

Database Compatibility for Oracle®
Developers Reference Guide

EDB Postgres™ Advanced Server 10

May 8, 2018

Database Compatibility for Oracle® Developers
Reference Guide

by EnterpriseDB® Corporation
Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

EnterpriseDB Corporation, 34 Crosby Drive, Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E info@enterprisedb.com www.enterprisedb.com

http://www.enterprisedb.com/

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

3

Table of Contents

1 Introduction .. 8
1.1 What’s New .. 9
1.2 Typographical Conventions Used in this Guide ... 9

2 The SQL Language ..10
2.1 SQL Syntax ...10

2.1.1 Lexical Structure ..11
2.1.2 Identifiers and Key Words ...12
2.1.3 Constants ...14

2.1.3.1 String Constants ..14
2.1.3.2 Numeric Constants ..14
2.1.3.3 Constants of Other Types ..15

2.1.4 Comments ..16
2.2 Data Types ...17

2.2.1 Numeric Types ..18
2.2.1.1 Integer Types ..18
2.2.1.2 Arbitrary Precision Numbers ..18
2.2.1.3 Floating-Point Types ...19

2.2.2 Character Types ...20
2.2.3 Binary Data ..22
2.2.4 Date/Time Types ...23

2.2.4.1 INTERVAL Types ..24
2.2.4.2 Date/Time Input ..25

2.2.4.2.1 Dates ..25
2.2.4.2.2 Times ...26
2.2.4.2.3 Time Stamps ..26

2.2.4.3 Date/Time Output ...27
2.2.4.4 Internals ..27

2.2.5 Boolean Type ...28
2.2.6 XML Type ...29

2.3 SQL Commands ..30
2.3.1 ALTER INDEX ...31
2.3.2 ALTER PROCEDURE ..33
2.3.3 ALTER PROFILE ...34
2.3.4 ALTER QUEUE ..38
2.3.5 ALTER QUEUE TABLE ..42
2.3.6 ALTER ROLE… IDENTIFIED BY ...43
2.3.7 ALTER ROLE - Managing Database Link and DBMS_RLS Privileges45
2.3.8 ALTER SEQUENCE ..48
2.3.9 ALTER SESSION ...50
2.3.10 ALTER TABLE ..52
2.3.11 ALTER TABLESPACE ..56
2.3.12 ALTER USER… IDENTIFIED BY ..57
2.3.13 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES59
2.3.14 CALL ...62
2.3.15 COMMENT ...63
2.3.16 COMMIT ...65
2.3.17 CREATE DATABASE ...66
2.3.18 CREATE [PUBLIC] DATABASE LINK ...67
2.3.19 CREATE DIRECTORY ..79
2.3.20 CREATE FUNCTION...81
2.3.21 CREATE INDEX ..88
2.3.22 CREATE MATERIALIZED VIEW ..90

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

4

2.3.23 CREATE PACKAGE ..93
2.3.24 CREATE PACKAGE BODY ..96
2.3.25 CREATE PROCEDURE ...101
2.3.26 CREATE PROFILE ..108
2.3.27 CREATE QUEUE ...112
2.3.28 CREATE QUEUE TABLE ...114
2.3.29 CREATE ROLE ..117
2.3.30 CREATE SCHEMA ..119
2.3.31 CREATE SEQUENCE ..121
2.3.32 CREATE SYNONYM...124
2.3.33 CREATE TABLE ..126
2.3.34 CREATE TABLE AS ..134
2.3.35 CREATE TRIGGER ...136
2.3.36 CREATE TYPE ...140
2.3.37 CREATE TYPE BODY ..148
2.3.38 CREATE USER ..152
2.3.39 CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES153
2.3.40 CREATE VIEW ..156
2.3.41 DELETE ..158
2.3.42 DROP DATABASE LINK ..161
2.3.43 DROP DIRECTORY ...162
2.3.44 DROP FUNCTION ...163
2.3.45 DROP INDEX ...165
2.3.46 DROP PACKAGE ...166
2.3.47 DROP PROCEDURE ..167
2.3.48 DROP PROFILE ...168
2.3.49 DROP QUEUE ..169
2.3.50 DROP QUEUE TABLE ..170
2.3.51 DROP SYNONYM ...172
2.3.52 DROP ROLE ...173
2.3.53 DROP SEQUENCE ...175
2.3.54 DROP TABLE ...176
2.3.55 DROP TABLESPACE ..178
2.3.56 DROP TRIGGER ..179
2.3.57 DROP TYPE..180
2.3.58 DROP USER ...181
2.3.59 DROP VIEW ...183
2.3.60 EXEC ...184
2.3.61 GRANT ...185
2.3.62 GRANT on Database Objects ..187
2.3.63 GRANT on Roles ..189
2.3.64 GRANT on System Privileges ...192
2.3.65 INSERT ...194
2.3.66 LOCK ..198
2.3.67 REVOKE ...201
2.3.68 ROLLBACK ..205
2.3.69 ROLLBACK TO SAVEPOINT ..206
2.3.70 SAVEPOINT ...207
2.3.71 SELECT ..209

2.3.71.1 FROM Clause ..210
2.3.71.2 WHERE Clause ..213
2.3.71.3 GROUP BY Clause ..213
2.3.71.4 HAVING Clause ..214
2.3.71.5 SELECT List ..215
2.3.71.6 UNION Clause ...216
2.3.71.7 INTERSECT Clause ..216

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

5

2.3.71.8 MINUS Clause ...217
2.3.71.9 CONNECT BY Clause ..217
2.3.71.10 ORDER BY Clause ..218
2.3.71.11 DISTINCT Clause ..219
2.3.71.12 FOR UPDATE Clause ...220

2.3.72 SET CONSTRAINTS ..221
2.3.73 SET ROLE ...223
2.3.74 SET TRANSACTION ...224
2.3.75 TRUNCATE ..225
2.3.76 UPDATE ...226

2.4 Functions and Operators ..229
2.4.1 Logical Operators ..229
2.4.2 Comparison Operators ...230
2.4.3 Mathematical Functions and Operators ...232
2.4.4 String Functions and Operators ...235
2.4.5 Pattern Matching String Functions ..238

2.4.5.1 REGEXP_COUNT ...238
2.4.5.2 REGEXP_INSTR ...239
2.4.5.3 REGEXP_SUBSTR ..241

2.4.6 Pattern Matching Using the LIKE Operator ..244
2.4.7 Data Type Formatting Functions ...245

2.4.7.1 IMMUTABLE TO_CHAR(TIMESTAMP, format) Function ..249
2.4.8 Date/Time Functions and Operators ..251

2.4.8.1 ADD_MONTHS ...252
2.4.8.2 EXTRACT ..253
2.4.8.3 MONTHS_BETWEEN...254
2.4.8.4 NEXT_DAY ...255
2.4.8.5 NEW_TIME..255
2.4.8.6 ROUND ..256
2.4.8.7 TRUNC ...261
2.4.8.8 CURRENT DATE/TIME ...264
2.4.8.9 NUMTODSINTERVAL ...265
2.4.8.10 NUMTOYMINTERVAL ...265

2.4.9 Sequence Manipulation Functions ...267
2.4.10 Conditional Expressions ..268

2.4.10.1 CASE ...268
2.4.10.2 COALESCE ...269
2.4.10.3 NULLIF ...270
2.4.10.4 NVL ...270
2.4.10.5 NVL2 ...270
2.4.10.6 GREATEST and LEAST ...271

2.4.11 Aggregate Functions ..272
2.4.12 Subquery Expressions ..274

2.4.12.1 EXISTS ..274
2.4.12.2 IN ...274
2.4.12.3 NOT IN ..275
2.4.12.4 ANY/SOME ...275
2.4.12.5 ALL ..276

3 Oracle Catalog Views ..277
3.1 ALL_ALL_TABLES ...277
3.2 ALL_CONS_COLUMNS ...277
3.3 ALL_CONSTRAINTS ..278
3.4 ALL_DB_LINKS ..278
3.5 ALL_DIRECTORIES ...279
3.6 ALL_IND_COLUMNS ...279
3.7 ALL_INDEXES ..279

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

6

3.8 ALL_JOBS ..280
3.9 ALL_OBJECTS ..281
3.10 ALL_PART_KEY_COLUMNS ..281
3.11 ALL_PART_TABLES ..282
3.12 ALL_POLICIES ..283
3.13 ALL_QUEUES ..283
3.14 ALL_QUEUE_TABLES ...284
3.15 ALL_SEQUENCES ..285
3.16 ALL_SOURCE ..285
3.17 ALL_SUBPART_KEY_COLUMNS ..286
3.18 ALL_SYNONYMS ...286
3.19 ALL_TAB_COLUMNS ..287
3.20 ALL_TAB_PARTITIONS ..288
3.21 ALL_TAB_SUBPARTITIONS ..289
3.22 ALL_TABLES ..290
3.23 ALL_TRIGGERS ..290
3.24 ALL_TYPES ...291
3.25 ALL_USERS ...291
3.26 ALL_VIEW_COLUMNS..292
3.27 ALL_VIEWS ...292
3.28 DBA_ALL_TABLES ..293
3.29 DBA_CONS_COLUMNS ...293
3.30 DBA_CONSTRAINTS ...294
3.31 DBA_DB_LINKS ...294
3.32 DBA_DIRECTORIES ...295
3.33 DBA_IND_COLUMNS ..295
3.34 DBA_INDEXES ..295
3.35 DBA_JOBS ...296
3.36 DBA_OBJECTS ..297
3.37 DBA_PART_KEY_COLUMNS ...297
3.38 DBA_PART_TABLES ...298
3.39 DBA_POLICIES ...299
3.40 DBA_PROFILES ..300
3.41 DBA_QUEUES ...300
3.42 DBA_QUEUE_TABLES ..301
3.43 DBA_ROLE_PRIVS ...301
3.44 DBA_ROLES ..301
3.45 DBA_SEQUENCES ..302
3.46 DBA_SOURCE ...302
3.47 DBA_SUBPART_KEY_COLUMNS ...303
3.48 DBA_SYNONYMS ..303
3.49 DBA_TAB_COLUMNS ...304
3.50 DBA_TAB_PARTITIONS..305
3.51 DBA_TAB_SUBPARTITIONS ..306
3.52 DBA_TABLES ..307
3.53 DBA_TRIGGERS ...307
3.54 DBA_TYPES ..308
3.55 DBA_USERS ..309
3.56 DBA_VIEW_COLUMNS ...310
3.57 DBA_VIEWS ..310
3.58 USER_ALL_TABLES ..311
3.59 USER_CONS_COLUMNS ...311
3.60 USER_CONSTRAINTS ...312
3.61 USER_DB_LINKS ..312
3.62 USER_IND_COLUMNS ..313
3.63 USER_INDEXES ..313

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

7

3.64 USER_JOBS ..314
3.65 USER_OBJECTS ..314
3.66 USER_PART_KEY_COLUMNS ...315
3.67 USER_PART_TABLES ..316
3.68 USER_POLICIES ...317
3.69 USER_QUEUES ...318
3.70 USER_QUEUE_TABLES ..318
3.71 USER_ROLE_PRIVS ...319
3.72 USER_SEQUENCES ..319
3.73 USER_SOURCE ...320
3.74 USER_SUBPART_KEY_COLUMNS ...320
3.75 USER_SYNONYMS ...320
3.76 USER_TAB_COLUMNS ...321
3.77 USER_TAB_PARTITIONS ..322
3.78 USER_TAB_SUBPARTITIONS ..323
3.79 USER_TABLES ..324
3.80 USER_TRIGGERS ...324
3.81 USER_TYPES ...325
3.82 USER_USERS ..326
3.83 USER_VIEW_COLUMNS ...327
3.84 USER_VIEWS ..327
3.85 V$VERSION ...327
3.86 PRODUCT_COMPONENT_VERSION ...328

4 System Catalog Tables ..329
4.1 dual ..329
4.2 edb_dir ...329
4.3 edb_password_history ...329
4.4 edb_policy ...330
4.5 edb_profile ...330
4.6 edb_variable ..331
4.7 pg_synonym ..332
4.8 product_component_version..332

5 Acknowledgements ...333

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

8

1 Introduction

Database Compatibility for Oracle means that an application runs in an Oracle

environment as well as in the EDB Postgres Advanced Server (Advanced Server)

environment with minimal or no changes to the application code.

This guide provides reference material about the compatibility features offered by

Advanced Server:

 SQL Language syntax support

 Compatible Data Types

 SQL Commands

 Catalog Views

 System Catalog Tables

Developing an application that is compatible with Oracle databases in the Advanced

Server requires special attention to which features are used in the construction of the

application. For example, developing a compatible application means selecting:

 Data types to define the application’s database tables that are compatible with

Oracle databases

 SQL statements that are compatible with Oracle SQL

 System and built-in functions for use in SQL statements and procedural logic that

are compatible with Oracle databases

 Stored Procedure Language (SPL) to create database server-side application logic

for stored procedures, functions, triggers, and packages

 System catalog views that are compatible with Oracle’s data dictionary

For detailed information about Advanced Server's compatibility features and extended

functionality, please see the complete library of Advanced Server documentation,

available at:

http://www.enterprisedb.com/products-services-training/products/documentation

http://www.enterprisedb.com/products-services-training/products/documentation

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

9

1.1 What’s New

The following database compatibility for Oracle features have been added to Advanced

Server 9.6 to create Advanced Server 10:

 Advanced Server now supports usage of a composite type (created by the CREATE

TYPE AS command) referenced by a field as its data type within a user-defined

record type (declared with the TYPE IS RECORD statement). This record type

containing a composite type can only be declared in a package specification or a

package body. A composite type is not compatible with Oracle databases.

However, composite types can generally be used within all SPL programs

(functions, procedures, triggers, packages, etc.) as long as the composite type is

not part of a record type (with the exception of packages). For more information

on composite types, see Section 2.3.36.

1.2 Typographical Conventions Used in this Guide

Certain typographical conventions are used in this manual to clarify the meaning and

usage of various commands, statements, programs, examples, etc. This section provides a

summary of these conventions.

In the following descriptions a term refers to any word or group of words which may be

language keywords, user-supplied values, literals, etc. A term’s exact meaning depends

upon the context in which it is used.

 Italic font introduces a new term, typically, in the sentence that defines it for the

first time.

 Fixed-width (mono-spaced) font is used for terms that must be given

literally such as SQL commands, specific table and column names used in the

examples, programming language keywords, etc. For example, SELECT * FROM
emp;

 Italic fixed-width font is used for terms for which the user must

substitute values in actual usage. For example, DELETE FROM table_name;

 A vertical pipe | denotes a choice between the terms on either side of the pipe. A

vertical pipe is used to separate two or more alternative terms within square

brackets (optional choices) or braces (one mandatory choice).

 Square brackets [] denote that one or none of the enclosed term(s) may be

substituted. For example, [a | b], means choose one of “a” or “b” or neither

of the two.

 Braces {} denote that exactly one of the enclosed alternatives must be specified.

For example, { a | b }, means exactly one of “a” or “b” must be specified.

 Ellipses ... denote that the proceeding term may be repeated. For example, [a |

b] ... means that you may have the sequence, “b a a b a”.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

10

2 The SQL Language

The following sections describe the subset of the Advanced Server SQL language

compatible with Oracle databases. The following SQL syntax, commands, data types,

and functions work in both EDB Postgres Advanced Server and Oracle.

The Advanced Server documentation set includes syntax and commands for extended

functionality (functionality that does not provide database compatibility for Oracle or

support Oracle-styled applications) that is not included in this guide.

This section is organized into the following sections:

 General discussion of Advanced Server SQL syntax and language elements

 Data types

 Summary of SQL commands

 Built-in functions

2.1 SQL Syntax

This section describes the general syntax of SQL. It forms the foundation for

understanding the following chapters that include detail about how the SQL commands

are applied to define and modify data.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

11

2.1.1 Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence

of tokens, terminated by a semicolon (;). The end of the input stream also terminates a

command. Which tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a

special character symbol. Tokens are normally separated by whitespace (space, tab, new

line), but need not be if there is no ambiguity (which is generally only the case if a

special character is adjacent to some other token type).

Additionally, comments can occur in SQL input. They are not tokens - they are

effectively equivalent to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;

UPDATE MY_TABLE SET A = 5;

INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more

than one command can be on a line, and commands can usually be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and

which are operands or parameters. The first few tokens are generally the command name,

so in the above example we would usually speak of a SELECT, an UPDATE, and an

INSERT command. But for instance the UPDATE command always requires a SET token

to appear in a certain position, and this particular variation of INSERT also requires a

VALUES token in order to be complete. The precise syntax rules for each command are

described in Section 2.3.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

12

2.1.2 Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key

words, that is, words that have a fixed meaning in the SQL language. The tokens

MY_TABLE and A are examples of identifiers. They identify names of tables, columns, or

other database objects, depending on the command they are used in. Therefore they are

sometimes simply called, “names”. Key words and identifiers have the same lexical

structure, meaning that one cannot know whether a token is an identifier or a key word

without knowing the language.

SQL identifiers and key words must begin with a letter (a-z or A-Z). Subsequent

characters in an identifier or key word can be letters, underscores, digits (0-9), dollar

signs ($), or number signs (#).

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case,

e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is

formed by enclosing an arbitrary sequence of characters in double-quotes ("). A

delimited identifier is always an identifier, never a key word. So "select" could be

used to refer to a column or table named "select", whereas an unquoted select would

be taken as a key word and would therefore provoke a parse error when used where a

table or column name is expected. The example can be written with quoted identifiers

like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with the numeric code

zero.

To include a double quote, use two double quotes. This allows you to construct table or

column names that would otherwise not be possible (such as ones containing spaces or

ampersands). The length limitation still applies.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

13

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always

folded to lower case. For example, the identifiers FOO, foo, and "foo" are considered

the same by Advanced Server, but "Foo" and "FOO" are different from these three and

each other. The folding of unquoted names to lower case is not compatible with Oracle

databases. In Oracle syntax, unquoted names are folded to upper case: for example, foo

is equivalent to "FOO" not "foo". If you want to write portable applications you are

advised to always quote a particular name or never quote it.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

14

2.1.3 Constants

The kinds of implicitly-typed constants in Advanced Server are strings and numbers.

Constants can also be specified with explicit types, which can enable more accurate

representation and more efficient handling by the system. These alternatives are

discussed in the following subsections.

2.1.3.1 String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes

('), for example 'This is a string'. To include a single-quote character within a

string constant, write two adjacent single quotes, e.g. 'Dianne''s horse'. Note that

this is not the same as a double-quote character (").

2.1.3.2 Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits.[digits][e[+-]digits]

[digits].digits[e[+-]digits]

digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be

before or after the decimal point, if one is used. At least one digit must follow the

exponent marker (e), if one is present. There may not be any spaces or other characters

embedded in the constant. Note that any leading plus or minus sign is not actually

considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

3.5

4.

.001

5e2

1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially

presumed to be type INTEGER if its value fits in type INTEGER (32 bits); otherwise it is

presumed to be type BIGINT if its value fits in type BIGINT (64 bits); otherwise it is

taken to be type NUMBER. Constants that contain decimal points and/or exponents are

always initially presumed to be type NUMBER.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

15

The initially assigned data type of a numeric constant is just a starting point for the type

resolution algorithms. In most cases the constant will be automatically coerced to the

most appropriate type depending on context. When necessary, you can force a numeric

value to be interpreted as a specific data type by casting it as described in the following

section.

2.1.3.3 Constants of Other Types

A constant of an arbitrary type can be entered using the following notation:

CAST('string' AS type)

The string constant’s text is passed to the input conversion routine for the type called

type. The result is a constant of the indicated type. The explicit type cast may be omitted

if there is no ambiguity as to the type the constant must be (for example, when it is

assigned directly to a table column), in which case it is automatically coerced.

CAST can also be used to specify runtime type conversions of arbitrary expressions.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

16

2.1.4 Comments

A comment is an arbitrary sequence of characters beginning with double dashes and

extending to the end of the line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment

 * block

 */

where the comment begins with /* and extends to the matching occurrence of */.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

17

2.2 Data Types

The following table shows the built-in general-purpose data types.

Table 2-1 Data Types

Name Alias Description

BLOB LONG RAW, RAW(n), BYTEA Binary data

BOOLEAN Logical Boolean (true/false)

CHAR [(n)] CHARACTER [(n)]
Fixed-length character string of n

characters

CLOB LONG, LONG VARCHAR Long character string

DATE TIMESTAMP(0) Date and time to the second

DOUBLE PRECISION
FLOAT,

FLOAT(25) – FLOAT(53)
Double precision floating-point number

INTEGER
INT, BINARY_INTEGER,

PLS_INTEGER
Signed four-byte integer

NUMBER DEC, DECIMAL, NUMERIC
Exact numeric with optional decimal

places

NUMBER(p [, s])

DEC(p [, s]),

DECIMAL(p [, s]),

NUMERIC(p [, s])

Exact numeric of maximum precision,

p, and optional scale, s

REAL FLOAT(1) – FLOAT(24) Single precision floating-point number

TIMESTAMP [(p)]
Date and time with optional, fractional

second precision, p

TIMESTAMP [(p)] WITH

TIME ZONE

Date and time with optional, fractional

second precision, p, and with time zone

VARCHAR2(n)
CHAR VARYING(n), CHARACTER

VARYING(n), VARCHAR(n)

Variable-length character string with a

maximum length of n characters

XMLTYPE XML data

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

18

2.2.1 Numeric Types

Numeric types consist of four-byte integers, four-byte and eight-byte floating-point

numbers, and fixed-precision decimals. The following table lists the available types.

Table 2-2 Numeric Types

Name
Storage

Size
Description Range

BINARY_INTEGER 4 bytes Signed integer, Alias for INTEGER
-2,147,483,648 to

+2,147,483,647

DOUBLE PRECISION 8 bytes Variable-precision, inexact
15 decimal digits

precision

INTEGER 4 bytes Usual choice for integer
-2,147,483,648 to

+2,147,483,647

NUMBER Variable User-specified precision, exact
Up to 1000 digits of

precision

NUMBER(p [, s]) Variable
Exact numeric of maximum precision, p,

and optional scale, s

Up to 1000 digits of

precision

PLS_INTEGER 4 bytes Signed integer, Alias for INTEGER
-2,147,483,648 to

+2,147,483,647

REAL 4 bytes Variable-precision, inexact
6 decimal digits

precision

ROWID 8 bytes Signed 8 bit integer.

-9223372036854775808

to

9223372036854775807

The following sections describe the types in detail.

2.2.1.1 Integer Types

The type, INTEGER, stores whole numbers (without fractional components) between the

values of -2,147,483,648 and +2,147,483,647. Attempts to store values outside of the

allowed range will result in an error.

Columns of the ROWID type holds fixed-length binary data that describes the physical

address of a record. ROWID is an unsigned, four-byte INTEGER that stores whole

numbers (without fractional components) between the values of 0 and 4,294,967,295.

Attempts to store values outside of the allowed range will result in an error.

2.2.1.2 Arbitrary Precision Numbers

The type, NUMBER, can store practically an unlimited number of digits of precision and

perform calculations exactly. It is especially recommended for storing monetary amounts

and other quantities where exactness is required. However, the NUMBER type is very slow

compared to the floating-point types described in the next section.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

19

In what follows we use these terms: The scale of a NUMBER is the count of decimal digits

in the fractional part, to the right of the decimal point. The precision of a NUMBER is the

total count of significant digits in the whole number, that is, the number of digits to both

sides of the decimal point. So the number 23.5141 has a precision of 6 and a scale of 4.

Integers can be considered to have a scale of zero.

Both the precision and the scale of the NUMBER type can be configured. To declare a

column of type NUMBER use the syntax

NUMBER(precision, scale)

The precision must be positive, the scale zero or positive. Alternatively,

NUMBER(precision)

selects a scale of 0. Specifying NUMBER without any precision or scale creates a column

in which numeric values of any precision and scale can be stored, up to the

implementation limit on precision. A column of this kind will not coerce input values to

any particular scale, whereas NUMBER columns with a declared scale will coerce input

values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to

integer precision. For maximum portability, it is best to specify the precision and scale

explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a

column, the system will attempt to round the value. If the value cannot be rounded so as

to satisfy the declared limits, an error is raised.

