxyAuth:

• Android Application under proxyAuth/android
• Linux PAM module under proxyAuth/pam/src/-

pam proxy.c
• De-authentication Server under proxyAuth/pam/s-

rc/deauth.c

This section will describe our approach for proximity and
continuous authentication.

A. One-time Authentication
Initially authenticating with a system using Proxy com-
prises of the following steps below:

1. Turn Bluetooth on for both the Android phone and
the Linux PC

2. Pair the devices to each other
3. Lock the PC

12

4. By waking up the Linux PC, ProxyAuth PAM
should be able to detect the authenticator is paired
with the machine and authenticate the user

5. Before ProxyAuth PAM terminates, PAM will fork
a new process and execute the de-authentication
server

B. Continuous Authentication
After the user is authenticated, the de-authentication
server will run in the background. Here are the steps of
how the current implementation of continuous authenti-
cation works:

1. De-authentication server is spawned and is given
the Bluetooth address of the device that authenti-
cated the user’s desktop

2. On the Android device, the user is to open the An-
droid application and select the PC the user wishes
to de-authenticate

3. De-authentication server will receive a connection
request from the Android device. The server will be
given a MAC address when spawned. This MAC
address allows the server to know what MAC ad-
dress authenticated PAM. The server will compare
this address to the address of the device that is try-
ing to connect to the server to check if the device is
trusted, paired, and is the address that authenticated
the desktop

• If the device is trusted by the user and is paired
with the desktop, then the server will commu-
nicate with the Android device

• If the device is either not trusted by the user
or not paired with the desktop currently, the
server will lock the desktop

4. Once the Android application is connected to the
server, the application will send messages to the
server to indicate it’s identity and that the applica-
tion is still alive and read messages from the server

5. The server will read and write back to the applica-
tion and it will do the following behaviors:

• If the server does not receive a message from
the server within 10 seconds, the server will
lock the desktop

• If the server detects the rate in which the appli-
cation is sending is below a certain threshold,
the server will lock the system because the au-
thenticator is too far from the desktop

• If the user manually locks the system, the
server will close its communication with the
server and terminate

5.2 Prerequisite For Both End Users and
Developers

There are some steps both end users and developers need
in their system before using or starting to develop Prox-
yAuth.

Hardware Requirements:

• A Linux system that uses GNOME as their desktop
environment with a Bluetooth adapter
• A smartphone running Android

The following packages must be installed on a Linux
system that uses GNOME as their desktop environment:

• libpam0g-dev - needed to compile and work with
PAM
• libglib2.0-dev - needed to work with GNOME’s D-

Bus calls
• bluez - needed to work with Bluetooth on Desktop
• libbluetooth-dev - needed to work with Bluetooth

on Desktop as well

These dependencies can simply be installed on any De-
bian system by running sudo make install under prox-
yAuth/pam assuming you have cloned the project.
Note: ProxyAuth currently only supports Linux with
GNOME and Android devices only. Refer to Tools and
Libraries Used for more details what software and hard-
ware are needed for the project or for more information
of what each library and dependencies are for.

After installing all the dependencies for the project,
create the directory /lib/security if it does not exist.
/lib/security is where any non-default PAM modules are
located (and is also where ProxyAuth PAM module will
be residing).

13

The next step is to change PAM GDM Password
configuration. Add the following lines to the top of
/etc/pam.d/gdm-password with sudo or as root:

#proxyAuth

auth sufficient pam_proxy.so

auth required pam_warn.so

This is needed to indicate that we wish to allow desk-
top login using our PAM module.

To add a trusted device:

• Create the directory if it does not exist:
/etc/proxy auth/

– This is where all the user’s MAC addresses are
stored and where the de-authentication server
will be located

• create a file that is named after the username of the
user
• add to the file the MAC address of the authenticator

Steps 2 and 3 can be done using the follow-
ing command: sudo echo bluetooth address >>

/etc/proxy auth/$USER

Running Bluetooth Server: There are issues with the
sdptool in Bluez 5 when trying to run a Bluetooth server.
Therefore there are some steps that needs to be added
before running ProxyAuth:

1. Open the Bluetooth configuration that your Blue-
tooth service loads for editing. To find out which
configuration file your system loads, run the follow-
ing command: sudo systemctl status bluetooth
The following output should be something similar
to the output below:

$ sudo systemctl status bluetooth

bluetooth.service - Bluetooth service

Loaded: loaded (/lib/systemd/system/

bluetooth.service; enabled; vendor

preset

Active: active (running) since Wed

2020-04-01 00:34:23 EDT; 7s ago

Docs: man:bluetoothd(8)

Main PID: 8903 (bluetoothd)

Status: "Running"

Tasks: 1 (limit: 4915)

Memory: 1.1M

CGroup: /system.slice/bluetooth.service

8903 /usr/lib/bluetooth/

bluetoothd

The Bluetooth configuration file is /lib/sys-
temd/system/bluetooth.service according to
the output above. Some systems may use
/etc/systemd/system/dbus-org.bluez.service in-
stead depending on the distribution and version the
system is running on.

2. Change the following line: Exec-
Start=/usr/lib/bluetooth/bluetoothd to Exec-
Start=/usr/lib/bluetooth/bluetoothd –compat

3. Add the following line to the file: ExecStart-
Post=/bin/chmod 777 /var/run/sdp
The permissions of /var/run/sdp changes on each re-
boot which is why the above line is needed to up-
date the permission each time the system boots up.
This is to avoid segmentation fault when running
sdp tools which is broken in Bluez 5. Not sure when
Bluez team will fix this issue.

4. Restart bluetooth with the following commands:

sudo systemctl daemon-reload

sudo systemctl restart bluetooth

Now that all the dependencies, directories, and files
have been created or modified, the user and developer
can now start using the project.

5.3 PAM Implementation

Linux PAM (Pluggable Authentication Module) enables
the local system administrator to choose how applica-
tions authenticate users [A. Morgan, 2010]. A PAM
module takes the form of a dynamically loadable object
file (with the extension %.so). Meaning PAM modules
are dynamically linked at runtime whenever a specific
application relies on PAM API for authentication. PAM
modules allow developers to develop applications sepa-
rate from the authentication scheme. Refer to proxyAu-
th/Makefile to see how to compile PAM modules since
it is different from compiling code to be an executable.
The file is also a good reference to know how to compile
code using Bluez and GLib since some libraries require
more than just adding a library flag to compile.

14

For the project, we want to edit the policy of how gdm-
password authenticates users. In the subsection above,
we modified gdm-password because the program that
handles graphical user interface logins on machines us-
ing GNOME relies on gdm-password. We have added
the following rule to gdm-password:

auth sufficient pam_proxy.so

The auth module group deals with authenticating the
user. sufficient control flag allows us to have PAM recog-
nize a success with the module we created, pam proxy,
to be all that PAM needs to allow access to the user if our
module returns a success.

Once PAM configuration has been finished, the ac-
tual PAM module development starts. When GDM loads
pam proxy.so to authenticate the user, the service func-
tion pam sm authenticate will be called which can be
found under proxyAuth/pam/src/pam proxy.c. To au-
thenticate the user, pam sm authenticate must return
PAM SUCCESS. In pam proxy.c, a PAM SUCCESS
will only be returned if a trusted Bluetooth device is
paired to the system. This is done via calling a func-
tion named bluetooth login which is defined in the
file pam bt trust.h. There are three main steps blue-
tooth login does to find whether or not a device is al-
lowed to authenticate the device:

1. Get a list of MAC addresses that are currently paired
to the system via get paired devices function call

2. Get a list of MAC addresses the users trust via the
function call find trusted devices

3. The function find trusted paired device takes in
the lists created from get paired devices and
find trusted devices and returns a MAC address of
the first MAC address that exists in both lists or
NULL if there is no such device.

