
fhEVM
Confidential EVM Smart Contracts using Fully Homomorphic Encryption∗

Zama (x: @zama_fhe)

1 INTRODUCTION

A blockchain as a decentralized mechanism for data storage
and processing requires transparency for network members
to reach consensus on the evolving state of the system. This
transparency inherently comes with great challenges regard-
ing confidentiality as all onchain data is widely distributed
and publicly visible, even when hidden behind pseudony-
mous addresses. Solving this challenge, while ensuring the
strong security guarantees of existing blockchains is an on-
going field of research, and is necessary for mass adoption of
decentralized applications.

Our aim is to solve this challenge for general-purpose
(meaning Turing-complete) blockchains such as Ethereum.
Our design follows four key principles:

• There should be no impact on the security of the un-
derlying blockchain

• Everything should be publicly verifiable

• Developers should be able to write confidential smart
contracts directly in Solidity, without being experts in
cryptography

• Confidential smart contracts should be fully composable
with each other

Our solutions combines fully homomorphic encryption
(FHE) for the confidential computation, threshold MPC pro-
tocols for FHE key generation and ciphertexts decryption,
and Zero-Knowledge Proofs of Knowledge (ZKPoK) to en-
sure the correctness and integrity of encrypted inputs.

∗Version 2.0.0 (November 13, 2024).

As all FHE computations are deterministic, our design
allows for existing consensus protocols to be used. This en-
sures that while the data itself is confidential, the computa-
tion itself can be done publicly in a verifiable manner.

1.1 Our contributions

This document introduces the fhEVM, a new confidential
smart contract protocol for the Ethereum Virtual Machine
(EVM). Our contributions include:

• A native fhEVM protocol (fhEVM-native) that adds
confidential smart contracts capabilities to Layer 1/2/3
chains via the integration of dedicated lifecycle func-
tions.

• An fhEVM coprocessor (fhEVM-coprocessor), which
enables confidential smart contracts in non-FHE en-
abled chains such as Ethereum, without any changes
to the chain itself.

• A Solidity library that makes it easy for smart-contract
developers to use encrypted data in their contracts,
without any changes to compilation tools.

Note that while this document focuses on the EVM, our
protocol can easily be adapted to support non-EVM ecosys-
tems, such as Solana, Cosmos, Sui, Aptos and others.

1.2 Applications

While the fhEVM enhances the security and confidentiality
of many applications, it also enables an entirely new design
space where confidentiality is a strong requirement. Here are
some examples.

zama.ai 1

1.2.1 Confidential ERC-20 tokens. The ERC-20 token stan-
dard for fungible tokens is an important standard for
blockchains. However, by the public nature of blockchain
systems, the amounts being transferred, as well as the bal-
ances of token holders are public. This leads both to privacy
concerns for individuals [BSBQ21] as well as the impossibil-
ity for large institutions to use public blockchains without
revealing their strategy to competitors.

The fhEVM solves this by enables both balances and
amounts being transferred to remain encrypted end-to-end,
while still being composable with DeFi and other applica-
tions. Furthermore, public and confidential ERC-20 tokens
are composable, as one can convert a public ERC-20 token
into a confidential one as easily as one would wrap a non-
ERC-20 token (e.g. ETH) into an ERC-20 equivalent (e.g.
wETH).

1.2.2 Confidential Swaps. Auto-Marker Makers (AMMs)
such as Uniswap are a fundamental primitive in decentral-
ized finance (DeFi), and are being used to swap hundreds of
billions of dollars worth of assets onchain. A consequence of
the transaction data being public is front-running and MEV,
which aim to extract value from end-users by interposing
other transactions around them. While this is beneficial to
some network participants, it is typically detrimental to the
end user.

The fhEVM solves this by enabling swaps to be done using
confidential ERC-20 tokens, where the amounts being trans-
ferred are encrypted. While the optimal confidential AMM
design is still a topic of research, it is now possible to have
fully composable, confidential DeFi protocols.

1.2.3 Confidential Voting. Decentralized autonomous orga-
nizations (DAOs) have become increasingly popular in the
blockchain space as a way to create self-governing commu-
nities without a central authority. They rely on smart con-
tracts to enforce rules and make decisions based on the votes
from their members, typically using the number of tokens
held as voting power. As everything is done publicly, large
token holders can be blackmailed or bribed to vote in a spe-
cific way, hindering the fairness of DAO governance.

The fhEVM solves this by enables votes to be casted con-
fidentially: both the vote and the number of tokens voted
with can be kept confidential, while being fully onchain. The

result itself would be public, but the individual votes would
not.

1.2.4 Decentralized Identities. Decentralized identifiers
(DIDs) are a novel type of identifier that enables verifiable
and self-sovereign digital identities for individuals and
organizations. Utilizing encrypted data, smart contracts
that live in the fhEVM have the capability to store and
process sensitive information related to a user’s identity
securely, safeguarding user privacy throughout the process.
For example, a central authority or government could
publish the encrypted birth date of a consenting user to
a smart contract. Subsequently, authorized parties could
query the smart contract to gain information about the
user’s age (e.g., whether they have the age of majority)
when necessary.

1.3 Related work

There are multiple ways to achieve smart contract compu-
tations on private inputs. Although some of the listed so-
lutions can use a combination of the following techniques
we (grossly) classify them into four categories based on the
predominant technology being used: zero-knowledge (ZK)
proofs, trusted execution environments (TEEs), secure
multi-party computation (MPC), and homomorphic encryp-
tion (FHE).

1.3.1 Zero-knowledge (ZK) proofs. ZK proofs tackle the pri-
vacy challenge by keeping only committed data and proofs
of correct computation onchain. However, the data must be
known in plaintext to compute on it, meaning a plaintext
copy of the data must be kept somewhere. This can work
well when only data from a single party is required for any
computation, but raises the issue of what to do for applica-
tions requiring data from multiple parties.

ZCash [BCG+14] and Monero [Mon23] provide anonymity
to both sender and receiver ends on transaction while keep-
ing the amount of exchanged coins shielded using Pedersen
commitments [Ped92].

Zexe [BCG+20] and VeriZexe [XCZ+23] allow arbitrary
scripts to be evaluated within zero-cash style blockchains
using zkSNARKs. The limitation is that since multiple
smart contracts / parties cannot access encrypted state on-
chain, the input data has to be known by at least one party

zama.ai 2

to generate the zkSNARKs. Currently it is impossible to
update encrypted states without revealing them using this
methodology.

Hawk [KMS+16] uses ZK proofs where the inputs to the
smart contracts are revealed to a trusted manager that does
the computation.

In our solution, the computation happens directly on the
encrypted data, meaning that mixing data from multiple
users is straightforward and the computation can happen
onchain.

1.3.2 Trusted execution environments (TEEs). Blockchain
systems based on TEEs only store encrypted data onchain,
and perform computations by decrypting the data inside
secure enclave that holds the decryption keys [YXC+18,
KGM19, CZK+19, SCR23, Oas23, Pha23]. The security of
these solutions depends on the decryption keys being safely
contained within the secure enclaves. This makes the user
depend on the secure enclave hardware and their manufac-
turers which rely on a remote attestation mechanism [CD16].

The enclave approach was shown several times to be
vulnerable against several side-channel attacks [VMW+18,
LSG+18, KHF+19, vMK+21, TKK+22, vSSY+22], includ-
ing attacks that simply observe leakage from memory access-
patterns [JLLJ+23].

1.3.3 Multi-party computation (MPC). zkHawk [BCT21]
and V-zkHawk [BT22] replace the trusted manager from
Hawk [KMS+16] with an MPC protocol where all the in-
put parties need to be on-line to participate.

Eagle [BCDF23] improves upon the Hawk constructions
by having the clients outsource their inputs to an MPC en-
gine which does the computation for them. Eagle also adds
features such as identifiable abort and public verifiability to
the outsourced MPC engine. Even though in Eagle the input
parties do not have to be on-line all the time, they need to
do one round of interaction with the MPC engine to provide
inputs [DDN+16].

Although very detailed, there is no information on how
privacy-preserving storage is achieved in Partisia [Par23] in
their yellow paper.

1.3.4 Homomorphic encryption (FHE). Some solutions based
on homomorphic encryption have been proposed based on
partially homomorphic encryption, which limits the type of

operations that can be performed and therefore only support
a certain class of smart contracts and applications. For ex-
ample, Zether [BAZB20] uses an ElGamal-based encryption
scheme which ensures private transfers of funds. Alas, this
is not enough to achieve full confidentiality when it comes
to more sophisticated smart contracts.