2.2.1.3 Floating-Point Types

The data types REAL and DOUBLE PRECISION are inexact, variable-precision numeric

types. In practice, these types are usually implementations of IEEE Standard 754 for

Binary Floating-Point Arithmetic (single and double precision, respectively), to the extent

that the underlying processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are

stored as approximations, so that storing and printing back out a value may show slight

discrepancies. Managing these errors and how they propagate through calculations is the

subject of an entire branch of mathematics and computer science and will not be

discussed further here, except for the following points:

If you require exact storage and calculations (such as for monetary amounts), use the

NUMBER type instead.

If you want to do complicated calculations with these types for anything important,

especially if you rely on certain behavior in boundary cases (infinity, underflow), you

should evaluate the implementation carefully.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

20

Comparing two floating-point values for equality may or may not work as expected.

On most platforms, the REAL type has a range of at least 1E-37 to 1E+37 with a precision

of at least 6 decimal digits. The DOUBLE PRECISION type typically has a range of

around 1E-307 to 1E+308 with a precision of at least 15 digits. Values that are too large

or too small will cause an error. Rounding may take place if the precision of an input

number is too high. Numbers too close to zero that are not representable as distinct from

zero will cause an underflow error.

Advanced Server also supports the SQL standard notations FLOAT and FLOAT(p) for

specifying inexact numeric types. Here, p specifies the minimum acceptable precision in

binary digits. Advanced Server accepts FLOAT(1) to FLOAT(24) as selecting the REAL

type, while FLOAT(25) to FLOAT(53) as selecting DOUBLE PRECISION. Values of p

outside the allowed range draw an error. FLOAT with no precision specified is taken to

mean DOUBLE PRECISION.

2.2.2 Character Types

The following table lists the general-purpose character types available in Advanced

Server.

Table 2-3 Character Types

Name Description

CHAR[(n)]
Fixed-length character string, blank-padded to the size specified

by n

CLOB Large variable-length up to 1 GB

LONG Variable unlimited length.

NVARCHAR(n) Variable-length national character string, with limit.

NVARCHAR2(n) Variable-length national character string, with limit.

STRING Alias for VARCHAR2.

VARCHAR(n)
Variable-length character string, with limit (considered

deprecated, but supported for compatibility)

VARCHAR2(n) Variable-length character string, with limit

Where n is a positive integer; these types can store strings up to n characters in length.

An attempt to assign a value that exceeds the length of n will result in an error, unless the

excess characters are all spaces, in which case the string will be truncated to the

maximum length.

CHAR

If you do not specify a value for n, n will default to 1. If the string to be assigned is

shorter than n, values of type CHAR will be space-padded to the specified width (n), and

will be stored and displayed that way.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

21

Padding spaces are treated as semantically insignificant. That is, trailing spaces are

disregarded when comparing two values of type CHAR, and they will be removed when

converting a CHAR value to one of the other string types.

If you explicitly cast an over-length value to a CHAR(n) type, the value will be truncated

to n characters without raising an error (as specified by the SQL standard).

VARCHAR, VARCHAR2, NVARCHAR and NVARCHAR2

If the string to be assigned is shorter than n, values of type VARCHAR, VARCHAR2,

NVARCHAR and NVARCHAR2 will store the shorter string without padding.

Note that trailing spaces are semantically significant in VARCHAR values.

If you explicitly cast a value to a VARCHAR type, an over-length value will be truncated to

n characters without raising an error (as specified by the SQL standard).

CLOB

You can store a large character string in a CLOB type. CLOB is semantically equivalent to

VARCHAR2 except no length limit is specified. Generally, you should use a CLOB type if

the maximum string length is not known.

The longest possible character string that can be stored in a CLOB type is about 1 GB.

The storage requirement for data of these types is the actual string plus 1 byte if the string

is less than 127 bytes, or 4 bytes if the string is 127 bytes or greater. In the case of

CHAR, the padding also requires storage. Long strings are compressed by the system

automatically, so the physical requirement on disk may be less. Long values are stored in

background tables so they do not interfere with rapid access to the shorter column values.

The database character set determines the character set used to store textual values.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

22

2.2.3 Binary Data

The following data types allows storage of binary strings.

Table 2-4 Binary Large Object

Name Storage Size Description

BINARY The length of the binary string.
Fixed-length binary string, with a length

between 1 and 8300.

BLOB

The actual binary string plus 1 byte

if the binary string is less than 127

bytes, or 4 bytes if the binary string

is 127 bytes or greater.

Variable-length binary string, with a

maximum size of 1 GB.

VARBINARY The length of the binary string
Variable-length binary string, with a length

between 1 and 8300.

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from

characters strings by two characteristics: First, binary strings specifically allow storing

octets of value zero and other "non-printable" octets (defined as octets outside the range

32 to 126). Second, operations on binary strings process the actual bytes, whereas the

encoding and processing of character strings depends on locale settings.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

23

2.2.4 Date/Time Types

The following discussion of the date/time types assumes that the configuration parameter,

edb_redwood_date, has been set to TRUE whenever a table is created or altered.

Advanced Server supports the date/time types shown in the following table.

Table 2-5 Date/Time Types

Name
Storage

Size
Description

Low Value
High Value Resolution

DATE 8 bytes Date and time 4713 BC 5874897 AD 1 second

INTERVAL DAY TO

SECOND

[(p)]

12 bytes Period of time
-178000000

years

178000000

years

1 microsecond /

14 digits

INTERVAL YEAR TO

MONTH
12 bytes Period of time

-178000000

years

178000000

years

1 microsecond /

14 digits

TIMESTAMP [(p)] 8 bytes Date and time 4713 BC 5874897 AD 1 microsecond

TIMESTAMP [(p)]

WITH TIME ZONE
8 bytes

Date and time

with time zone
4713 BC 5874897 AD 1 microsecond

When DATE appears as the data type of a column in the data definition language (DDL)

commands, CREATE TABLE or ALTER TABLE, it is translated to TIMESTAMP(0) at the

time the table definition is stored in the database. Thus, a time component will also be

stored in the column along with the date.

When DATE appears as a data type of a variable in an SPL declaration section, or the data

type of a formal parameter in an SPL procedure or an SPL function, or the return type of

an SPL function, it is always translated to TIMESTAMP(0) and thus can handle a time

component if present.

TIMESTAMP accepts an optional precision value p which specifies the number of

fractional digits retained in the seconds field. The allowed range of p is from 0 to 6 with

the default being 6.

When TIMESTAMP values are stored as double precision floating-point numbers

(currently the default), the effective limit of precision may be less than 6. TIMESTAMP

values are stored as seconds before or after midnight 2000-01-01. Microsecond precision

is achieved for dates within a few years of 2000-01-01, but the precision degrades for

dates further away. When TIMESTAMP values are stored as eight-byte integers (a

compile-time option), microsecond precision is available over the full range of values.

However eight-byte integer timestamps have a more limited range of dates than shown

above: from 4713 BC up to 294276 AD.

TIMESTAMP (p) WITH TIME ZONE is similar to TIMESTAMP (p), but includes the

time zone as well.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

24

2.2.4.1 INTERVAL Types

INTERVAL values specify a period of time. Values of INTERVAL type are composed of

fields that describe the value of the data. The following table lists the fields allowed in an

INTERVAL type:

Table 2-6 Interval Types

Field Name INTERVAL Values Allowed
YEAR Integer value (positive or negative)
MONTH 0 through 11
DAY Integer value (positive or negative)
HOUR 0 through 23
MINUTE 0 through 59
SECOND 0 through 59.9(p) where 9(p) is the precision of fractional

seconds

The fields must be presented in descending order – from YEARS to MONTHS, and from

DAYS to HOURS, MINUTES and then SECONDS.

Advanced Server supports two INTERVAL types compatible with Oracle databases.

The first variation supported by Advanced Server is INTERVAL DAY TO SECOND

[(p)]. INTERVAL DAY TO SECOND [(p)] stores a time interval in days, hours,

minutes and seconds.

p specifies the precision of the second field.

Advanced Server interprets the value:

 INTERVAL '1 2:34:5.678' DAY TO SECOND(3)

as 1 day, 2 hours, 34 minutes, 5 seconds and 678 thousandths of a second.

Advanced Server interprets the value:

INTERVAL '1 23' DAY TO HOUR

as 1 day and 23 hours.

Advanced Server interprets the value:

INTERVAL '2:34' HOUR TO MINUTE

as 2 hours and 34 minutes.

Advanced Server interprets the value:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

25

INTERVAL '2:34:56.129' HOUR TO SECOND(2)

as 2 hours, 34 minutes, 56 seconds and 13 thousandths of a second. Note that the

fractional second is rounded up to 13 because of the specified precision.

The second variation supported by Advanced Server that is compatible with Oracle

databases is INTERVAL YEAR TO MONTH. This variation stores a time interval in years

and months.

Advanced Server interprets the value:

INTERVAL '12-3' YEAR TO MONTH

as 12 years and 3 months.

Advanced Server interprets the value:

 INTERVAL '456' YEAR(2)

as 12 years and 3 months.

Advanced Server interprets the value:

INTERVAL '300' MONTH

as 25 years.

2.2.4.2 Date/Time Input

Date and time input is accepted in ISO 8601 SQL-compatible format, the Oracle default

dd-MON-yy format, as well as a number of other formats provided that there is no

ambiguity as to which component is the year, month, and day. However, use of the

TO_DATE function is strongly recommended to avoid ambiguities.

Any date or time literal input needs to be enclosed in single quotes, like text strings. The

following SQL standard syntax is also accepted:

type 'value'

type is either DATE or TIMESTAMP.

value is a date/time text string.

2.2.4.2.1 Dates

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

26

The following table shows some possible input formats for dates, all of which equate to

January 8, 1999.

Table 2-7 Date Input

Example

January 8, 1999

1999-01-08

1999-Jan-08

Jan-08-1999

08-Jan-1999

08-Jan-99

Jan-08-99

19990108

990108

The date values can be assigned to a DATE or TIMESTAMP column or variable. The hour,

minute, and seconds fields will be set to zero if the date value is not appended with a time

value.

2.2.4.2.2 Times

Some examples of the time component of a date or time stamp are shown in the following

table.

Table 2-8 Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

2.2.4.2.3 Time Stamps

Valid input for time stamps consists of a concatenation of a date and a time. The date

portion of the time stamp can be formatted according to any of the examples shown in

Table 2-7. The time portion of the time stamp can be formatted according to any of

examples shown in Table 2-8.

The following is an example of a time stamp which follows the Oracle default format.

08-JAN-99 04:05:06

The following is an example of a time stamp which follows the ISO 8601 standard.

1999-01-08 04:05:06

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

27

2.2.4.3 Date/Time Output

The default output format of the date/time types will be either (dd-MON-yy) referred to

as the Redwood date style, compatible with Oracle databases, or (yyyy-mm-dd) referred

to as the ISO 8601 format, depending upon the application interface to the database.

Applications that use JDBC such as SQL Interactive always present the date in ISO 8601

form. Other applications such as PSQL present the date in Redwood form.

The following table shows examples of the output formats for the two styles, Redwood

and ISO 8601.

Table 2-9 Date/Time Output Styles

Description Example

Redwood style 31-DEC-05 07:37:16

ISO 8601/SQL standard 1997-12-17 07:37:16

2.2.4.4 Internals

Advanced Server uses Julian dates for all date/time calculations. Julian dates correctly

predict or calculate any date after 4713 BC based on the assumption that the length of the

year is 365.2425 days.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

28

2.2.5 Boolean Type

Advanced Server provides the standard SQL type BOOLEAN. BOOLEAN can have one of

only two states: TRUE or FALSE. A third state, UNKNOWN, is represented by the SQL NULL

value.

Table 2-10 Boolean Type

Name Storage Size Description

BOOLEAN 1 byte Logical Boolean (true/false)

The valid literal value for representing the true state is TRUE. The valid literal for

representing the false state is FALSE.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

29

2.2.6 XML Type

The XMLTYPE data type is used to store XML data. Its advantage over storing XML data

in a character field is that it checks the input values for well-formedness, and there are

support functions to perform type-safe operations on it.

The XML type can store well-formed “documents”, as defined by the XML standard, as

well as “content” fragments, which are defined by the production XMLDecl? content

in the XML standard. Roughly, this means that content fragments can have more than one

top-level element or character node.

Note: Oracle does not support the storage of content fragments in XMLTYPE columns.

The following example shows the creation and insertion of a row into a table with an

XMLTYPE column.

CREATE TABLE books (

 content XMLTYPE

);

INSERT INTO books VALUES (XMLPARSE (DOCUMENT '<?xml

version="1.0"?><book><title>Manual</title><chapter>...</chapter></book>'));

SELECT * FROM books;

 content

--

 <book><title>Manual</title><chapter>...</chapter></book>

(1 row)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

30

2.3 SQL Commands

This section provides a summary of the SQL commands compatible with Oracle

databases that are supported by Advanced Server. The SQL commands in this section

will work on both an Oracle database and an Advanced Server database.

Note the following points:

 Advanced Server supports other commands that are not listed here. These

commands may have no Oracle equivalent or they may provide the similar or

same functionality as an Oracle SQL command, but with different syntax.

 The SQL commands in this section do not necessarily represent the full syntax,

options, and functionality available for each command. In most cases, syntax,

options, and functionality that are not compatible with Oracle databases have been

omitted from the command description and syntax.

 The Advanced Server documentation set documents command functionality that

may not be compatible with Oracle databases.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

31

2.3.1 ALTER INDEX

Name

ALTER INDEX -- modify an existing index.

Synopsis

Advanced Server supports two variations of the ALTER INDEX command compatible with

Oracle databases. Use the first variation to rename an index:

ALTER INDEX name RENAME TO new_name

Use the second variation of the ALTER INDEX command to rebuild an index:

ALTER INDEX name REBUILD

Description

ALTER INDEX changes the definition of an existing index. The RENAME clause changes

the name of the index. The REBUILD clause reconstructs an index, replacing the old copy

of the index with an updated version based on the index's table.

The REBUILD clause invokes the PostgreSQL REINDEX command; for more information

about using the REBUILD clause, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/10/static/sql-reindex.html

ALTER INDEX has no effect on stored data.

Parameters

name

The name (possibly schema-qualified) of an existing index.

new_name

New name for the index.

https://www.postgresql.org/docs/10/static/sql-reindex.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

32

Examples

To change the name of an index from name_idx to empname_idx:

ALTER INDEX name_idx RENAME TO empname_idx;

To rebuild an index named empname_idx:

ALTER INDEX empname_idx REBUILD;

See Also

CREATE INDEX, DROP INDEX

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

33

2.3.2 ALTER PROCEDURE

Name

ALTER PROCEDURE

Synopsis

ALTER PROCEDURE procedure_name options [RESTRICT]

Description

Use the ALTER PROCEDURE statement to specify that a procedure is a SECURITY

INVOKER or SECURITY DEFINER.

Parameters

procedure_name

procedure_name specifies the (possibly schema-qualified) name of a stored

procedure.

options may be:

[EXTERNAL] SECURITY DEFINER

Specify SECURITY DEFINER to instruct the server to execute the procedure with

the privileges of the user that created the procedure. The EXTERNAL keyword is

accepted for compatibility, but ignored.

[EXTERNAL] SECURITY INVOKER

Specify SECURITY INVOKER to instruct the server to execute the procedure with

the privileges of the user that is invoking the procedure. The EXTERNAL keyword

is accepted for compatibility, but ignored.

The RESTRICT keyword is accepted for compatibility, but ignored.

Examples

The following command specifies that the update_balance procedure should execute

with the privileges of the user invoking the procedure:

ALTER PROCEDURE update_balance SECURITY INVOKER;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

34

2.3.3 ALTER PROFILE

Name

ALTER PROFILE – alter an existing profile

Synopsis

ALTER PROFILE profile_name RENAME TO new_name;

ALTER PROFILE profile_name

 LIMIT {parameter value}[...];

Description

Use the ALTER PROFILE command to modify a user-defined profile; Advanced Server

supports two forms of the command:

 Use ALTER PROFILE…RENAME TO to change the name of a profile.

 Use ALTER PROFILE…LIMIT to modify the limits associated with a profile.

Include the LIMIT clause and one or more space-delimited parameter/value pairs to

specify the rules enforced by Advanced Server, or use ALTER PROFILE…RENAME TO to

change the name of a profile.

Parameters

profile_name

The name of the profile.

new_name

new_name specifies the new name of the profile.

parameter

parameter specifies the attribute limited by the profile.

value

value specifies the parameter limit.

Advanced Server supports the value shown below for each parameter:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

35

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user

may make before the server locks the user out of their account for the length of time

specified by PASSWORD_LOCK_TIME. Supported values are:

 An INTEGER value greater than 0.

 DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the

DEFAULT profile.

 UNLIMITED – the connecting user may make an unlimited number of failed

login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server

unlocks an account that has been locked because of FAILED_LOGIN_ATTEMPTS.

Supported values are:

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT

profile.

 UNLIMITED – the account is locked until it is manually unlocked by a

database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password may

be used before the user is prompted to provide a new password. Include the

PASSWORD_GRACE_TIME clause when using the PASSWORD_LIFE_TIME clause to

specify the number of days that will pass after the password expires before

connections by the role are rejected. If PASSWORD_GRACE_TIME is not specified, the

password will expire on the day specified by the default value of

PASSWORD_GRACE_TIME, and the user will not be allowed to execute any command

until a new password is provided. Supported values are:

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT

profile.

 UNLIMITED – The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password

expires until the user is forced to change their password. When the grace period

expires, a user will be allowed to connect, but will not be allowed to execute any

command until they update their expired password. Supported values are:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

36

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT

profile.

 UNLIMITED – The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-

using a password. The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX

parameters are intended to be used together. If you specify a finite value for one of

these parameters while the other is UNLIMITED, old passwords can never be reused.

If both parameters are set to UNLIMITED there are no restrictions on password reuse.

Supported values are:

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT

profile.

 UNLIMITED – The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur

before a password can be reused. The PASSWORD_REUSE_TIME and

PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a

finite value for one of these parameters while the other is UNLIMITED, old passwords

can never be reused. If both parameters are set to UNLIMITED there are no

restrictions on password reuse. Supported values are:

 An INTEGER value greater than or equal to 0.

 DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT

profile.

 UNLIMITED – The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values

are:

 The name of a PL/SQL function.

 DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the

DEFAULT profile.

 NULL

Examples

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

37

The following example modifies a profile named acctg_profile:

ALTER PROFILE acctg_profile

 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile will count failed connection attempts when a login role attempts to

connect to the server. The profile specifies that if a user has not authenticated with the

correct password in three attempts, the account will be locked for one day.

The following example changes the name of acctg_profile to payables_profile:

ALTER PROFILE acctg_profile RENAME TO payables_profile;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

38

2.3.4 ALTER QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the ALTER QUEUE

SQL command. This syntax can be used in association with the DBMS_AQADM package.

Name

ALTER QUEUE -- allows a superuser or a user with the aq_administrator_role

privilege to modify the attributes of a queue.

Synopsis

This command is available in four forms. The first form of this command changes the

name of a queue.

ALTER QUEUE queue_name RENAME TO new_name

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue.

RENAME TO

Include the RENAME TO clause and a new name for the queue to rename

the queue.

new_name

New name for the queue.

The second form of the ALTER QUEUE command modifies the attributes of the queue:

ALTER QUEUE queue_name SET [({ option_name option_value }

[,SET option_name

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

39

Include the SET clause and option_name/option_value pairs to modify the

attributes of the queue:

option_name option_value

The name of the option or options to be associated with the new queue and

the corresponding value of the option. If you provide duplicate option

names, the server will return an error.

 If option_name is retries, provide an integer that represents

the number of times a dequeue may be attempted.

 If option_name is retrydelay, provide a double-precision

value that represents the delay in seconds.

 If option_name is retention, provide a double-precision

value that represents the retention time in seconds.

Use the third form of the ALTER QUEUE command to enable or disable enqueuing and/or

dequeuing on a particular queue:

ALTER QUEUE queue_name ACCESS { START | STOP } [FOR {

enqueue | dequeue }] [NOWAIT]

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue.

ACCESS

Include the ACCESS keyword to enable or disable enqueuing and/or

dequeuing on a particular queue.

START | STOP

Use the START and STOP keywords to indicate the desired state of the

queue.

FOR enqueue|dequeue

Use the FOR clause to indicate if you are specifying the state of

enqueueing or dequeueing activity on the specified queue.

NOWAIT

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

40

Include the NOWAIT keyword to specify that the server should not wait for

the completion of outstanding transactions before changing the state of the

queue. The NOWAIT keyword can only be used when specifying an

ACCESS value of STOP. The server will return an error if NOWAIT is

specified with an ACCESS value of START.

Use the fourth form to ADD or DROP callback details for a particular queue.

ALTER QUEUE queue_name { ADD | DROP } CALL TO location_name

[WITH callback_option]

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue.

ADD | DROP

Include the ADD or DROP keywords to enable add or remove callback

details for a queue.

location_name

location_name specifies the name of the callback procedure.

callback_option

callback_option can be context; specify a RAW value when

including this clause.

Example

The following example changes the name of a queue from work_queue_east to

work_order:

ALTER QUEUE work_queue_east RENAME TO work_order;

The following example modifies a queue named work_order, setting the number of

retries to 100, the delay between retries to 2 seconds, and the length of time that the

queue will retain dequeued messages to 10 seconds:

ALTER QUEUE work_order SET (retries 100, retrydelay 2, retention 10);

The following commands enable enqueueing and dequeueing in a queue named

work_order:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

41

ALTER QUEUE work_order ACCESS START;

ALTER QUEUE work_order ACCESS START FOR enqueue;

ALTER QUEUE work_order ACCESS START FOR dequeue;

The following commands disable enqueueing and dequeueing in a queue named

work_order:

ALTER QUEUE work_order ACCESS STOP NOWAIT;

ALTER QUEUE work_order ACCESS STOP FOR enqueue;

ALTER QUEUE work_order ACCESS STOP FOR dequeue;

See Also

CREATE QUEUE, DROP QUEUE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

42

2.3.5 ALTER QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the ALTER QUEUE

SQL command. This syntax can be used in association with the DBMS_AQADM package.

Name

ALTER QUEUE TABLE-- modify an existing queue table.

Synopsis

Use ALTER QUEUE TABLE to change the name of an existing queue table:

ALTER QUEUE TABLE name RENAME TO new_name

Description

ALTER QUEUE TABLE allows a superuser or a user with the aq_administrator_role

privilege to change the name of an existing queue table.

Parameters

name

The name (optionally schema-qualified) of an existing queue table.

new_name

New name for the queue table.

Example

To change the name of a queue table from wo_table_east to work_order_table:

ALTER QUEUE TABLE wo_queue_east RENAME TO work_order_table;

See Also

CREATE QUEUE TABLE, DROP QUEUE TABLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

43

2.3.6 ALTER ROLE… IDENTIFIED BY

Name

ALTER ROLE - change the password associated with a database role

Synopsis

ALTER ROLE role_name IDENTIFIED BY password

 [REPLACE prev_password]

Description

A role without the CREATEROLE privilege may use this command to change their own

password. An unprivileged role must include the REPLACE clause and their previous

password if PASSWORD_VERIFY_FUNCTION is not NULL in their profile. When the

REPLACE clause is used by a non-superuser, the server will compare the password

provided to the existing password and raise an error if the passwords do not match.

A database superuser can use this command to change the password associated with any

role. If a superuser includes the REPLACE clause, the clause is ignored; a non-matching

value for the previous password will not throw an error.

If the role for which the password is being changed has the SUPERUSER attribute, then a

superuser must issue this command. A role with the CREATEROLE attribute can use this

command to change the password associated with a role that is not a superuser.

Parameters

role_name

The name of the role whose password is to be altered.

password

The role’s new password.

prev_password

The role’s previous password.