5.3.1 Get List of Paired Devices

To get a list of devices that are currently paired to
the system in get paired devices, a D-Bus call must be
made. D-Bus is a message bus system that allows ap-
plications to talk to one another. We will be using
GDBus, an implementation of D-Bus based on GIO
streams used in GNOME applications. The D-Bus call
is done by the function get paired devices defined under

pam bt pair.h. The file pam bt pair.h deals with any
function related to gathering the list of paired devices.
The function will make the following call to D-Bus to
get a list of objects from Bluez:

DBUS_NAME: "org.bluez"

OBJECT_PATH: "/"

INTERFACE: "org.freedesktop.DBus.ObjectManager"

METHOD: "GetManagedObjects"

The D-Bus call will not return you a list of Bluetooth
devices that are currently paired with the device but a
list of Bluetooth devices that the system detects. There-
fore, the object returned by the call will need to be parsed
which is done by the function process dbus bt list. Es-
sentially, the function will parse through every device
object and check if the property Connected is True.
The property Paired is not of great importance since the
property is set to True if the device has been paired with
the system before but does not tell us anything if the de-
vice is currently paired to the system. A sample device
object is shown below for reference:

{’Adapter’: ’/org/bluez/hci0’,

’Address’: ’20:DA:22:DE:0F:68’,

’AddressType’: ’public’,

’Alias’: ’kimju10’,

’Blocked’: False,

’Class’: 5898764,

’Connected’: True,

’Icon’: ’phone’,

’LegacyPairing’: False,

’Modalias’: ’bluetooth:v010Fp107Ed1436’,

’Name’: ’kimju10’,

’Paired’: True,

...

}

5.3.2 List of Devices Trusted by the User

The function find trusted devices is responsible for re-
turning a list of Bluetooth addresses that are trusted by
the user. In our implementation, each user in the system
will have a file under /etc/proxy auth/username which
represents a list of Bluetooth MAC addresses the user
trusts to authenticate their system separated by newlines.
When working with PAM, pam get user() can be called
to get the username of the user trying to be authenticated.

15

Using the username, the function will read from the list
of Bluetooth MAC addresses the user trusts from the file
under /etc/proxy/proxy auth/username and place them
to an array. When reading from a file, it is best to not trust
the file so sanitization is done when parsing through the
list of addresses from the file to check if the address is a
valid Bluetooth address.

5.3.3 Executing the De-authentication Server

If find trusted paired device finds a Bluetooth address
that appears in both the list of trusted devices and in
the list of paired device, it will return the address to
bluetooth login. Since there exists a trusted device that
is paired to the system, pam sm authenticate will call
exec deauth defined in the file pam post auth.h. If
there does not exist a paired device that is trusted, then
pam sm authenticate will return PAM AUTH ERR to
indicate a failure to authenticate the user and will not
spawn a de-authentication server.

exec deauth responsibility is to fork and exec
the de-authentication server which is located in
/etc/proxy auth/deauth which will communicate with
the Android device. To create a new process in C, exec
must be called. However, exec replaces the current pro-
cess so a fork must be called to avoid replacing the cur-
rent process. The de-authentication server takes in one
mandatory parameter which is the MAC address of the
device that authenticated PAM. It is not clear to Kim
whether or not a process spawned in the PAM mod-
ule runs as root but to prevent unneeded privilege es-
calation issues and to have the de-authentication server
auto-lock feature to work, the euid of the deauth will be
set to the user instead of root. Once the server is exe-
cuted in a child process, pam sm authenticate will re-
turn PAM SUCCESS to indicate GDM that the user is
authenticated and therefore give access to the user their
account.

5.4 De-authentication Program

The role of the de-authentication server is to communi-
cate with the authenticator and lock the system once it
detects an issue with the authenticator such as not re-

ceiving input from the authenticator or detects that the
authenticator is far from the system (PC). The server is
spawned by our PAM module and takes in a single pa-
rameter which is the MAC address of the device that au-
thenticated PAM. The source code can be found under
proxyAuth/pam/src/deauth.c.

5.4.1 Checking Deauth’s Argument

Before starting the Bluetooth server, there are a few
things deauth does. Firstly, deauth checks if the given
parameter is a valid Bluetooth address by calling the
function check arg. In addition, deauth also verifies
that the given Bluetooth address is currently paired and
trusted by the user by calling is trusted client. If any of
the two functions return False, the program will lock the
system. The given Bluetooth address is needed to know
which device to communicate with. It is dangerous to
accept a connection from a random device.

5.4.2 Bluetooth Overview

When working with Bluetooth, it is helpful to understand
some fundamentals about Bluetooth, especially if you
are trying to understand what is going on in the func-
tion init server in deauth.c. Bluetooth is a short-range
wireless technology (operating at 2.4GHz) with a max-
imum range between 10-100 meters depending on the
Bluetooth class the device has [Patkar, 2018]. Typical
mobile phones have only Bluetooth class 2 or class 3
which have a range of 10m or less which is perfect for
our use case. Since we want the program deauth to act
as a server, we need to advertise deauth as a service to
all the devices around the PC. The PC will act as a Ser-
vice Discovery Protocol server which will advertise all
services registered to the SDP server. This allows our
phone to be aware of the deauth service and connect to
it.

Special thanks to Albert Huang for his documenta-
tion on programming Bluetooth in Linux. Without his
work, working with Bluetooth would have been an al-
most impossible task.

The function init server binds the Bluetooth socket
to some port and register the service by calling regis-
ter service. register service is where all the set-up for

16

the Bluetooth server occurs and is quite difficult to un-
derstand without knowing anything about how Bluetooth
works. I have broken down the Bluetooth server to the
following functions and will briefly go over in a high
level what is going on in each function:

set_service

set_bluetooth_service_info

set_browsable

set_l2cap_info

register_rfcomm_sock

register_service

Refer to figure 1 to see an overview of some definitions that

may serve useful in understanding some terminologies that will

be used in this section. It is useful to also refer to figure 2 to

see what attributes are in a service record. Both figure 1 and

figure 2 are located at the end of this section 5.4.2.

set service
This function is responsible for setting a UUID to identify the

deauth as a service. Each service is identified by a UUID

which is a 128 bits long but is often shortened to 16 or 32 bits.

Since our application is not close to any well-known services

we’ll be generating our own custom 128 bit UUID for the gen-

eral service ID. The function will also generate another UUID

to register the service class id of the service. Service Class ID
identifies the type of service our service is. Since the service

we are creating is an instance of the Serial Port Service Class,

we set the service to be SERIAL PORT SVCLASS ID. Take

note that all information pertaining to the service is stored in a

service record. Refer to figure 2 at the end of section 5.4.2 to

see a diagram of what attributes are stored in a typical service

record

set bluetooth service info
This function is responsible for setting the profile of the ser-

vice we are trying to create. Bluetooth profiles are additional

protocols that help define what kind of data the service is trans-

mitting [Jimblom, 2013]. The profile the program will use is

Serial Port Profile (SPP) which are great at sending a lot of

data between the PC and the authenticator.

set browsable
This function is responsible to set our service record to be pub-

licly browsable. Note: We have not yet registered our service

record to the SDP server so the service is not yet advertised by

the SDP server.

set l2cap info
This function creates a UUID for L2CAP and to indicate our

service will be using L2CAP protocol. When our service is

discoverable with SDP, there are various ways to access our ser-

vice. We will be using L2CAP protocol (Logical Link Control

and Adaptation Protocol) to handle communication between

the server and client [Schwingenschlogl and Heigl, 2000].

register rfcomm sock
The function is responsible to register the RFCOMM chan-

nel for RFCOMM sockets. RFCOMM (Radio Frequency

Communication) is a protocol built on top of L2CAP proto-

col [Wikipedia, 2020]. RFCOMM provides a simple reliable

data transfer similar to TCP.