Zkay [SBG+19] defines how to execute Ethereum smart
contracts private using FHE but uses a trusted third party
that holds the decryption key.

smartFHE [SWA23] uses BFV [FV12] as the underlying
(HE) block to build FHE. In their setting, each wallet lo-
cally runs the BFV key generation procedure to get a public
and a secret key pair. Multiple wallets have different keys so
in order to execute more complicated smart contracts such
as blind auctions they need to run a distributed key gener-
ation protocol and produce a joint (pk , sk). The ciphertexts
involved in the computation then need to be re-encrypted
under the new pk , and after performing the blind auction
homomorphically, they need to run a distributed decryption
to get the result (although the distributed decryption pro-
tocol is not detailed in their paper).

PESCA [Dai22] uses a similar architecture to ours making
use of a global public key pk which everyone uses to encrypt
their balances and a threshold FHE protocol to help decrypt
outputs. One major difference is that their threshold proto-
col works modulo q = p a prime number whereas ours works
for a ring Zq with q being typically a power of 2. Another
difference is that in PESCA, the threshold FHE modulus q

is exponential in the number of parties n; i.e., the cipher-
text modulus must increase by a factor of (n!)3 compared to
non-threshold schemes.

Some Ethereum Improvement Proposals (EIP) explored
the idea of adding homomorphically encrypted storage to
the EVM [Sil17].

2 KEY CONCEPTS

This section gives a high level overview of the key concepts
behind the fhEVM.

2.1 fhEVM

The fhEVM is a protocol leveraging FHE, MPC and ZK to
enable confidential smart contracts on EVM blockchains.

The fhEVM comes in two flavors: fhEVM-native, which

zama.ai 3

is integrated directly into an L1 through a set of lifecycle
functions, and fhEVM-coprocessor, which augments existing
L1s with FHE capabilities, without requiring changes to the
L1 itself. We will use the generic term fhEVM when the
distinction between the native and coprocessor versions isn’t
relevant. Similarly, we will use the term Layer 1 (L1) to refer
to L1s, L2s and L3s regardless of their operating model.

We make no assumption about the consensus layer used
in the L1, beyond relying on it for providing agreed-upon
blocks of transactions to execute and public signature keys
of current validators. Importantly, we make no changes to
the consensus protocols.

2.2 Key Management System (KMS)

One of the core component of the fhEVM is the Key Man-
agement System (KMS), which is responsible for generating
FHE keys, decrypting and reencrypting ciphertexts, gener-
ating Common Reference Strings (CRS) and verifying Zero-
Knowledge Proofs of Plaintext Knowledge (ZKPoK).

While a centralized or HSM-based KMS can be used,
we rely instead on a decentralized KMS leveraging a novel
threshold MPC protocol developed at Zama. This ensures no
single entity can access the FHE keys or decrypt ciphertexts,
while offering public verifiability of the requests. Zama’s
TKMS is described in detail in [Zam24].

2.3 Gateway

A Gateway is an offchain relayer that abstracts away most
of the interactions between the KMS and fhEVM, enabling
dApp developers to focus on their application logic rather
than having to implement complex transaction flows. While
Zama provides a high-performance cloud Gateway, anyone
can spin their own in a trustless manner.

The Gateway exposes APIs for decryptions, reencryptions,
ZKPoK verification, ciphertext storage, and more. It is also
responsible for updating the list of L1 validators on the KMS
and the list of KMS nodes on the L1, which are needed to
verify the legitimacy of the decryption requests and outputs.

2.4 Coprocessor

Coprocessors are offchain services that observe the L1 and
perform some associated tasks. In the case of the fhEVM,
the coprocessor is responsible for two things: storing cipher-

texts and executing FHE operations.

Just like blockchains, coprocessors can be deployed under
various security assumptions: as a trusted service, as an
optimistic rollup, as an L1 with consensus, as an Actively
Validated Service (AVS), etc. Furthermore, the execution
of FHE operations can be dissociated from the ciphertext
storage, which can be a separate Data Availability layer with
its own security assumptions.

Our design prevents silent attacks by ensuring fhEVM co-
processors are publicly verifiable: anyone can recompute ci-
phertexts stored by the coprocessor and see the decryption
requests made to the KMS.

2.5 Client SDK

The fhEVM Client SDK offers developers convenient tools
to easily encrypt data, generate ZKPoKs, interact with the
Gateway and submit FHE transactions onchain. It is typ-
ically integrated into the application’s frontend, and uses
WASM for optimal performance.

2.6 FHE keys

Our protocol relies on a global FHE key under which all
inputs and private state are encrypted. This is an impor-
tant design decision since it enables composability between
contracts and multi-user applications.

This global network FHE key is generated by the KMS,
and comprises a public encryption key used by users to en-
crypt their inputs, a public evaluation key, used by FHE
nodes to perform FHE computations, and a private key, used
by the KMS to decrypt ciphertexts.

FHE keys can be updated as needed, without interrupting
the KMS and fhEVM operations.

2.7 Certified ciphertexts

In order to use an encrypted input when calling a confiden-
tial smart contract, users are required to submit a certified
ciphertext, which consists of the input encrypted using the
global public encryption key, and an associated valid Zero-
Knowledge Proof of plaintext Knowledge (ZKPoK) [Lib24].

The ZKPoK ensures that the ciphertext is well-formed and
that the user knows the underlying plaintext message. This
ensures that no-one can take existing ciphertexts from the
onchain state and pass them as inputs to smart contracts

zama.ai 4

to decrypt them. The ZKPoK scheme used in the fhEVM
requires a global common reference string (CRS), which is
securely generated by the KMS.

ZKPoKs can either be verified on L1 directly, or on a third
party validation service (such as the KMS), which returns a
signed attestation that is verified on L1.

2.8 FHE computations

All FHE operations in the fhEVM use the TFHE-rs library
[Zam22], which implements Zama’s variant of the TFHE
scheme [Joy21].

Smart contracts can perform FHE computations by inter-
acting with the TFHE Solidity library described in Section 3.
This library performs a symbolic execution of the computa-
tions to be made on ciphertexts by using "handles" instead
of actual ciphertexts. The ciphertexts themselves are stored
in a ciphertext database, which can either be onchain or of-
fchain. Once the block containing the symbolic execution
is finalized, the actual execution of the FHE computations
can be done, either onchain by the L1 itself, or offchain by
a coprocessor.

This "lazy" execution model allows a high transaction
throughput on the L1, as no FHE computation is done dur-
ing transactions. Users won’t be able to tell the difference
as they won’t know that a ciphertext hasn’t been computed
until they try to decrypt it.

2.9 Access Control

In order to prevent malicious contracts or users from de-
crypting arbitrary ciphertexts, we leverage an onchain Ac-
cess Control List (ACL) containing a list of ciphertext han-
dles and addresses allowed to access them. This enables
smart contracts to programmatically define rules for who is
allowed to access which ciphertexts.

2.10 Decryption and re-encryption

Ciphertexts sometimes need to be decrypted or reencrypted
under a different key. For example, the result of a confi-
dential vote is public and thus can be decrypted, while to-
ken balances should only be viewable by their owners thus
should instead be reencrypted under their keys.

Decryptions can be triggered by smart contracts using
a “blockchain oracle”-like architecture between the fhEVM

chain and the KMS. This is done via the Gateway contract,
passing it the ciphertext to be decrypted and a callback func-
tion to put the result back onchain. This request will then be
picked up by the offchain Gateway relayer, which will fetch
the data, send the request to the KMS, and call the callback
function.

For reencryptions, everything happens offchain, as no
value needs to be put back onchain. The application (on
behalf of the user) simply calls the Gateway, giving it the
handle of the ciphertext to decrypt, and the user’s public
key to reencrypt the value under. The Gateway then calls
the KMS, who sends back the reencrypted value, which is
then be decrypted locally using the user’s private key. At no
point does the Gateway or KMS see the actual plaintext, as
it is never decrypted.

It is important to note that ciphertexts can only be de-
crypted or reencrypted by addresses that are allowed to ac-
cess them in the onchain ACL. The Gateway merely acts as a
trustless relayer, and must provide a proof to the KMS that
the address-ciphertext pair is indeed in the onchain ACL.

3 SOLIDITY LIBRARY
One of our main design goals with the fhEVM is to enable
developers to easily build confidential applications, without
learning cryptography or changing their existing workflow.

Solidity in particular has become the de-facto language for
EVM smart contract development, benefiting from a rich,
mature tooling ecosystem, including compilers, debuggers,
IDEs, and libraries. This is why we chose to write our FHE
library (called TFHE) in Solidity, offering a simple developer
API for FHE computation and access control.