Examples

To change a role’s password:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

44

ALTER ROLE john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

45

2.3.7 ALTER ROLE - Managing Database Link and DBMS_RLS
Privileges

Advanced Server includes extra syntax (not offered by Oracle) for the ALTER ROLE

command. This syntax can be useful when assigning privileges related to creating and

dropping database links compatible with Oracle databases, and fine-grained access

control (using DBMS_RLS).

CREATE DATABASE LINK

A user who holds the CREATE DATABASE LINK privilege may create a private database

link. The following ALTER ROLE command grants privileges to an Advanced Server role

that allow the specified role to create a private database link:

ALTER ROLE role_name

 WITH [CREATEDBLINK | CREATE DATABASE LINK]

This command is the functional equivalent of:

GRANT CREATE DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name

 WITH [NOCREATEDBLINK | NO CREATE DATABASE LINK]

Please note: the CREATEDBLINK and NOCREATEDBLINK keywords should be considered

deprecated syntax; we recommend using the CREATE DATABASE LINK and NO CREATE

DATABASE LINK syntax options.

CREATE PUBLIC DATABASE LINK

A user who holds the CREATE PUBLIC DATABASE LINK privilege may create a public

database link. The following ALTER ROLE command grants privileges to an Advanced

Server role that allow the specified role to create a public database link:

ALTER ROLE role_name

 WITH [CREATEPUBLICDBLINK | CREATE PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT CREATE PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

46

ALTER ROLE role_name

 WITH [NOCREATEPUBLICDBLINK | NO CREATE PUBLIC DATABASE LINK]

Please note: the CREATEPUBLICDBLINK and NOCREATEPUBLICDBLINK keywords

should be considered deprecated syntax; we recommend using the CREATE PUBLIC

DATABASE LINK and NO CREATE PUBLIC DATABASE LINK syntax options.

DROP PUBLIC DATABASE LINK

A user who holds the DROP PUBLIC DATABASE LINK privilege may drop a public

database link. The following ALTER ROLE command grants privileges to an Advanced

Server role that allow the specified role to drop a public database link:

ALTER ROLE role_name

 WITH [DROPPUBLICDBLINK | DROP PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT DROP PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name

 WITH [NODROPPUBLICDBLINK | NO DROP PUBLIC DATABASE LINK]

Please note: the DROPPUBLICDBLINK and NODROPPUBLICDBLINK keywords should be

considered deprecated syntax; we recommend using the DROP PUBLIC DATABASE LINK

and NO DROP PUBLIC DATABASE LINK syntax options.

EXEMPT ACCESS POLICY

A user who holds the EXEMPT ACCESS POLICY privilege is exempt from fine-grained

access control (DBMS_RLS) policies. A user who holds these privileges will be able to

view or modify any row in a table constrained by a DBMS_RLS policy. The following

ALTER ROLE command grants privileges to an Advanced Server role that exempt the

specified role from any defined DBMS_RLS policies:

ALTER ROLE role_name

 WITH [POLICYEXEMPT | EXEMPT ACCESS POLICY]

This command is the functional equivalent of:

GRANT EXEMPT ACCESS POLICY TO role_name

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

47

Use the following command to revoke the privilege:

ALTER ROLE role_name

 WITH [NOPOLICYEXEMPT | NO EXEMPT ACCESS POLICY]

Please note: the POLICYEXEMPT and NOPOLICYEXEMPT keywords should be considered

deprecated syntax; we recommend using the EXEMPT ACCESS POLICY and NO EXEMPT

ACCESS POLICY syntax options.

See Also

CREATE ROLE, DROP ROLE, GRANT, REVOKE, SET ROLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

48

2.3.8 ALTER SEQUENCE

Name

ALTER SEQUENCE -- change the definition of a sequence generator

Synopsis

ALTER SEQUENCE name [INCREMENT BY increment]

 [MINVALUE minvalue] [MAXVALUE maxvalue]

 [CACHE cache | NOCACHE] [CYCLE]

Description

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any

parameter not specifically set in the ALTER SEQUENCE command retains its prior setting.

Parameters

name

The name (optionally schema-qualified) of a sequence to be altered.

increment

The clause INCREMENT BY increment is optional. A positive value will make

an ascending sequence, a negative one a descending sequence. If unspecified, the

old increment value will be maintained.

minvalue

The optional clause MINVALUE minvalue determines the minimum value a

sequence can generate. If not specified, the current minimum value will be

maintained. Note that the key words, NO MINVALUE, may be used to set this

behavior back to the defaults of 1 and -2
63

-1 for ascending and descending

sequences, respectively, however, this term is not compatible with Oracle

databases.

maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for

the sequence. If not specified, the current maximum value will be maintained.

Note that the key words, NO MAXVALUE, may be used to set this behavior back to

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

49

the defaults of 2
63

-1 and -1 for ascending and descending sequences, respectively,

however, this term is not compatible with Oracle databases.

cache

The optional clause CACHE cache specifies how many sequence numbers are to

be preallocated and stored in memory for faster access. The minimum value is 1

(only one value can be generated at a time, i.e., NOCACHE). If unspecified, the old

cache value will be maintained.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or

minvalue has been reached by an ascending or descending sequence

respectively. If the limit is reached, the next number generated will be the

minvalue or maxvalue, respectively. If not specified, the old cycle behavior

will be maintained. Note that the key words, NO CYCLE, may be used to alter the

sequence so that it does not recycle, however, this term is not compatible with

Oracle databases.

Notes

To avoid blocking of concurrent transactions that obtain numbers from the same

sequence, ALTER SEQUENCE is never rolled back; the changes take effect immediately

and are not reversible.

ALTER SEQUENCE will not immediately affect NEXTVAL results in backends, other than

the current one, that have pre-allocated (cached) sequence values. They will use up all

cached values prior to noticing the changed sequence parameters. The current backend

will be affected immediately.

Examples

Change the increment and cache value of sequence, serial.

ALTER SEQUENCE serial INCREMENT BY 2 CACHE 5;

See Also

CREATE SEQUENCE, DROP SEQUENCE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

50

2.3.9 ALTER SESSION

Name

ALTER SESSION -- change a runtime parameter

Synopsis

ALTER SESSION SET name = value

Description

The ALTER SESSION command changes runtime configuration parameters. ALTER

SESSION only affects the value used by the current session. Some of these parameters are

provided solely for compatibility with Oracle syntax and have no effect whatsoever on

the runtime behavior of Advanced Server. Others will alter a corresponding Advanced

Server database server runtime configuration parameter.

Parameters

name

Name of a settable runtime parameter. Available parameters are listed below.

value

New value of parameter.

Configuration Parameters

The following configuration parameters can be modified using the ALTER SESSION

command:

NLS_DATE_FORMAT (string)

Sets the display format for date and time values as well as the rules for

interpreting ambiguous date input values. Has the same effect as setting the

Advanced Server datestyle runtime configuration parameter.

NLS_LANGUAGE (string)

Sets the language in which messages are displayed. Has the same effect as setting

the Advanced Server lc_messages runtime configuration parameter.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

51

NLS_LENGTH_SEMANTICS (string)

Valid values are BYTE and CHAR. The default is BYTE. This parameter is provided

for syntax compatibility only and has no effect in the Advanced Server.

OPTIMIZER_MODE (string)

Sets the default optimization mode for queries. Valid values are ALL_ROWS,

CHOOSE, FIRST_ROWS, FIRST_ROWS_10, FIRST_ROWS_100, and

FIRST_ROWS_1000. The default is CHOOSE. This parameter is implemented in

Advanced Server.

QUERY_REWRITE_ENABLED (string)

Valid values are TRUE, FALSE, and FORCE. The default is FALSE. This parameter

is provided for syntax compatibility only and has no effect in Advanced Server.

QUERY_REWRITE_INTEGRITY (string)

Valid values are ENFORCED, TRUSTED, and STALE_TOLERATED. The default is

ENFORCED. This parameter is provided for syntax compatibility only and has no

effect in Advanced Server.

Examples

Set the language to U.S. English in UTF-8 encoding. Note that in this example, the value,

en_US.UTF-8, is in the format that must be specified for Advanced Server. This form is

not compatible with Oracle databases.

ALTER SESSION SET NLS_LANGUAGE = 'en_US.UTF-8';

Set the date display format.

ALTER SESSION SET NLS_DATE_FORMAT = 'dd/mm/yyyy';

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

52

2.3.10 ALTER TABLE

Name

ALTER TABLE -- change the definition of a table

Synopsis

ALTER TABLE name

 action [, ...]

ALTER TABLE name

 RENAME COLUMN column TO new_column

ALTER TABLE name

 RENAME TO new_name

where action is one of:

 ADD column type [column_constraint [...]]

 DROP COLUMN column

 ADD table_constraint

 DROP CONSTRAINT constraint_name [CASCADE]

Description

ALTER TABLE changes the definition of an existing table. There are several subforms:

ADD column type

This form adds a new column to the table using the same syntax as CREATE

TABLE.

DROP COLUMN

This form drops a column from a table. Indexes and table constraints involving

the column will be automatically dropped as well.

ADD table_constraint

This form adds a new constraint to a table using the same syntax as CREATE

TABLE.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

53

DROP CONSTRAINT

This form drops constraints on a table. Currently, constraints on tables are not

required to have unique names, so there may be more than one constraint

matching the specified name. All matching constraints will be dropped.

RENAME

The RENAME forms change the name of a table (or an index, sequence, or view) or

the name of an individual column in a table. There is no effect on the stored data.

You must own the table to use ALTER TABLE.

Parameters

name

The name (possibly schema-qualified) of an existing table to alter.

column

Name of a new or existing column.

new_column

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column.

table_constraint

New table constraint for the table.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped constraint.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

54

Notes

When you invoke ADD COLUMN, all existing rows in the table are initialized with the

column’s default value (null if no DEFAULT clause is specified). Adding a column with a

non-null default will require the entire table to be rewritten. This may take a significant

amount of time for a large table; and it will temporarily require double the disk space.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that

existing rows meet the constraint.

The DROP COLUMN form does not physically remove the column, but simply makes it

invisible to SQL operations. Subsequent insert and update operations in the table will

store a null value for the column. Thus, dropping a column is quick but it will not

immediately reduce the on-disk size of your table, as the space occupied by the dropped

column is not reclaimed. The space will be reclaimed over time as existing rows are

updated.

Changing any part of a system catalog table is not permitted. Refer to CREATE TABLE

for a further description of valid parameters.

Examples

To add a column of type VARCHAR2 to a table:

ALTER TABLE emp ADD address VARCHAR2(30);

To drop a column from a table:

ALTER TABLE emp DROP COLUMN address;

To rename an existing column:

ALTER TABLE emp RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE emp RENAME TO employee;

To add a check constraint to a table:

ALTER TABLE emp ADD CONSTRAINT sal_chk CHECK (sal > 500);

To remove a check constraint from a table:

ALTER TABLE emp DROP CONSTRAINT sal_chk;

See Also

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

55

CREATE TABLE, DROP TABLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

56

2.3.11 ALTER TABLESPACE

Name

ALTER TABLESPACE -- change the definition of a tablespace

Synopsis

ALTER TABLESPACE name RENAME TO newname

Description

ALTER TABLESPACE changes the definition of a tablespace.

Parameters

name

The name of an existing tablespace.

newname

The new name of the tablespace. The new name cannot begin with pg_, as such

names are reserved for system tablespaces.

Examples

Rename tablespace empspace to employee_space:

ALTER TABLESPACE empspace RENAME TO employee_space;

See Also

DROP TABLESPACE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

57

2.3.12 ALTER USER… IDENTIFIED BY

Name

ALTER USER -- change a database user account

Synopsis

ALTER USER role_name IDENTIFIED BY password REPLACE prev_password

Description

A role without the CREATEROLE privilege may use this command to change their own

password. An unprivileged role must include the REPLACE clause and their previous

password if PASSWORD_VERIFY_FUNCTION is not NULL in their profile. When the

REPLACE clause is used by a non-superuser, the server will compare the password

provided to the existing password and raise an error if the passwords do not match.

A database superuser can use this command to change the password associated with any

role. If a superuser includes the REPLACE clause, the clause is ignored; a non-matching

value for the previous password will not throw an error.

If the role for which the password is being changed has the SUPERUSER attribute, then a

superuser must issue this command. A role with the CREATEROLE attribute can use this

command to change the password associated with a role that is not a superuser.

Parameters

role_name

The name of the role whose password is to be altered.

password

The role’s new password.

prev_password

The role’s previous password.

Examples

Change a user password:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

58

ALTER USER john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

See Also

CREATE USER, DROP USER

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

59

2.3.13 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES

Name

ALTER USER|ROLE

Synopsis

ALTER USER|ROLE name [[WITH] option[…]

where option can be the following compatible clauses:

 PROFILE profile_name

 | ACCOUNT {LOCK|UNLOCK}

 | PASSWORD EXPIRE [AT 'timestamp']

or option can be the following non-compatible clauses:

 | PASSWORD SET AT 'timestamp'

 | LOCK TIME 'timestamp'

 | STORE PRIOR PASSWORD {'password' 'timestamp} [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE

command that are supported by Advanced Server, please see the PostgreSQL core

documentation available at:

https://www.postgresql.org/docs/10/static/sql-commands.html

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile

management. The clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined

profile with a role, or to change which pre-defined profile is associated with a

user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the

user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the

role at the specified time, and unlock the role at the time indicated by the

PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK

TIME is used with the ACCOUNT LOCK clause, the role can only be unlocked by a

database superuser with the ACCOUNT UNLOCK clause.

https://www.postgresql.org/docs/10/static/sql-commands.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

60

Include the PASSWORD EXPIRE clause with the AT 'timestamp' keywords to

specify a date/time when the password associated with the role will expire. If you

omit the AT 'timestamp' keywords, the password will expire immediately.

Include the PASSWORD SET AT 'timestamp' keywords to set the password

modification date to the time specified.

Include the STORE PRIOR PASSWORD {'password' 'timestamp} [, ...]

clause to modify the password history, adding the new password and the time the

password was set.

Each login role may only have one profile. To discover the profile that is currently

associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role with which the specified profile will be associated.

password

The password associated with the role.

profile_name

The name of the profile that will be associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value

for timestamp, enclose the value in single-quotes.

Notes

For information about the Postgres-compatible clauses of the ALTER USER or ALTER

ROLE command, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/10/static/sql-alterrole.html

Examples

The following command uses the ALTER USER… PROFILE command to associate a

profile named acctg with a user named john:

ALTER USER john PROFILE acctg_profile;

https://www.postgresql.org/docs/10/static/sql-alterrole.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

61

The following command uses the ALTER ROLE… PROFILE command to associate a

profile named acctg with a user named john:

ALTER ROLE john PROFILE acctg_profile;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

62

2.3.14 CALL

Name

CALL

Synopsis

CALL procedure_name '('[argument_list]')'

Description

Use the CALL statement to invoke a procedure. To use the CALL statement, you must

have EXECUTE privileges on the procedure that the CALL statement is invoking.

Parameters

procedure_name

procedure_name is the (optionally schema-qualified) procedure name.

argument_list

argument_list specifies a comma-separated list of arguments required by the

procedure. Note that each member of argument_list corresponds to a formal

argument expected by the procedure. Each formal argument may be an IN

parameter, an OUT parameter, or an INOUT parameter.

Examples

The CALL statement may take one of several forms, depending on the arguments required

by the procedure:

CALL update_balance();

CALL update_balance(1,2,3);

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

63

2.3.15 COMMENT

Name

COMMENT -- define or change the comment of an object

Synopsis

COMMENT ON

{

 TABLE table_name |

 COLUMN table_name.column_name

} IS 'text'

Description

COMMENT stores a comment about a database object. To modify a comment, issue a new

COMMENT command for the same object. Only one comment string is stored for each

object. To remove a comment, specify the empty string (two consecutive single quotes

with no intervening space) for text. Comments are automatically dropped when the

object is dropped.

Parameters

table_name

The name of the table to be commented. The table name may be schema-

qualified.

table_name.column_name

The name of a column within table_name to be commented. The table name

may be schema-qualified.

text

The new comment.

Notes

There is presently no security mechanism for comments: any user connected to a

database can see all the comments for objects in that database (although only superusers

can change comments for objects that they don’t own). Do not put security-critical

information in comments.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

64

Examples

Attach a comment to the table emp:

COMMENT ON TABLE emp IS 'Current employee information';

Attach a comment to the empno column of the emp table:

COMMENT ON COLUMN emp.empno IS 'Employee identification number';

Remove these comments:

COMMENT ON TABLE emp IS '';

COMMENT ON COLUMN emp.empno IS '';

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

65

2.3.16 COMMIT

Name

COMMIT -- commit the current transaction

Synopsis

COMMIT [WORK]

Description

COMMIT commits the current transaction. All changes made by the transaction become

visible to others and are guaranteed to be durable if a crash occurs.

Parameters

WORK

Optional key word - has no effect.

Notes

Use ROLLBACK to abort a transaction. Issuing COMMIT when not inside a transaction

does no harm.

Examples

To commit the current transaction and make all changes permanent:

COMMIT;

See Also

ROLLBACK, ROLLBACK TO SAVEPOINT

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

66

2.3.17 CREATE DATABASE

Name

CREATE DATABASE -- create a new database

Synopsis

CREATE DATABASE name

Description

CREATE DATABASE creates a new database.

To create a database, you must be a superuser or have the special CREATEDB privilege.

Normally, the creator becomes the owner of the new database. Non-superusers with

CREATEDB privilege can only create databases owned by them.

The new database will be created by cloning the standard system database template1.

Parameters

name

The name of the database to be created.

Notes

CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to

insufficient permissions on the data directory, a full disk, or other file system problems.

Examples

To create a new database:

CREATE DATABASE employees;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

67

2.3.18 CREATE [PUBLIC] DATABASE LINK

Name

CREATE [PUBLIC] DATABASE LINK -- create a new database link.

Synopsis

CREATE [PUBLIC] DATABASE LINK name

 CONNECT TO { CURRENT_USER |

 username IDENTIFIED BY 'password'}

 USING { postgres_fdw 'fdw_connection_string' |

 [oci] 'oracle_connection_string' }

Description

CREATE DATABASE LINK creates a new database link. A database link is an object that

allows a reference to a table or view in a remote database within a DELETE, INSERT,

SELECT or UPDATE command. A database link is referenced by appending @dblink to

the table or view name referenced in the SQL command where dblink is the name of

the database link.

Database links can be public or private. A public database link is one that can be used by

any user. A private database link can be used only by the database link’s owner.

Specification of the PUBLIC option creates a public database link. If omitted, a private

database link is created.

When the CREATE DATABASE LINK command is given, the database link name and the

given connection attributes are stored in the Advanced Server system table named,

pg_catalog.edb_dblink. When using a given database link, the database containing

the edb_dblink entry defining this database link is called the local database. The server

and database whose connection attributes are defined within the edb_dblink entry is

called the remote database

A SQL command containing a reference to a database link must be issued while

connected to the local database. When the SQL command is executed, the appropriate

authentication and connection is made to the remote database to access the table or view

to which the @dblink reference is appended.

Note: A database link cannot be used to access a remote database within a standby

database server. Standby database servers are used for high availability, load balancing,

and replication.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

68

For information about high availability, load balancing, and replication for Postgres

database servers, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/10/static/high-availability.html

Note: For Advanced Server 10, the CREATE DATABASE LINK command is tested against

and certified for use with Oracle version 10g Release 2 (10.2), Oracle version 11g

Release 2 (11.2), and Oracle version 12c Release 1 (12.1).

Parameters

PUBLIC

Create a public database link that can be used by any user. If omitted, then the

database link is private and can only be used by the database link’s owner.

name

The name of the database link.

username

The username to be used for connecting to the remote database.

CURRENT_USER

Include CURRENT_USER to specify that Advanced Server should use the user

mapping associated with the role that is using the link when establishing a

connection to the remote server.

password

The password for username.

postgres_fdw

Specifies foreign data wrapper postgres_fdw as the connection to a remote

Advanced Server database. If postgres_fdw has not been installed on the

database, use the CREATE EXTENSION command to install postgres_fdw. For

more information, please see the CREATE EXTENSION command in the

PostgreSQL Core documentation at:

https://www.postgresql.org/docs/10/static/sql-createextension.html

fdw_connection_string

https://www.postgresql.org/docs/10/static/high-availability.html
https://www.postgresql.org/docs/10/static/sql-createextension.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

69

Specify the connection information for the postgres_fdw foreign data wrapper.

oci

Specifies a connection to a remote Oracle database. This is Advanced Server’s

default behavior.

oracle_connection_string

Specify the connection information for an oci connection.

Notes

To create a non-public database link you must have the CREATE DATABASE LINK

privilege. To create a public database link you must have the CREATE PUBLIC

DATABASE LINK privilege.

Setting up an Oracle Instant Client for oci-dblink

In order to use oci-dblink, an Oracle instant client must be downloaded and installed on

the host running the Advanced Server database in which the database link is to be

created.

An instant client can be downloaded from the following site:

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

Oracle Instant Client for Linux

The following instructions apply to Linux hosts running Advanced Server.

Be sure the libaio library (the Linux-native asynchronous I/O facility) has already been

installed on the Linux host running Advanced Server.

The libaio library can be installed with the following command:

yum install libaio

If the Oracle instant client that you've downloaded does not include the file specifically

named libclntsh.so without a version number suffix, you must create a symbolic link

named libclntsh.so that points to the downloaded version of the library file. Navigate

to the instant client directory and execute the following command:

ln -s libclntsh.so.version libclntsh.so

Where version is the version number of the libclntsh.so library. For example:

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

70

ln -s libclntsh.so.12.1 libclntsh.so

When you are executing a SQL command that references a database link to a remote

Oracle database, Advanced Server must know where the Oracle instant client library

resides on the Advanced Server host.

The LD_LIBRARY_PATH environment variable must include the path to the Oracle client

installation directory containing the libclntsh.so file. For example, assuming the

installation directory containing libclntsh.so is /tmp/instantclient:

export LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH

Note: This LD_LIBRARY_PATH environment variable setting must be in effect when the

pg_ctl utility is executed to start or restart Advanced Server.

If you are running the current session as the user account (for example, enterprisedb)

that will directly invoke pg_ctl to start or restart Advanced Server, then be sure to set

LD_LIBRARY_PATH before invoking pg_ctl.

You can set LD_LIBRARY_PATH within the .bash_profile file under the home

directory of the enterprisedb user account (that is, set LD_LIBRARY_PATH within file

~enterprisedb/.bash_profile). In this manner, LD_LIBRARY_PATH will be set

when you log in as enterprisedb.

If however, you are using a Linux service script with the systemctl or service

command to start or restart Advanced Server, LD_LIBRARY_PATH must be set within the

service script so it is in effect when the script invokes the pg_ctl utility.

The particular script file that needs to be modified to include the LD_LIBRARY_PATH

setting depends upon the Advanced Server version, the Linux system on which it was

installed, and whether it was installed with the graphical installer or an RPM package.

See the appropriate version of the EDB Postgres Advanced Server Installation Guide to

determine the service script that affects the startup environment. The installation guides

can be found at the following location:

https://www.enterprisedb.com/resources/product-documentation

Oracle Instant Client for Windows

The following instructions apply to Windows hosts running Advanced Server.

When you are executing a SQL command that references a database link to a remote

Oracle database, Advanced Server must know where the Oracle instant client library

resides on the Advanced Server host.

https://www.enterprisedb.com/resources/product-documentation

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

71

Set the Windows PATH system environment variable to include the Oracle client

installation directory that contains the oci.dll file.

As an alternative you, can set the value of the oracle_home configuration parameter in

the postgresql.conf file. The value specified in the oracle_home configuration

parameter will override the Windows PATH environment variable.

To set the oracle_home configuration parameter in the postgresql.conf file, edit the

file, adding the following line:

oracle_home = 'lib_directory '

Substitute the name of the Windows directory that contains oci.dll for

lib_directory. For example:

oracle_home = 'C:/tmp/instantclient_10_2'

After setting the PATH environment variable or the oracle_home configuration

parameter, you must restart the server for the changes to take effect. Restart the server

from the Windows Services console.