After register service calls all the above functions, all that

is left is to register the service to our local SDP server. Before

registering our service, we should give some metadata about

our service such as the service name, provider and description

which is done by using Bluez’s function sdp set info attr.

To register the service to the local SDP server, we

need to first connect to the SDP server using Bluez func-

tion sdp connect. The function to register our service is

sdp record register.

To summarize, here is the flow of how to set up a Bluetooth

server taken from Albert Huang’s book Bluetooth Essentials
for Programmers [Huang and Rudolph, 2007]:

// set the service class

// set the Bluetooth profile information

// make the service record publicly browsable

// set l2cap information

// register the RFCOMM channel for RFCOMM

sockets

// set the name, provider, and description

// connect to the local SDP server and register

the service record

Figure 1: A list of common definitions taken from Bluetooth

17

Specification Version 1.0 B [Jimblom, 2013]

Figure 2: Data representation of the service record. Taken

from a paper about the development of Service Discovery Ar-

chitecture [Schwingenschlogl and Heigl, 2000]

5.4.3 Communication between Deauth and Authen-
ticator

Once deauth establishes a Bluetooth server, it awaits
for a connection from the authenticator (the mobile de-
vice). Once the authenticator establishes a connection
with the server, the deauth checks whether or not the
device connected to the server is the same device that au-
thenticated PAM before beginning to communicate with
the device. If the device is found not to be the same or is
not currently paired with the system (the PC), the server
will lock the system. This is to prevent any potential
malicious device from communicating with the server.
The locking mechanism is handled by the function lock
which is simply a D-Bus call to GNOME’s screensaver
to lock the system. The command to lock is: dbus-send –

type=method call –dest=org.gnome.ScreenSaver /org/g-

nome/ScreenSaver org.gnome.ScreenSaver.Lock

Unfortunately, there was not enough time to design
a well-thought challenge-response request. As long as
there are messages being received from the authentica-
tor within a period of 10 seconds (for development pur-
poses it was set to 10 seconds but for production use, we
would recommend a smaller timeframe to give attackers
a smaller window of attack). If no message is received
from the authenticator, then deauth will simply termi-
nate the connection with the authenticator and lock the
machine. Note: whenever lock is called, the connection
with the authenticator is terminated.

5.4.4 Conflicting UUID due to multiple instances of
deauth

There is a bug that can occur with deauth when the user
manually locks their system. In section 5.4.2, it was laid
out that the general UUID of the service is a fixed cus-
tom UUID for the program. This is an issue when there
are multiple instances of deauth that are spawned from
PAM. Since the user manually locks their system, the
previous instance of deauth is still running and commu-
nicating with the server. When the user logs back into
their system using the custom PAM, another deauth will
spawn and advertise to the local SDP server the same
UUID creating a conflict. This will cause the deauth
instances to continually disconnect and connect forever
rendering the de-authentication program useless. To re-
solve this issue, there are two approaches that can be im-
plemented. The first idea is to have PAM not spawn a
new deauth program but rather have deauth be started
on boot. Meaning there will only be one instance of
deauth. However, there is an issue on how to know
what device authenticated PAM but this can simply be re-
solved by having PAM communicate with deauth of the
device either through a D-Bus call or write to a file which
deauth continually looks at. The other solution (the one
which we adopted) is to have the deauth kill itself when-
ever it detects the user has manually locked their system.
This is done using a D-Bus proxy call to GNOME’s Pres-
ence object under GNOME’s session manager:

DBUS_NAME: org.gnome.SessionManager

OBJECT_PATH: /org/gnome/SessionManager/Presence

INTERFACE: org.gnome.SessionManager.Presence

The idea is to listen to the change in the property sta-
tus of GNOME’s Presence object. If the value of status
is ever 3, it indicates the user’s session is in idle state.
An idle state simply means the user is in the lock screen.
Once the user is locked, deauth will simply call the func-
tion terminate server to kill the process.

5.4.5 Checking Proximity of the Authenticator

To check the proximity of the authenticator, there were
several factors that were taken into consideration. For
an authenticator to communicate with the system, it is
limited to the range of Bluetooth. Most mobile phones
are using Bluetooth Class 2 or 3 so it is limited to 10

18

meters or less. Bluetooth is also easily interfered by ob-
stacles such as walls, so it is much easier to narrow the
effective attack range to be less than 100 meters. Attack-
ers using class 1 Bluetooth devices (that have a maxi-
mum range of 100 meters) have to counteract the limited
range of Bluetooth of the authenticator which uses Blue-
tooth classes that have very limited range and the vary-
ing obstacles that weaken Bluetooth signals. Therefore
the authenticator cannot be too far from the system for
the attacker to gain access to the system. However, it is
possible for an attacker to set up repeaters in between the
authenticator and the PC to continually have the authenti-
cator to send messages to the PC even if the authenticator
is not within 10 meters of the PC. Therefore to defend
a against repeater attack, we implemented a bandwidth
check. Bandwidth is a measure of how much data the
authenticator can send to the PC in a fixed amount of
time. The issue with repeaters is that it needs to read the
incoming signal and rebroadcast the signal which effec-
tively cuts the speed of the data being transmitted. To
illustrate, one may notice that when using a wifi repeater
as oppose to being near their router, the wifi speed of
the repeater is much slower. The same logic applies to
our bandwidth check. Repeaters cannot possibly trans-
mit data over to the PC at relatively the same speed as an
authenticator that is located near the PC. This idea is im-
plemented in other similar products to ProxyAuth such
as XYLoc whose advertisement states it can detect prox-
imity based on the strength of the signal between the key
and lock (Refer to Related Works for more information).
deauth will lock the PC if it calculates the bandwidth be-
tween a fixed interval falls below a certain threshold. The
threshold is calculated by calculating the average band-
width between the authenticator and PC when the au-
thenticator is beside the PC. As long as the authenticator
is near the PC, the user will have access to their system
but will lock once the user leaves the room.

5.5 Android Application

All files related to the Android applications are stored
under proxyAuth/android. The Android application is
responsible for sending messages to the deauth program
running on the user’s PC once the user is authenticated to

the PC. The issue with the current implementation of the
Android Application is that it is not zero-effort contin-
uous authentication. Authenticating to the Android ap-
plication is zero-effort but to take advantage of contin-
uous authentication, the user must manually connect to
the deauth program via the Android application.

There are three activities in the Android application:

• MainActivity.kt: Lists all the devices that has pre-
viously paired to the phone before

• ControlActivity.kt: The activity that creates an in-
stance of BluetoothInteraction service which deals
with communication with the server

• BluetoothInteraction.kt: The background activity
service that deals with connecting and communicat-
ing with deauth

Note: An activity in Android can be thought to be
a page in the application that interacts with the user
(though not all activities interact with the user). A ser-
vice is an application component that can perform long-
running operations in the background. A service does
not provide any user interface as it just simply runs in
the background.

Before starting work on the Android application, there
are a few things that need to be set. Firstly, the Android
phone must be under developer mode with USB debug-
ging enabled. Secondly, Bluetooth must be enabled on
the phone.