3.1 Encrypted types and operators

The TFHE library supports various encrypted data types:

• encrypted booleans: ebool

• encrypted unsigned integers: euint4, euint8, euint16,
euint32, euint64, euint128 and euint256

• encrypted signed integers: eint4, eint8, eint16,
eint32, eint64, eint128 and eint256

• encrypted bytes: ebytes64, ebytes128, ebytes256

• encrypted addresses: eaddress

zama.ai 5

1 function compute(
2 euint64 x,
3 euint64 y,
4 euint64 z
5) public returns (euint64) {
6 return TFHE.mul(TFHE.add(x, y), z);
7 }

Listing 3.1: Example of computing on encrypted integers x, y, and
z.

They are implemented as Solidity user defined value types
and can be used for variables, parameters, and values in
mappings and arrays. Note that they are not actual cipher-
texts, but rather uint256 ciphertext handles pointing to the
actual ciphertexts (which are stored in a special database,
either onchain for the fhEVM-native, or offchain for the
fhEVM-coprocessor).

Contrary to most FHE solutions that only support addi-
tions and multiplications, we support all the usual operators
for each family of encrypted types:

• ebool: logical operators (and, or, xor, not)

• euintX and eintX: bitwise logical operators (and, or,
xor, not), arithmetic operators (add, sub, mul, div, rem,
neg, abs, sign), comparison operators (le, lt, ge, gt,
eq, ne, min, max), bit shifts and rotations (shl, shr,
rotl, rotr), ternary operator select, and encrypted
pseudo-random number generation randEuintX

• ebytesX: equality operators (eq, ne), ternary operator
select

• eaddress: equality operators (eq, ne), ternary operator
select

Example Listing 3.1 shows how to perform an addition
and multiplication on encrypted 64 bit values.

When calling an FHE operation on the L1, the TFHE li-
brary does not actually execute the FHE computation. In-
stead, it does a symbolic execution, taking handles of cipher-
texts as parameters, and producing a new handle pointing
to the (future) output ciphertexts (c.f. Listing 3.2). The
actual FHE execution is done separately by mapping each
of these operations to their equivalent in TFHE-rs [Zam22],
using the handles to read and write ciphertexts to and from
the ciphertext database.

1 enum Operators {
2 fheAdd
3 }
4
5 function add(
6 euint64 x,
7 euint64 y
8) public returns (euint64) {
9 return euint64(

10 keccak256(
11 abi.encodePacked (2, fheAdd , x, y)
12)
13);
14 }

Listing 3.2: Example of symbolic execution. 2 is used as a domain
separator for ciphertext handles resulting from FHE computations.

3.2 Encrypted inputs

Smart contract functions can take two types of encrypted
inputs: either handles to existing ciphertexts (e.g. an
euint64), or certified ciphertexts that have never been seen
before.

When passing a handle as input, the TFHE library will
check that the contract is allowed to access the ciphertext be-
fore performing any FHE computation, reverting the trans-
action otherwise.

In the case of new, certified ciphertexts, the inputs must be
accompanied by a valid ZKPoK that proves that the cipher-
text is well formed, and that the user knows the plaintext.
To save space and avoid computing multiple ZKPoKs, all
encrypted inputs are packed into a single ciphertext. Smart
contract then takes as parameters a byte array containing
both the packed ciphertexts and ZKPoK, and a list of einput
representing the index of each individual input in the packed
ciphertext.

To use a certified ciphertext, the contract needs
to cast them to a valid encrypted type by call-
ing the TFHE.asXXX(einput, calldata) method (e.g.
TFHE.asEuint64(amount, inputData)). This casting op-
erator will verify the attestation, extract the required
ciphertext from the packed data, store the ciphertext in
the database and return a handle to that ciphertext. An
example of this is shown in Listing 3.3.

3.3 Branching on encrypted values

Since comparing ciphertexts yields an encrypted boolean
value, it is not possible to use it as part of an if-else or
require statement. Instead, our library offers a multiplexer

zama.ai 6

1 function myfunction(
2 einput param1 ,
3 einput param2 ,
4 bytes calldata inputData
5){
6 euint64 handle1 = TFHE.asEuint64(param1 ,

inputData);
7 ebool handle2 = TFHE.asEbool(param2 , inputData);
8 ...
9 }

Listing 3.3: Example of converting ciphertext-related input
amountCt to an encrypted integer handle amount.

1 function myfunction(
2 euint64 param
3) public {
4 ebool encryptedCondition = TFHE.lte(..., ...);
5 euint64 paramOrZero = TFHE.select(
6 encryptedCondition ,
7 param , // if true
8 TFHE.asEuint64 (0) // if false
9);

10 ...
11 }

Listing 3.4: Example of using the select operator to nullify a value
if an encrypted condition is false.

operator TFHE.select which allows selecting a value based
on an encrypted boolean. This can be used in turn to em-
ulate branching by nullifying the effect of an operation, as
illustrated in Listing 3.4. Note that in these cases, transac-
tions will always go through onchain, even though nothing
will happen in practice (e.g. no tokens will actually be trans-
ferred).

3.4 Access Control

All ciphertexts are encrypted under the same public key,
allowing for multi-user applications and composability be-
tween smart contracts. Deciding which address can access
which ciphertext is done programmatically using an onchain
Access Control List (ACL). When an address is granted ac-
cess to a ciphertext, it can compute on it, decrypt/reencrypt
it, and grant access to other addresses. As such, developers
and users should be careful which contracts they interact
with: just as they should not give token spending rights to
malicious contracts, they should not give ciphertext access
rights to malicious contracts.

Updating and reading the ACL is done using the following
functions (as illustrated in Listing 3.5):

• TFHE.allow(handle, address) stores a permission per-

manently onchain, allowing an address to access a ci-
phertext at anytime. This is used for example when a
user needs to decrypt or reencrypt a ciphertext at a later
date, or when a contract needs to store the ciphertext
in its state and reuse it later;

• TFHE.allowTransient(handle, address) stores the per-
mission temporarily in transient storage, allowing an
address to access a ciphertext only for the duration of
a transaction. This is used for example when calling
a contract from within an other contract and passing
it a handle as parameter. It is also used internally by
the TFHE library when a contract calls operators such as
TFHE.add(...), TFHE.asEuint64(...) and others;

• TFHE.isAllowed(handle, address) returns true if the
address specified is allowed to access a ciphertext;

• TFHE.isSenderAllowed(handle) is a shorthand that re-
turns true if the msg.sender is allowed to access
the specified ciphertext. It is equivalent to calling
TFHE.isAllowed(handle, msg.sender), and should sys-
tematically be used by contracts to check that an ad-
dress calling a function that takes handles as parameters
is actually allowed to access those handles.

Note that if a contract tries to call TFHE.allow(...) or
TFHE.allowTransient(...) without itself having access to the
ciphertext, the transaction will revert.

3.5 Decryption

The fhEVM itself doesn’t have the private decryption key,
which is instead managed by the KMS. As such, request-
ing a decryption of a ciphertext is done via an oracle call
to a Gateway service, which then forwards the request to
the KMS and puts the result back onchain by triggering a
callback function. An example is shown in Listing 3.6.

3.6 Reencryption

Contrary to decryption, reencryption doesn’t require a trans-
action and is an entirely offchain process. The advantage of
reencrypting a value is that no-one sees the plaintext, not
even the KMS, as its is directly reencrypted into the user-
provided public key.

To request a reencryption, the client application needs to
call the Gateway service via a web API, which will then

zama.ai 7

1 function transfer(
2 address from ,
3 address to ,
4 euint64 amount
5) public {
6
7 // make sure the caller can access 'amount '
8 require(TFHE.isSenderAllowed(amount), ...);
9

10 // Set amount to 0 if funds are insufficient
11 euint64 txAmount = TFHE.select(
12 TFHE.lte(amount , balances[from]),
13 amount ,
14 TFHE.asEuint64 (0)
15);
16
17 // Do the transfer
18 balances[from] = TFHE.sub(
19 balances[from], txAmount);
20 balances[to] = TFHE.add(
21 balances[to], txAmount);
22
23 // Allow users to access their updated balances
24 TFHE.allow(balances[from], from);
25 TFHE.allow(balances[to], to);
26
27 // Allow this contract to access balances
28 // This is needed for future computations
29 TFHE.allow(balances[from], address(this));
30 TFHE.allow(balances[to], address(this));
31
32 // Use 'txAmount ' in contract ABC
33 TFHE.allowTransient(txAmount , address(ABC));
34 ABC.someFunction(txAmount);
35 }

Listing 3.5: Example ERC20 transfer function.

fetch the necessary ciphertext handles from the L1 via view
functions, forward the request to the KMS, and send back
the result to the client application who can then decrypt
it. A javascript example using our Client SDK is shown in
Listing 3.7.

4 IMPLEMENTATION DETAILS

The following section describes implementation details of the
fhEVM. When the generic term fhEVM is used instead of
the specific term fhEVM-native or fhEVM-coprocessor, it
means the implementation is identical for both versions.