Examples

Creating an oci-dblink Database Link

The following example demonstrates using the CREATE DATABASE LINK command to

create a database link (named chicago) that connects an instance of Advanced Server to

an Oracle server via an oci-dblink connection. The connection information tells

Advanced Server to log in to Oracle as user admin, whose password is mypassword.

Including the oci option tells Advanced Server that this is an oci-dblink connection; the

connection string, '//127.0.0.1/acctg' specifies the server address and name of the

database.

CREATE DATABASE LINK chicago

 CONNECT TO admin IDENTIFIED BY 'mypassword'

 USING oci '//127.0.0.1/acctg';

Note: You can specify a hostname in the connection string (in place of an IP address).

Creating a postgres_fdw Database Link

The following example demonstrates using the CREATE DATABASE LINK command to

create a database link (named bedford) that connects an instance of Advanced Server to

another Advanced Server instance via a postgres_fdw foreign data wrapper

connection. The connection information tells Advanced Server to log in as user admin,

whose password is mypassword. Including the postgres_fdw option tells Advanced

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

72

Server that this is a postgres_fdw connection; the connection string, 'host=127.0.0.1

port=5444 dbname=marketing' specifies the server address and name of the

database.

CREATE DATABASE LINK bedford

 CONNECT TO admin IDENTIFIED BY 'mypassword'

 USING postgres_fdw 'host=127.0.0.1 port=5444 dbname=marketing';

Note: You can specify a hostname in the connection string (in place of an IP address).

Using a Database Link

The following examples demonstrate using a database link with Advanced Server to

connect to an Oracle database. The examples assume that a copy of the Advanced Server

sample application’s emp table has been created in an Oracle database and a second

Advanced Server database cluster with the sample application is accepting connections at

port 5443.

Create a public database link named, oralink, to an Oracle database named, xe, located

at 127.0.0.1 on port 1521. Connect to the Oracle database with username, edb, and

password, password.

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'

USING '//127.0.0.1:1521/xe';

Issue a SELECT command on the emp table in the Oracle database using database link,

oralink.

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno

-------+--------+-----------+------+--------------------+------+------+--------

 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20

 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30

 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30

 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20

 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30

 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30

 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10

 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20

 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10

 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30

 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20

 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30

 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20

 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10

(14 rows)

Create a private database link named, fdwlink, to the Advanced Server database named,

edb, located on host 192.168.2.22 running on port 5444. Connect to the Advanced

Server database with username, enterprisedb, and password, password.

CREATE DATABASE LINK fdwlink CONNECT TO enterprisedb IDENTIFIED BY 'password'

USING postgres_fdw 'host=192.168.2.22 port=5444 dbname=edb';

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

73

Display attributes of database links, oralink and fdwlink, from the local

edb_dblink system table:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr

---------+--------------+--

 oralink | edb | //127.0.0.1:1521/xe

 fdwlink | enterprisedb |

(2 rows)

Perform a join of the emp table from the Oracle database with the dept table from the

Advanced Server database:

SELECT d.deptno, d.dname, e.empno, e.ename, e.job, e.sal, e.comm FROM

emp@oralink e, dept@fdwlink d WHERE e.deptno = d.deptno ORDER BY 1, 3;

 deptno | dname | empno | ename | job | sal | comm

--------+------------+-------+--------+-----------+------+------

 10 | ACCOUNTING | 7782 | CLARK | MANAGER | 2450 |

 10 | ACCOUNTING | 7839 | KING | PRESIDENT | 5000 |

 10 | ACCOUNTING | 7934 | MILLER | CLERK | 1300 |

 20 | RESEARCH | 7369 | SMITH | CLERK | 800 |

 20 | RESEARCH | 7566 | JONES | MANAGER | 2975 |

 20 | RESEARCH | 7788 | SCOTT | ANALYST | 3000 |

 20 | RESEARCH | 7876 | ADAMS | CLERK | 1100 |

 20 | RESEARCH | 7902 | FORD | ANALYST | 3000 |

 30 | SALES | 7499 | ALLEN | SALESMAN | 1600 | 300

 30 | SALES | 7521 | WARD | SALESMAN | 1250 | 500

 30 | SALES | 7654 | MARTIN | SALESMAN | 1250 | 1400

 30 | SALES | 7698 | BLAKE | MANAGER | 2850 |

 30 | SALES | 7844 | TURNER | SALESMAN | 1500 | 0

 30 | SALES | 7900 | JAMES | CLERK | 950 |

(14 rows)

Pushdown for an oci Database Link

When the oci-dblink is used to execute SQL statements on a remote Oracle database,

there are certain circumstances where pushdown of the processing occurs on the foreign

server.

Pushdown refers to the occurrence of processing on the foreign (that is, the remote)

server instead of the local client where the SQL statement was issued. Pushdown can

result in performance improvement since the data is processed on the remote server

before being returned to the local client.

Pushdown applies to statements with the standard SQL join operations (inner join, left

outer join, right outer join, and full outer join). Pushdown still occurs even when a sort is

specified on the resulting data set.

In order for pushdown to occur, certain basic conditions must be met. The tables involved

in the join operation must belong to the same foreign server and use the identical

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

74

connection information to the foreign server (that is, the same database link defined with

the CREATE DATABASE LINK command).

In order to determine if pushdown is to be used for a SQL statement, display the

execution plan by using the EXPLAIN command.

For information about the EXPLAIN command, please see the PostgreSQL Core

documentation at:

https://www.postgresql.org/docs/10/static/sql-explain.html

The following examples use the database link created as shown by the following:

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'

USING '//192.168.2.23:1521/xe';

The following example shows the execution plan of an inner join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM

dept@oralink d, emp@oralink e WHERE d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN

--

 Foreign Scan

 Output: d.deptno, d.dname, e.empno, e.ename

 Relations: (_dblink_dept_1 d) INNER JOIN (_dblink_emp_2 e)

 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 INNER

JOIN emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.empno

ASC NULLS LAST

(4 rows)

Note that the INNER JOIN operation occurs under the Foreign Scan section. The output

of this join is the following:

 deptno | dname | empno | ename

--------+------------+-------+--------

 10 | ACCOUNTING | 7782 | CLARK

 10 | ACCOUNTING | 7839 | KING

 10 | ACCOUNTING | 7934 | MILLER

 20 | RESEARCH | 7369 | SMITH

 20 | RESEARCH | 7566 | JONES

 20 | RESEARCH | 7788 | SCOTT

 20 | RESEARCH | 7876 | ADAMS

 20 | RESEARCH | 7902 | FORD

 30 | SALES | 7499 | ALLEN

 30 | SALES | 7521 | WARD

 30 | SALES | 7654 | MARTIN

 30 | SALES | 7698 | BLAKE

 30 | SALES | 7844 | TURNER

 30 | SALES | 7900 | JAMES

(14 rows)

The following shows the execution plan of a left outer join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM

dept@oralink d LEFT OUTER JOIN emp@oralink e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN

https://www.postgresql.org/docs/10/static/sql-explain.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

75

--

 Foreign Scan

 Output: d.deptno, d.dname, e.empno, e.ename

 Relations: (_dblink_dept_1 d) LEFT JOIN (_dblink_emp_2 e)

 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 LEFT JOIN

emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.empno ASC

NULLS LAST

(4 rows)

The output of this join is the following:

 deptno | dname | empno | ename

--------+------------+-------+--------

 10 | ACCOUNTING | 7782 | CLARK

 10 | ACCOUNTING | 7839 | KING

 10 | ACCOUNTING | 7934 | MILLER

 20 | RESEARCH | 7369 | SMITH

 20 | RESEARCH | 7566 | JONES

 20 | RESEARCH | 7788 | SCOTT

 20 | RESEARCH | 7876 | ADAMS

 20 | RESEARCH | 7902 | FORD

 30 | SALES | 7499 | ALLEN

 30 | SALES | 7521 | WARD

 30 | SALES | 7654 | MARTIN

 30 | SALES | 7698 | BLAKE

 30 | SALES | 7844 | TURNER

 30 | SALES | 7900 | JAMES

 40 | OPERATIONS | |

(15 rows)

The following example shows a case where the entire processing is not pushed down

because the emp joined table resides locally instead of on the same foreign server.

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM

dept@oralink d LEFT OUTER JOIN emp e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN

--

 Sort

 Output: d.deptno, d.dname, e.empno, e.ename

 Sort Key: d.deptno, e.empno

 -> Hash Left Join

 Output: d.deptno, d.dname, e.empno, e.ename

 Hash Cond: (d.deptno = e.deptno)

 -> Foreign Scan on _dblink_dept_1 d

 Output: d.deptno, d.dname, d.loc

 Remote Query: SELECT deptno, dname, NULL FROM dept

 -> Hash

 Output: e.empno, e.ename, e.deptno

 -> Seq Scan on public.emp e

 Output: e.empno, e.ename, e.deptno

(13 rows)

The output of this join is the same as the previous left outer join example.

Creating a Foreign Table from a Database Link

Note: The procedure described in this section is not compatible with Oracle databases.

After you have created a database link, you can create a foreign table based upon this

database link. The foreign table can then be used to access the remote table referencing it

with the foreign table name instead of using the database link syntax. Using the database

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

76

link requires appending @dblink to the table or view name referenced in the SQL

command where dblink is the name of the database link.

This technique can be used for either an oci-dblink connection for remote Oracle access,

or a postgres_fdw connection for remote Postgres access.

The following example shows the creation of a foreign table to access a remote Oracle

table.

First, create a database link as previously described. The following is the creation of a

database link named oralink for connecting to the Oracle database.

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'

USING '//127.0.0.1:1521/xe';

The following query shows the database link:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr

---------+---------+---------------------

 oralink | edb | //127.0.0.1:1521/xe

(1 row)

When you create the database link, Advanced Server creates a corresponding foreign

server. The following query displays the foreign server:

SELECT srvname, srvowner, srvfdw, srvtype, srvoptions FROM pg_foreign_server;

 srvname | srvowner | srvfdw | srvtype | srvoptions

---------+----------+--------+---------+-------------------------------

 oralink | 10 | 14005 | | {connstr=//127.0.0.1:1521/xe}

(1 row)

For more information about foreign servers, please see the CREATE SERVER command in

the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/10/static/sql-createserver.html

Create the foreign table as shown by the following:

CREATE FOREIGN TABLE emp_ora (

 empno NUMERIC(4),

 ename VARCHAR(10),

 job VARCHAR(9),

 mgr NUMERIC(4),

 hiredate TIMESTAMP WITHOUT TIME ZONE,

 sal NUMERIC(7,2),

 comm NUMERIC(7,2),

 deptno NUMERIC(2)

)

 SERVER oralink

 OPTIONS (table_name 'emp', schema_name 'edb'

https://www.postgresql.org/docs/10/static/sql-createserver.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

77

);

Note the following in the CREATE FOREIGN TABLE command:

 The name specified in the SERVER clause at the end of the CREATE FOREIGN

TABLE command is the name of the foreign server, which is oralink in this

example as displayed in the srvname column from the query on

pg_foreign_server.

 The table name and schema name are specified in the OPTIONS clause by the

table and schema options.

 The column names specified in the CREATE FOREIGN TABLE command must

match the column names in the remote table.

 Generally, CONSTRAINT clauses may not be accepted or enforced on the foreign

table as they are assumed to have been defined on the remote table.

For more information about the CREATE FOREIGN TABLE command, please see the

PostgreSQL Core documentation at:

https://www.postgresql.org/docs/10/static/sql-createforeigntable.html

The following is a query on the foreign table:

SELECT * FROM emp_ora;

 empno | ename | job | mgr | hiredate | sal | comm | deptno

-------+--------+-----------+------+--------------------+---------+---------+--------

 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20

 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30

 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30

 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20

 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30

 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30

 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10

 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20

 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10

 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30

 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20

 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30

 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20

 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10

(14 rows)

In contrast, the following is a query on the same remote table, but using the database link

instead of the foreign table:

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno

-------+--------+-----------+------+--------------------+------+------+--------

 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20

 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30

 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30

 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20

 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30

 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30

 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10

https://www.postgresql.org/docs/10/static/sql-createforeigntable.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

78

 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20

 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10

 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30

 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20

 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30

 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20

 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10

(14 rows)

Note: For backward compatibility reasons, it is still possible to write USING libpq

rather than USING postgres_fdw. However, the libpq connector is missing many

important optimizations which are present in the postgres_fdw connector. Therefore,

the postgres_fdw connector should be used whenever possible. The libpq option is

deprecated and may be removed entirely in a future Advanced Server release.

See Also

DROP DATABASE LINK

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

79

2.3.19 CREATE DIRECTORY

Name

CREATE DIRECTORY -- create an alias for a file system directory path

Synopsis

CREATE DIRECTORY name AS 'pathname'

Description

The CREATE DIRECTORY command creates an alias for a file system directory

pathname. You must be a database superuser to use this command.

When the alias is specified as the appropriate parameter to the programs of the

UTL_FILE package, the operating system files are created in, or accessed from the

directory corresponding to the given alias.

Parameters

name

The directory alias name.

pathname

The fully-qualified directory path represented by the alias name. The CREATE

DIRECTORY command does not create the operating system directory. The

physical directory must be created independently using the appropriate operating

system commands.

Notes

The operating system user id, enterprisedb, must have the appropriate read and/or

write privileges on the directory if the UTL_FILE package is to be used to create and/or

read files using the directory.

The directory alias is stored in the pg_catalog.edb_dir system catalog table. Note

that edb_dir is not a table compatible with Oracle databases.

The directory alias can also be viewed from the Oracle catalog views

SYS.ALL_DIRECTORIES and SYS.DBA_DIRECTORIES, which are compatible with

Oracle databases.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

80

Use the DROP DIRECTORY command to delete the directory alias. When a directory alias

is deleted, the corresponding physical file system directory is not affected. The file

system directory must be deleted using the appropriate operating system commands.

In a Linux system, the directory name separator is a forward slash (/).

In a Windows system, the directory name separator can be specified as a forward slash

(/) or two consecutive backslashes (\\).

Examples

Create an alias named empdir for directory /tmp/empdir on Linux:

CREATE DIRECTORY empdir AS '/tmp/empdir';

Create an alias named empdir for directory C:\TEMP\EMPDIR on Windows:

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

View all of the directory aliases:

SELECT * FROM pg_catalog.edb_dir;

dirname | dirowner | dirpath | diracl

---------+----------+----------------+--------

 empdir | 10 | C:/TEMP/EMPDIR |

(1 row)

View the directory aliases using a view compatible with Oracle databases:

SELECT * FROM SYS.ALL_DIRECTORIES;

 owner | directory_name | directory_path

--------------+----------------+----------------

 ENTERPRISEDB | EMPDIR | C:/TEMP/EMPDIR

(1 row)

See Also

DROP DIRECTORY

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

81

2.3.20 CREATE FUNCTION

Name

CREATE FUNCTION -- define a new function

Synopsis

CREATE [OR REPLACE] FUNCTION name [(parameters)]

 RETURN data_type

 [

 IMMUTABLE

 | STABLE

 | VOLATILE

 | DETERMINISTIC

 | [NOT] LEAKPROOF

 | CALLED ON NULL INPUT

 | RETURNS NULL ON NULL INPUT

 | STRICT

 | [EXTERNAL] SECURITY INVOKER

 | [EXTERNAL] SECURITY DEFINER

 | AUTHID DEFINER

 | AUTHID CURRENT_USER

 | PARALLEL { UNSAFE | RESTRICTED | SAFE }

 | COST execution_cost

 | ROWS result_rows

 | SET configuration_parameter

 { TO value | = value | FROM CURRENT }

 ...]

{ IS | AS }

 [declarations]

 BEGIN

 statements

 END [name];

Description

CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will

either create a new function, or replace an existing definition.

If a schema name is included, then the function is created in the specified schema.

Otherwise it is created in the current schema. The name of the new function must not

match any existing function with the same argument types in the same schema. However,

functions of different input argument types may share a name (this is called overloading).

(Overloading of functions is an Advanced Server feature - overloading of stored

functions is not compatible with Oracle databases.)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

82

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION.

It is not possible to change the name or argument types of a function this way (if you

tried, you would actually be creating a new, distinct function). Also, CREATE OR

REPLACE FUNCTION will not let you change the return type of an existing function. To

do that, you must drop and recreate the function.

The user that creates the function becomes the owner of the function.

Parameters

name

name is the identifier of the function. If you specify the [OR REPLACE] clause

and a function with the same name already exists in the schema, the new function

will replace the existing one. If you do not specify [OR REPLACE], the new

function will not replace the existing function with the same name in the same

schema.

parameters

parameters is a list of formal parameters.

data_type

data_type is the data type of the value returned by the function’s RETURN

statement.

declarations

declarations are variable, cursor, type, or subprogram declarations. If

subprogram declarations are included, they must be declared after all other

variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain

an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function;

you can specify only one choice. VOLATILE is the default behavior.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

83

IMMUTABLE indicates that the function cannot modify the database and always

reaches the same result when given the same argument values; it does not do

database lookups or otherwise use information not directly present in its argument

list. If you include this clause, any call of the function with all-constant

arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a

single table scan, it will consistently return the same result for the same argument

values, but that its result could change across SQL statements. This is the

appropriate selection for function that depend on database lookups, parameter

variables (such as the current time zone), etc.

VOLATILE indicates that the function value can change even within a single table

scan, so no optimizations can be made. Please note that any function that has

side-effects must be classified volatile, even if its result is quite predictable, to

prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC function

cannot modify the database and always reaches the same result when given the

same argument values; it does not do database lookups or otherwise use

information not directly present in its argument list. If you include this clause,

any call of the function with all-constant arguments can be immediately replaced

with the function value.

 [NOT] LEAKPROOF

A LEAKPROOK function has no side effects, and reveals no information about the

values used to call the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called

normally when some of its arguments are NULL. It is the author's responsibility to

check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always

returns NULL whenever any of its arguments are NULL. If these clauses are

specified, the procedure is not executed when there are NULL arguments; instead a

NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

84

SECURITY DEFINER specifies that the function will execute with the privileges of

the user that created it; this is the default. The key word EXTERNAL is allowed for

SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the function will execute with the

privileges of the user that calls it. The key word EXTERNAL is allowed for SQL

conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY

DEFINER. If the AUTHID clause is omitted or if AUTHID DEFINER is specified,

the rights of the function owner are used to determine access privileges to

database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY

INVOKER. If AUTHID CURRENT_USER is specified, the rights of the current user

executing the function are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode).

A parallel sequential scan uses multiple workers to scan a relation in parallel

during a query in contrast to a serial sequential scan.

When set to UNSAFE, the function cannot be executed in parallel mode. The

presence of such a function in a SQL statement forces a serial execution plan.

This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED, the function can be executed in parallel mode, but the

execution is restricted to the parallel group leader. If the qualification for any

particular relation has anything that is parallel restricted, that relation won't be

chosen for parallelism.

When set to SAFE, the function can be executed in parallel mode with no

restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for

the function, in units of cpu_operator_cost. If the function returns a set, this

is the cost per returned row. Larger values cause the planner to try to avoid

evaluating the function more often than necessary.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

85

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the

planner should expect the function to return. This is only allowed when the

function is declared to return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the

specified value when the function is entered, and then restored to its prior value

when the function exits. SET FROM CURRENT saves the session's current value of

the parameter as the value to be applied when the function is entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL

command executed inside the function for the same variable are restricted to the

function; the configuration parameter's prior value is restored at function exit. An

ordinary SET command (without LOCAL) overrides the SET clause, much as it

would do for a previous SET LOCAL command, with the effects of such a

command persisting after procedure exit, unless the current transaction is rolled

back.

Please Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords

provide extended functionality for Advanced Server and are not supported by Oracle.

Notes

Advanced Server allows function overloading; that is, the same name can be used for

several different functions so long as they have distinct input (IN, IN OUT) argument

data types.

Examples

The function emp_comp takes two numbers as input and returns a computed value. The

SELECT command illustrates use of the function.

CREATE OR REPLACE FUNCTION emp_comp (

 p_sal NUMBER,

 p_comm NUMBER

) RETURN NUMBER

IS

BEGIN

 RETURN (p_sal + NVL(p_comm, 0)) * 24;

END;

SELECT ename "Name", sal "Salary", comm "Commission", emp_comp(sal, comm)

 "Total Compensation" FROM emp;

 Name | Salary | Commission | Total Compensation

--------+---------+------------+--------------------

 SMITH | 800.00 | | 19200.00

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

86

 ALLEN | 1600.00 | 300.00 | 45600.00

 WARD | 1250.00 | 500.00 | 42000.00

 JONES | 2975.00 | | 71400.00

 MARTIN | 1250.00 | 1400.00 | 63600.00

 BLAKE | 2850.00 | | 68400.00

 CLARK | 2450.00 | | 58800.00

 SCOTT | 3000.00 | | 72000.00

 KING | 5000.00 | | 120000.00

 TURNER | 1500.00 | 0.00 | 36000.00

 ADAMS | 1100.00 | | 26400.00

 JAMES | 950.00 | | 22800.00

 FORD | 3000.00 | | 72000.00

 MILLER | 1300.00 | | 31200.00

(14 rows)

Function sal_range returns a count of the number of employees whose salary falls in

the specified range. The following anonymous block calls the function a number of times

using the arguments’ default values for the first two calls.

CREATE OR REPLACE FUNCTION sal_range (

 p_sal_min NUMBER DEFAULT 0,

 p_sal_max NUMBER DEFAULT 10000

) RETURN INTEGER

IS

 v_count INTEGER;

BEGIN

 SELECT COUNT(*) INTO v_count FROM emp

 WHERE sal BETWEEN p_sal_min AND p_sal_max;

 RETURN v_count;

END;

BEGIN

 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary: ' ||

 sal_range);

 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary of at least '

 || '$2000.00: ' || sal_range(2000.00));

 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary between '

 || '$2000.00 and $3000.00: ' || sal_range(2000.00, 3000.00));

END;

Number of employees with a salary: 14

Number of employees with a salary of at least $2000.00: 6

Number of employees with a salary between $2000.00 and $3000.00: 5

The following example demonstrates using the AUTHID CURRENT_USER clause and

STRICT keyword in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER

 STRICT

 AUTHID CURRENT_USER

BEGIN

 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);

END;

Include the STRICT keyword to instruct the server to return NULL if any input parameter

passed is NULL; if a NULL value is passed, the function will not execute.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

87

The dept_salaries function executes with the privileges of the role that is calling the

function. If the current user does not have sufficient privileges to perform the SELECT

statement querying the emp table (to display employee salaries), the function will report

an error. To instruct the server to use the privileges associated with the role that defined

the function, replace the AUTHID CURRENT_USER clause with the AUTHID DEFINER

clause.

Pragmas

PRAGMA RESTRICT_REFERENCE

Advanced Server accepts but ignores syntax referencing PRAGMA

RESTRICT_REFERENCE.

See Also DROP FUNCTION

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

88

2.3.21 CREATE INDEX

Name

CREATE INDEX -- define a new index

Synopsis

CREATE [UNIQUE] INDEX name ON table

 ({ column | (expression) })

 [TABLESPACE tablespace]

Description

CREATE INDEX constructs an index, name, on the specified table. Indexes are primarily

used to enhance database performance (though inappropriate use will result in slower

performance).

Note: An index cannot be created on a partitioned table.

The key field(s) for the index are specified as column names, or alternatively as

expressions written in parentheses. Multiple fields can be specified to create multicolumn

indexes.

An index field can be an expression computed from the values of one or more columns of

the table row. This feature can be used to obtain fast access to data based on some

transformation of the basic data. For example, an index computed on UPPER(col)

would allow the clause WHERE UPPER(col) = 'JIM' to use an index.

Advanced Server provides the B-tree index method. The B-tree index method is an

implementation of Lehman-Yao high-concurrency B-trees.

Indexes are not used for IS NULL clauses by default.

