
Supplementary Materials: DeformRF

1 Hierarchical Barycentric Inference
This section delves into the hierarchical barycentric inferencewithin
a tetrahedral mesh, emphasizing two pivotal processes given the
barycentric coordinates 𝜶 ℓ = (𝛼ℓ0, 𝛼

ℓ
1, 𝛼

ℓ
2, 𝛼

ℓ
3) of a sampling point

p at level ℓ : the determination of the specific child tetrahedron
containing p, and the computation of the barycentric coordinates
at the subsequent level ℓ + 1.

Note that we select a specific subdivision pattern and uniformly
apply this pattern to all tetrahedra in the mesh, as shown in Fig. 1.

Figure 1: Subdivision of a Tetrahedron. Given a tetrahedron
𝑇 , we subdivide it into eight smaller tetrahedra 𝑇𝑘 , for 𝑘 ∈
{0, . . . , 7}, by connecting the midpoints of each edge.

Nowwe consider an arbitrary tetrahedron in level ℓ defined by its
four vertices vℓ0, v

ℓ
1, v

ℓ
2, v

ℓ
3 ∈ R

3. For a given sampling point p located
within this tetrahedron, assume its barycentric coordinate in level
ℓ is known and denoted as 𝜶 ℓ = (𝛼ℓ0, 𝛼

ℓ
1, 𝛼

ℓ
2, 𝛼

ℓ
3). The coordinates of

p can thus be expressed as:

p = 𝛼ℓ0v
ℓ
0 + 𝛼

ℓ
1v

ℓ
1 + 𝛼

ℓ
2v

ℓ
2 + 𝛼

ℓ
3v

ℓ
3 . (1)

First of all, we need to determine the specific child tetrahedron
containing the sampling point p. Upon subdividing the original
tetrahedron by connecting these midpoints as shown in Fig. 1, we
apply a set of criteria as follows:

(1) 𝛼ℓ0 ≥ 0.5, (2) 𝛼ℓ1 ≥ 0.5,

(3) 𝛼ℓ2 ≥ 0.5, (4) 𝛼ℓ3 ≥ 0.5,

(5)

𝛼ℓ
𝑖
< 0.5 for 𝑖 ∈ {0, 1, 2, 3},

𝛼1 + 𝛼2 < 0.5,
𝛼2 + 𝛼3 < 0.5,

(6)

𝛼ℓ
𝑖
< 0.5 for 𝑖 ∈ {0, 1, 2, 3},

𝛼1 + 𝛼2 ≥ 0.5,
𝛼2 + 𝛼3 < 0.5,

(7)

𝛼ℓ
𝑖
< 0.5 for 𝑖 ∈ {0, 1, 2, 3},

𝛼1 + 𝛼2 < 0.5,
𝛼2 + 𝛼3 ≥ 0.5,

(8)

𝛼ℓ
𝑖
< 0.5 for 𝑖 ∈ {0, 1, 2, 3},

𝛼1 + 𝛼2 ≥ 0.5,
𝛼2 + 𝛼3 ≥ 0.5.

Based on the criteria outlined above, we devised the following
algorithm to effectively implement these conditions. We show the
pseudo code in Algorithm 1. This algorithm is specifically designed
to determine the placement of a sampling point within a subdivided
tetrahedron. By evaluating the barycentric coordinates relative to
the established thresholds, the algorithm identifies which of the
eight possible child tetrahedra contains the point.

Algorithm 1 Determine Child Tetrahedron for Sampling Point

Input: Barycentric coordinates 𝜶 ℓ = (𝛼ℓ0, 𝛼
ℓ
1, 𝛼

ℓ
2, 𝛼

ℓ
3) of point p in

tetrahedron defined by vertices vℓ0, v
ℓ
1, v

ℓ
2, v

ℓ
3.