Here is an example fhEVM-native encrypted ERC20 token
transfer, which illustrates both the transaction and reencryp-
tion flows:

• Transferring tokens:

1. User asks an ERC20 Application to transfer some
tokens.

2. The Application encrypts the amount, generates

1
2 function decryptValue(
3 euint64 encryptedValue
4) public {
5
6 // Make sure the caller can access '

encryptedValue '
7 require(TFHE.isSenderAllowed(encryptedValue),

...);
8
9 // Convert the handle into an equivalent uint256

10 uint256 [] memory cts = new uint256 [](1);
11 cts [0] = Gateway.toUint256(encryptedValue);
12
13 // Send request to the gateway
14 Gateway.requestDecryption(
15 cts ,
16 this.myCustomCallback.selector ,
17 0, block.timestamp + 100, false
18);
19 }
20
21 function myCustomCallback(
22 uint256 requestID ,
23 uint64 decryptedValue
24) public onlyGateway returns (uint64) {
25 ...
26 return decryptedValue;
27 }

Listing 3.6: Example decryption of an encrypted 64 bit value.

the associated ZKPoK and asks the KMS to verify
it. The KMS then sends back an attestation of
validity.

3. The applications submits the ERC20 transfer
transaction to the L1, passing it the encrypted
amount and ZKPoK attestation as parameters.

4. Upon receiving the transaction, the L1 EVM ver-
ifies the ZKPoK attestation, stores the input ci-
phertext onchain and does a symbolic FHE evalu-
ation of the ERC20 transfer function.

5. Once the L1 block containing the transaction is
finalized, validators run the actual FHE computa-
tions and put back the resulting ciphertexts on-
chain.

• Viewing balances:

1. User asks the Application to view their balance.

2. The application generates a public-private reen-
cryption key-pair, asks the User to sign it using
their EVM wallet and makes a request to the Gate-
way for reencryption of the balance ciphertext.

zama.ai 8

1
2 // Generate the keys used for the reencryption
3 const { publicKey , privateKey } =
4 instance.generateKeypair ();
5
6 // Create an EIP712 object for the user to sign.
7 const eip712 = instance.createEIP712(
8 publicKey , CONTRACT_ADDRESS
9);

10
11 // Request the user's signature on the public key
12 const signature = await window.ethereum.request ({
13 method: 'eth_signTypedData_v4 ', [
14 USER_ADDRESS ,
15 JSON.stringify(eip712)
16]
17 });
18
19 // Get the ciphertext to reencrypt
20 const encryptedERC20 = new Contract(
21 CONTRACT_ADDRESS , abi , signer
22).connect(provider);
23 const encryptedBalance =
24 encryptedERC20.balanceOf(USER_ADDRESS);
25
26 // This function will call the gateway and decrypt
27 // the received value with the provided private key
28 const userBalance = instance.reencrypt(
29 encryptedBalance ,
30 privateKey ,
31 publicKey ,
32 signature ,
33 CONTRACT_ADDRESS ,
34 USER_ADDRESS
35);

Listing 3.7: Example reencryption of an encrypted ERC20 balance.

3. The Gateway then uses an L1 full node to re-
trieve the balance ciphertext and generate a merkle
proof that the onchain ACL contains an address-
ciphertext entry containing the User’s address and
balance ciphertext.

4. Next, the Gateway makes a reencryption request
to the KMS, including the ciphertext to decrypt,
the merkle proof and the User’s public key.

5. The KMS verifies the proofs and signatures, reen-
crypts the balance under the User’s key, and sends
back the result to the Gateway which sends it back
to the Application.

6. The Application finally decrypts the balance, ver-
ifies the KMS signature and sends back the plain-
text balance to the User.

The end-to-end flow of transaction for both the fhEVM-
native and fhEVM-coprocessor are sensibly the same, as
shown in Fig. 4.1 and Fig. 4.2 respectively.

Figure 4.1: fhEVM-native transaction flow.

Figure 4.2: fhEVM-coprocessor transaction flow.

zama.ai 9

4.1 TFHE scheme

While many FHE schemes have been proposed over time,
three in particular stood out and are in the process of being
standardized by the ISO: BGV [BGV11], CKKS [CKKS16]
and TFHE [Joy21]. BGV and CKKS have the advantage
of enabling fast batched additions and multiplications, but
have to approximate non-linear operations such as compar-
isons. Furthermore, they are often used in "leveled" mode,
only allowing a limited number of consecutive operations af-
ter which the result must be decrypted. While useful for
applications such as machine learning where the computa-
tion depth is bounded and the model can absorb approx-
imations error, it cannot effectively be used in blockchain
applications where compute depth is unbounded (you can
transfer tokens as many times as you want!), and where ap-
proximations cannot be tolerated (approximate comparisons
for example implies that checking a user has enough funds
will sometimes pass even though it shouldn’t).

The TFHE [Joy21] scheme on the other hand enables ex-
act, unbounded computation through the use of a break-
through operator called programmable bootstrapping (PBS).
In a nutshell, the PBS operator evaluates a table lookup ho-
momorphically, while keeping the ciphertext noise low. This
allows for exact, unlimited and arbitrary homomorphic uni-
variate functions, which in turn can be used to create mul-
tivariate functions such as addition, multiplication, division,
comparison, min-max, etc.

In our implementation, we make use of the TFHE scheme
as a blackbox by leveraging Zama’s TFHE-rs [Zam22]
library, which currently offers the most complete feature set
and the fastest performance on both CPU and GPU. Key
generation, encryption, decryption, evaluation and ZKPoKs
are all made available off the shelf via this library. We use the
PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M64

parameter set, which gives 132 bits of AES-equivalent
security (as per the LWE-Estimator [APS15]) and a prob-
ability of error of 2−64, while being compatible with the
threshold key generation and decryption done by the KMS.
Benchmarks per operation are show in Table 4.2, where
each operand is a ciphertext, aside from division where the
divisor is a plaintext, and shift/rotations where the amount
to shift/rotate is a plaintext. Timings are computed using
an AMD EPYC 9R14 server with 192 cores for CPU, and a

NVIDIA 2xH100 server for GPU.

Table 4.1: Timings in milliseconds of unsigned integer operations
in TFHE-rs.

Operation euint8 euint16 euint32 euint64

CPU (ms)

Add / Sub 59 60 82 96
Mul 93 144 211 366
Div* 138 197 268 420
Eq / Neq 35 36 56 72
Lt / Gt 53 74 95 100
Min / Max 94 114 138 159
Shift* / Rot* 19 20 21 22
And / Or 19 20 20 22
Select 28 29 32 33
Rand 13 14 14 15

GPU (ms)

Add / Sub 13 17 22 29
Mul 24 36 67 164
Div* 32 46 177 185
Eq / Neq 8 11 12 16
Lt / Gt 14 17 21 27
Min / Max 24 28 34 41
Shift* / Rot* 3 3 4 5
And / Or 3 3 4 5
select 10 11 12 14
Rand 4 4 5 6

* by a plaintext

In the following application benchmark, we measure the
latency and throughput of ERC20 transfers, using 64 bit
encrypted balances and transfer amounts. This uses the
same configuration as the integer benchmark previously,
with throughput scaling linearly with the number of servers.

Table 4.2: ERC20 transfers benchmark.

Hardware Latency (ms) Throughput (tx/s)

CPU 325 12
GPU 99 37

zama.ai 10

Table 4.3: Uncompressed public FHE keys sizes. pk is the public
encryption key, ksk is the keyswitching key, bsk is the bootstrap-
ping key and csk is the compression key.

pk ksk bsk csk CRS

16 kB 73MB 58MB 134MB 81MB

4.2 Key generation

The KMS is responsible for generating several private and
public material (sizes are shown in Table 4.3):

• an FHE private decryption key, which is used to decrypt
and reencrypt ciphertexts from the fhEVM

• a set of FHE public keys for keyswitching, bootstrap-
ping and ciphertext compression.

• a public Common Reference String (CRS), used for the
ZKPoKs client side.

In order to generate keys, the fhEVM needs to register
with the KMS by uploading a smart contract with the logic
to verify merkle inclusion proofs of the ACL and submit-
ting a key generation transaction. The fhEVM nodes, client
applications and others can then download them and start
encrypting and computing on encrypted values. Similarly,
keys can be rotated by requesting new keys to be generated,
which will also produce keyswitching keys that the fhEVM
can use to convert existing ciphertexts encrypted under the
previous key into ciphertexts encrypted under the new key.
This means that even in the case of a key breach, only pre-
vious ciphertexts are at risk, and not future ones, allowing
to mitigate the impact of such potential attacks.