All functions and operators used in an index definition must be "immutable", that is, their

results must depend only on their arguments and never on any outside influence (such as

the contents of another table or the current time). This restriction ensures that the

behavior of the index is well-defined. To use a user-defined function in an index

expression remember to mark the function immutable when you create it.

Parameters

UNIQUE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

89

Causes the system to check for duplicate values in the table when the index is

created (if data already exist) and each time data is added. Attempts to insert or

update data which would result in duplicate entries will generate an error.

name

The name of the index to be created. No schema name can be included here; the

index is always created in the same schema as its parent table.

table

The name (possibly schema-qualified) of the table to be indexed.

column

The name of a column in the table.

expression

An expression based on one or more columns of the table. The expression usually

must be written with surrounding parentheses, as shown in the syntax. However,

the parentheses may be omitted if the expression has the form of a function call.

tablespace

The tablespace in which to create the index. If not specified,

default_tablespace is used, or the database’s default tablespace if

default_tablespace is an empty string.

Notes

Up to 32 fields may be specified in a multicolumn index.

Examples

To create a B-tree index on the column, ename, in the table, emp:

CREATE INDEX name_idx ON emp (ename);

To create the same index as above, but have it reside in the index_tblspc tablespace:

CREATE INDEX name_idx ON emp (ename) TABLESPACE index_tblspc;

See Also

DROP INDEX, ALTER INDEX

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

90

2.3.22 CREATE MATERIALIZED VIEW

Name

CREATE MATERIALIZED VIEW -- define a new materialized view

Synopsis

CREATE MATERIALIZED VIEW name

 [build_clause][create_mv_refresh] AS subquery

Where build_clause is:

BUILD {IMMEDIATE | DEFERRED}

Where create_mv_refresh is:

REFRESH [COMPLETE] [ON DEMAND]

Description

CREATE MATERIALIZED VIEW defines a view of a query that is not updated each time

the view is referenced in a query. By default, the view is populated when the view is

created; you can include the BUILD DEFERRED keywords to delay the population of the

view.

A materialized view may be schema-qualified; if you specify a schema name when

invoking the CREATE MATERIALIZED VIEW command, the view will be created in the

specified schema. The view name must be distinct from the name of any other view,

table, sequence, or index in the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to be created.

subquery

A SELECT statement that specifies the contents of the view. Refer to SELECT for

more information about valid queries.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

91

build_clause

Include a build_clause to specify when the view should be populated. Specify

BUILD IMMEDIATE, or BUILD DEFERRED:

 BUILD IMMEDIATE instructs the server to populate the view immediately.

This is the default behavior.

 BUILD DEFERRED instructs the server to populate the view at a later time

(during a REFRESH operation).

create_mv_refresh

Include the create_mv_refresh clause to specify when the contents of a

materialized view should be updated. The clause contains the REFRESH keyword

followed by COMPLETE and/or ON DEMAND, where:

 COMPLETE instructs the server to discard the current content and reload

the materialized view by executing the view's defining query when the

materialized view is refreshed.

 ON DEMAND instructs the server to refresh the materialized view on

demand by calling the DBMS_MVIEW package or by calling the Postgres

REFRESH MATERIALIZED VIEW statement. This is the default behavior.

Notes

Materialized views are read only - the server will not allow an INSERT, UPDATE, or

DELETE on a view.

Access to tables referenced in the view is determined by permissions of the view owner;

the user of a view must have permissions to call all functions used by the view.

For more information about the Postgres REFRESH MATERIALIZED VIEW command,

please see the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/10/static/sql-refreshmaterializedview.html

Examples

The following statement creates a materialized view named dept_30:

CREATE MATERIALIZED VIEW dept_30 BUILD IMMEDIATE AS SELECT * FROM emp WHERE

deptno = 30;

https://www.postgresql.org/docs/10/static/sql-refreshmaterializedview.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

92

The view contains information retrieved from the emp table about any employee that

works in department 30.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

93

2.3.23 CREATE PACKAGE

Name

CREATE PACKAGE -- define a new package specification

Synopsis

CREATE [OR REPLACE] PACKAGE name

[AUTHID { DEFINER | CURRENT_USER }]

{ IS | AS }

 [declaration;] [, ...]

 [{ PROCEDURE proc_name

 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]

 [, ...])];

 [PRAGMA RESTRICT_REFERENCES(name,

 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]

 |

 FUNCTION func_name

 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]

 [, ...])]

 RETURN rettype [DETERMINISTIC];

 [PRAGMA RESTRICT_REFERENCES(name,

 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]

 }

] [, ...]

 END [name]

Description

CREATE PACKAGE defines a new package specification. CREATE OR REPLACE

PACKAGE will either create a new package specification, or replace an existing

specification.

If a schema name is included, then the package is created in the specified schema.

Otherwise it is created in the current schema. The name of the new package must not

match any existing package in the same schema unless the intent is to update the

definition of an existing package, in which case use CREATE OR REPLACE PACKAGE.

The user that creates the procedure becomes the owner of the package.

Parameters

name

The name (optionally schema-qualified) of the package to create.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

94

DEFINER | CURRENT_USER

Specifies whether the privileges of the package owner (DEFINER) or the

privileges of the current user executing a program in the package

(CURRENT_USER) are to be used to determine whether or not access is allowed to

database objects referenced in the package. DEFINER is the default.

declaration

A public variable, type, cursor, or REF CURSOR declaration.

proc_name

The name of a public procedure.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

func_name

The name of a public function.

rettype

The return data type.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC

procedure cannot modify the database and always reaches the same result when

given the same argument values; it does not do database lookups or otherwise use

information not directly present in its argument list. If you include this clause,

any call of the procedure with all-constant arguments can be immediately

replaced with the procedure value.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

95

RNDS | RNPS | TRUST | WNDS | WNPS

The keywords are accepted for compatibility and ignored.

Examples

The package specification, empinfo, contains three public components - a public

variable, a public procedure, and a public function.

CREATE OR REPLACE PACKAGE empinfo

IS

 emp_name VARCHAR2(10);

 PROCEDURE get_name (

 p_empno NUMBER

);

 FUNCTION display_counter

 RETURN INTEGER;

END;

See Also

DROP PACKAGE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

96

2.3.24 CREATE PACKAGE BODY

Name

CREATE BODY PACKAGE -- define a new package body

Synopsis

CREATE [OR REPLACE] PACKAGE BODY name

{ IS | AS }

 [declaration;] [, ...]

 [{ PROCEDURE proc_name

 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]

 [, ...])]

 [STRICT]

 [LEAKPROOF]

 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]

 [COST execution_cost]

 [ROWS result_rows]

 [SET config_param { TO value | = value | FROM CURRENT }]

 { IS | AS }

 program_body

 END [proc_name];

 |

 FUNCTION func_name

 [(argname [IN | IN OUT | OUT] argtype [DEFAULT value]

 [, ...])]

 RETURN rettype [DETERMINISTIC]

 [STRICT]

 [LEAKPROOF]

 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]

 [COST execution_cost]

 [ROWS result_rows]

 [SET config_param { TO value | = value | FROM CURRENT }]

 { IS | AS }

 program_body

 END [func_name];

 }

] [, ...]

 [BEGIN

 statement; [, ...]]

 END [name]

Description

CREATE PACKAGE BODY defines a new package body. CREATE OR REPLACE

PACKAGE BODY will either create a new package body, or replace an existing body.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

97

If a schema name is included, then the package body is created in the specified schema.

Otherwise it is created in the current schema. The name of the new package body must

match an existing package specification in the same schema. The new package body

name must not match any existing package body in the same schema unless the intent is

to update the definition of an existing package body, in which case use CREATE OR

REPLACE PACKAGE BODY.

Parameters

name

The name (optionally schema-qualified) of the package body to create.

declaration

A private variable, type, cursor, or REF CURSOR declaration.

proc_name

The name of a public or private procedure. If proc_name exists in the package

specification with an identical signature, then it is public, otherwise it is private.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

STRICT

The STRICT keyword specifies that the function will not be executed if called

with a NULL argument; instead the function will return NULL.

LEAKPROOF

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

98

The LEAKPROOF keyword specifies that the function will not reveal any

information about arguments, other than through a return value.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode).

A parallel sequential scan uses multiple workers to scan a relation in parallel

during a query in contrast to a serial sequential scan.

When set to UNSAFE, the procedure or function cannot be executed in parallel

mode. The presence of such a procedure or function forces a serial execution plan.

This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED, the procedure or function can be executed in parallel

mode, but the execution is restricted to the parallel group leader. If the

qualification for any particular relation has anything that is parallel restricted, that

relation won't be chosen for parallelism.

When set to SAFE, the procedure or function can be executed in parallel mode

with no restriction.

execution_cost

execution_cost specifies a positive number giving the estimated execution

cost for the function, in units of cpu_operator_cost. If the function returns a

set, this is the cost per returned row. The default is 0.0025.

result_rows

result_rows is the estimated number of rows that the query planner should

expect the function to return. The default is 1000.

SET

Use the SET clause to specify a parameter value for the duration of the function:

config_param specifies the parameter name.

value specifies the parameter value.

FROM CURRENT guarantees that the parameter value is restored when the

function ends.

program_body

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

99

The declarations and SPL statements that comprise the body of the function or

procedure.

The declarations may include variable, type, REF CURSOR, or subprogram

declarations. If subprogram declarations are included, they must be declared after

all other variable, type, and REF CURSOR declarations.

func_name

The name of a public or private function. If func_name exists in the package

specification with an identical signature, then it is public, otherwise it is private.

rettype

The return data type.

DETERMINISTIC

Include DETERMINISTIC to specify that the function will always return the same

result when given the same argument values. A DETERMINISTIC function must

not modify the database.

Note: The DETERMINISTIC keyword is equivalent to the PostgreSQL

IMMUTABLE option.

Note: If DETERMINISTIC is specified for a public function in the package body,

it must also be specified for the function declaration in the package specification.

For private functions, there is no function declaration in the package specification.

statement

An SPL program statement. Statements in the package initialization section are

executed once per session the first time the package is referenced.

Please Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords

provide extended functionality for Advanced Server and are not supported by Oracle.

Examples

The following is the package body for the empinfo package.

CREATE OR REPLACE PACKAGE BODY empinfo

IS

 v_counter INTEGER;

 PROCEDURE get_name (

 p_empno NUMBER

)

 IS

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

100

 BEGIN

 SELECT ename INTO emp_name FROM emp WHERE empno = p_empno;

 v_counter := v_counter + 1;

 END;

 FUNCTION display_counter

 RETURN INTEGER

 IS

 BEGIN

 RETURN v_counter;

 END;

BEGIN

 v_counter := 0;

 DBMS_OUTPUT.PUT_LINE('Initialized counter');

END;

The following two anonymous blocks execute the procedure and function in the

empinfo package and display the public variable.

BEGIN

 empinfo.get_name(7369);

 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);

 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);

END;

Initialized counter

Employee Name : SMITH

Number of queries: 1

BEGIN

 empinfo.get_name(7900);

 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);

 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);

END;

Employee Name : JAMES

Number of queries: 2

See Also

CREATE PACKAGE, DROP PACKAGE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

101

2.3.25 CREATE PROCEDURE

Name

CREATE PROCEDURE -- define a new stored procedure

Synopsis

CREATE [OR REPLACE] PROCEDURE name [(parameters)]

 [

 IMMUTABLE

 | STABLE

 | VOLATILE

 | DETERMINISTIC

 | [NOT] LEAKPROOF

 | CALLED ON NULL INPUT

 | RETURNS NULL ON NULL INPUT

 | STRICT

 | [EXTERNAL] SECURITY INVOKER

 | [EXTERNAL] SECURITY DEFINER

 | AUTHID DEFINER

 | AUTHID CURRENT_USER

 | PARALLEL { UNSAFE | RESTRICTED | SAFE }

 | COST execution_cost

 | ROWS result_rows

 | SET configuration_parameter

 { TO value | = value | FROM CURRENT }

 ...]

{ IS | AS }

 [declarations]

 BEGIN

 statements

 END [name];

Description

CREATE PROCEDURE defines a new stored procedure. CREATE OR REPLACE

PROCEDURE will either create a new procedure, or replace an existing definition.

If a schema name is included, then the procedure is created in the specified schema.

Otherwise it is created in the current schema. The name of the new procedure must not

match any existing procedure in the same schema unless the intent is to update the

definition of an existing procedure, in which case use CREATE OR REPLACE

PROCEDURE.

Parameters

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

102

name

name is the identifier of the procedure. If you specify the [OR REPLACE] clause

and a procedure with the same name already exists in the schema, the new

procedure will replace the existing one. If you do not specify [OR REPLACE],

the new procedure will not replace the existing procedure with the same name in

the same schema.

parameters

parameters is a list of formal parameters.

declarations

declarations are variable, cursor, type, or subprogram declarations. If

subprogram declarations are included, they must be declared after all other

variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain

an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the procedure;

you can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the procedure cannot modify the database and always

reaches the same result when given the same argument values; it does not do

database lookups or otherwise use information not directly present in its argument

list. If you include this clause, any call of the procedure with all-constant

arguments can be immediately replaced with the procedure value.

STABLE indicates that the procedure cannot modify the database, and that within a

single table scan, it will consistently return the same result for the same argument

values, but that its result could change across SQL statements. This is the

appropriate selection for procedures that depend on database lookups, parameter

variables (such as the current time zone), etc.

VOLATILE indicates that the procedure value can change even within a single

table scan, so no optimizations can be made. Please note that any function that

has side-effects must be classified volatile, even if its result is quite predictable, to

prevent calls from being optimized away.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

103

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC

procedure cannot modify the database and always reaches the same result when

given the same argument values; it does not do database lookups or otherwise use

information not directly present in its argument list. If you include this clause,

any call of the procedure with all-constant arguments can be immediately

replaced with the procedure value.

 [NOT] LEAKPROOF

A LEAKPROOK procedure has no side effects, and reveals no information about the

values used to call the procedure.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called

normally when some of its arguments are NULL. It is the author's responsibility to

check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always

returns NULL whenever any of its arguments are NULL. If these clauses are

specified, the procedure is not executed when there are NULL arguments; instead a

NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the procedure will execute with the privileges

of the user that created it; this is the default. The key word EXTERNAL is allowed

for SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the procedure will execute with the

privileges of the user that calls it. The key word EXTERNAL is allowed for SQL

conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY

DEFINER. If the AUTHID clause is omitted or if AUTHID DEFINER is specified,

the rights of the procedure owner are used to determine access privileges to

database objects.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

104

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY

INVOKER. If AUTHID CURRENT_USER is specified, the rights of the current user

executing the procedure are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode).

A parallel sequential scan uses multiple workers to scan a relation in parallel

during a query in contrast to a serial sequential scan.

When set to UNSAFE, the procedure cannot be executed in parallel mode. The

presence of such a procedure forces a serial execution plan. This is the default

setting if the PARALLEL clause is omitted.

When set to RESTRICTED, the procedure can be executed in parallel mode, but

the execution is restricted to the parallel group leader. If the qualification for any

particular relation has anything that is parallel restricted, that relation won't be

chosen for parallelism.

When set to SAFE, the procedure can be executed in parallel mode with no

restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for

the procedure, in units of cpu_operator_cost. If the procedure returns a set,

this is the cost per returned row. Larger values cause the planner to try to avoid

evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the

planner should expect the procedure to return. This is only allowed when the

procedure is declared to return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the

specified value when the procedure is entered, and then restored to its prior value

when the procedure exits. SET FROM CURRENT saves the session's current value

of the parameter as the value to be applied when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL

command executed inside the procedure for the same variable are restricted to the

procedure; the configuration parameter's prior value is restored at procedure exit.

An ordinary SET command (without LOCAL) overrides the SET clause, much as it

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

105

would do for a previous SET LOCAL command, with the effects of such a

command persisting after procedure exit, unless the current transaction is rolled

back.

Please Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords

provide extended functionality for Advanced Server and are not supported by Oracle.

Examples

The following procedure lists the employees in the emp table:

CREATE OR REPLACE PROCEDURE list_emp

IS

 v_empno NUMBER(4);

 v_ename VARCHAR2(10);

 CURSOR emp_cur IS

 SELECT empno, ename FROM emp ORDER BY empno;

BEGIN

 OPEN emp_cur;

 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');

 DBMS_OUTPUT.PUT_LINE('----- -------');

 LOOP

 FETCH emp_cur INTO v_empno, v_ename;

 EXIT WHEN emp_cur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

 END LOOP;

 CLOSE emp_cur;

END;

EXEC list_emp;

EMPNO ENAME

----- -------

7369 SMITH

7499 ALLEN

7521 WARD

7566 JONES

7654 MARTIN

7698 BLAKE

7782 CLARK

7788 SCOTT

7839 KING

7844 TURNER

7876 ADAMS

7900 JAMES

7902 FORD

7934 MILLER

The following procedure uses IN OUT and OUT arguments to return an employee’s

number, name, and job based upon a search using first, the given employee number, and

if that is not found, then using the given name. An anonymous block calls the procedure.

CREATE OR REPLACE PROCEDURE emp_job (

 p_empno IN OUT emp.empno%TYPE,

 p_ename IN OUT emp.ename%TYPE,

 p_job OUT emp.job%TYPE

)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

106

IS

 v_empno emp.empno%TYPE;

 v_ename emp.ename%TYPE;

 v_job emp.job%TYPE;

BEGIN

 SELECT ename, job INTO v_ename, v_job FROM emp WHERE empno = p_empno;

 p_ename := v_ename;

 p_job := v_job;

 DBMS_OUTPUT.PUT_LINE('Found employee # ' || p_empno);

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 BEGIN

 SELECT empno, job INTO v_empno, v_job FROM emp

 WHERE ename = p_ename;

 p_empno := v_empno;

 p_job := v_job;

 DBMS_OUTPUT.PUT_LINE('Found employee ' || p_ename);

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Could not find an employee with ' ||

 'number, ' || p_empno || ' nor name, ' || p_ename);

 p_empno := NULL;

 p_ename := NULL;

 p_job := NULL;

 END;

END;

DECLARE

 v_empno emp.empno%TYPE;

 v_ename emp.ename%TYPE;

 v_job emp.job%TYPE;

BEGIN

 v_empno := 0;

 v_ename := 'CLARK';

 emp_job(v_empno, v_ename, v_job);

 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);

 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

END;

Found employee CLARK

Employee No: 7782

Name : CLARK

Job : MANAGER

The following example demonstrates using the AUTHID DEFINER and SET clauses in a

procedure declaration. The update_salary procedure conveys the privileges of the

role that defined the procedure to the role that is calling the procedure (while the

procedure executes):

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)

 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'

 AUTHID DEFINER IS

BEGIN

 UPDATE emp SET salary = new_salary WHERE emp_id = id;

END;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

107

Include the SET clause to set the procedure's search path to public and the work

memory to 1MB. Other procedures, functions and objects will not be affected by these

settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that

might otherwise not be allowed to execute the statements within the procedure. To

instruct the server to use the privileges associated with the role invoking the procedure,

replace the AUTHID DEFINER clause with the AUTHID CURRENT_USER clause.

See Also

DROP PROCEDURE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

108

2.3.26 CREATE PROFILE

Name

CREATE PROFILE – create a new profile

Synopsis

CREATE PROFILE profile_name

 [LIMIT {parameter value} ...];

Description

CREATE PROFILE creates a new profile. Include the LIMIT clause and one or more

space-delimited parameter/value pairs to specify the rules enforced by Advanced

Server.

Advanced Server creates a default profile named DEFAULT. When you use the CREATE

ROLE command to create a new role, the new role is automatically associated with the

DEFAULT profile. If you upgrade from a previous version of Advanced Server to

Advanced Server 10, the upgrade process will automatically create the roles in the

upgraded version to the DEFAULT profile.

You must be a superuser to use CREATE PROFILE.

Include the LIMIT clause and one or more space-delimited parameter/value pairs to

specify the rules enforced by Advanced Server.

Parameters

profile_name

The name of the profile.

parameter

The password attribute that will be monitored by the rule.

value

The value the parameter must reach before an action is taken by the server.

Advanced Server supports the value shown below for each parameter:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

109

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user

may make before the server locks the user out of their account for the length of time

specified by PASSWORD_LOCK_TIME. Supported values are:

 An INTEGER value greater than 0.

 DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the

DEFAULT profile.

 UNLIMITED – the connecting user may make an unlimited number of failed

login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server

unlocks an account that has been locked because of FAILED_LOGIN_ATTEMPTS.

Supported values are:

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT

profile.

 UNLIMITED – the account is locked until it is manually unlocked by a

database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password may

be used before the user is prompted to provide a new password. Include the

PASSWORD_GRACE_TIME clause when using the PASSWORD_LIFE_TIME clause to

specify the number of days that will pass after the password expires before

connections by the role are rejected. If PASSWORD_GRACE_TIME is not specified, the

password will expire on the day specified by the default value of

PASSWORD_GRACE_TIME, and the user will not be allowed to execute any command

until a new password is provided. Supported values are:

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT

profile.

 UNLIMITED – The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password

expires until the user is forced to change their password. When the grace period

expires, a user will be allowed to connect, but will not be allowed to execute any

command until they update their expired password. Supported values are:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

110

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT

profile.

 UNLIMITED – The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-

using a password. The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX

parameters are intended to be used together. If you specify a finite value for one of

these parameters while the other is UNLIMITED, old passwords can never be reused.

If both parameters are set to UNLIMITED there are no restrictions on password reuse.

Supported values are:

 A NUMERIC value greater than or equal to 0. To specify a fractional portion

of a day, specify a decimal value. For example, use the value 4.5 to specify 4

days, 12 hours.

 DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT

profile.

 UNLIMITED – The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur

before a password can be reused. The PASSWORD_REUSE_TIME and

PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a

finite value for one of these parameters while the other is UNLIMITED, old passwords

can never be reused. If both parameters are set to UNLIMITED there are no

restrictions on password reuse. Supported values are:

 An INTEGER value greater than or equal to 0.

 DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT

profile.

 UNLIMITED – The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values

are:

 The name of a PL/SQL function.

 DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the

DEFAULT profile.

 NULL

Notes

Use DROP PROFILE command to remove the profile.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

111

Examples

The following command creates a profile named acctg. The profile specifies that if a

user has not authenticated with the correct password in five attempts, the account will be

locked for one day:

CREATE PROFILE acctg LIMIT

 FAILED_LOGIN_ATTEMPTS 5

 PASSWORD_LOCK_TIME 1;

The following command creates a profile named sales. The profile specifies that a user

must change their password every 90 days:

CREATE PROFILE sales LIMIT

 PASSWORD_LIFE_TIME 90

 PASSWORD_GRACE_TIME 3;

If the user has not changed their password before the 90 days specified in the profile has

passed, they will be issued a warning at login. After a grace period of 3 days, their

account will not be allowed to invoke any commands until they change their password.

The following command creates a profile named accts. The profile specifies that a user

cannot re-use a password within 180 days of the last use of the password, and must

change their password at least 5 times before re-using the password:

CREATE PROFILE accts LIMIT

 PASSWORD_REUSE_TIME 180

 PASSWORD_REUSE_MAX 5;

The following command creates a profile named resources; the profile calls a user-

defined function named password_rules that will verify that the password provided

meets their standards for complexity:

CREATE PROFILE resources LIMIT

 PASSWORD_VERIFY_FUNCTION password_rules;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

112

2.3.27 CREATE QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the CREATE QUEUE

SQL command. This syntax can be used in association with DBMS_AQADM.

Name

CREATE QUEUE – create a queue.

Synopsis

Use CREATE QUEUE to define a new queue:

CREATE QUEUE name QUEUE TABLE queue_table_name [({

option_name option_value} [, ...])]

where option_name and the corresponding option_value can be:

TYPE [normal_queue | exception_queue]

RETRIES [INTEGER]

RETRYDELAY [DOUBLE PRECISION]

RETENTION [DOUBLE PRECISION]

Description

The CREATE QUEUE command allows a database superuser or any user with the system-

defined aq_administrator_role privilege to create a new queue in the current

database.

