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Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional 
judgment. Statements of fact and opinions expressed are those of the presenters individually and, 
unless expressly stated to the contrary, are not the opinion or position of RSA Conference™ or any other 
co-sponsors. RSA Conference does not endorse or approve, and assumes no responsibility for, the 
content, accuracy or completeness of the information presented. 

Attendees should note that sessions may be audio- or video-recorded and may be published in various 
media, including print, audio and video formats without further notice. The presentation template and 
any media capture are subject to copyright protection.  

© 2024 RSA Conference LLC or its affiliates. The RSA Conference logo and other trademarks are proprietary. All rights reserved. 
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The Rising Importance of Large Language Models (LLM)
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Intellectual Property Privacy Concerns in LLM

• Accessing LLMs and Preserving IP 
– Serving LLM through a paid API 

(Claude, ChatGPT, Gemini, Copilot) 

• This makes the user’s privacy at risk
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LLM SaaS Deployment: Convenience vs. Privacy

• Accessing LLM while preserving 
user’s privacy: 
– 1. Build your own LLMs (too expensive) 
– 2. Building upon free for commercial 

use LLMs (not state of the art) 
– 3. Deploy proprietary LLM on-premise 

(leak of IP)
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Our Goal

Use LLMs while preserving IP and user’s privacy.
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Fully Homomorphic 
Encryption
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Today Data is Only Encrypted During Transport
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With FHE, Data is Encrypted Also While Processed 

9



#RSAC

Leveraging FHE in LLMs
Our Open-Source Experiments

huggingface.co/blog/encrypted-llm



#RSAC

Transformers as Large Language Models

• Main operations: 

– Embedding  
– Feed-Forward 
– Attention
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Transformers as Large Language Models
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Transformers as Large Language Models

• Main operations: 

– Embedding                          FHE (ms) 
– Feed-Forward                      FHE (s) 
– Attention                              FHE (m/h)
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Read the Full Blog Post and Open-Source Code
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huggingface.co/blog/encrypted-llm
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Hybrid Models
Faster Implementations
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LLM User’s Privacy And IP preserving

• Where is the Intellectual Property (IP) 
located? 
– Neural network parameters (weights/biases) 

• Parameter distribution in google/
gemma-7b: 

• Embedding  	 	 -> 	 9.21% 
• Feed-Forward 	          -> 	 71.55% 
• Attention	 	 	 ->	 15.93% 
• Remaining 		          ->	 3.31%
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Hybrid Model Principle
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Demo
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“Apply” Slide
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• Next week you should: 
– Identify AI systems in your company who need privacy:  

• for your customers (their personal data) 
• for your company (your assets)  

• In the first three months following this presentation you should: 
– Prototype protection one of these AI systems with FHE 
– Get help from discord.fhe.org 

• Within six months you should: 
– Have moved your most critical AI systems to FHE (or other PETs)
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Appendix: Glossary

In the document: 
• FHE: fully homomorphic encryption 
• ms: milli seconds 
• s: seconds 
• m/h: minutes or hours 

For LLM technical slides (Slides 11-17): 
• Embedding, Feed-Forward, Attention and Softmax are described in Wikipedia or LLM technical papers 
• F, W1, W2, Q, K, V, WQ, WK, WV and X are matrices 
• x, b1, b2 are vectors 
• MT stands for transposition of a matrix M 
• dk is the dimension of Q and K
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