Before key generation happens, all FHE-related transac-
tions are reverted because no valid input ciphertexts can be
submitted to the systems without the existence of a pub-
lic key and a CRS. In general, CRS generation and FHE
key generation are mostly independent protocols and do not
need to happened at the same time. In our context however,
one is not useful without the other and as such both can
happen at the same time.

4.3 FHE computation and ciphertext storage

Our design uses a novel symbolic execution model, which
enables asynchronous, parallel FHE execution by separating

the EVM smart contract execution from the FHE computa-
tion.

On the smart contract side, all operations are performed
using handles, which are uint256 values that either point to
a transient ciphertext stored in memory, or to a persisted
one stored in state (calling SSTORE on a handle will persist
the corresponding ciphertext to state). FHE operators in the
onchain TFHE library take handles as inputs, and produce
new handles as outputs, without executing the actual FHE
operation. This allows the L1 to maintain a high through-
put, as this symbolic execution is very fast and consumes
little gas. See Listing 3.2 for an example implementation in
Solidity.

Once the block containing the symbolic execution is final-
ized, the actual FHE execution can take place. This is done
by running a special purpose FHE runtime, which does the
following (see algorithm Algorithm 1):

1. extract the list of FHE operations to perform and their
associated input/output handles, and place them in a
queue. Additionally, keep a list of handles that have
been persisted to state.

2. for each FHE operation in the queue, use the handles to
fetch the input ciphertexts from the state or transient
storage. If such ciphertexts don’t exist yet, push the
operation to the back of the queue.

3. execute in parallel FHE operations for which inputs are
available, save output ciphertexts in transient storage
or in state if the handle was itself saved to state, and
remove the operation from the queue.

4. repeat steps 2 and 3 until the queue is empty.

While simple, this algorithm allows parallel execution of
FHE operations, yielding far better throughput than if they
were executed sequentially at transaction time. We estimate
that using GPUs, we could achieve 20-30 FHE transactions
per second, covering a large majority of current EVM use
cases. Nonetheless, to avoid having too much lag between
the L1 symbolic execution and the FHE execution, the on-
chain TFHE library can implement a maximum "FHE gas"
per block, thereby guaranteeing a maximum latency between
the time a user submits a transaction to L1 and the time they
can decrypt the result.

zama.ai 11

Algorithm 1 Evaluation of FHE Operations

1: queue ← extractFheOps(blockId)
2: stateHandles ← extractSstoreHandles(blockId)
3: temp ← new List()
4: while not queue.isEmpty() do
5: (fheOp, inHandles, outHandles) ← queue.pop()
6: if state.contains(inHandles) then
7: inCts ← state.get(inHandles)
8: else
9: if temp.contains(inHandles) then

10: inCts ← temp.get(inHandles)
11: else
12: inCts ← new List()
13: end if
14: end if
15: if inCts.isEmpty() then
16: queue.append(fheOp, inHandles, outHandles)
17: else
18: outCts ← execute(fheOp, inCts)
19: if stateHandles.contains(outHandles) then
20: state.append(outHandles, outCts)
21: else
22: temp.append(outHandles, outCts)
23: end if
24: end if
25: end while

Depending on the flavor of fhEVM being used, the imple-
mentation of the FHE runtime and storage can differ:

• fhEVM-native: Validators read their own state to de-
termine which FHE operations to execute, reading and
writing ciphertexts from a special purpose key-value
storage contract onchain. Since the FHE computation
happens outside the EVM however, there needs to be a
mechanism by which validators can put back the results
onchain and reach consensus on them. To solve this,
we use special lifecycle methods that allow batch inser-
tion of ciphertexts into the onchain ciphertext storage,
as well as a special-purpose FHE scheduler that pre-
dicts how long it will take to execute FHE operations
in a block. Validators then use this predicted execution
time to insert ciphertexts at a given block height, al-
lowing them to reach consensus. Since ciphertexts can
only be decrypted after they have been inserted in state,
the faster validators can execute FHE transactions, the
better the user experience.

• fhEVM-coprocessor: An offchain cloud service runs

a full node, extract the FHE operations to execute, and
read/write ciphertexts from a local database or an ex-
ternal data availability layer such as IPFS. Contrary to
the fhEVM-native implementation, coprocessors do not
need to reach consensus, and so do not use a scheduler to
commit to inserting ciphertexts at a given block height.
Despite being offchain, the fact that input and output
ciphertexts are publicly accessible means that anyone
can verify the integrity of the coprocessor by recomput-
ing the FHE operations and comparing the results. For
additional security, coprocessors can run inside trusted
enclaves such as AWS Nitro, which can provide attesta-
tions that the ciphertexts were produced using a specific
software version.

An additional important consideration is the size of ci-
phertexts being stored and included in transactions. When
encrypted naively, FHE ciphertexts can end up being sev-
eral orders of magnitude larger than plaintext data (e.g. an
euint64 would take 526,720B, a 65,000x expansion). To
solve this issue, we leverage the TFHE-rs compact public
key encryption to pack up to 4096 bits of inputs into a single
8 kB ciphertext, as well as post-computation compression to
pack up to 512 bits of message into a single 2.2 kB ciphertext
(sizes for various data types are shown in Table 4.4).

Note that since compressed ciphertexts are fixed-sized con-
tainers, the more bits of messages are packed, the smaller
the expansion factor; thus, encrypting a single bit will al-
ways have the worse expansion factor. For reference, using
ciphertext compression would allow to encrypt and store all
of Ethereum’s state on a single server with 500TB of disk
space.

Table 4.4: Sizes for various FHE data types.

Type Message (bits) Compressed Size (kB)

Inputs 1 - 4096 8.8
ebool 1 1.8
euintX / eintX 4 - 128 1.8
eaddress 120 1.8
ebytes64 512 2.2
ebytes128 1024 4.4
ebytes256 2048 8.8

zama.ai 12

4.4 Encrypted inputs and ZKPoKs

When a user wants to use a new ciphertext as an encrypted
input to a smart contract, they need to include both the
ciphertexts and a ZKPoK proving that they know the corre-
sponding plaintexts and that the ciphertexts are well formed.

In TFHE-rs, ZKPoKs are implemented following the
scheme from [Lib24], which allows proving the plaintext
knowledge and correctness of the TFHE public key encryp-
tion. There are two mode of operation for the ZKPoKs: one
with a faster prover and slower verifier, and another with a
slower prover and faster verifier. In our protocol, we use the
faster prover variant, as client-side hardware is often lim-
ited in comparison to validator hardware. Benchmarks are
shown in Table 4.5, with the proving done in WASM in a
Chromium browser running on a 16-core MacBook Pro M2,
while the verification is done on an AMD EPYC 9R14 server
with 192 cores.

As verifying a ZKPoK can take over a hundred millisec-
onds, verifying them sequentially for each transaction in the
EVM would be both too expensive and too slow, even with
dedicate precompiles. Since transactions need to be reverted
on incorrect ZKPoKs, they have to be verified before an FHE
computation can happen, acting as a bottleneck that would
limit the maximal transaction throughput to 8 transactions
per second independently of the FHE computation time it-
self. As such, we opted to implement the ZKPoK verification
on the KMS itself, which acts as a trusted third-party veri-
fication service, moving the latency to the client-side rather
than the EVM side. To verify a ZKPoK, the client applica-
tion submits a transaction to the KMS chain, which verifies
the ZKPoK and returns a signed attestation of its validity.
This attestation is then included in the fhEVM transaction
itself, and verified by smart contracts.

Table 4.5: Timings and sizes of ZKPoKs for 10 euint64.

Proving (browser) Verification (server) Proof Size
1.3 s 130ms 950B

To save space, all input ciphertexts are packed into a single
one which can hold up to 4096 bits of message. As such, only
one ZKPoK is required for the packed inputs, saving both
on size and proving/verification time. The ZKPoK must
have been generated using the user’s address u and contract

address a as auxiliary information to ensure that the input
ciphertext can only be used in a transaction signed by u to
a function in contract a.

To accept encrypted inputs, Solidity functions must in-
clude the following parameters (see Listing 3.3 for an exam-
ple):

• a set of einput, representing the index of ciphertexts to
extract from the packed input ciphertext

• a calldatabytes containing the ZKPoK attestation and
ciphertext-related data.

The contract can then extract each encrypted input by call-
ing TFHE.asEuintXXX(einput, calldata), which will auto-
matically verify the proofs, return a handle and allow the
current contract access to the ciphertext for further compu-
tation.

While the developer API is identical, there is a difference
between fhEVM-native and fhEVM-coprocessor in the con-
tent of the calldatabytes:

• fhEVM-native: the calldatabytes contains the ci-
phertext bytes themselves, which are stored in the on-
chain ciphertext storage. Handles are then derived de-
terministically from the ciphertext bytes and used in
further computations.