If the name of the queue is schema-qualified, the queue is created in the specified

schema. If a schema is not included in the CREATE QUEUE command, the queue is

created in the current schema. A queue may only be created in the schema in which the

queue table resides. The name of the queue must be unique from the name of any other

queue in the same schema.

Use DROP QUEUE to remove a queue.

Parameters

name

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

113

The name (optionally schema-qualified) of the queue to be created.

queue_table_name

The name of the queue table with which this queue is associated.

option_name option_value

The name of any options that will be associated with the new queue, and the

corresponding value for the option. If the call to CREATE QUEUE includes

duplicate option names, the server will return an error. The following values are

supported:

TYPE Specify normal_queue to indicate that the queue is a normal queue, or

exception_queue to indicate that the queue is an exception queue. An

exception queue will only accept dequeue operations.
RETRIES An INTEGER value that specifies the maximum number of attempts to

remove a message from a queue.
RETRYDELAY A DOUBLE PRECISION value that specifies the number of seconds after a

ROLLBACK that the server will wait before retrying a message.
RETENTION A DOUBLE PRECISION value that specifies the number of seconds that a

message will be saved in the queue table after dequeueing.

Example

The following command creates a queue named work_order that is associated with a

queue table named work_order_table:

CREATE QUEUE work_order QUEUE TABLE work_order_table (RETRIES 5, RETRYDELAY

2);

The server will allow 5 attempts to remove a message from the queue, and enforce a retry

delay of 2 seconds between attempts.

See Also

ALTER QUEUE, DROP QUEUE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

114

2.3.28 CREATE QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the CREATE QUEUE

TABLE SQL command. This syntax can be used in association with DBMS_AQADM.

Name

CREATE QUEUE TABLE-- create a new queue table.

Synopsis

Use CREATE QUEUE TABLE to define a new queue table:

CREATE QUEUE TABLE name OF type_name [({ option_name

option_value } [, ...])]

where option_name and the corresponding option_value can be:

option_name option_value

SORT_LIST priority, enq_time

MULTIPLE_CONSUMERS FALSE, TRUE

MESSAGE_GROUPING NONE, TRANSACTIONAL

STORAGE_CLAUSE TABLESPACE tablespace_name, PCTFREE integer,

PCTUSED integer, INITRANS integer, MAXTRANS

integer, STORAGE storage_option

Where storage_option is one or more of the following:
MINEXTENTS integer, MAXEXTENTS integer,

PCTINCREASE integer, INITIAL size_clause, NEXT,

FREELISTS integer, OPTIMAL size_clause,

BUFFER_POOL {KEEP|RECYCLE|DEFAULT}.

Please note that only the TABLESPACE option is enforced; all

others are accepted for compatibility and ignored. Use the

TABLESPACE clause to specify the name of a tablespace in

which the table will be created.

Description

CREATE QUEUE TABLE allows a superuser or a user with the

aq_administrator_role privilege to create a new queue table.

If the call to CREATE QUEUE TABLE includes a schema name, the queue table is created in

the specified schema. If no schema name is provided, the new queue table is created in

the current schema.

The name of the queue table must be unique from the name of any other queue table in

the same schema.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

115

Parameters

name

The name (optionally schema-qualified) of the new queue table.

type_name

The name of an existing type that describes the payload of each entry in the queue

table. For information about defining a type, see CREATE TYPE.

option_name option_value

The name of any options that will be associated with the new queue table, and the

corresponding value for the option. If the call to CREATE QUEUE TABLE includes

duplicate option names, the server will return an error. The following values are

accepted:

SORT_LIST Use the SORT_LIST option to control the dequeueing order of the

queue; specify the names of the column(s) that will be used to sort the

queue (in ascending order). The currently accepted values are the

following combinations of enq_time and priority:

enq_time. priority

priority. enq_time
priority

enq_time

Any other value will return an ERROR.
MULTIPLE_CONSUMERS A BOOLEAN value that indicates if a message can have more than one

consumer (TRUE), or are limited to one consumer per message (FALSE).

MESSAGE_GROUPING Specify none to indicate that each message should be dequeued

individually, or transactional to indicate that messages that are

added to the queue as a result of one transaction should be dequeued as

a group.
STORAGE_CLAUSE Use STORAGE_CLAUSE to specify table attributes.

STORAGE_CLAUSE may be TABLESPACE tablespace_name,
PCTFREE integer, PCTUSED integer, INITRANS integer,

MAXTRANS integer, STORAGE storage_option

Where storage_option is one or more of the following:
MINEXTENTS integer, MAXEXTENTS integer, PCTINCREASE

integer, INITIAL size_clause, NEXT, FREELISTS

integer, OPTIMAL size_clause, BUFFER_POOL

{KEEP|RECYCLE|DEFAULT}.

Please note that only the TABLESPACE option is enforced; all others are

accepted for compatibility and ignored. Use the TABLESPACE clause to

specify the name of a tablespace in which the table will be created.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

116

Example

You must create a user-defined type before creating a queue table; the type describes the

columns and data types within the table. The following command creates a type named

work_order:

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

The following command uses the work_order type to create a queue table named

work_order_table:

CREATE QUEUE TABLE work_order_table OF work_order (sort_list (enq_time,

priority));

See Also

ALTER QUEUE TABLE, DROP QUEUE TABLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

117

2.3.29 CREATE ROLE

Name

CREATE ROLE -- define a new database role

Synopsis

CREATE ROLE name [IDENTIFIED BY password [REPLACE old_password]]

Description

CREATE ROLE adds a new role to the Advanced Server database cluster. A role is an

entity that can own database objects and have database privileges; a role can be

considered a “user”, a “group”, or both depending on how it is used. The newly created

role does not have the LOGIN attribute, so it cannot be used to start a session. Use the

ALTER ROLE command to give the role LOGIN rights. You must have CREATEROLE

privilege or be a database superuser to use the CREATE ROLE command.

If the IDENTIFIED BY clause is specified, the CREATE ROLE command also creates a

schema owned by, and with the same name as the newly created role.

Note that roles are defined at the database cluster level, and so are valid in all databases

in the cluster.

Parameters

name

The name of the new role.

IDENTIFIED BY password

Sets the role’s password. (A password is only of use for roles having the LOGIN

attribute, but you can nonetheless define one for roles without it.) If you do not

plan to use password authentication you can omit this option.

Notes

Use ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role. The

attributes specified by CREATE ROLE can be modified by later ALTER ROLE commands.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

118

Use GRANT and REVOKE to add and remove members of roles that are being used as

groups.

The maximum length limit for role name and password is 63 characters.

Examples

Create a role (and a schema) named, admins, with a password:

CREATE ROLE admins IDENTIFIED BY Rt498zb;

See Also

ALTER ROLE, DROP ROLE, GRANT, REVOKE, SET ROLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

119

2.3.30 CREATE SCHEMA

Name

CREATE SCHEMA -- define a new schema

Synopsis

CREATE SCHEMA AUTHORIZATION username schema_element [...]

Description

This variation of the CREATE SCHEMA command creates a new schema owned by

username and populated with one or more objects. The creation of the schema and

objects occur within a single transaction so either all objects are created or none of them

including the schema. (Please note: if you are using an Oracle database, no new schema

is created – username, and therefore the schema, must pre-exist.)

A schema is essentially a namespace: it contains named objects (tables, views, etc.)

whose names may duplicate those of other objects existing in other schemas. Named

objects are accessed either by “qualifying” their names with the schema name as a prefix,

or by setting a search path that includes the desired schema(s). Unqualified objects are

created in the current schema (the one at the front of the search path, which can be

determined with the function CURRENT_SCHEMA). (The search path concept and the

CURRENT_SCHEMA function are not compatible with Oracle databases.)

CREATE SCHEMA includes subcommands to create objects within the schema. The

subcommands are treated essentially the same as separate commands issued after creating

the schema. All the created objects will be owned by the specified user.

Parameters

username

The name of the user who will own the new schema. The schema will be named

the same as username. Only superusers may create schemas owned by users

other than themselves. (Please note: In Advanced Server the role, username,

must already exist, but the schema must not exist. In Oracle, the user

(equivalently, the schema) must exist.)

schema_element

An SQL statement defining an object to be created within the schema. CREATE

TABLE, CREATE VIEW, and GRANT are accepted as clauses within CREATE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

120

SCHEMA. Other kinds of objects may be created in separate commands after the

schema is created.

Notes

To create a schema, the invoking user must have the CREATE privilege for the current

database. (Of course, superusers bypass this check.)

In Advanced Server, there are other forms of the CREATE SCHEMA command that are not

compatible with Oracle databases.

Examples

CREATE SCHEMA AUTHORIZATION enterprisedb

 CREATE TABLE empjobs (ename VARCHAR2(10), job VARCHAR2(9))

 CREATE VIEW managers AS SELECT ename FROM empjobs WHERE job = 'MANAGER'

 GRANT SELECT ON managers TO PUBLIC;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

121

2.3.31 CREATE SEQUENCE

Name

CREATE SEQUENCE -- define a new sequence generator

Synopsis

CREATE SEQUENCE name [INCREMENT BY increment]

 [{ NOMINVALUE | MINVALUE minvalue }]

 [{ NOMAXVALUE | MAXVALUE maxvalue }]

 [START WITH start] [CACHE cache | NOCACHE] [CYCLE]

Description

CREATE SEQUENCE creates a new sequence number generator. This involves creating

and initializing a new special single-row table with the name, name. The generator will

be owned by the user issuing the command.

If a schema name is given then the sequence is created in the specified schema, otherwise

it is created in the current schema. The sequence name must be distinct from the name of

any other sequence, table, index, or view in the same schema.

After a sequence is created, use the functions NEXTVAL and CURRVAL to operate on the

sequence. These functions are documented in Section 2.4.9.

Parameters

name

The name (optionally schema-qualified) of the sequence to be created.

increment

The optional clause INCREMENT BY increment specifies the value to add to the

current sequence value to create a new value. A positive value will make an

ascending sequence, a negative one a descending sequence. The default value is 1.

NOMINVALUE | MINVALUE minvalue

The optional clause MINVALUE minvalue determines the minimum value a

sequence can generate. If this clause is not supplied, then defaults will be used.

The defaults are 1 and -2
63

-1 for ascending and descending sequences,

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

122

respectively. Note that the key words, NOMINVALUE, may be used to set this

behavior to the default.

NOMAXVALUE | MAXVALUE maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for

the sequence. If this clause is not supplied, then default values will be used. The

defaults are 2
63

-1 and -1 for ascending and descending sequences, respectively.

Note that the key words, NOMAXVALUE, may be used to set this behavior to the

default.

start

The optional clause START WITH start allows the sequence to begin anywhere.

The default starting value is minvalue for ascending sequences and maxvalue

for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers are to

be preallocated and stored in memory for faster access. The minimum value is 1

(only one value can be generated at a time, i.e., NOCACHE), and this is also the

default.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or

minvalue has been reached by an ascending or descending sequence

respectively. If the limit is reached, the next number generated will be the

minvalue or maxvalue, respectively.

If CYCLE is omitted (the default), any calls to NEXTVAL after the sequence has

reached its maximum value will return an error. Note that the key words, NO

CYCLE, may be used to obtain the default behavior, however, this term is not

compatible with Oracle databases.

Notes

Sequences are based on big integer arithmetic, so the range cannot exceed the range of an

eight-byte integer (-9223372036854775808 to 9223372036854775807). On some older

platforms, there may be no compiler support for eight-byte integers, in which case

sequences use regular INTEGER arithmetic (range -2147483648 to +2147483647).

Unexpected results may be obtained if a cache setting greater than one is used for a

sequence object that will be used concurrently by multiple sessions. Each session will

allocate and cache successive sequence values during one access to the sequence object

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

123

and increase the sequence object’s last value accordingly. Then, the next cache-1 uses of

NEXTVAL within that session simply return the preallocated values without touching the

sequence object. So, any numbers allocated but not used within a session will be lost

when that session ends, resulting in "holes" in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence

values, the values may be generated out of sequence when all the sessions are considered.

For example, with a cache setting of 10, session A might reserve values 1..10 and return

NEXTVAL=1, then session B might reserve values 11..20 and return NEXTVAL=11 before

session A has generated NEXTVAL=2. Thus, with a cache setting of one it is safe to

assume that NEXTVAL values are generated sequentially; with a cache setting greater

than one you should only assume that the NEXTVAL values are all distinct, not that they

are generated purely sequentially. Also, the last value will reflect the latest value reserved

by any session, whether or not it has yet been returned by NEXTVAL.

Examples

Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START WITH 101;

Select the next number from this sequence:

SELECT serial.NEXTVAL FROM DUAL;

 nextval

 101

(1 row)

Create a sequence called supplier_seq with the NOCACHE option:

CREATE SEQUENCE supplier_seq

 MINVALUE 1

 START WITH 1

 INCREMENT BY 1

 NOCACHE;

Select the next number from this sequence:

SELECT supplier_seq.NEXTVAL FROM DUAL;

 nextval

 1

(1 row)

See Also

ALTER SEQUENCE, DROP SEQUENCE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

124

2.3.32 CREATE SYNONYM

Name

CREATE SYNONYM -- define a new synonym

Synopsis

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema.]syn_name

 FOR object_schema.object_name[@dblink_name];

Description

CREATE SYNONYM defines a synonym for certain types of database objects. Advanced

Server supports synonyms for:

 tables

 views

 materialized views

 sequences

 stored procedures

 stored functions

 types

 objects that are accessible through a database link

 other synonyms

Parameters:

syn_name

syn_name is the name of the synonym. A synonym name must be unique within

a schema.

schema

schema specifies the name of the schema that the synonym resides in. If you do

not specify a schema name, the synonym is created in the first existing schema in

your search path.

object_name

object_name specifies the name of the object.

object_schema

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

125

object_schema specifies the name of the schema that the referenced object

resides in.

dblink_name

dblink_name specifies the name of the database link through which an object is

accessed.

Include the REPLACE clause to replace an existing synonym definition with a new

synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. The CREATE

PUBLIC SYNONYM command, compatible with Oracle databases, creates a synonym that

resides in the public schema:

CREATE [OR REPLACE] PUBLIC SYNONYM syn_name FOR

object_schema.object_name;

This just a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.syn_name FOR

object_schema.object_name;

Notes

Access to the object referenced by the synonym is determined by the permissions of the

current user of the synonym; the synonym user must have the appropriate permissions on

the underlying database object.

Examples

Create a synonym for the emp table in a schema named, enterprisedb:

CREATE SYNONYM personnel FOR enterprisedb.emp;

See Also

DROP SYNONYM

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

126

2.3.33 CREATE TABLE

Name

CREATE TABLE -- define a new table

Synopsis

CREATE [GLOBAL TEMPORARY] TABLE table_name (

 { column_name data_type [DEFAULT default_expr]

 [column_constraint [...]] | table_constraint } [, ...]

)

 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]

 [TABLESPACE tablespace]

where column_constraint is:

 [CONSTRAINT constraint_name]

 { NOT NULL |

 NULL |

 UNIQUE [USING INDEX TABLESPACE tablespace] |

 PRIMARY KEY [USING INDEX TABLESPACE tablespace] |

 CHECK (expression) |

 REFERENCES reftable [(refcolumn)]

 [ON DELETE action] }

 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED |

 INITIALLY IMMEDIATE]

and table_constraint is:

 [CONSTRAINT constraint_name]

 { UNIQUE (column_name [, ...])

 [USING INDEX TABLESPACE tablespace] |

 PRIMARY KEY (column_name [, ...])

 [USING INDEX TABLESPACE tablespace] |

 CHECK (expression) |

 FOREIGN KEY (column_name [, ...])

 REFERENCES reftable [(refcolumn [, ...])]

 [ON DELETE action] }

 [DEFERRABLE | NOT DEFERRABLE]

 [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

CREATE TABLE will create a new, initially empty table in the current database. The table

will be owned by the user issuing the command.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

127

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then

the table is created in the specified schema. Otherwise it is created in the current schema.

Temporary tables exist in a special schema, so a schema name may not be given when

creating a temporary table. The table name must be distinct from the name of any other

table, sequence, index, or view in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type

corresponding to one row of the table. Therefore, tables cannot have the same name as

any existing data type in the same schema.

A table cannot have more than 1600 columns. (In practice, the effective limit is lower

because of tuple-length constraints).

The optional constraint clauses specify constraints (or tests) that new or updated rows

must satisfy for an insert or update operation to succeed. A constraint is an SQL object

that helps define the set of valid values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A

column constraint is defined as part of a column definition. A table constraint definition

is not tied to a particular column, and it can encompass more than one column. Every

column constraint can also be written as a table constraint; a column constraint is only a

notational convenience if the constraint only affects one column.

Parameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Temporary tables are

automatically dropped at the end of a session, or optionally at the end of the

current transaction (see ON COMMIT below). Existing permanent tables with the

same name are not visible to the current session while the temporary table exists,

unless they are referenced with schema-qualified names. In addition, temporary

tables are not visible outside the session in which it was created. (This aspect of

global temporary tables is not compatible with Oracle databases.) Any indexes

created on a temporary table are automatically temporary as well.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

128

data_type

The data type of the column. This may include array specifiers. For more

information on the data types included with Advanced Server, refer to Section

2.2.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column

definition it appears within. The value is any variable-free expression (subqueries

and cross-references to other columns in the current table are not allowed). The

data type of the default expression must match the data type of the column.

The default expression will be used in any insert operation that does not specify a

value for the column. If there is no default for a column, then the default is null.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If not specified, the system

generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only available for compatibility with non-standard SQL databases.

Its use is discouraged in new applications.

UNIQUE - column constraint

UNIQUE (column_name [, ...]) - table constraint

The UNIQUE constraint specifies that a group of one or more distinct columns of a

table may contain only unique values. The behavior of the unique table constraint

is the same as that for column constraints, with the additional capability to span

multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

129

Each unique table constraint must name a set of columns that is different from the

set of columns named by any other unique or primary key constraint defined for

the table. (Otherwise it would just be the same constraint listed twice.)

PRIMARY KEY - column constraint

PRIMARY KEY (column_name [, ...]) - table constraint

The primary key constraint specifies that a column or columns of a table may

contain only unique (non-duplicate), non-null values. Technically, PRIMARY KEY

is merely a combination of UNIQUE and NOT NULL, but identifying a set of

columns as primary key also provides metadata about the design of the schema, as

a primary key implies that other tables may rely on this set of columns as a unique

identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint

or a table constraint.

The primary key constraint should name a set of columns that is different from

other sets of columns named by any unique constraint defined for the same table.

CHECK (expression)

The CHECK clause specifies an expression producing a Boolean result which new

or updated rows must satisfy for an insert or update operation to succeed.

Expressions evaluating to TRUE or “unknown” succeed. Should any row of an

insert or update operation produce a FALSE result an error exception is raised and

the insert or update does not alter the database. A check constraint specified as a

column constraint should reference that column’s value only, while an expression

appearing in a table constraint may reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables

other than columns of the current row.

REFERENCES reftable [(refcolumn)] [ON DELETE action] - column constraint

FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [, ...])] [ON

DELETE action] - table constraint

These clauses specify a foreign key constraint, which requires that a group of one

or more columns of the new table must only contain values that match values in

the referenced column(s) of some row of the referenced table. If refcolumn is

omitted, the primary key of the reftable is used. The referenced columns must

be the columns of a unique or primary key constraint in the referenced table.

In addition, when the data in the referenced columns is changed, certain actions

are performed on the data in this table’s columns. The ON DELETE clause

specifies the action to perform when a referenced row in the referenced table is

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

130

being deleted. Referential actions cannot be deferred even if the constraint is

deferrable. Here are the following possible actions for each clause:

CASCADE

Delete any rows referencing the deleted row, or update the value of the

referencing column to the new value of the referenced column,

respectively.

SET NULL

Set the referencing column(s) to NULL.

If the referenced column(s) are changed frequently, it may be wise to add an

index to the foreign key column so that referential actions associated with the

foreign key column can be performed more efficiently.

DEFERRABLE
NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not

deferrable will be checked immediately after every command. Checking of

constraints that are deferrable may be postponed until the end of the transaction

(using the SET CONSTRAINTS command). NOT DEFERRABLE is the default. Only

foreign key constraints currently accept this clause. All other constraint types are

not deferrable.

INITIALLY IMMEDIATE
INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the

constraint. If the constraint is INITIALLY IMMEDIATE, it is checked after each

statement. This is the default. If the constraint is INITIALLY DEFERRED, it is

checked only at the end of the transaction. The constraint check time can be

altered with the SET CONSTRAINTS command.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be

controlled using ON COMMIT. The two options are:

PRESERVE ROWS

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

131

No special action is taken at the ends of transactions. This is the default

behavior. (Note that this aspect is not compatible with Oracle databases.

The Oracle default is DELETE ROWS.)

DELETE ROWS

All rows in the temporary table will be deleted at the end of each

transaction block. Essentially, an automatic TRUNCATE is done at each

commit.

TABLESPACE tablespace

The tablespace is the name of the tablespace in which the new table is to be

created. If not specified, default tablespace is used, or the database’s default

tablespace if default_tablespace is an empty string.

USING INDEX TABLESPACE tablespace

This clause allows selection of the tablespace in which the index associated with a

UNIQUE or PRIMARY KEY constraint will be created. If not specified, default

tablespace is used, or the database’s default tablespace if

default_tablespace is an empty string.

Notes

Advanced Server automatically creates an index for each unique constraint and primary

key constraint to enforce the uniqueness. Thus, it is not necessary to create an explicit

index for primary key columns. (See CREATE INDEX for more information.)

Examples

Create table dept and table emp:

CREATE TABLE dept (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14),

 loc VARCHAR2(13)

);

CREATE TABLE emp (

 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

132

 comm NUMBER(7,2),

 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

 REFERENCES dept(deptno)

);

Define a unique table constraint for the table dept. Unique table constraints can be

defined on one or more columns of the table.

CREATE TABLE dept (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,

 loc VARCHAR2(13)

);

Define a check column constraint:

CREATE TABLE emp (

 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),

 comm NUMBER(7,2),

 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

 REFERENCES dept(deptno)

);

Define a check table constraint:

CREATE TABLE emp (

 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

 ename VARCHAR2(10),

 job VARCHAR2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

 REFERENCES dept(deptno),

 CONSTRAINT new_emp_ck CHECK (ename IS NOT NULL AND empno > 7000)

);

Define a primary key table constraint for the table jobhist. Primary key table

constraints can be defined on one or more columns of the table.

CREATE TABLE jobhist (

 empno NUMBER(4) NOT NULL,

 startdate DATE NOT NULL,

 enddate DATE,

 job VARCHAR2(9),

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2),

 chgdesc VARCHAR2(80),

 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate)

);

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

133

This assigns a literal constant default value for the column, job and makes the default

value of hiredate be the date at which the row is inserted.

CREATE TABLE emp (

 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,

 ename VARCHAR2(10),

 job VARCHAR2(9) DEFAULT 'SALESMAN',

 mgr NUMBER(4),

 hiredate DATE DEFAULT SYSDATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

 REFERENCES dept(deptno)

);

Create table dept in tablespace diskvol1:

CREATE TABLE dept (

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,

 dname VARCHAR2(14),

 loc VARCHAR2(13)

) TABLESPACE diskvol1;

See Also

ALTER TABLE, DROP TABLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

134

2.3.34 CREATE TABLE AS

Name

CREATE TABLE AS -- define a new table from the results of a query

Synopsis

CREATE [GLOBAL TEMPORARY] TABLE table_name

 [(column_name [, ...])]

 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]

 [TABLESPACE tablespace]

 AS query

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT

command. The table columns have the names and data types associated with the output

columns of the SELECT (except that you can override the column names by giving an

explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite

different: it creates a new table and evaluates the query just once to fill the new table

initially. The new table will not track subsequent changes to the source tables of the

query. In contrast, a view re-evaluates its defining SELECT statement whenever it is

queried.

Parameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Refer to CREATE TABLE for

details.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column in the new table. If column names are not provided, they

are taken from the output column names of the query.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

135

query

A query statement (a SELECT command). Refer to SELECT for a description of

the allowed syntax.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

136

2.3.35 CREATE TRIGGER

Name

CREATE TRIGGER -- define a new trigger

Synopsis

CREATE [OR REPLACE] TRIGGER name

 { BEFORE | AFTER | INSTEAD OF }

 { INSERT | UPDATE | DELETE }

 [OR { INSERT | UPDATE | DELETE }] [, ...]

 ON table

 [REFERENCING { OLD AS old | NEW AS new } ...]

 [FOR EACH ROW]

 [WHEN condition]

 [DECLARE

 declaration; [, ...]]

 BEGIN

 statement; [, ...]

 [EXCEPTION

 { WHEN exception [OR exception] [...] THEN

 statement; [, ...] } [, ...]

]

 END

Description

CREATE TRIGGER defines a new trigger. CREATE OR REPLACE TRIGGER will either

create a new trigger, or replace an existing definition.

If you are using the CREATE TRIGGER keywords to create a new trigger, the name of the

new trigger must not match any existing trigger defined on the same table. New triggers

will be created in the same schema as the table on which the triggering event is defined.

If you are updating the definition of an existing trigger, use the CREATE OR REPLACE

TRIGGER keywords.

When you use syntax that is compatible with Oracle to create a trigger, the trigger runs as

a SECURITY DEFINER function.

Parameters

name

The name of the trigger to create.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

137

BEFORE | AFTER

Determines whether the trigger is fired before or after the triggering event.

INSERT | UPDATE | DELETE

Defines the triggering event.

table

The name of the table on which the triggering event occurs.

condition

condition is a Boolean expression that determines if the trigger will actually be

executed; if condition evaluates to TRUE, the trigger will fire.

If the trigger definition includes the FOR EACH ROW keywords, the WHEN clause

can refer to columns of the old and/or new row values by writing

OLD.column_name or NEW.column_name respectively. INSERT triggers cannot

refer to OLD and DELETE triggers cannot refer to NEW.

If the trigger includes the INSTEAD OF keywords, it may not include a WHEN

clause. A WHEN clause cannot contain subqueries.

REFERENCING { OLD AS old | NEW AS new } ...

REFERENCING clause to reference old rows and new rows, but restricted in that

old may only be replaced by an identifier named old or any equivalent that is

saved in all lowercase (for example, REFERENCING OLD AS old,

REFERENCING OLD AS OLD, or REFERENCING OLD AS "old"). Also, new

may only be replaced by an identifier named new or any equivalent that is saved

in all lowercase (for example, REFERENCING NEW AS new, REFERENCING

NEW AS NEW, or REFERENCING NEW AS "new").

Either one, or both phrases OLD AS old and NEW AS new may be specified in

the REFERENCING clause (for example, REFERENCING NEW AS New OLD AS

Old).

This clause is not compatible with Oracle databases in that identifiers other than

old or new may not be used.

FOR EACH ROW

Determines whether the trigger should be fired once for every row affected by the

triggering event, or just once per SQL statement. If specified, the trigger is fired

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

138

once for every affected row (row-level trigger), otherwise the trigger is a

statement-level trigger.

declaration

A variable, type, REF CURSOR, or subprogram declaration. If subprogram

declarations are included, they must be declared after all other variable, type, and

REF CURSOR declarations.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is

considered an SPL statement unto itself. Thus, the trigger body may contain

nested blocks.

exception

An exception condition name such as NO_DATA_FOUND, OTHERS, etc.

Examples

The following is a statement-level trigger that fires after the triggering statement (insert,

update, or delete on table emp) is executed.

CREATE OR REPLACE TRIGGER user_audit_trig

 AFTER INSERT OR UPDATE OR DELETE ON emp

DECLARE

 v_action VARCHAR2(24);

BEGIN

 IF INSERTING THEN

 v_action := ' added employee(s) on ';

 ELSIF UPDATING THEN

 v_action := ' updated employee(s) on ';

 ELSIF DELETING THEN

 v_action := ' deleted employee(s) on ';

 END IF;

 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||

 TO_CHAR(SYSDATE,'YYYY-MM-DD'));

END;

The following is a row-level trigger that fires before each row is either inserted, updated,

or deleted on table emp.

CREATE OR REPLACE TRIGGER emp_sal_trig

 BEFORE DELETE OR INSERT OR UPDATE ON emp

 FOR EACH ROW

DECLARE

 sal_diff NUMBER;

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);

 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);

 END IF;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

139

 IF UPDATING THEN

 sal_diff := :NEW.sal - :OLD.sal;

 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);

 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);

 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);

 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);

 END IF;

 IF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);

 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);

 END IF;

END;

See Also

DROP TRIGGER

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

140

2.3.36 CREATE TYPE

Name

CREATE TYPE -- define a new user-defined type, which can be an object type, a

collection type (a nested table type or a varray type), or a composite type.

Synopsis

Object Type

CREATE [OR REPLACE] TYPE name

 [AUTHID { DEFINER | CURRENT_USER }]

 { IS | AS } OBJECT

({ attribute { datatype | objtype | collecttype } }

 [, ...]

 [method_spec] [, ...]

) [[NOT] { FINAL | INSTANTIABLE }] ...

where method_spec is:

 [[NOT] { FINAL | INSTANTIABLE }] ...

 [OVERRIDING]

 subprogram_spec

and subprogram_spec is:

 { MEMBER | STATIC }

 { PROCEDURE proc_name

 [([SELF [IN | IN OUT] name]

 [, argname [IN | IN OUT | OUT] argtype

 [DEFAULT value]

] ...)

]

 |

 FUNCTION func_name

 [([SELF [IN | IN OUT] name]

 [, argname [IN | IN OUT | OUT] argtype

 [DEFAULT value]

] ...)

]

 RETURN rettype

 }

Nested Table Type

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

141

CREATE [OR REPLACE] TYPE name { IS | AS } TABLE OF

 { datatype | objtype | collecttype }

Varray Type

CREATE [OR REPLACE] TYPE name { IS | AS }

 { VARRAY | VARYING ARRAY } (maxsize) OF { datatype | objtype }

Composite Type

CREATE [OR REPLACE] TYPE name { IS | AS }

([attribute datatype][, ...]

)

Description

CREATE TYPE defines a new, user-defined data type. The types that can be created are an

object type, a nested table type, a varray type, or a composite type. Nested table and

varray types belong to the category of types known as collections.

Composite types are not compatible with Oracle databases. However, composite types

can be accessed by SPL programs as with other types described in this section.

Note: For packages only, a composite type can be included in a user-defined record type

declared with the TYPE IS RECORD statement within the package specification or

package body. Such nested structure is not permitted in other SPL programs such as

functions, procedures, triggers, etc.

In the CREATE TYPE command, if a schema name is included, then the type is created in

the specified schema, otherwise it is created in the current schema. The name of the new

type must not match any existing type in the same schema unless the intent is to update

the definition of an existing type, in which case use CREATE OR REPLACE TYPE.

Note: The OR REPLACE option cannot be currently used to add, delete, or modify the

attributes of an existing object type. Use the DROP TYPE command to first delete the

existing object type. The OR REPLACE option can be used to add, delete, or modify the

methods in an existing object type.

Note: The PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE command can be

used to change the data type of an attribute in an existing object type. However, the

ALTER TYPE command cannot add or delete attributes in the object type.

The user that creates the type becomes the owner of the type.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

142

Parameters

name

The name (optionally schema-qualified) of the type to create.

DEFINER | CURRENT_USER

Specifies whether the privileges of the object type owner (DEFINER) or the

privileges of the current user executing a method in the object type

(CURRENT_USER) are to be used to determine whether or not access is allowed to

database objects referenced in the object type. DEFINER is the default.

attribute

The name of an attribute in the object type or composite type.

datatype

The data type that defines an attribute of the object type or composite type, or the

elements of the collection type that is being created.

objtype

The name of an object type that defines an attribute of the object type or the

elements of the collection type that is being created.

collecttype

The name of a collection type that defines an attribute of the object type or the

elements of the collection type that is being created.

FINAL
NOT FINAL

For an object type, specifies whether or not a subtype can be derived from the

object type. FINAL (subtype cannot be derived from the object type) is the

default.

For method_spec, specifies whether or not the method may be overridden in a

subtype. NOT FINAL (method may be overridden in a subtype) is the default.

INSTANTIABLE
NOT INSTANTIABLE

For an object type, specifies whether or not an object instance can be created of

this object type. INSTANTIABLE (an instance of this object type can be created) is

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

143

the default. If NOT INSTANTIABLE is specified, then NOT FINAL must be

specified as well. If method_spec for any method in the object type contains the

NOT INSTANTIABLE qualifier, then the object type, itself, must be defined with

NOT INSTANTIABLE and NOT FINAL following the closing parenthesis of the

object type specification.

For method_spec, specifies whether or not the object type definition provides an

implementation for the method. INSTANTIABLE (the CREATE TYPE BODY

command for the object type provides the implementation of the method) is the

default. If NOT INSTANTIABLE is specified, then the CREATE TYPE BODY

command for the object type must not contain the implementation of the method.

OVERRIDING

If OVERRIDING is specified, method_spec overrides an identically named

method with the same number of identically named method arguments with the

same data types, in the same order, and the same return type (if the method is a

function) as defined in a supertype.

MEMBER
STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify

STATIC if the subprogram operates independently of any particular object

instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

For a member method there is an implicit, built-in parameter named SELF whose

data type is that of the object type being defined. SELF refers to the object

instance that is currently invoking the method. SELF can be explicitly declared as

an IN or IN OUT parameter in the parameter list. If explicitly declared, SELF

must be the first parameter in the parameter list. If SELF is not explicitly declared,

its parameter mode defaults to IN OUT for member procedures and IN for

member functions.

argname

The name of an argument. The argument is referenced by this name within the

method body.

argtype

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

144

The data type(s) of the method’s arguments. The argument types may be a base

data type or a user-defined type such as a nested table or an object type. A length

must not be specified for any base type - for example, specify VARCHAR2, not

VARCHAR2(10).

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the method

call. DEFAULT may not be specified for arguments with modes IN OUT or OUT.

func_name

The name of the function to create.

rettype

The return data type, which may be any of the types listed for argtype. As for

argtype, a length must not be specified for rettype.

maxsize

The maximum number of elements permitted in the varray.

Examples

Creating an Object Type

Create object type addr_obj_typ.

CREATE OR REPLACE TYPE addr_obj_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Create object type emp_obj_typ that includes a member method display_emp.

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT (

 empno NUMBER(4),

 ename VARCHAR2(20),

 addr ADDR_OBJ_TYP,

 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)

);

Create object type dept_obj_typ that includes a static method get_dname.

CREATE OR REPLACE TYPE dept_obj_typ AS OBJECT (

 deptno NUMBER(2),

 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2,

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

145

 MEMBER PROCEDURE display_dept

);

Creating a Collection Type

Create a nested table type, budget_tbl_typ, of data type, NUMBER(8,2).

CREATE OR REPLACE TYPE budget_tbl_typ IS TABLE OF NUMBER(8,2);

Creating and Using a Composite Type

The following example shows the usage of a composite type accessed from an

anonymous block.

The composite type is created by the following:

CREATE OR REPLACE TYPE emphist_typ AS (

 empno NUMBER(4),

 ename VARCHAR2(10),

 hiredate DATE,

 job VARCHAR2(9),

 sal NUMBER(7,2)

);

The following is the anonymous block that accesses the composite type:

DECLARE

 v_emphist EMPHIST_TYP;

BEGIN

 v_emphist.empno := 9001;

 v_emphist.ename := 'SMITH';

 v_emphist.hiredate := '01-AUG-17';

 v_emphist.job := 'SALESMAN';

 v_emphist.sal := 8000.00;

 DBMS_OUTPUT.PUT_LINE(' EMPNO: ' || v_emphist.empno);

 DBMS_OUTPUT.PUT_LINE(' ENAME: ' || v_emphist.ename);

 DBMS_OUTPUT.PUT_LINE('HIREDATE: ' || v_emphist.hiredate);

 DBMS_OUTPUT.PUT_LINE(' JOB: ' || v_emphist.job);

 DBMS_OUTPUT.PUT_LINE(' SAL: ' || v_emphist.sal);

END;

 EMPNO: 9001

 ENAME: SMITH

HIREDATE: 01-AUG-17 00:00:00

 JOB: SALESMAN

 SAL: 8000.00

The following example shows the usage of a composite type accessed from a user-

defined record type, declared within a package body.

The composite type is created by the following:

CREATE OR REPLACE TYPE salhist_typ AS (

 startdate DATE,

 job VARCHAR2(9),

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

146

 sal NUMBER(7,2)

);

The package specification is defined by the following:

CREATE OR REPLACE PACKAGE emp_salhist

IS

 PROCEDURE fetch_emp (

 p_empno IN NUMBER

);

END;

The package body is defined by the following:

CREATE OR REPLACE PACKAGE BODY emp_salhist

IS

 TYPE emprec_typ IS RECORD (

 empno NUMBER(4),

 ename VARCHAR(10),

 salhist SALHIST_TYP

);

 TYPE emp_arr_typ IS TABLE OF emprec_typ INDEX BY BINARY_INTEGER;

 emp_arr emp_arr_typ;

 PROCEDURE fetch_emp (

 p_empno IN NUMBER

)

 IS

 CURSOR emp_cur IS SELECT e.empno, e.ename, h.startdate, h.job, h.sal

 FROM emp e, jobhist h

 WHERE e.empno = p_empno

 AND e.empno = h.empno;

 i INTEGER := 0;

 BEGIN

 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME STARTDATE JOB ' ||

 'SAL ');

 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||

 '---------');

 FOR r_emp IN emp_cur LOOP

 i := i + 1;

 emp_arr(i) := (r_emp.empno, r_emp.ename,

 (r_emp.startdate, r_emp.job, r_emp.sal));

 END LOOP;

 FOR i IN 1 .. emp_arr.COUNT LOOP

 DBMS_OUTPUT.PUT_LINE(emp_arr(i).empno || ' ' ||

 RPAD(emp_arr(i).ename,8) || ' ' ||

 TO_CHAR(emp_arr(i).salhist.startdate,'DD-MON-YY') || ' ' ||

 RPAD(emp_arr(i).salhist.job,10) || ' ' ||

 TO_CHAR(emp_arr(i).salhist.sal,'99,999.99'));

 END LOOP;

 END;

END;

Note that in the declaration of the TYPE emprec_typ IS RECORD data structure in the

package body, the salhist field is defined with the SALHIST_TYP composite type as

created by the CREATE TYPE salhist_typ statement.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

147

The associative array definition TYPE emp_arr_typ IS TABLE OF emprec_typ

references the record type data structure emprec_typ that includes the field salhist

that is defined with the SALHIST_TYP composite type.

Invocation of the package procedure that loads the array from a join of the emp and

jobhist tables, then displays the array content is shown by the following:

EXEC emp_salhist.fetch_emp(7788);

EMPNO ENAME STARTDATE JOB SAL

----- ------- --------- --------- ---------

7788 SCOTT 19-APR-87 CLERK 1,000.00

7788 SCOTT 13-APR-88 CLERK 1,040.00

7788 SCOTT 05-MAY-90 ANALYST 3,000.00

EDB-SPL Procedure successfully completed

See Also

CREATE TYPE BODY, DROP TYPE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

148

2.3.37 CREATE TYPE BODY

Name

CREATE TYPE BODY -- define a new object type body

Synopsis

CREATE [OR REPLACE] TYPE BODY name

 { IS | AS }

 method_spec [...]

END

where method_spec is:

 subprogram_spec

and subprogram_spec is:

 { MEMBER | STATIC }

 { PROCEDURE proc_name

 [([SELF [IN | IN OUT] name]

 [, argname [IN | IN OUT | OUT] argtype

 [DEFAULT value]

] ...)

]

 { IS | AS }

 program_body

 END;

 |

 FUNCTION func_name

 [([SELF [IN | IN OUT] name]

 [, argname [IN | IN OUT | OUT] argtype

 [DEFAULT value]

] ...)

]

 RETURN rettype

 { IS |AS }

 program_body

 END;

 }

Description

CREATE TYPE BODY defines a new object type body. CREATE OR REPLACE TYPE

BODY will either create a new object type body, or replace an existing body.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

149

If a schema name is included, then the object type body is created in the specified

schema. Otherwise it is created in the current schema. The name of the new object type

body must match an existing object type specification in the same schema. The new

object type body name must not match any existing object type body in the same schema

unless the intent is to update the definition of an existing object type body, in which case

use CREATE OR REPLACE TYPE BODY.

Parameters

name

The name (optionally schema-qualified) of the object type for which a body is to

be created.

MEMBER
STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify

STATIC if the subprogram operates independently of any particular object

instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

For a member method there is an implicit, built-in parameter named SELF whose

data type is that of the object type being defined. SELF refers to the object

instance that is currently invoking the method. SELF can be explicitly declared as

an IN or IN OUT parameter in the parameter list. If explicitly declared, SELF

must be the first parameter in the parameter list. If SELF is not explicitly declared,

its parameter mode defaults to IN OUT for member procedures and IN for

member functions.

argname

The name of an argument. The argument is referenced by this name within the

method body.

argtype

The data type(s) of the method’s arguments. The argument types may be a base

data type or a user-defined type such as a nested table or an object type. A length

must not be specified for any base type - for example, specify VARCHAR2, not

VARCHAR2(10).

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

150

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the method

call. DEFAULT may not be specified for arguments with modes IN OUT or OUT.

program_body

The declarations and SPL statements that comprise the body of the function or

procedure.

func_name

The name of the function to create.

rettype

The return data type, which may be any of the types listed for argtype. As for

argtype, a length must not be specified for rettype.

Examples

Create the object type body for object type emp_obj_typ given in the example for the

CREATE TYPE command.

CREATE OR REPLACE TYPE BODY emp_obj_typ AS

 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);

 DBMS_OUTPUT.PUT_LINE('Name : ' || ename);

 DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);

 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||

 addr.state || ' ' || LPAD(addr.zip,5,'0'));

 END;

END;

Create the object type body for object type dept_obj_typ given in the example for the

CREATE TYPE command.

CREATE OR REPLACE TYPE BODY dept_obj_typ AS

 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2

 IS

 v_dname VARCHAR2(14);

 BEGIN

 CASE p_deptno

 WHEN 10 THEN v_dname := 'ACCOUNING';

 WHEN 20 THEN v_dname := 'RESEARCH';

 WHEN 30 THEN v_dname := 'SALES';

 WHEN 40 THEN v_dname := 'OPERATIONS';

 ELSE v_dname := 'UNKNOWN';

 END CASE;

 RETURN v_dname;

 END;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

151

 MEMBER PROCEDURE display_dept

 IS

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);

 DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||

 dept_obj_typ.get_dname(SELF.deptno));

 END;

END;

See Also

CREATE TYPE, DROP TYPE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

152

2.3.38 CREATE USER

Name

CREATE USER -- define a new database user account

Synopsis

CREATE USER name [IDENTIFIED BY password]

Description

CREATE USER adds a new user to an Advanced Server database cluster. You must be a

database superuser to use this command.

When the CREATE USER command is given, a schema will also be created with the same

name as the new user and owned by the new user. Objects with unqualified names

created by this user will be created in this schema.

Parameters

name

The name of the user.

password

The user’s password. The password can be changed later using ALTER USER.

Notes

The maximum length allowed for the user name and password is 63 characters.

Examples

Create a user named, john.

CREATE USER john IDENTIFIED BY abc;

See Also

DROP USER

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

153

2.3.39 CREATE USER|ROLE… PROFILE MANAGEMENT
CLAUSES

Name

CREATE USER|ROLE

Synopsis

CREATE USER|ROLE name [[WITH] option […]]

where option can be the following compatible clauses:

 PROFILE profile_name

 | ACCOUNT {LOCK|UNLOCK}

 | PASSWORD EXPIRE [AT 'timestamp']

or option can be the following non-compatible clauses:

 | LOCK TIME 'timestamp'

For information about the administrative clauses of the CREATE USER or CREATE ROLE

command that are supported by Advanced Server, please see the PostgreSQL core

documentation available at:

https://www.postgresql.org/docs/10/static/sql-commands.html

Description

CREATE ROLE|USER… PROFILE adds a new role with an associated profile to an

Advanced Server database cluster.

Roles created with the CREATE USER command are (by default) login roles. Roles

created with the CREATE ROLE command are (by default) not login roles. To create a

login account with the CREATE ROLE command, you must include the LOGIN keyword.

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile

management; these clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined

profile with a role, or to change which pre-defined profile is associated with a

user.

https://www.postgresql.org/docs/10/static/sql-commands.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

154

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the

user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the

role at the specified time, and unlock the role at the time indicated by the

PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK

TIME is used with the ACCOUNT LOCK clause, the role can only be unlocked by a

database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the optional AT 'timestamp'

keywords to specify a date/time when the password associated with the role will

expire. If you omit the AT 'timestamp' keywords, the password will expire

immediately.

Each login role may only have one profile. To discover the profile that is currently

associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role.

profile_name

The name of the profile associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value

for timestamp, enclose the value in single-quotes.

Examples

The following example uses CREATE USER to create a login role named john who is

associated with the acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY “1safepwd”;

john can log in to the server, using the password 1safepwd.

The following example uses CREATE ROLE to create a login role named john who is

associated with the acctg_profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD “1safepwd”;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

155

john can log in to the server, using the password 1safepwd.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

156

2.3.40 CREATE VIEW

Name

CREATE VIEW -- define a new view

Synopsis

CREATE [OR REPLACE] VIEW name [(column_name [, ...])]

 AS query

Description

CREATE VIEW defines a view of a query. The view is not physically materialized.

Instead, the query is run every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it

is replaced.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the

view is created in the specified schema. Otherwise it is created in the current schema. The

view name must be distinct from the name of any other view, table, sequence, or index in

the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the

column names are deduced from the query.

query

A query (that is, a SELECT statement) which will provide the columns and rows

of the view.

Refer to SELECT for more information about valid queries.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

157

Notes

Currently, views are read only - the system will not allow an insert, update, or delete on a

view. You can get the effect of an updatable view by creating rules that rewrite inserts,

etc. on the view into appropriate actions on other tables.

Access to tables referenced in the view is determined by permissions of the view owner.

However, functions called in the view are treated the same as if they had been called

directly from the query using the view. Therefore the user of a view must have

permissions to call all functions used by the view.

Examples

Create a view consisting of all employees in department 30:

CREATE VIEW dept_30 AS SELECT * FROM emp WHERE deptno = 30;

See Also

DROP VIEW

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

158

2.3.41 DELETE

Name

DELETE -- delete rows of a table

Synopsis

DELETE [optimizer_hint] FROM table[@dblink]

 [WHERE condition]

 [RETURNING return_expression [, ...]

 { INTO { record | variable [, ...] }

 | BULK COLLECT INTO collection [, ...] }]

Description

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE

clause is absent, the effect is to delete all rows in the table. The result is a valid, but

empty table.

Note: The TRUNCATE command provides a faster mechanism to remove all rows from a

table.

The RETURNING INTO { record | variable [, ...] } clause may only be

specified if the DELETE command is used within an SPL program. In addition the result

set of the DELETE command must not include more than one row, otherwise an exception

is thrown. If the result set is empty, then the contents of the target record or variables are

set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be

specified if the DELETE command is used within an SPL program. If more than one

collection is specified as the target of the BULK COLLECT INTO clause, then each

collection must consist of a single, scalar field – i.e., collection must not be a

record. The result set of the DELETE command may contain none, one, or more rows.

return_expression evaluated for each row of the result set, becomes an element in

collection starting with the first element. Any existing rows in collection are

deleted. If the result set is empty, then collection will be empty.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT

privilege for any table whose values are read in the condition.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

159

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan.