In addition, some modifications to the AndroidMan-
ifest.xml must be made before working on the applica-
tion. AndroidManifest.xml describes essential informa-
tion about the application to Android such as what com-
ponents (i.e. activities and services) and permissions the
app needs to have access to. ProxyAuth’s app requires
the following permissions:

• BLUETOOTH: To have enough permissions to
perform any Bluetooth communication

• BLUETOOTH Admin: To allow our application
to discover other local Bluetooth devices

• WRITE INTERNAL STORAGE: To write the
MAC address of the systems we wish to commu-

19

nicate with (these are MAC addresses our authenti-
cator authenticates to)

• READ INTERNAL STORAGE: To read the
MAC addresses the application is supposed to com-
municate with

5.5.1 MainActivity.kt

The role of MainActivity is to display a list of devices
the user wishes to connect to. Ideally, the application
would only list the paired MAC addresses of the PC that
the user wants to authenticate to. But the current im-
plementation simply lists all the MAC addresses that the
application has communicated with before even if they
are not currently paired with the mobile phone. We refer
the server to be the deauth program that is running in
the background of the user’s PC and the client to be the
Android application.

Firstly, when the user loads the application for the
first time, the MainActivity.kt will be displayed to the
screen. Here is an overview of what the Main activity
does when it gets created:

1. Opens the file rem devices.txt if the file exists. Else
it will create the file

2. Check if there is a Bluetooth adapter on the device
by grabbing BluetoothAdapter object using the call
BluetoothAdapter.getDefaultAdapter() which will
return NULL if there is no Bluetooth adapter on the
device.

3. Check if the application has permissions to interact
with the Bluetooth adapter

4. Get a list of devices that have previously paired with
the phone and check whether or not the PC has been
previously communicated to by the application. If
so, the application will try to establish communica-
tion with the PC. However, at the time of writing
this report, the feature does not work.

5. If the application cannot establish a connection au-
tomatically to devices that were previously com-
municated with through the application, it’ll list all

the devices that have been previously paired to the
phone

6. Each item in the list is actively listening if the user
click on the item. Once a user selects a device
to connect to, the listener will create a new activ-
ity ControlActivity and pass the address the user
wishes to connect to the activity (called an intent in
Android).

The figure below figure 3 is an example of how Main-
Activity looks like along with a high-level summary of
what the activity does.

Figure 3: An overview what MainActivity does

5.5.2 ControlActivity.kt

ControlActivity activity is created when the user selects
an item (a Bluetooth address) to connect to. ContrlAc-
tivity is an activity that spawns a background component
called a service that will communicate with the PC the
user wishes to communicate with (in our case it is the
deauth program running on the user’s PC). ControlAc-
tivity is a simple activity that will display the alias and
the MAC address of the PC the user wishes to connect
to. There is also a Disconnect button that will terminate
interaction with the PC which will cause deauth to lock
the PC.

20

Figure 4: An overview of what ControlActivity does

5.5.3 BluetoothInteraction.kt

BluetoothInteraction is an Android service that runs in
the background to facilitate communication with the PC.
Once the activity ControlActivity is created, the activ-
ity will spawn BluetoothInteraction service and pass
on the MAC address of the PC to connect to. The service
will attempt to connect with the Bluetooth server running
on the user’s PC and start sending messages back and
forth. Unfortunately, due to time constraints, the current
implementation of the application is to continually send
”world” to the server and read the string ”hello” from the
server. The service will just continually communicate
with the server until either the server ceases communica-
tion or when the user clicks disconnect in ControlActiv-
ity. When the user clicks disconnect in ControlActivity,
the background service will close communication with
the server and terminate. Since a service is a component
of the application that runs in the background, it does not
interfere with the user’s interaction with the phone. The
user can put the application out of focus and use their
phone for other activities such as checking their email or
watching Youtube videos on their phone and it won’t in-
terfere with the background service from communicating
with the server.

Note: The client (the mobile phone) communicates
with deauth using RFCOMM protocol. Refer to section
5.4.2 for details on what RFCOMM protocol is or to get
an overview of how Bluetooth works.

6 Evaluation and Lessons Learned

6.1 Technical and Security Evaluation

6.1.1 Technical Evaluation

Testing is an integral part of our project development
cycle. On each iteration, testing on the PAM and
de-authentication server has been done to see if the
current project satisfies some goals laid out in Section
3.2. For instance, to test how PAM authenticates users,
we have quickly implemented a Bluetooth scanner that
will authenticate the user while we work on trying to get
the list of paired devices. We figured out testing on a
virtual machine does not work very well, so during the
development phase, all the testing for de-authentication
and PAM was done through Kim’s laptop. We used real
devices (no virtual machines) to test our application and
continually do a regression test to ensure no features
implemented from previous sprints broke. Any major
features to PAM or de-authentication server were first
implemented on small programs to ensure it works as
intended before integrating the feature to our project.
Some programs created to test our features can be found
under proxyAuth/bluetooth and under proxyAuth/-
pam/src/pam test.c but most of the small programs
were not pushed to the repository. In addition, any
user story and pull requests that Kim has worked on
or created were documented in-depth showing how the
issue was solved and came with sample test cases that
were used to verify that the implementation works (refer
to Figure 5 to see how a typical documentation written
by Kim looks like)

To test all the features stated in the design goals for
PAM, all Kim needed to do was to see if Kim can au-
thenticate his laptop with his mobile phone. Firstly Kim
paired a device that the user does not trust and see if
PAM will authenticate it. Once PAM fails to authenti-
cate because the device is not trusted, Kim simply reg-
istered the MAC address of the device to indicate the
device is trusted and see if the device can now authenti-
cate the laptop now that the device is paired and trusted.
In addition, once Kim is able to log onto his laptop us-

21

ing his phone, Kim checked if an instance of the de-
authentication server was spawned using the following
command: ps -u zaku — grep deauth.

Figure 5: A sample how Kim documents and test ev-
ery issue and pull request assigned to him

There were many tools and methods used to test the
de-authentication server. Firstly, to check whether or not
the Bluetooth server is able to communicate with other
devices, Daniel and Kim used various Android Applica-
tions to simulate a client such as Blueterm to connect
to the server and send messages to the server. There
was the Android application the team created that was
supposed to be able to communicate with the server but
when Daniel and Kim initially tested the server and the
Android application, it did not work. Therefore to isolate
the issue, Kim and Daniel had to use various tools avail-
able on the desktop and on the PlayStore to debug where
the issues were. But once the issue with communicat-
ing with both the Android application and server was re-
solved, testing was very simple. To test whether or not
the server and the android application constantly com-
municate with each other, we just printed the messages
that both the server and client send to each other. To
verify whether lock-out works on the de-authentication
server, we had the Android device stop sending messages
for over 10 seconds and see whether or not the system

locks out. To verify proximity check, some modifica-
tions to the server was made to print out the bandwidth
at each fixed interval and walk out of the room till the
system was locked. By observing the changes in band-
width speed over certain distances, we confirmed the
auto-lockout feature works when the user is away from
their system.

6.1.2 Security Evaluation

Due to time constraints and difficulty getting the Uber-
tooth One to work the way we want it, there were no
security evaluations conducted in the project. The goal
of the project was to create a convenient, cheap and se-
cured alternative to password authentication. To test our
application’s security, the team initially wanted to test a
repeater attack and Bluetooth spoofing to see whether or
not there were vulnerabilities to the project. However,
the team was unsuccessful in having the Ubertooth One
to repeat packets and was unable to learn how to spoof
Bluetooth MAC addresses on time for the final sprint.
Since the team was unable to sniff Bluetooth packets,
the team decided to try implementing an encryption
scheme to further secure the communication between the
authenticator and the PC. The encryption scheme the
team tried to implement was AES GCM. AES GCM is
known for its high performance while maintaining secu-
rity [S.Gueron, 2013]. AES GCM is designed to provide
both data authenticity, integrity, and confidentiality to al-
low the user to know whether the data has been tampered
or not, the ability to verify the originator of the message
and is unreadable by eavesdroppers. However, the team
failed to implement any additional layer of encryption on
top of the encryption Bluetooth uses.