• fhEVM-coprocessor: since ciphertexts are stored of-
fchain, the user must first send the ciphertexts to
the coprocessor along with the ZKPoK attestation.
The coprocessor will verify the attestation, and if
valid store the ciphertexts in its database, return-
ing signed handles for each ciphertext. This list
of signed handle is what will be included as the
calldatabytes parameter, and parsed onchain when
calling TFHE.asEuintXXX(einput, calldata).

4.5 Access control

Access Control Lists (ACL) for ciphertexts are maintained
by an onchain smart contract whose purpose is to keep track
of which specific address can access which ciphertext. A
smart contract is allowed to access a ciphertext if it is:

• given access by a contract or user that itself already has
access (e.g. TFHE.allow(ct, address));

• a certified ciphertext passed an an input to the contract;

zama.ai 13

1 contract ACL {
2
3 type Handle is uint256;
4
5 mapping(Handle => bool) public

allowedForDecryption;
6 mapping(Handle => mapping(address => bool)) public

allowedAddresses;
7
8 function isAllowed(
9 Handle handle ,

10 address account
11) public view returns (bool) {
12 return allowedAddresses[handle][account];
13 }
14
15 // Allow use of `handle ' for address `account '.
16 function allow(
17 Handle handle ,
18 address account
19) external {
20 if(msg.sender != address(coprocessor)){
21 require(isAllowed(handle , msg.sender));
22 }
23
24 allowedAddresses[handle][account] = true;
25 }
26
27 // Mark `handle ' as decryptable.
28 function allowForDecryption(
29 Handle memory handle
30) external {
31 require(isAllowed(handle , msg.sender));
32 allowedForDecryption[handle] = true;
33 }
34 }

Listing 4.1: Simplified access control list (ACL) contract.

• a trivial encryption (e.g. TFHE.asEuint64(0));

• the output of an FHE operation on inputs the contract
was allowed to access (e.g. TFHE.add(ct1, ct2));

• the output of a parameter-less FHE operation (e.g.
TFHE.randEuint16());

The ACL smart contract mainly consists of a key-value
store mapping pairs of handle and address to a boolean value
indicating whether or not access is authorized. An example
implementation is shown in Listing 4.1.

4.6 Decryption

If a smart contract wants to decrypt a ciphertext and put
the plaintext back onchain, it can trigger an oracle-like asyn-
chronous decryption, making use of a Gateway linking the
blockchain system and the KMS. The decryption flow is
shown in Figure 4.3.

The Gateway is divided in two components: a Gateway

Figure 4.3: Decryption flow.

smart contract (c.f. Listing 4.2) which lives on the block-
chain and an offchain relayer called the Gateway service.

To trigger decryption of a ciphertext, smart contracts
first need to call TFHE.allowDecrypt(handle) to mark the
ciphertext as decryptable in the ACL. It can then call
Gateway.requestDecryption(...) on the Gateway smart con-
tract, passing it the ciphertext handle, callback and other
parameters. Upon receiving a request, the Gateway con-
tract emits an event containing the address of the calling
contract, a callback function selector and the handle of the
ciphertext.

The Gateway offchain relayer picks up this event, and does
the following actions:

1. Fetch a Merkle proof from the L1 showing that the han-
dle is marked as decryptable in the ACL;

2. Fetch the ciphertext corresponding to the handle from

zama.ai 14

the ciphertext storage;

3. Submit a decryption request containing the ciphertext
bytes and the inclusion proof to the KMS;

4. Retrieve the decrypted value from the KMS;

5. Make a transaction to the L1 to trigger the callback,
passing it the decrypted value as parameter.

Before executing the callback, the Gateway contract
checks that the decrypted values were signed by the KMS,
preventing illegitimate values to be put back onchain.

4.7 Reencryption

Users who want to decrypt a ciphertext without revealing the
plaintext to the KMS or other observers can provide a public
key under which the KMS should reencrypt the ciphertext.
Reencryption is a fully offchain process, as shown in Fig. 4.4.

Figure 4.4: Reencryption flow.

Similarly to the decryption scenario, giving an address the
ability to reencrypt a ciphertext is done by having the smart
contract that owns it call TFHE.allow(handle, address) (c.f.
Listings 3.4 and 4.1). Since this mutates the onchain ACL,
it has to be done during a transaction, typically when the ci-
phertext is produced (e.g. when an ERC20 transfer occurs).

1 contract Gateway {
2 // handle of a ciphertext
3 type Ciphertext is uint256;
4
5 struct DecryptionRequest {
6 Ciphertext ct;
7 address contractCaller;
8 bytes4 callbackSelector;
9 }

10
11 mapping(uint256 => DecryptionRequest) internal

decryptionRequests;
12
13 uint256 public counter;
14
15 function requestDecryption(
16 Ciphertext ct,
17 bytes4 callbackSelector ,
18) external returns (uint256){
19 DecryptionRequest storage decReq =

decryptionRequests[counter];
20
21 decReq.ct = ct;
22 decReq.contractCaller = msg.sender;
23 decReq.callbackSelector = callbackSelector;
24
25 emit EventDecryptionRequest(
26 counter ,
27 ct,
28 msg.sender ,
29 callbackSelector
30);
31
32 counter ++;
33 return counter -1;
34 }
35
36 function fulfillRequest(
37 bytes memory plaintext ,
38 bytes memory signatures
39) external {
40 DecryptionRequest decReq = decryptionRequests[

requestID];
41
42 (decryptionReq.contractCaller).call(
43 abi.encodePacked(
44 abi.encodeWithSelector(
45 decReq.callbackSelector ,
46 requestID
47),
48 plaintext
49);
50);
51 }
52 }

Listing 4.2: Simplified gateway contract.

When a user (or application) wants to reencrypt a cipher-
text, they call the offchain Gateway service, providing it with
the following items:

• The handle hc of the ciphertext c to reencrypt;

• A public encryption key pku to reencrypt c under;

• The address a of the contract that owns hc;

zama.ai 15

• A signed EIP-712 [BLE21] formatted object containing
pku and a.

The Gateway then fetches the following complementary
elements:

• The actual ciphertext bytes from the ciphertext storage;

• A Merkle proof of inclusion π1 from the ACL contract
storage that shows that a owns hc;

• A Merkle proof of inclusion π2 from the ACL contract
storage that shows that hc is marked as reencryptable
by the requesting address.

The Gateway then requests a reencryption from the KMS,
which verifies the proofs, executes the reencryption protocol.
Upon completion, the Gateway forwards the KMS-signed
reencrypted ciphertext to the user who can finally decrypt
it using the private key they previously generated.

The reason two Merkle proofs are required for reencryp-
tion is because in practice, it’s an application rather than a
user that generates the keypair under which c will be reen-
crypted. Hence, in order to prevent a malicious application
from requesting reencryptions with this keypair for all ci-
phertext owned by the user on the blockchain, we restrict
the set of ciphertexts reencryptable with this keypair to the
set of ciphertexts owned by the user and the contract a by
using two merkle proofs and having the user sign an EIP-712
object containing the address of the contract a. This implies
that whenever the user wants to obtain a reencryption of a
ciphertext owned by itself and another smart contract a′, it
has to generate another keypair (sk′

u, pk
′
u) (presumably with

the help of another application) and sign another EIP-712
object containing pk′

u and a′.

Note that this design allows for programmable privacy by
letting smart contract developers choose precisely who has
access to read which encrypted values. The reencryption
mechanism also readily extends to smart contract wallets,
but we omit the details here for brevity.

5 FUTURE WORK

5.1 Coprocessor security

Coprocessors can be secured the same way as any other de-
centralized protocol:

• Cryptoeconomics: Coprocessors are publicly verifi-
able, as all encrypted inputs and outputs are accessible
to anyone, allowing to recompute and compare results.
Incentives can be put in place such that the coprocessor
operator would be financially penalized by cheating.

• ZK-FHE: Using SNARKs allows coprocessors to prove
the correctness of the FHE computation, which can then
be verified by the L1 or KMS. TFHE bootstrapping has
only been shown to be provable recently [TW24], taking
20minon a 192 core CPU server.

• Fraud proofs: Rather than proving every FHE oper-
ation in ZK, which would take considerable time and
computation effort, we can instead use fraud proofs in
a similar way to optimistic rollups [KGC+18, ZEL+23],
using ZK or other mechanism to prove that a subset of
the FHE computation was done incorrectly.

• Consensus: Since FHE computations are fully deter-
ministic, they can be replicated and verified by con-
sensus. Whether coprocessors are implemented as L1
themselves or as Actively Validated Services (AVS), the
idea is that multiple independent parties recompute the
same task and compare results.