Output: Index of child tetrahedron containing p.
1: Initialize index of child tetrahedron 𝑖𝑐 ← −1
2: if 𝛼ℓ0 ≥ 0.5 then
3: 𝑖𝑐 ← 0
4: else if 𝛼ℓ1 ≥ 0.5 then
5: 𝑖𝑐 ← 1
6: else if 𝛼ℓ2 ≥ 0.5 then
7: 𝑖𝑐 ← 2
8: else if 𝛼ℓ3 ≥ 0.5 then
9: 𝑖𝑐 ← 3
10: else
11: Compute conditions based on sums:
12: flag1← (𝛼ℓ1 + 𝛼

ℓ
2 < 0.5)

13: flag2← (𝛼ℓ2 + 𝛼
ℓ
3 < 0.5)

14: if flag1 ∧ flag2 then
15: 𝑖𝑐 ← 4
16: else if ¬flag1 ∧ flag2 then
17: 𝑖𝑐 ← 5
18: else if flag1 ∧ ¬flag2 then
19: 𝑖𝑐 ← 6
20: else
21: 𝑖𝑐 ← 7
22: end if
23: end if
24: return 𝑖𝑐

Let the barycentric coordinates of p in the specific child tetrahe-
dron be 𝜶 ℓ+1 = (𝛼ℓ+10 , 𝛼ℓ+11 , 𝛼ℓ+12 , 𝛼ℓ+13). For each of the eight child
configurations resulting from the subdivision of a parent tetrahe-
dron, a coefficient matrix C𝑖 ∈ R4×4, where 𝑖 = 0, . . . , 7, can be
defined such that 𝜶 ℓ+1 = C𝑖𝜶 ℓ .

We now proceed to derive the coefficient matrices C𝑖 , focusing
on C4 as an illustrative example. Assuming that the sampling point
p is located within the child tetrahedron 𝑇4, the position of p can
be represented as a linear combination of the vertices defining 𝑇4:

p = 𝛼ℓ+10 v4 + 𝛼ℓ+11 v5 + 𝛼ℓ+12 v6 + 𝛼ℓ+13 v8 . (2)

Since the vertices v4, v5, v6, and v8 are midpoints in tetrahedron
𝑇4, we express them as 1

2v0+
1
2v1,

1
2v0+

1
2v2,

1
2v0+

1
2v3 and

1
2v1+

1
2v3,

respectively. We then obtain the following equation:

MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

p = 𝛼ℓ+10

(
1
2
v0 +

1
2
v1

)
+ 𝛼ℓ+11

(
1
2
v0 +

1
2
v2

)
+ 𝛼ℓ+12

(
1
2
v0 +

1
2
v3

)
+ 𝛼ℓ+13

(
1
2
v1 +

1
2
v3

)
=

1
2

(
𝛼ℓ+10 + 𝛼ℓ+11 + 𝛼ℓ+12

)
v0 +

1
2

(
𝛼ℓ+10 + 𝛼ℓ+13

)
v1 +

1
2
𝛼ℓ+11 v2

+ 1
2

(
𝛼ℓ+12 + 𝛼ℓ+13

)
v3 .

Recall Eq. (1), therefore the equations relating 𝜶 ℓ and 𝜶 ℓ+1 are:


1
2 (𝛼

ℓ+1
0 + 𝛼ℓ+11 + 𝛼ℓ+12) = 𝛼0

1
2 (𝛼

ℓ+1
0 + 𝛼ℓ+13) = 𝛼1

1
2𝛼

ℓ+1
1 = 𝛼2

1
2 (𝛼

ℓ+1
2 + 𝛼ℓ+13) = 𝛼3

Solving these equations, we have:


𝛼ℓ+10 = 𝛼0 + 𝛼1 − 𝛼2 − 𝛼3
𝛼ℓ+11 = 2𝛼2
𝛼ℓ+12 = 𝛼0 − 𝛼1 − 𝛼2 + 𝛼3
𝛼ℓ+13 = −𝛼0 + 𝛼1 + 𝛼2 + 𝛼3

The matrix that transforms 𝜶 ℓ to 𝜶 ℓ+1 is:

𝜶 ℓ+1 =


1 1 −1 −1
0 0 2 0
1 −1 −1 1
−1 1 1 1

 𝜶
ℓ .

From this configuration, we extract C4 by analyzing the coeffi-
cients of v0, v1, v2, and v3 in the expanded expression of p. Follow-
ing the same derivation approach, we can similarly determine the
remaining coefficient matrices C𝑖 , as demonstrated below:

C0 =


1 −1 −1 −1
0 2 0 0
0 0 2 0
0 0 0 2

 , C1 =


−1 1 −1 −1
0 0 2 0
2 0 0 0
0 0 0 2

 ,

C2 =


−1 −1 1 −1
2 0 0 0
0 2 0 0
0 0 0 2

 , C3 =


−1 −1 −1 1
2 0 0 0
0 0 2 0
0 2 0 0

 ,

C4 =


1 1 −1 −1
0 0 2 0
1 −1 −1 1
−1 1 1 1

 , C5 =


1 1 −1 −1
1 −1 1 1
0 0 0 2
−1 1 1 −1

 ,

C6 =


−1 −1 1 1
1 1 1 −1
0 2 0 0
1 −1 −1 1

 , C7 =


−1 −1 1 1
2 0 0 0
−1 1 1 −1
1 1 −1 1

 .