Therefore, the Bluetooth communication between the
PC and authenticator solely relies on the security of
Bluetooth which remains to be questionable whether or
not Bluetooth security is reliable. There are three aspects
of security that Bluetooth needs to provide for our project
to be secured: confidentiality, integrity, and authoriza-
tion. Bluetooth must ensure that the messages being sent
between the PC and authenticator cannot be tampered
nor read by a malicious entity. Furthermore, no unau-
thorized devices should be communicating with the PC

22

when the de-authentication server issues a challenge to
the authenticator. The security that Bluetooth devices of-
fer vary between different versions of Bluetooth the de-
vice supports. For instance, Bluetooth versions 4 and 5
uses Elliptic Curve P-256 pairing algorithm and AES-
CCM encryption [Boulevard, 2019]. AES-CCM is de-
signed to provide both authentication and confidentiality.
AES-CCM just like AES-GCM is symmetric encryption
and is less computationally expensive compared to asym-
metric key encryptions. To authenticate the PC, our im-
plementation relies on the security of Bluetooth pairing.
The team will be assuming the security of Bluetooth’s
implementation of Curve P-256 pairing algorithm is se-
cured. Therefore, ProxyAuth will rely on the underlying
Bluetooth security for now and will look into ways to
make the project more secure in the future.

Aside from concerns about the security of Bluetooth,
there were a few security considerations made when de-
veloping the de-authentication server. Since the appli-
cations were written in C, there were concerns of in-
troducing security vulnerabilities in the application such
as buffer overflow, privilege escalation, and memory ac-
cess issues. For instance, when reading the list of trusted
MAC addresses from the file /etc/proxy auth/user, there
may be malicious contents in the file that would cause
the program to crash or cause a buffer overflow. It
is unlikely for any malicious input to be written to
/etc/proxy auth/user because the file is owned by root
and only the system administrator is allowed to write
the list of trusted MAC addresses for each user into the
file. Each user in the system has their own file located
in /etc/proxy auth/. If the system administrator allows
each user to write to the list themselves, the file permis-
sions should be set that only the owner (i.e. the user)
should be able to write to the file. However, it is not
safe to assume the file is safe. Therefore when PAM and
de-authentication server reads from the file, each line in
the file gets parsed to ensure each line in the file is a
valid Bluetooth MAC address. However, the current im-
plementation of the file sanitizer does cause some worry.
Upon writing the report, Kim has noticed when the pro-
gram reads from the file, it uses getline to read each line
of the file. This is a concern because Kim is unsure if

there is a limit to how long a line can be. A better imple-
mentation would be to read only BT MAC LEN bytes at
a time from the file to avoid any possible issues with get-
line. When developing PAM and the de-authentication
server, Kim ensured the team compiles the code in a strict
manner. Warnings are treated as errors and the -fsanitize
flag is used to detect any memory leaks during runtime.
Kim has put in a lot of effort to close any possible mem-
ory leaks but there can still be bugs that compromise the
security of the applications. Memory leaks and illegal ac-
cess to memory can lead PAM and the de-authentication
server to crash leading to a lot of security vulnerabili-
ties with the project. If there are issues with memory
access in PAM, it could lead the user to be unable to
access their machine. Though this can be resolved by
pressing crtl + shift + f3 to log onto their system via ter-
minal console. However, if the de-authentication server
crashes, the lockout feature would be disabled. Mean-
ing the user could leave their system unlocked without
the user’s notice which leads the system to be vulnera-
ble to malicious entities. Another concern raised with
the de-authentication server is the fact that the process
can be killed by the attacker. If the user takes their at-
tention away from the system such as having a discus-
sion with a coworker in their cubicle and is physically
away from their PC but still nearby their system to not
have the PC be locked out, an attacker could kill the de-
authentication server. This will leave the system vulner-
able when the user leaves their cubicle thinking the sys-
tem would auto-lock when in reality, the lock-out feature
was disabled by a malicious attacker. The team will as-
sume this risk to be low since the window of opportu-
nity is small and unlikely. However, there exists a pos-
sible vulnerability with PAM that could lead to the risk
of this window of opportunity to increase significantly.
PAM authenticates assuming Bluetooth pairing process
is secure. PAM does not check the proximity of the au-
thenticator before authenticating the system. A proxim-
ity check is only offered in the de-authentication server.
If a repeater can extend the range of the authenticator’s
connection with the user’s PC, the attacker can quickly
kill the de-authentication server before the program can
detect the proximity of the authenticator and thereby giv-

23

ing full access of the PC to the attacker.

6.2 Timeline and Division of Responsibili-
ties

6.2.1 Timeline:

According to the proposal we have submitted, there were
5 milestones to be completed within the 8 weekly sprints.

For reference, I shall repeat what the first 3 out of 5
milestones were:

1. Custom operable PAM module that is able to log
into the system without a password by Bluetooth
pairing.

2. Create an Android application with a basic user in-
terface. The user should have the UI option to select
their preferred level of security(zero effort, zero-
knowledge, multifactor), though they will not be
fully implemented at this time. The app should have
basic Bluetooth functionality.

3. PAM module that pairs with Android application.
The devices should be set to pair with a public
key infrastructure exchange to encrypt messages be-
tween devices. The user should be required to lo-
gin to the desktop and enter in a code (similar to
two-factor authentication) in the app to authorize
the pairing as well as using Bluetooth proximity as
a means for future desktop authentication.

Over the course of development, many changes to the
direction of our project have changed. To not have any
members idling, we also worked on Milestone 2 concur-
rently to develop an Android Application that will com-
municate with any of the systems that were paired to the
mobile device via Bluetooth’s RFCOMM protocol. By
distributing tasks among various members, we ensure no
members were idling. The reason why we were able to
finish the first two milestones was that we redundantly
assigned each issue to various contributors. We allowed
contributors to either work as a group or work on their
own to complete their assigned user stories. Not all con-
tributors were available at the same time and had differ-
ent schedules so adding the flexibility for individuals to
choose how they want to tackle the issue was beneficial.
For instance, the Android team decided to meet up every
Wednesday or Thursday to work no their assigned issues

together and asked Kim for any help. Since Kim has a
lot more experience when it comes to Android App de-
velopment and with setting up Linux Machines, it helped
the group not be too bottlenecked with setting up their
work environment (which still ended up as a big bottle-
neck) and answer any questions they had about PAM and
Android in general. Although it did take a considerable
amount of time to have each individual contributor be on
the same level of preparedness and knowledge in their
assigned tasks, it could have been worse. Milestone 1
was completed in a series of steps that were manageable.
By breaking the milestone into series of small steps, it
was possible to have a working PAM module that will
authenticate the user’s system based on if the mobile de-
vice is paired and is trusted by the system.

However, we never got far into completing the remain-
ing milestones. We were way too ambitious and lack
knowledge of how we were to approach encrypting mes-
sages with the device. In addition, it would seem we
have ordered some tasks onto the wrong milestone. For
instance, according to our proposal, locking the user’s
device if it fails to respond to the challenge response
was implemented in Milestone 1. Though our challenge
and response were very simple which was that the de-
vice needed to send any message back to the server. Fur-
thermore, it does not seem much work has been com-
pleted after the 5th sprint and onwards. Other priorities
from other courses have hindered our progress with the
project. This was probably when communication started
to break down and when we started to meet less often
to work on issues together. With the lack of time and
communication, the project was in a bit of disorder. Fig-
uring out how to encrypt messages took over two sprints
and in the end, we never got a working implementation
of having encrypted messages to be sent back and forth
between the computer and the mobile phone. There has
been work started for encrypting messages and creating a
protocol of how messages should be structured but it was
not completed before the final sprint. The milestones that
were worked in the final 4 sprints were Milestone 3 and
Milestone 4 which can be summarized as such:

• Create a protocol to how the initial set up with the
Android device and the Computer

• Create a challenge response to the Android device
that is secured using a well-thought challenge and
using encryption to send the message.

