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How do applications share data today?

—Syncing data between storage systems:
« Commonly used big data workflow
 Slow, stale and strenuous
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Observations

—Data always written and read through the same storage system (filesystem, DB, etc.)
* Metadata updated with writes
* Metadata used in reads
—Data produced in form A and consumed in form B?
 View DB records as a file?
» Analyze thousands of local log files as a single text file?
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Programming the Metadata
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* APl challenge: identification / namespace of source data
—How to define a file in VM1 to include a source file in VM27
— Granularity-based source file selection: 1 out of 10 lines of text?
—Content-based source file selection: all lines containing certain keyword?
—Arbitrary “SELECT * FROM * WHERE *” in source DB tables?

* Performance challenge: frequent metadata updates

DDDDD » Map to destination file if keyword matches
» Map every 1 line out of 10 lines of text to destination file

X
v/ l / j  Map entire file to destination file

VES « Map every 1MB out of 10MB to destination file
Block | « All VFS listeners can be implemented on block layer with a
storage reverse pointer from block to inode
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» hadoop dfs -composeFromLocal <configuration file> <path to HDFS file>

» Configuration file
slave1:/opt/IBM/*/*.log
slave2:/var/*.log

» Challenges
—Informing NameNode of local file size changes
—Balancing workload
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