2 Sampling for Deformation
Given that our method employs a tetrahedral mesh as a geometric
proxy, it naturally inherits the application scenarios of tetrahedra,
the most significant of which is the capability to deform objects.
In order to render the deformed objects, our approach initially
intersects camera rays with the coarse deformed tetrahedral mesh
to obtain the sampling points in the deformed space. To ensure
the correctness of colors and density, the sampling points and ray
directions need to be mapped to the canonical space, where the
trained model resides. Thanks to the geometry proxy used for
deformation and the tetrahedral mesh used for encoding being the
same, there is no need to compute the positions of sampling points
in canonical space explicitly. Instead, the barycentric coordinates
of the sampling points are calculated in the deformed space. This
process is equivalent to transforming a series of sampling points
along the ray from the deformed space to the canonical space, as
illustrated in Fig. 2.Deformed Space Canonical Space

Deformed Space Canonical Space

Figure 2: Mapping Sampling Points from Deformed Space to
Canonical Space (2D Illustration).

3 Implementation Details
Networks Configuration. Our framework incorporates two MLP

networks: the density MLP and the color MLP. The density MLP
comprises three hidden layers with 64 neurons each, utilizing Sig-
moid activation functions in the hidden layers. The output layer
employs an activation mechanism that processes outputs through
a truncated exponential function, enhancing stability by regulat-
ing extreme values. The color MLP comprises two hidden layers,
also with 64 neurons per layer. The hidden layers use ReLU activa-
tions to promote non-linearity, while the output employs a Sigmoid
function to constrain the RGB values within the [0, 1] range.

Metrics Configuration. We employ Peak Signal-to-Noise Ratio
(PSNR) to quantify pixel-level image accuracy. To ensure consis-
tency and comparability of PSNR across normalized image datasets,
we explicitly set the range of data to 1. This configuration standard-
izes the potential maximum value of the signal, thus normalizing all
image data within the range from 0 to 1. We also utilize the Struc-
tural Similarity Index Measure (SSIM) [8] to evaluate image struc-
tural integrity and similarity, which benefits similarly from nor-
malized data inputs. For deeper perceptual analysis, when required,
we use Learned Perceptual Image Patch Similarity (LPIPS) [9] with
a frozen-parameter VGG network [6] to assess perceptual differ-
ences between images. These configurations are uniformly applied
across all datasets to ensure consistent evaluation standards and
reproducibility of results.

Loss Function. We optimize the representation with respect to
the mean squared error (MSE) over rendered pixel colors, with

Supplementary Materials: DeformRF MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

Figure 3: Qualitative Comparisons on the NSVF Dataset [4].

distortion loss proposed by Mip-NeRF 360 [1]. Specifically, the
combined loss used to optimize our representation is:

L = Lrgb + 𝜆distLdist, (3)

where the MSE RGB loss Lrgb and the distortion loss Ldist are:

Lrgb =
1
|R |

∑︁
r∈R
∥𝐶 (r) −𝐶 (r)∥22 ,

Ldist (s,w) =
∑︁
𝑖, 𝑗

𝑤𝑖𝑤 𝑗

����𝑠𝑖 + 𝑠𝑖+12
−
𝑠 𝑗 + 𝑠 𝑗+1

2

����
+ 1
3

∑︁
𝑖

𝑤2
𝑖 (𝑠𝑖+1 − 𝑠𝑖) .

(4)

Here (𝑠𝑖+1 − 𝑠𝑖) is the length and (𝑠𝑖 + 𝑠𝑖+1)/2 is the midpoint of
the 𝑖-th query interval. The weight𝑤𝑖 is for the 𝑖-th sample point.
We set the hyperparameter 𝜆dist to 1 × 10−2 for all scenes.

4 Experiments on NSVF Dataset
In addition to the experimental results presented in the main text,
we conduct further experiments on the Synthetic NSVF dataset [4].
We compare these experiments with those from Instant-NGP [5]
on metrics such as PSNR, SSIM, and LPIPS. The comparative results
are detailed in Table 1.