5.2 Hardware acceleration

Scaling fhEVM transactions to 1,000+ transactions per
second or more cannot be done on CPU and GPU us-
ing current FHE schemes. There are several attempts
are creating FHE accelerators using FPGA [BDTV22] and
ASIC [Cor, Cry, Opt], with promising results.

REFERENCES
[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott.

On the concrete hardness of learning with er-
rors. J. Math. Cryptol., 9(3):169–203, 2015. URL:
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/
jmc-2015-0016/jmc-2015-0016.xml.

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and
Dan Boneh. Zether: Towards privacy in a smart contract
world. In Joseph Bonneau and Nadia Heninger, editors,
FC 2020: 24th International Conference on Financial
Cryptography and Data Security, volume 12059 of Lec-
ture Notes in Computer Science, pages 423–443, Kota
Kinabalu, Malaysia, February 10–14, 2020. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-030-51280-4_23.

[BCDF23] Carsten Baum, James Hsin-yu Chiang, Bernardo David,
and Tore Kasper Frederiksen. Eagle: Efficient privacy

zama.ai 16

http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1007/978-3-030-51280-4_23

preserving smart contracts. In Foteini Baldimtsi and
Christian Cachin, editors, FC 2023: 27th International
Conference on Financial Cryptography and Data Secu-
rity, Lecture Notes in Computer Science, Bol, Croatia,
May 1–5, 2023. Springer, Heidelberg, Germany. To ap-
pear. Preprint available as Cryptology ePrint Archive,
Report 2022/1435 at https://ia.cr/2022/1435.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474, Berkeley, CA, USA, May 18–
21, 2014. IEEE Computer Society Press. doi:10.1109/
SP.2014.36.

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian
Miers, Pratyush Mishra, and Howard Wu. ZEXE: En-
abling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy, pages 947–964,
San Francisco, CA, USA, May 18–21, 2020. IEEE Com-
puter Society Press. doi:10.1109/SP40000.2020.00050.

[BCT21] Aritra Banerjee, Michael Clear, and Hitesh Tewari.
zkHawk: Practical private smart contracts from MPC-
based Hawk. In 3rd Conference on Blockchain Research
& Applications for Innovative Networks and Services
(BRAINS), pages 245–248, Paris, France, September 27–
30, 2021. IEEE Computer Society. Extended version
available as Cryptology ePrint Archive, Report 2021/501
at https://ia.cr/2021/501. doi:10.1109/BRAINS52497.
2021.9569822.

[BDTV22] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Furkan
Turan, and Ingrid Verbauwhede. FPT: a fixed-point ac-
celerator for torus fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2022/1635, 2022. https://
eprint.iacr.org/2022/1635. URL: https://eprint.iacr.
org/2022/1635.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. Fully homomorphic encryption without boot-
strapping. Cryptology ePrint Archive, Paper 2011/277,
2011. https://eprint.iacr.org/2011/277. URL: https:
//eprint.iacr.org/2011/277.

[BLE21] Remco Bloemen, Leonid Logvinov, and Jacob Evans.
EIP-712: Typed structured data hashing and signing.
Ethereum Improvement Proposals, no. 712, 2021. URL:
https://eips.ethereum.org/EIPS/eip-712.

[BSBQ21] Ferenc Béres, István András Seres, András A. Benczúr,
and Mikerah Quintyne-Collins. Blockchain is watching
you: Profiling and deanonymizing ethereum users. In
IEEE International Conference on Decentralized Appli-
cations and Infrastructures (DAPPS 2021), pages 69–
78, Online Event, August 23–26, 2021. IEEE Computer
Society. doi:10.1109/DAPPS52256.2021.00013.

[BT22] Aritra Banerjee and Hitesh Tewari. Multiverse of
HawkNess: A universally-composable MPC-based Hawk
variant. Cryptography, 6(3):39, 2022. doi:10.3390/
cryptography6030039.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. Cryptology ePrint Archive, Report 2016/086,
2016. https://eprint.iacr.org/2016/086.

[CKKS16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong-

soo Song. Homomorphic encryption for arithmetic of
approximate numbers. Cryptology ePrint Archive, Pa-
per 2016/421, 2016. https://eprint.iacr.org/2016/421.
URL: https://eprint.iacr.org/2016/421.

[Cor] Cornami. Cornami fhe accelerator. URL: https://
cornami.com.

[Cry] Fabric Cryptography. Introducing the vpu, an fhe and zk
accelerator. URL: https://www.fabriccryptography.com/.

[CZK+19] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He,
Nicholas Hynes, Noah Johnson, Ari Juels, Andrew Miller,
and Dawn Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts.
In 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 185–200, Stockholm, Swe-
den, June 17–19, 2019. IEEE Computer Society. doi:
10.1109/EuroSP.2019.00023.

[Dai22] Wei Dai. PESCA: A privacy-enhancing smart-contract
architecture. Cryptology ePrint Archive, Report
2022/1119, 2022. https://eprint.iacr.org/2022/1119.

[DDN+16] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Se-
bastian Nordholt, and Tomas Toft. Confidential bench-
marking based on multiparty computation. In Jens
Grossklags and Bart Preneel, editors, FC 2016: 20th In-
ternational Conference on Financial Cryptography and
Data Security, volume 9603 of Lecture Notes in Com-
puter Science, pages 169–187, Christ Church, Barbados,
February 22–26, 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-54970-4_10.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, Report 2012/144, 2012. https://eprint.iacr.
org/2012/144.

[JLLJ+23] Nerla Jean-Louis, Yunqi Li, Yan Ji, Harjasleen Malvai,
Thomas Yurek, Sylvain Bellemare, and Andrew Miller.
SGXonerated: Finding (and partially fixing) privacy
flaws in TEE-based smart contract platforms without
breaking the TEE. Cryptology ePrint Archive, Report
2023/378, 2023. https://eprint.iacr.org/2023/378.

[Joy21] Marc Joye. Guide to fully homomorphic encryption over
the [discretized] torus. Cryptology ePrint Archive, Paper
2021/1402, 2021. https://eprint.iacr.org/2021/1402.
URL: https://eprint.iacr.org/2021/1402.

[KGC+18] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen,
S. Matthew Weinberg, and Edward W. Felten. Ar-
bitrum: Scalable, private smart contracts. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 1353–1370, Baltimore, MD, August 2018. USENIX
Association. URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/kalodner.

[KGM19] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giv-
ing state to the stateless: Augmenting trustworthy com-
putation with ledgers. In ISOC Network and Distributed
System Security Symposium – NDSS 2019, San Diego,
CA, USA, February 24–27, 2019. The Internet Society.
doi:10.14722/ndss.2019.23060.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre attacks: Exploiting speculative

zama.ai 17

https://ia.cr/2022/1435
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP40000.2020.00050
https://ia.cr/2021/501
https://doi.org/10.1109/BRAINS52497.2021.9569822
https://doi.org/10.1109/BRAINS52497.2021.9569822
https://eprint.iacr.org/2022/1635
https://eprint.iacr.org/2022/1635
https://eprint.iacr.org/2022/1635
https://eprint.iacr.org/2022/1635
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eips.ethereum.org/EIPS/eip-712
https://doi.org/10.1109/DAPPS52256.2021.00013
https://doi.org/10.3390/cryptography6030039
https://doi.org/10.3390/cryptography6030039
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
https://cornami.com
https://cornami.com
https://www.fabriccryptography.com/
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1109/EuroSP.2019.00023
https://eprint.iacr.org/2022/1119
https://doi.org/10.1007/978-3-662-54970-4_10
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2023/378
https://eprint.iacr.org/2021/1402
https://eprint.iacr.org/2021/1402
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://doi.org/10.14722/ndss.2019.23060

execution. In 2019 IEEE Symposium on Security and
Privacy, pages 1–19, San Francisco, CA, USA, May 19–
23, 2019. IEEE Computer Society Press. doi:10.1109/SP.
2019.00002.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen,
and Charalampos Papamanthou. Hawk: The blockchain
model of cryptography and privacy-preserving smart con-
tracts. In 2016 IEEE Symposium on Security and Pri-
vacy, pages 839–858, San Jose, CA, USA, May 22–26,
2016. IEEE Computer Society Press. doi:10.1109/SP.
2016.55.

[Lib24] Benoît Libert. Vector commitments with proofs of small-
ness: Short range proofs and more. In Qiang Tang
and Vanessa Teague, editors, Public-Key Cryptography
- PKC 2024 - 27th IACR International Conference
on Practice and Theory of Public-Key Cryptography,
Sydney, NSW, Australia, April 15-17, 2024, Proceed-
ings, Part II, volume 14602 of Lecture Notes in Com-
puter Science, pages 36–67. Springer, 2024. doi:10.1007/
978-3-031-57722-2_2.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel mem-
ory from user space. In William Enck and Adri-
enne Porter Felt, editors, USENIX Security 2018: 27th
USENIX Security Symposium, pages 973–990, Balti-
more, MD, USA, August 15–17, 2018. USENIX As-
sociation. URL: https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp.