• Implement whether Bluetooth communication has
been intruded by analysing the throughput of Blue-

24

tooth packets.

With low motivation, busy schedule, and lack of
knowledge on how to use the Ubertooth One device to
attack our application, none of the tasks in milestone 3
and milestone 4 has been successfully implemented and
tested other than checking proximity of the authenticator.

6.2.2 Division Of Responsibilities:

Responsibilities were split into 4 main categories:

• PAM
• De-authentication
• Android Development
• Security

Note: This is by no means an exhaustive list of what
each contributor has done. I am solely basing each
contributor from what they have written on their sprint
logs and basing from my memory of what they have told
me what they were working on.

Contributers:
Arslan Qamar: Arslan worked on the Android De-

velopment and Security. To be more specific in the secu-
rity category of the project, Arslan was tasked along with
Daniel Xin Wang to discover how to attack our imple-
mentation using the Ubertooth One. Arslan also worked
on the encryption of the Bluetooth messages. His role in
the Android Development was to aid the others in their
issues, debug, and test the application. In addition, he
was tasked to try to get the application to work in the
background.

Anurag Bist: Anurag worked on Android Devel-
opment along with Sean Coutinho and Arslan Qamar.
Anurag wrote most of the code for the Android Applica-
tion to communicate with the Bluetooth Server (the de-
authentication server) to relay messages back and forth.
Anurag also worked on trying to get the communication
to work in the background. In addition, Anurag also
added some additional minor features to the application.

Sean Coutinho: Sean Coutinho worked on the An-
droid Development. He worked with Anurag and Arslan
on the Android Development. Sean was tasked with get-

ting the Application to recognize whether or not Blue-
tooth was on or off, retrieve the list of devices connected
to the phone. Sean also tried to create a protocol for
the messages being sent between the de-authentication
server and the application to potentially add more com-
plex features to the server. Sean also worked on trying to
get add encryption and decryption working on the An-
droid application as well as try to get communication
with the server done in the background.

Areeb Siddiqui: Areeb worked on the security com-
ponent, the encryption of Bluetooth messages, of the
project while also contributing to the de-authentication
server as well such as having the de-authentication server
to read and write messages to the Android device.

Ju Hong Kim: Kim was the sole developer for the
PAM module and also worked on the de-athuentication
server component of the project. Kim has successfully
written a PAM module that will authenticate the system if
the device is paired and is a device that the system trusts.
In addition, Kim has written the initial Bluetooth server
and fix any bugs with the de-authentication server. Other
work that Kim has worked on to the de-athuentication
server such as ensuring the device connected to the server
is the device that authenticated the system and have the
program be killed when the user locks the system. Kim
also helped out with the Android Development as well
such as fixing bugs with communicating with the Blue-
tooth C Server (the de-authentication program). In the
latter stage of development when PAM was completed
and the de-authentication server was waiting for new
features to be implemented such as the encryption and
message protocol that the server and Android applica-
tion were supposed to follow, Kim was restructuring the
code to be more modularized and clean along with writ-
ing documentation of what each part of the program is
supposed to do, and fix any memory leaks that exist both
in PAM and in the de-authentication server. Kim also
worked on getting the Android Application to success-
fully send messages back and forth in the background
since the Android team was struggling with the issue for
a few sprints and fix other minor issues with the Android
application.

Daniel Xin Wang: Daniel’s main responsibility was

25

working on the security component of the project. More
specifically, to investigate the Ubertooth One’s capabili-
ties and devise ways to attack and defend our implemen-
tation. Some ideas Daniel has proposed were potential
attacks by signal repeaters, man in the middle attack, and
spoofing Bluetooth MAC addresses. Daniel has imple-
mented a bandwidth test that will measure the speed of
the Bluetooth packets being sent by the Android device
to determine the distance of the device from the system.
Daniel also contributed to the de-authentication server
such as have the system to lock when the mobile applica-
tion fails the challenge request and also explored how to
program Bluetooth by creating a C program that would
scan all Bluetooth devices within the vicinity.

6.3 Hardware and Software Obstacles:

• Development Environment: Working on the
project required members to work on a Linux ma-
chine. The lab machines do not give us sufficient
privileges to work on PAM. Most of the team did
not have Linux on their laptop so members opted to
use a virtual machine. Members had issues getting
the virtual machine to set up with ssh installed due
to not having done it before. Therefore, only a lim-
ited number of members could test both the Android
and PAM along with the de-authentication program.
This was a big bottleneck during development. We
had members spending countless of hours trying to
set up the environment rather than spending those
times working on user stories. Without an environ-
ment to test their work, the group often had to call
me to test their code which often was riddled with
bugs. Kim often had to stay up late fixing the code
they have submitted for testing.
• Getting Linux to read the laptop’s built-in Blue-

tooth adapter: When members tried to test PAM
and the de-authentication server on their own virtual
machines, they have encountered problems getting
the virtual machines to recognize the built-in Blue-
tooth adapters. The solution to have the virtual ma-
chine get access to Bluetooth was to buy external
Bluetooth adapters. However, this was not a good
solution because members still encountered issues

connecting to the external Bluetooth Adapters. The
virtual machines can recognize the external Blue-
tooth adapters. But the Bluetooth adapters would
not pair with the mobile devices easily and the pair-
ing process took a very long time. Therefore mem-
bers had to once again change how we test the
project by dual booting Ubuntu on their personal
machines. However, we had one member who still
encountered issues in getting their dual-booted ma-
chine to pair with their phone. Instead of getting
work done, they spent the time trying to debug their
set up with no avail. Members were blocked and
could not work on the project nor test the project
for a long period of time until Kim was available to
test their code.
• Attacking our implementation using Ubertooth One

has failed to materialize. Arslan and Daniel have
tried for hours trying to get Ubertooth One to re-
peat Bluetooth packets. Initially, we thought we
could put the Ubertooth One in repeater mode and
it would repeat all the packets that the device reads.
Unfortunately, that is not how it works. Accord-
ing to Daniel and Arslan who have been research-
ing UbertoothOne, the repeater mode on the Uber-
tooth is solely for testing the range of the Blue-
tooth which is different from what we had initially
thought. There has been research in using other
tools such as Gattacker which is used to hack into
cars via Bluetooth.

6.3.1 Recommendations

For those who wish to continue this project, here are
some recommendation specifically to the project imple-
mentation:

• Documentation on Programming Bluetooth is very
lacking. Anyone wishing to work on Bluetooth for
desktop, the only sole documentation you can really
rely on is essentially Albert Huang’s documentation
on Bluetooth Programming or any documentation
that expands on Huang’s documentation. Huang
created his own documentation about Bluetooth De-
velopment solely because there was ”virtually no
documentation whatsoever” [Huang, 2008]. On the
flip side, Google has done a great job of providing
documentation on programming Bluetooth on An-

26

droid.

• Most of the learning how to work with Bluetooth on
Linux other than from Huang’s documentation on
Bluetooth is through reading various open source
source code. Even Huang had to learn from read-
ing the source code of many open-source software
projects such as Bluez. Oddly enough, there are
a lot of great and mature Bluetooth Desktop ap-
plications but not a lot of documentation which is
also something Huang has noted in his book. When
reading Huang’s documentation about Bluetooth, it
helps to also cross-reference other source code such
as the source code for the Bluetooth library itself. It
also helps to read on Bluetooth in general to under-
stand what is actually happening at a much deeper
level than what Huang covers.