Fig. 3 illustrates the performance of our method compared to
Instant-NGP [5] on the Synthetic NSVF dataset. Visually, ourmethod

Table 1: Quantitative Comparisons on the Synthetic NSVF
dataset [4].

PSNR↑ SSIM↑ LPIPS ↓
Instant-NGP [5] 35.25 0.975 0.029
Ours 36.51 0.979 0.024

demonstrates superior quality, offering more accurate and detailed
reproductions of the scenes.

5 Training Time of Our Method
We compare the training time of DeformRF with the time needed
for tetrahedralization [3] after extracting the surface mesh using
Instant-NeuS [2]. The training time of DeformRF is shorter. How-
ever, Instant-NeuS fails to extract the surface mesh on Tanks and
Temples dataset, which is indicated as N/A in the table.

Table 2: Training Time and Tetrahedralizing Time.
Ours Tetra-NeRF Tetrahedralization

Stage 1 Stage 2

Synthetic-NeRF 1.44 min 4.21 min 11.43 hr 14.53 min
Tanks and Temples 1.46 min 6.16 min 17.53 hr N/A

MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

6 Memory Usage by Subdivision Levels
Here we provide detailed memory usage concerning different num-
bers of subdivision levels as shown in Fig. 4.

Figure 4: GPU Memory Usage across Different Numbers of
Subdivision Levels.

7 Comparisons with 3D GS
Since the vanilla 3D GS does not support deformation, we conduct
an experimental comparison with the derivative work of 3D GS,
named GaMeS [7], to show our advantage in the deformation task.
Our method demonstrates smoother edges during deformation,
whereas 3D GS results in blurred edges. Additionally, 3D GS tends
to produce holes when stretched, while ours ensures the continuity
and integrity of the object, even under large deformations. These
differences arise because our method is based on a continuous
neural field, whereas 3D GS is discrete.

Figure 5: Comparisons with 3D GS on the Deformation Task.

8 Limitation & Future Work
While our proposed DeformRF method integrates the manipula-
bility of tetrahedral meshes with the high fidelity of feature grid

representations effectively, it is not without its limitations. A pri-
mary constraint involves the uniform subdivision of all tetrahedra
within the model. Specifically, subdivisions are applied uniformly,
regardless of whether the tetrahedra encapsulate critical object
details or are positioned within the object’s interior where finer
details may not be necessary. This approach results in redundant
computational overhead and potentially excessive memory use in
areas where high resolution is not required. To address this ineffi-
ciency, integrating sparse data structures represents a promising
avenue for future research. Sparse data structures can dynamically
adjust the level of detail based on the complexity required at dif-
ferent regions within the object. By only subdividing tetrahedra
that contribute to visible surface details or are near areas of high
geometric complexity, it would be possible to significantly reduce
unnecessary computations and memory usage.

References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter

Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields.
CVPR (2022).

[2] Yuan-Chen Guo. 2022. Instant Neural Surface Reconstruction.
https://github.com/bennyguo/instant-nsr-pl.

[3] Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020.
Fast tetrahedral meshing in the wild. ACM Trans. Graph. 39, 4, Article 117 (aug
2020), 18 pages. https://doi.org/10.1145/3386569.3392385

[4] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
2020. Neural Sparse Voxel Fields. NeurIPS (2020).

[5] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

[6] Karen Simonyan andAndrewZisserman. 2015. VeryDeep Convolutional Networks
for Large-Scale Image Recognition. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

[7] Joanna Waczyńska, Piotr Borycki, Sławomir Tadeja, Jacek Tabor, and Przemysław
Spurek. 2024. GaMeS: Mesh-Based Adapting and Modification of Gaussian Splat-
ting. (2024). arXiv:2402.01459

[8] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. 2003. Multiscale structural
similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference
on Signals, Systems & Computers, 2003, Vol. 2. IEEE, 1398–1402.

[9] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
586–595.

https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2402.01459

	1 Hierarchical Barycentric Inference
	2 Sampling for Deformation
	3 Implementation Details
	4 Experiments on NSVF Dataset
	5 Training Time of Our Method
	6 Memory Usage by Subdivision Levels
	7 Comparisons with 3D GS
	8 Limitation & Future Work
	References