[Mon23] Monero. Monero research lab (MRL), 2023. URL: https:
//www.getmonero.org/resources/research-lab/.

[Oas23] Oasis. Oasis network technology: Bringing privacy
to Web3, 2023. URL: https://oasisprotocol.org/
technology#overview.

[Opt] Optalysis. Optalysis fhe accelerator. URL: https://
optalysys.com/.

[Par23] Partisia. Partisia blockchain (PBC), 2023. URL: https:
//partisiablockchain.com/resources.

[Ped92] Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Joan Feigen-
baum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science,
pages 129–140, Santa Barbara, CA, USA, August 11–
15, 1992. Springer, Heidelberg, Germany. doi:10.1007/
3-540-46766-1_9.

[Pha23] Phala. Blockchain infrastructure. Phala Network Docs,
2023. URL: https://docs.phala.network/developers/
advanced-topics/blockchain-infrastructure#
the-architecture.

[SBG+19] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa
Melchior, Petar Tsankov, and Martin T. Vechev. zkay:
Specifying and enforcing data privacy in smart contracts.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019: 26th Con-
ference on Computer and Communications Security,
pages 1759–1776, London, UK, November 11–15, 2019.
ACM Press. doi:10.1145/3319535.3363222.

[SCR23] SCRT. Secret network overview: Private smart contracts

on the blockchain, 2023. URL: https://scrt.network/
about/about-secret-network/.

[Sil17] Silur. Homomorphically encrypted storage. Draft
EIP, 2017. URL: https://github.com/Silur/EIPs/
blob/4943fed23f82582f906ee46a113fe0b115836635/EIPS/
eip-fhe.md.

[SWA23] Ravital Solomon, Rick Weber, and Ghada Almashaqbeh.
smartFHE: Privacy-preserving smart contracts from fully
homomorphic encryption. In 2023 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages 309–
331, Delft, Netherlands, July 3–7, 2023. IEEE Computer
Society. doi:10.1109/EuroSP57164.2023.00027.

[TKK+22] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel
Genkin, and Kang G. Shin. SpecHammer: Combining
spectre and rowhammer for new speculative attacks. In
2022 IEEE Symposium on Security and Privacy, pages
681–698, San Francisco, CA, USA, May 22–26, 2022.
IEEE Computer Society Press. doi:10.1109/SP46214.
2022.9833802.

[TW24] Louis Tremblay Thibault and Michael Walter. Towards
verifiable FHE in practice: Proving correct execution of
TFHE’s bootstrapping using plonky2. Cryptology ePrint
Archive, Paper 2024/451, 2024. https://eprint.iacr.
org/2024/451. URL: https://eprint.iacr.org/2024/451.

[vMK+21] Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. CacheOut: Leaking
data on intel CPUs via cache evictions. In 2021 IEEE
Symposium on Security and Privacy, pages 339–354,
San Francisco, CA, USA, May 24–27, 2021. IEEE Com-
puter Society Press. doi:10.1109/SP40001.2021.00064.

[VMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In William
Enck and Adrienne Porter Felt, editors, USENIX Secu-
rity 2018: 27th USENIX Security Symposium, pages
991–1008, Baltimore, MD, USA, August 15–17, 2018.
USENIX Association. URL: https://www.usenix.org/
conference/usenixsecurity18/presentation/bulck.

[vSSY+22] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam
Batori, Bader AlBassam, Christina Garman, Daniel
Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom.
SoK: SGX.Fail: How stuff get eXposed. https://sgx.
fail, 2022.

[XCZ+23] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang,
Benedikt Bünz, Ben Fisch, Fernando Krell, and Philippe
Camacho. VeriZexe: Decentralized private computa-
tion with universal setup. In Joe Calandrino and
Carmela Troncoso, editors, USENIX Security 2023:
32nd USENIX Security Symposium, pages 4445–4462,
Anaheim, CA, USA, August 9–11, 2023. USENIX As-
sociation. URL: https://www.usenix.org/conference/
usenixsecurity23/presentation/xiong.

[YXC+18] Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, and
Jan Xie. ShadowEth: Private smart contract on public
blockchain. Journal of Computer Science and Technol-
ogy, 33:542–556, 2018. doi:10.1007/s11390-018-1839-y.

[Zam22] Zama. TFHE-rs: A pure rust implementation of

zama.ai 18

https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1007/978-3-031-57722-2_2
https://doi.org/10.1007/978-3-031-57722-2_2
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.getmonero.org/resources/research-lab/
https://www.getmonero.org/resources/research-lab/
https://oasisprotocol.org/technology#overview
https://oasisprotocol.org/technology#overview
https://optalysys.com/
https://optalysys.com/
https://partisiablockchain.com/resources
https://partisiablockchain.com/resources
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://docs.phala.network/developers/advanced-topics/blockchain-infrastructure#the-architecture
https://docs.phala.network/developers/advanced-topics/blockchain-infrastructure#the-architecture
https://docs.phala.network/developers/advanced-topics/blockchain-infrastructure#the-architecture
https://doi.org/10.1145/3319535.3363222
https://scrt.network/about/about-secret-network/
https://scrt.network/about/about-secret-network/
https://github.com/Silur/EIPs/blob/4943fed23f82582f906ee46a113fe0b115836635/EIPS/eip-fhe.md
https://github.com/Silur/EIPs/blob/4943fed23f82582f906ee46a113fe0b115836635/EIPS/eip-fhe.md
https://github.com/Silur/EIPs/blob/4943fed23f82582f906ee46a113fe0b115836635/EIPS/eip-fhe.md
https://doi.org/10.1109/EuroSP57164.2023.00027
https://doi.org/10.1109/SP46214.2022.9833802
https://doi.org/10.1109/SP46214.2022.9833802
https://eprint.iacr.org/2024/451
https://eprint.iacr.org/2024/451
https://eprint.iacr.org/2024/451
https://doi.org/10.1109/SP40001.2021.00064
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://sgx.fail
https://sgx.fail
https://www.usenix.org/conference/usenixsecurity23/presentation/xiong
https://www.usenix.org/conference/usenixsecurity23/presentation/xiong
https://doi.org/10.1007/s11390-018-1839-y

the TFHE scheme for boolean and integer arithmetics
over encrypted data, 2022. URL: https://github.com/
zama-ai/tfhe-rs.

[Zam24] Zama. Kms whitepaper. https://github.com/zama-ai,
2024. Accessed: 2024-04-23.

[ZEL+23] Guy Zyskind, Yonatan Erez, Tom Langer, Itzik Gross-

man, and Lior Bondarevsky. Fhe-rollups: Scaling
confidential smart contracts on ethereum and beyond,
2023. URL: https://www.fhenix.io/wp-content/uploads/
2024/04/FHE_Rollups_Paper_Final-20241404.pdf.

zama.ai 19

https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai
https://www.fhenix.io/wp-content/uploads/2024/04/FHE_Rollups_Paper_Final-20241404.pdf
https://www.fhenix.io/wp-content/uploads/2024/04/FHE_Rollups_Paper_Final-20241404.pdf

	1 Introduction
	1.1 Our contributions
	1.2 Applications
	1.2.1 Confidential ERC-20 tokens
	1.2.2 Confidential Swaps
	1.2.3 Confidential Voting
	1.2.4 Decentralized Identities

	1.3 Related work
	1.3.1 Zero-knowledge (ZK) proofs
	1.3.2 Trusted execution environments (TEEs)
	1.3.3 Multi-party computation (MPC)
	1.3.4 Homomorphic encryption (FHE)

	2 Key Concepts
	2.1 fhEVM
	2.2 Key Management System (KMS)
	2.3 Gateway
	2.4 Coprocessor
	2.5 Client SDK
	2.6 FHE keys
	2.7 Certified ciphertexts
	2.8 FHE computations
	2.9 Access Control
	2.10 Decryption and re-encryption

	3 Solidity library
	3.1 Encrypted types and operators
	3.2 Encrypted inputs
	3.3 Branching on encrypted values
	3.4 Access Control
	3.5 Decryption
	3.6 Reencryption

	4 Implementation details
	4.1 TFHE scheme
	4.2 Key generation
	4.3 FHE computation and ciphertext storage
	4.4 Encrypted inputs and ZKPoKs
	4.5 Access control
	4.6 Decryption
	4.7 Reencryption

	5 Future work
	5.1 Coprocessor security
	5.2 Hardware acceleration