• Prepare to read a lot of documentation and source
code to work with D-Bus. Fortunately, D-Bus has
a lot more documentation in comparison to Blue-
tooth. However, I had a difficult time reading
through the documentation and understanding how
to work with D-Bus. I mostly cross-referenced the
documentation and other open source projects in-
cluding GNOME and KDE’s source code.

• If you are going to work with Linux and Bluetooth,
install Linux on your machine. It is not worth the
pain running a virtual machine and buying a Blue-
tooth adapter to get it working. It is best for all
members to have a working environment as early
as possible so that all members can contribute and
not wait for another member to test their changes.

• Communication is extremely crucial. Meet up with
members in person and discuss what needs to be
done and assign tasks to each member. Appoint-
ing a member as a scrum leader would help facili-
tate communication and ensure every member is on
track and working.

7 Concluding Remarks

The purpose of ProxyAuth is to create an alternative
way for users to authenticate their system with zero-
effort without any need for the user to lock their system
when they leave their system unattended. The goal was
to create an authentication system that is cheap, conve-
nient and secure compared to other popular alternatives
to authentication such as passwords, fingerprint, and Yu-
bikeys.

The team successfully created a zero-effort authenti-
cation to their system by authenticating the user based
on the fact that the user has their mobile phone act as
an authenticator. The authentication works by check-
ing if the device is paired and trusted by the PC and
to continuously authenticate the user if the authentica-
tor is within proximity of the PC. The authenticator will
run our Android application to continuously respond to
the challenge sent by the PC (which is running a de-
authentication server) to remain logged in. As soon as
the user leaves a few meters from their PC, the PC will
be locked to avoid any intruder from accessing the ma-
chine. Calculating proximity is done by calculating the
throughput of the messages sent by the authenticator.

However, the project remains incomplete and may be
vulnerable to attacks. Due to time constraints and other
obstacles, the continuous authentication remains to be
non zero-effort authentication. To gain access to the sys-
tem is zero-effort but the user must manually tap on the
Android application to connect to the de-authentication
server to gain continuous authentication. In addition,
the challenge the PC issues are too simple and could be
spoofed.

The impact the project has on the team is profound.
Although the project remains incomplete, the team has
created a convenient and cheap alternative way to au-
thenticate their system without the hassle of passwords.
Passwords are inherently insecure and tedious, especially
when company policy dictates that passwords must be
changed every four months and must be long and strong.
If the project had more time, the team can create an al-
ternative authentication that provides relatively the same
level of security as other competitors such as the Yubikey
without the hassle of carrying extra hardware and with-
out the extra cost to us the users. The project is also a
continuous proximity based authentication which allows
us to leave our systems either intentionally or by clumsi-
ness without fear of malicious actors trying to access our
system when left unattended.

Learning Outcomes
The project provided the team personal experience

what it takes to create a security product and the difficul-

27

ties of working with an uncoordinated team with vary-
ing backgrounds and experiences. This report will not
go over the learning outcomes of other members as this
would be purely speculation and grossly inaccurate if at-
tempted. The following learning outcome will only ap-
ply to the author. To see the learning outcomes of other
members, please refer to the team’s report on the project.

Teamwork Learning Outcomes: From my previous
experience with working on a project with a large group
of students, it is very difficult to coordinate with the
team. This project was no different. The lack of commu-
nication and the refusal to follow software engineering
practice in the team has caused major headaches for
every single member in the team.

Workflow Learning Outcomes: When working on the
project, it was neat to work on various collaboration
tools even if I was the only member who was actively
using the tools. Github Issue Board was great to
visualize the overall progress of the project. I even
adopted using a Kanboard Board to help me visualize
my daily tasks. Github offers a lot of neat tools such as
Actions to build, test, and deploy code. Github Actions
would be great for the team to adopt because I will
no longer need to fix or ask members to fix code that
they never bothered testing. If configured correctly, the
tool should be able to create an APK of the Android
application which can then be easily installed to one’s
phone for testing. Android Studio is a resource hungry
application and so I often did not test what the Android
team were pushing and just opted to read their code to
see what they have done. I also enjoyed Slack’s feature
to integrate Github to Slack. The feature notifies every
member in the channel of any changes to an issue, pull
request or if someone has committed some changes to
the project. Other tools that would have been interesting
to use is creating a template on how each commit, issue,
and pull request should be formatted so that I can have
members write better commit messages and issues.

Linux, Android and C: Since I like using Linux and
programming in C, I like what I have learned from the
project. I have learned a lot about Linux such as how

Linux authenticates users. Before the project started, I
had no clue what PAM was nor knew what GDM was.
In addition, I never knew other applications can com-
municate with each other using D-Bus nor knew how
Bluetooth works. The project also taught me a lot about
Makefiles, the differences between static and dynamic
objects, and how to detect memory leaks by using vari-
ous instrumentation and profiling tools such as valgrind
and -fsanitize=address. It was also interesting to learn
Kotlin and compare it with Java since I have experience
working with Java Android Development.

8 Future Work

The project has a lot of room for improvements. The
project did not even complete its primary design goals.

Android Application

• The list of paired MAC addresses displayed in
MainActivity should only display addresses that
are configured to be authenticated to the PC. The
current list of MAC addresses displayed on the
Android application lists MAC addresses that may
not even be reachable at the moment. It is mean-
ingless to show any MAC addresses that are not
even meant to be connected with the phone for de-
authentication purposes such as the MAC addresses
of the user’s Bluetooth headphones. To approach
this issue, there must be a way for users to manually
register the MAC addresses by having a new activity
that is responsible for registering new address to the
application. The new activity can probably list all
non-registered Bluetooth devices the user has paired
before and have the MainActivity to list only MAC
addresses of computers the user wishes to have the
device act as an authenticator for. A text file is suf-
ficient enough to store the list of MAC addresses of
computers the user wishes to authenticate to as the
average user will not have more than two or three
computers they authenticate to on a daily basis.

• Auto pair and communicate with the PC without the
user’s intervention. Users expect hands-free contin-
uous authentication. Having the user be required to

28

click a single button on their phone each time they
log in to get the auto lockout feature does not solve
what the project is trying to tackle. Users do not
wish and will not remember to manually connect
to the de-authentication server because if they did,
they would not forget to lock their machines. There
has been work on getting this issue resolved but it
remains unsolved. The approach to resolving this
issue is to have the application to continually try to
communicate to the PC the user wishes to connect
to in a background service only if the PC is currently
paired to the phone.

• Add an extra layer of encryption on top of Bluetooth
security. The team was unable to get encryption and
decryption capabilities on both the Android applica-
tion and the de-authentication server. The feature is
important because it is not safe to assume the under-
lying technology (Bluetooth) is secure even if Blue-
tooth has their own encryption scheme.

• Add extra security options for the user to select.
Perhaps the user is uncomfortable having his PC un-
locked through Bluetooth pairing only would like to
add extra security such as through writing a pin on
the application or a button to confirm the request to
authenticate. Clicking a button or having the option
to authenticate the PC if the Phone is unlocked is
much easier than typing a complex password. Most
mobile phones have fingerprint readers which are
passwordless and convenient forms of authentica-
tion. Since most computers do not come with fin-
gerprint scanners, our project could utilize existing
fingerprint scanners on the phone to authenticate the
user’s PC.

• Create a website where users can report lost or
stolen phones to prevent the phone from being used
to authenticate their computers. We can have the
application to check on our servers if the device
is blacklisted from ProxyAuth’s server and disable
the device if it is blacklisted. This can simply
be done by requiring users to create an account
with our servers and register the MAC address of
their authenticator which would be cryptographi-

cally hashed in our database.

PAM

• Allow customization to PAM to allow multi-factor
authentication. There are a few approaches to al-
low multi-factor authentication working on PAM.
The first option is to modify gdm-password PAM
configuration file but this requires the user to know
how to configure PAM properly and is not flexible to
changes. We could create a website that generates a
PAM configuration file for gdm-password based on
the user’s preferences. This is probably the easiest
solution to tackle this feature. Another option could
be to modularize the team’s PAM module to be able
to call other PAM modules such as pam yubico.so
or pam unix.so based on the user’s preferences.

• Increase security to PAM by changing how we au-
thenticate users. Currently, we authenticate users
based on if the authenticator’s MAC address is
trusted by the user and is currently paired to the PC.
This is relying on the security of Bluetooth pairing
process and perhaps should not be trusted. Perhaps
we could also require the authenticator to respond
to a challenge sent by our PAM module. Further-
more, it may be also in the best interest of security
to also add throughput analysis to check the authen-
ticator’s proximity from the PC to prevent repeater
attacks from getting access to the machine. Prox-
imity check through bandwidth/throughput analysis
is currently only supported by the de-authentication
server since it would not matter if the attacker can
gain access to the machine for a split second and be
locked out because it fails proximity check. How-
ever, the small frame of opportunity could be used
to kill the de-authentication program rendering the
auto lock-out feature useless.

De-authentication Server

• Have the de-authentication server lock the PC if
there is no connection from the authenticator within
a very small time frame. The current project im-
plementation requires the user to manually connect

29

to the server to start the auto lockout feature. This
can easily be done by setting the connect function
call to non-blocking and if it fails to get a connec-
tion from the authenticator in that small time frame,
lock the machine.

• Change how the program locks the PC to add sup-
port for other desktop environments such as KDE
and Xfce

• Change D-Bus calls to use libdbus instead of
GDBus to support other desktop environments
since current implementation support GNOME
only.

• Create a program to customize the user’s proxim-
ity lockout feature to allow users to customize the
distance they wish their PC to be locked.

• Create a more complex challenge for the server to
issue. The current implementation does not care
what the authenticator sends as long as it receives a
message. Creating a more complex challenge would
increase the security of the project and make Blue-
tooth spoofing and man in the middle attacks much
more unlikely to succeed.

References

[A. Morgan, 2010] A. Morgan, T. K. (2010). The linux-pam module
writers’ guide. http://www.linux-pam.org/Linux-PAM-html/mwg-
introduction-description.html.

[Apple, 2019] Apple (2019). How to unlock your mac with your apple
watch. https://support.apple.com/en-ca/HT206995.

[Apple, 2020] Apple (2020). Use continuity to connect
your mac, iphone, ipad, ipod touch, and apple watch.
https://support.apple.com/en-ca/HT204681.

[Bonneau et al., 2012] Bonneau, J., Herley, C., v. Oorschot, P. C., and
Stajano, F. (2012). The quest to replace passwords: A framework
for comparative evaluation of web authentication schemes. In 2012
IEEE Symposium on Security and Privacy, pages 553–567.

[Boulevard, 2019] Boulevard, S. (2019). What we need to know about
bluetooth security. Security Boulevard.

[Damopoulos and Portokalidis, 2018] Damopoulos, D. and Portoka-
lidis, G. (2018). Hands-free one-time and continuous authentication
using glass wearable devices. CoRR, abs/1810.02496.

[Golatowski, 2002] Golatowski, I. (2002). Service dis-
covery protocol (sdp). https://www.amd.e-technik.uni-
rostock.de/ma/gol/lectures/wirlec/bluetooth info/sdp.html.

[Huang, 2008] Huang, A. (2008). An introduction to bluetooth pro-
gramming: About this booklet.

[Huang and Rudolph, 2007] Huang, A. S. and Rudolph, L. (2007).
Bluetooth Essentials for Programmers. Cambridge University
Press, USA, 1st edition.

[HYPR, 2019] HYPR (2019). New password study by hypr finds 78%
of people had to reset a password they forgot in past 90 days. HYPR.

[Jimblom, 2013] Jimblom (2013). Bluetooth basics. SparkFun.

[Koppel et al., 2005] Koppel, R., Metlay, J. P., Cohen, A., Abaluck,
B., Localio, A. R., Kimmel, S. E., and Strom, B. L. (2005). Role of
Computerized Physician Order Entry Systems in Facilitating Medi-
cation Errors. JAMA, 293(10):1197–1203.

[Lock, 2015] Lock, N. (2015). A new way to lock your mac. just walk
away. https://nearlock.me/press.

[Mare et al., 2014] Mare, S., Markham, A. M., Cornelius, C., Peter-
son, R., and Kotz, D. (2014). Zebra: Zero-effort bilateral recurring
authentication. In 2014 IEEE Symposium on Security and Privacy,
pages 705–720.

[Merayyan, 2001] Merayyan, A. (2001). Proximity authentication.
SANS Institute.

[Microsoft, 2018] Microsoft (2018). Password-less protection: Re-
duce your risk exposure with password alternatives. Report, Mi-
crosoft.

[Oorschot, 2020] Oorschot, P. C. V. (2020). Computer Security and
the Internet: Tools and Jewels. Springer.

[Palfy, 2018] Palfy, S. (2018). How much do passwords cost your
business? InfoSecurity Magazine.

[Patkar, 2018] Patkar, M. (2018). 5 common bluetooth myths you can
safely ignore now. Make Use Of.

[Schwingenschlogl and Heigl, 2000] Schwingenschlogl, C. and
Heigl, A. (2000). Development of a service discovery architecture
for the bluetooth radio system. A paper on SDP Architecture
Development.

[S.Gueron, 2013] S.Gueron (2013). Aes-gcm for efficient authenti-
cated encryption - ending the reign of hmac-sha-1. PDF Presenta-
tion.

[SIG, 1999] SIG, B. (1999). Bluetooth Standard 1B. Bluetooth SIG.
Bluetooth Standard.

[Silver, 2019] Silver, L. (2019). Smartphone ownership is growing
rapidly around the world, but not always equally. PEW Research
Center.

[Stats, 2020] Stats, S. G. (2020). Mobile operating system market
share worldwide.

[Technologies, 2009] Technologies, E. (2009). Xyloc solutions
overview. Product Brochure.

30

[Verizon, 2017] Verizon (2017). 2017 data breach investigations re-
port. Report, Verizon.

[Verizon, 2019] Verizon (2019). 2019 data breach investigations re-
port. Report, Verizon.

[Wikipedia, 2020] Wikipedia (2020). Bluetooth.

31

	Abstract
	Introduction
	Problem Statement:
	Rationale:
	ProxyAuth
	Summary of Security Considerations

	Background and Related Work
	Background
	Related Works

	Methodology and Design Goals
	Methodology
	Design Goals

	Tools and Libraries Used
	Project Description
	System Overview:
	Prerequisite For Both End Users and Developers
	PAM Implementation
	Get List of Paired Devices
	List of Devices Trusted by the User
	Executing the De-authentication Server

	De-authentication Program
	Checking Deauth's Argument
	Bluetooth Overview
	Communication between Deauth and Authenticator
	Conflicting UUID due to multiple instances of deauth
	Checking Proximity of the Authenticator

	Android Application
	MainActivity.kt
	ControlActivity.kt
	BluetoothInteraction.kt

	Evaluation and Lessons Learned
	Technical and Security Evaluation
	Technical Evaluation
	Security Evaluation

	Timeline and Division of Responsibilities
	Timeline:
	Division Of Responsibilities:

	Hardware and Software Obstacles:
	Recommendations

	Concluding Remarks
	Future Work