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the CREATE DATABASE

LINK command for information on database links.

condition

A value expression that returns a value of type BOOLEAN that determines the rows

which are to be deleted.

return_expression

An expression that may include one or more columns from table. If a column

name from table is specified in return_expression, the value substituted for

the column when return_expression is evaluated is the value from the

deleted row.

record

A record whose field the evaluated return_expression is to be assigned. The

first return_expression is assigned to the first field in record, the second

return_expression is assigned to the second field in record, etc. The

number of fields in record must exactly match the number of expressions and

the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If

more than one return_expression and variable are specified, the first

return_expression is assigned to the first variable, the second

return_expression is assigned to the second variable, etc. The number of

variables specified following the INTO keyword must exactly match the number

of expressions following the RETURNING keyword and the variables must be

type-compatible with their assigned expressions.

collection

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

160

A collection in which an element is created from the evaluated

return_expression. There can be either a single collection which may be a

collection of a single field or a collection of a record type, or there may be more

than one collection in which case each collection must consist of a single field.

The number of return expressions must match in number and order the number of

fields in all specified collections. Each corresponding return_expression and

collection field must be type-compatible.

Examples

Delete all rows for employee 7900 from the jobhist table:

DELETE FROM jobhist WHERE empno = 7900;

Clear the table jobhist:

DELETE FROM jobhist;

See Also

TRUNCATE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

161

2.3.42 DROP DATABASE LINK

Name

DROP DATABASE LINK -- remove a database link

Synopsis

DROP [PUBLIC] DATABASE LINK name

Description

DROP DATABASE LINK drops existing database links. To execute this command you

must be a superuser or the owner of the database link.

Parameters

name

The name of a database link to be removed.

PUBLIC

Indicates that name is a public database link.

Examples

Remove the public database link named, oralink:

DROP PUBLIC DATABASE LINK oralink;

Remove the private database link named, edblink:

DROP DATABASE LINK edblink;

See Also

CREATE DATABASE LINK

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

162

2.3.43 DROP DIRECTORY

Name

DROP DIRECTORY -- remove a directory alias for a file system directory path

Synopsis

DROP DIRECTORY name

Description

DROP DIRECTORY drops an existing alias for a file system directory path that was

created with the CREATE DIRECTORY command. To execute this command you must be

a superuser.

When a directory alias is deleted, the corresponding physical file system directory is not

affected. The file system directory must be deleted using the appropriate operating

system commands.

Parameters

name

The name of a directory alias to be removed.

Examples

Remove the directory alias named empdir:

DROP DIRECTORY empdir;

See Also

CREATE DIRECTORY

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

163

2.3.44 DROP FUNCTION

Name

DROP FUNCTION -- remove a function

Synopsis

DROP FUNCTION name

 [([[argmode] [argname] argtype] [, ...])]

Description

DROP FUNCTION removes the definition of an existing function. To execute this

command you must be a superuser or the owner of the function. All input (IN, IN OUT)

argument data types to the function must be specified if there is at least one input

argument. (This requirement is not compatible with Oracle databases. In Oracle, only the

function name is specified. Advanced Server allows overloading of function names, so

the function signature given by the input argument data types is required in the Advanced

Server DROP FUNCTION command.)

Parameters

name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: IN, IN OUT, or OUT. If omitted, the default is IN. Note

that DROP FUNCTION does not actually pay any attention to OUT arguments, since

only the input arguments are needed to determine the function’s identity. So it is

sufficient to list only the IN and IN OUT arguments. (Specification of argmode is

not compatible with Oracle databases and applies only to Advanced Server.)

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any

attention to argument names, since only the argument data types are needed to

determine the function’s identity. (Specification of argname is not compatible

with Oracle databases and applies only to Advanced Server.)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

164

argtype

The data type of an argument of the function. (Specification of argtype is not

compatible with Oracle databases and applies only to Advanced Server.)

Examples

The following command removes the emp_comp function.

DROP FUNCTION emp_comp(NUMBER, NUMBER);

See Also

CREATE FUNCTION

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

165

2.3.45 DROP INDEX

Name

DROP INDEX -- remove an index

Synopsis

DROP INDEX name

Description

DROP INDEX drops an existing index from the database system. To execute this

command you must be a superuser or the owner of the index. If any objects depend on the

index, an error will be given and the index will not be dropped.

Parameters

name

The name (optionally schema-qualified) of an index to remove.

Examples

This command will remove the index, name_idx:

DROP INDEX name_idx;

See Also

ALTER INDEX, CREATE INDEX

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

166

2.3.46 DROP PACKAGE

Name

DROP PACKAGE -- remove a package

Synopsis

DROP PACKAGE [BODY] name

Description

DROP PACKAGE drops an existing package. To execute this command you must be a

superuser or the owner of the package. If BODY is specified, only the package body is

removed – the package specification is not dropped. If BODY is omitted, both the package

specification and body are removed.

Parameters

name

The name (optionally schema-qualified) of a package to remove.

Examples

This command will remove the emp_admin package:

DROP PACKAGE emp_admin;

See Also

CREATE PACKAGE, CREATE PACKAGE BODY

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

167

2.3.47 DROP PROCEDURE

Name

DROP PROCEDURE -- remove a procedure

Synopsis

DROP PROCEDURE name

Description

DROP PROCEDURE removes the definition of an existing procedure. To execute this

command you must be a superuser or the owner of the procedure.

Parameters

name

The name (optionally schema-qualified) of an existing procedure.

Examples

The following command removes the select_emp procedure.

DROP PROCEDURE select_emp;

See Also

CREATE PROCEDURE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

168

2.3.48 DROP PROFILE

Name

DROP PROFILE – drop a user-defined profile

Synopsis

DROP PROFILE [IF EXISTS] profile_name [CASCADE | RESTRICT];

Description

Include the IF EXISTS clause to instruct the server to not throw an error if the specified

profile does not exist. The server will issue a notice if the profile does not exist.

Include the optional CASCADE clause to reassign any users that are currently associated

with the profile to the default profile, and then drop the profile. Include the optional

RESTRICT clause to instruct the server to not drop any profile that is associated with a

role. This is the default behavior.

Parameters

profile_name

The name of the profile being dropped.

Example

The following example drops a profile named acctg_profile:

DROP PROFILE acctg_profile CASCADE;

The command first re-associates any roles associated with the acctg_profile profile

with the default profile, and then drops the acctg_profile profile.

The following example drops a profile named acctg_profile:

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server to not drop acctg_profile

if there are any roles associated with the profile.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

169

2.3.49 DROP QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the DROP QUEUE

SQL command. This syntax can be used in association with DBMS_AQADM.

Name

DROP QUEUE -- drop an existing queue.

Synopsis

Use DROP QUEUE to drop an existing queue:

DROP QUEUE [IF EXISTS] name

Description

DROP QUEUE allows a superuser or a user with the aq_administrator_role

privilege to drop an existing queue.

Parameters

name

The name (possibly schema-qualified) of the queue that is being dropped.

IF EXISTS

Include the IF EXISTS clause to instruct the server to not return an error if the

queue does not exist. The server will issue a notice.

Examples

The following example drops a queue named work_order:

DROP QUEUE work_order;

See Also

CREATE QUEUE, ALTER QUEUE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

170

2.3.50 DROP QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the DROP QUEUE

TABLE SQL command. This syntax can be used in association with DBMS_AQADM.

Name

DROP QUEUE TABLE-- drop a queue table.

Synopsis

Use DROP QUEUE TABLE to delete a queue table:

DROP QUEUE TABLE [IF EXISTS] name [, ...]
[CASCADE | RESTRICT]

Description

DROP QUEUE TABLE allows a superuser or a user with the aq_administrator_role

privilege to delete a queue table.

Parameters

name

The name (possibly schema-qualified) of the queue table that will be deleted.

IF EXISTS

Include the IF EXISTS clause to instruct the server to not return an error if the

queue table does not exist. The server will issue a notice.

CASCADE

Include the CASCADE keyword to automatically delete any objects that depend

on the queue table.

RESTRICT

Include the RESTRICT keyword to instruct the server to refuse to delete the

queue table if any objects depend on it. This is the default.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

171

Example

The following example deletes a queue table named work_order_table and any

objects that depend on it:

DROP QUEUE TABLE work_order_table CASCADE;

See Also

CREATE QUEUE TABLE, ALTER QUEUE TABLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

172

2.3.51 DROP SYNONYM

Name

DROP SYNONYM -- remove a synonym

Synopsis

DROP [PUBLIC] SYNONYM [schema.]syn_name

Description

DROP SYNONYM deletes existing synonyms. To execute this command you must be a

superuser or the owner of the synonym, and have USAGE privileges on the schema in

which the synonym resides.

Parameters:

syn_name

syn_name is the name of the synonym. A synonym name must be unique within

a schema.

schema

schema specifies the name of the schema that the synonym resides in.

Like any other object that can be schema-qualified, you may have two synonyms with the

same name in your search path. To disambiguate the name of the synonym that you are

dropping, include a schema name. Unless a synonym is schema qualified in the DROP

SYNONYM command, Advanced Server deletes the first instance of the synonym it finds in

your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the

public schema. The DROP PUBLIC SYNONYM command, compatible with Oracle

databases, drops a synonym that resides in the public schema:

DROP PUBLIC SYNONYM syn_name;

The following example drops the synonym, personnel:

DROP SYNONYM personnel;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

173

2.3.52 DROP ROLE

Name

DROP ROLE -- remove a database role

Synopsis

DROP ROLE name [CASCADE]

Description

DROP ROLE removes the specified role. To drop a superuser role, you must be a

superuser yourself; to drop non-superuser roles, you must have CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database of the cluster; an error

will be raised if so. Before dropping the role, you must drop all the objects it owns (or

reassign their ownership) and revoke any privileges the role has been granted.

It is not necessary to remove role memberships involving the role; DROP ROLE

automatically revokes any memberships of the target role in other roles, and of other

roles in the target role. The other roles are not dropped nor otherwise affected.

Alternatively, if the only objects owned by the role belong within a schema that is owned

by the role and has the same name as the role, the CASCADE option can be specified. In

this case the issuer of the DROP ROLE name CASCADE command must be a superuser

and the named role, the schema, and all objects within the schema will be deleted.

Parameters

name

The name of the role to remove.

CASCADE

If specified, also drops the schema owned by, and with the same name as the role

(and all objects owned by the role belonging to the schema) as long as no other

dependencies on the role or the schema exist.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

174

Examples

To drop a role:

DROP ROLE admins;

See Also

CREATE ROLE, SET ROLE, GRANT, REVOKE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

175

2.3.53 DROP SEQUENCE

Name

DROP SEQUENCE -- remove a sequence

Synopsis

DROP SEQUENCE name [, ...]

Description

DROP SEQUENCE removes sequence number generators. To execute this command you

must be a superuser or the owner of the sequence.

Parameters

name

The name (optionally schema-qualified) of a sequence.

Examples

To remove the sequence, serial:

DROP SEQUENCE serial;

See Also

ALTER SEQUENCE, CREATE SEQUENCE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

176

2.3.54 DROP TABLE

Name

DROP TABLE -- remove a table

Synopsis

DROP TABLE name [CASCADE | RESTRICT | CASCADE CONSTRAINTS]

Description

DROP TABLE removes tables from the database. Only its owner may destroy a table. To

empty a table of rows, without destroying the table, use DELETE. DROP TABLE always

removes any indexes, rules, triggers, and constraints that exist for the target table.

Parameters

name

The name (optionally schema-qualified) of the table to drop.

Include the RESTRICT keyword to specify that the server should refuse to drop the table

if any objects depend on it. This is the default behavior; the DROP TABLE command will

report an error if any objects depend on the table.

Include the CASCADE clause to drop any objects that depend on the table.

Include the CASCADE CONSTRAINTS clause to specify that Advanced Server should drop

any dependent constraints (excluding other object types) on the specified table.

Examples

The following command drops a table named emp that has no dependencies:

DROP TABLE emp;

The outcome of a DROP TABLE command will vary depending on whether the table has

any dependencies - you can control the outcome by specifying a drop behavior. For

example, if you create two tables, orders and items, where the items table is

dependent on the orders table:

CREATE TABLE orders

 (order_id int PRIMARY KEY, order_date date, …);

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

177

CREATE TABLE items

 (order_id REFERENCES orders, quantity int, …);

Advanced Server will perform one of the following actions when dropping the orders

table, depending on the drop behavior that you specify:

 If you specify DROP TABLE orders RESTRICT, Advanced Server will report an

error.

 If you specify DROP TABLE orders CASCADE, Advanced Server will drop the

orders table and the items table.

 If you specify DROP TABLE orders CASCADE CONSTRAINTS, Advanced

Server will drop the orders table and remove the foreign key specification from

the items table, but not drop the items table.

See Also

ALTER TABLE, CREATE TABLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

178

2.3.55 DROP TABLESPACE

Name

DROP TABLESPACE -- remove a tablespace

Synopsis

DROP TABLESPACE tablespacename

Description

DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be

empty of all database objects before it can be dropped. It is possible that objects in other

databases may still reside in the tablespace even if no objects in the current database are

using the tablespace.

Parameters

tablespacename

The name of a tablespace.

Examples

To remove tablespace employee_space from the system:

DROP TABLESPACE employee_space;

See Also

ALTER TABLESPACE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

179

2.3.56 DROP TRIGGER

Name

DROP TRIGGER -- remove a trigger

Synopsis

DROP TRIGGER name

Description

DROP TRIGGER removes a trigger from its associated table. The command must be run

by a superuser or the owner of the table on which the trigger is defined.

Parameters

name

The name of a trigger to remove.

Examples

Remove trigger emp_sal_trig:

DROP TRIGGER emp_sal_trig;

See Also

CREATE TRIGGER

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

180

2.3.57 DROP TYPE

Name

DROP TYPE -- remove a type definition

Synopsis

DROP TYPE [BODY] name

Description

DROP TYPE removes the type definition. To execute this command you must be a

superuser or the owner of the type.

The optional BODY qualifier applies only to object type definitions, not to collection types

nor to composite types. If BODY is specified, only the object type body is removed – the

object type specification is not dropped. If BODY is omitted, both the object type

specification and body are removed.

The type will not be deleted if there are other database objects dependent upon the named

type.

Parameters

name

The name of a type definition to remove.

Examples

Drop object type addr_obj_typ.

DROP TYPE addr_obj_typ;

Drop nested table type budget_tbl_typ.

DROP TYPE budget_tbl_typ;

See Also

CREATE TYPE, CREATE TYPE BODY

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

181

2.3.58 DROP USER

Name

DROP USER -- remove a database user account

Synopsis

DROP USER name [CASCADE]

Description

DROP USER removes the specified user. To drop a superuser, you must be a superuser

yourself; to drop non-superusers, you must have CREATEROLE privilege.

A user cannot be removed if it is still referenced in any database of the cluster; an error

will be raised if so. Before dropping the user, you must drop all the objects it owns (or

reassign their ownership) and revoke any privileges the user has been granted.

However, it is not necessary to remove role memberships involving the user; DROP USER

automatically revokes any memberships of the target user in other roles, and of other

roles in the target user. The other roles are not dropped nor otherwise affected.

Alternatively, if the only objects owned by the user belong within a schema that is owned

by the user and has the same name as the user, the CASCADE option can be specified. In

this case the issuer of the DROP USER name CASCADE command must be a superuser

and the named user, the schema, and all objects within the schema will be deleted.

Parameters

name

The name of the user to remove.

CASCADE

If specified, also drops the schema owned by, and with the same name as the user

(and all objects owned by the user belonging to the schema) as long as no other

dependencies on the user or the schema exist.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

182

Examples

To drop a user account who owns no objects nor has been granted any privileges on other

objects:

DROP USER john;

To drop user account, john, who has not been granted any privileges on any objects, and

does not own any objects outside of a schema named, john, that is owned by user, john:

DROP USER john CASCADE;

See Also

CREATE USER, ALTER USER

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

183

2.3.59 DROP VIEW

Name

DROP VIEW -- remove a view

Synopsis

DROP VIEW name

Description

DROP VIEW drops an existing view. To execute this command you must be a database

superuser or the owner of the view. The named view will not be deleted if other objects

are dependent upon this view (such as a view of a view).

The form of the DROP VIEW command compatible with Oracle does not support a

CASCADE clause; to drop a view and it's dependencies, use the PostgreSQL-compatible

form of the DROP VIEW command. For more information, see the PostgreSQL core

documentation at:

https://www.postgresql.org/docs/10/static/sql-dropview.html

Parameters

name

The name (optionally schema-qualified) of the view to remove.

Examples

This command will remove the view called dept_30:

DROP VIEW dept_30;

See Also

CREATE VIEW

https://www.postgresql.org/docs/10/static/sql-dropview.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

184

2.3.60 EXEC

Name

EXEC

Synopsis

EXEC function_name ['('[argument_list]')']

Description

EXECUTE .

Parameters

procedure_name

procedure_name is the (optionally schema-qualified) function name.

argument_list

argument_list specifies a comma-separated list of arguments required by the

function. Note that each member of argument_list corresponds to a formal

argument expected by the function. Each formal argument may be an IN

parameter, an OUT parameter, or an INOUT parameter.

Examples

The EXEC statement may take one of several forms, depending on the arguments required

by the function:

EXEC update_balance;

EXEC update_balance();

EXEC update_balance(1,2,3);

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

185

2.3.61 GRANT

Name

GRANT -- define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }

 [,...] | ALL [PRIVILEGES] }

 ON tablename

 TO { username | groupname | PUBLIC } [, ...]

 [WITH GRANT OPTION]

GRANT { { INSERT | UPDATE | REFERENCES } (column [, ...]) }

 [, ...]

 ON tablename

 TO { username | groupname | PUBLIC } [, ...]

 [WITH GRANT OPTION]

GRANT { SELECT | ALL [PRIVILEGES] }

 ON sequencename

 TO { username | groupname | PUBLIC } [, ...]

 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }

 ON FUNCTION progname

 ([[argmode] [argname] argtype] [, ...])

 TO { username | groupname | PUBLIC } [, ...]

 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }

 ON PROCEDURE progname

 [([[argmode] [argname] argtype] [, ...])]

 TO { username | groupname | PUBLIC } [, ...]

 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }

 ON PACKAGE packagename

 TO { username | groupname | PUBLIC } [, ...]

 [WITH GRANT OPTION]

GRANT role [, ...]

 TO { username | groupname | PUBLIC } [, ...]

 [WITH ADMIN OPTION]

GRANT { CONNECT | RESOURCE | DBA } [, ...]

 TO { username | groupname } [, ...]

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

186

 [WITH ADMIN OPTION]

GRANT CREATE [PUBLIC] DATABASE LINK

 TO { username | groupname }

GRANT DROP PUBLIC DATABASE LINK

 TO { username | groupname }

GRANT EXEMPT ACCESS POLICY

 TO { username | groupname }

Description

The GRANT command has three basic variants: one that grants privileges on a database

object (table, view, sequence, or program), one that grants membership in a role, and one

that grants system privileges. These variants are similar in many ways, but they are

different enough to be described separately.

In Advanced Server, the concept of users and groups has been unified into a single type

of entity called a role. In this context, a user is a role that has the LOGIN attribute – the

role may be used to create a session and connect to an application. A group is a role that

does not have the LOGIN attribute – the role may not be used to create a session or

connect to an application.

A role may be a member of one or more other roles, so the traditional concept of users

belonging to groups is still valid. However, with the generalization of users and groups,

users may “belong” to users, groups may “belong” to groups, and groups may “belong”

to users, forming a general multi-level hierarchy of roles. User names and group names

share the same namespace therefore it is not necessary to distinguish whether a grantee is

a user or a group in the GRANT command.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

187

2.3.62 GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to a

role. These privileges are added to those already granted, if any.

The key word PUBLIC indicates that the privileges are to be granted to all roles,

including those that may be created later. PUBLIC may be thought of as an implicitly

defined group that always includes all roles. Any particular role will have the sum of

privileges granted directly to it, privileges granted to any role it is presently a member of,

and privileges granted to PUBLIC.

If the WITH GRANT OPTION is specified, the recipient of the privilege may in turn grant

it to others. Without a grant option, the recipient cannot do that. Grant options cannot be

granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the user that

created it), as the owner has all privileges by default. (The owner could, however, choose

to revoke some of his own privileges for safety.) The right to drop an object or to alter its

definition in any way is not described by a grantable privilege; it is inherent in the owner,

and cannot be granted or revoked. The owner implicitly has all grant options for the

object as well.

Depending on the type of object, the initial default privileges may include granting some

privileges to PUBLIC. The default is no public access for tables and EXECUTE privilege

for functions, procedures, and packages. The object owner may of course revoke these

privileges. (For maximum security, issue the REVOKE in the same transaction that creates

the object; then there is no window in which another user may use the object.)

The possible privileges are:

SELECT

Allows SELECT from any column of the specified table, view, or sequence. For

sequences, this privilege also allows the use of the currval function.

INSERT

Allows INSERT of a new row into the specified table.

UPDATE

Allows UPDATE of a column of the specified table. SELECT ... FOR UPDATE

also requires this privilege (besides the SELECT privilege).

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

188

DELETE

Allows DELETE of a row from the specified table.

REFERENCES

To create a foreign key constraint, it is necessary to have this privilege on both the

referencing and referenced tables.

EXECUTE

Allows the use of the specified package, procedure, or function. When applied to

a package, allows the use of all of the package’s public procedures, public

functions, public variables, records, cursors and other public objects and object

types. This is the only type of privilege that is applicable to functions, procedures,

and packages.

The Advanced Server syntax for granting the EXECUTE privilege is not fully

compatible with Oracle databases. Advanced Server requires qualification of the

program name by one of the keywords, FUNCTION, PROCEDURE, or PACKAGE

whereas these keywords must be omitted in Oracle. For functions, Advanced

Server requires all input (IN, IN OUT) argument data types after the function

name (including an empty parenthesis if there are no function arguments). For

procedures, all input argument data types must be specified if the procedure has

one or more input arguments. In Oracle, function and procedure signatures must

be omitted. This is due to the fact that all programs share the same namespace in

Oracle, whereas functions, procedures, and packages have their own individual

namespace in Advanced Server to allow program name overloading to a certain

extent.

ALL PRIVILEGES

Grant all of the available privileges at once.

The privileges required by other commands are listed on the reference page of the

respective command.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

189

2.3.63 GRANT on Roles

This variant of the GRANT command grants membership in a role to one or more other

roles. Membership in a role is significant because it conveys the privileges granted to a

role to each of its members.

If the WITH ADMIN OPTION is specified, the member may in turn grant membership in

the role to others, and revoke membership in the role as well. Without the admin option,

ordinary users cannot do that.

Database superusers can grant or revoke membership in any role to anyone. Roles having

the CREATEROLE privilege can grant or revoke membership in any role that is not a

superuser.

There are three pre-defined roles that have the following meanings:

CONNECT

Granting the CONNECT role is equivalent to giving the grantee the LOGIN

privilege. The grantor must have the CREATEROLE privilege.

RESOURCE

Granting the RESOURCE role is equivalent to granting the CREATE and USAGE

privileges on a schema that has the same name as the grantee. This schema must

exist before the grant is given. The grantor must have the privilege to grant

CREATE or USAGE privileges on this schema to the grantee.

DBA

Granting the DBA role is equivalent to making the grantee a superuser. The grantor

must be a superuser.

Notes

The REVOKE command is used to revoke access privileges.

When a non-owner of an object attempts to GRANT privileges on the object, the command

will fail outright if the user has no privileges whatsoever on the object. As long as a

privilege is available, the command will proceed, but it will grant only those privileges

for which the user has grant options. The GRANT ALL PRIVILEGES forms will issue a

warning message if no grant options are held, while the other forms will issue a warning

if grant options for any of the privileges specifically named in the command are not held.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

190

(In principle these statements apply to the object owner as well, but since the owner is

always treated as holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object

privilege settings. This is comparable to the rights of root in a Unix system. As with

root, it’s unwise to operate as a superuser except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed

as though it were issued by the owner of the affected object. In particular, privileges

granted via such a command will appear to have been granted by the object owner. (For

role membership, the membership appears to have been granted by the containing role

itself.)

GRANT and REVOKE can also be done by a role that is not the owner of the affected

object, but is a member of the role that owns the object, or is a member of a role that

holds privileges WITH GRANT OPTION on the object. In this case the privileges will be

recorded as having been granted by the role that actually owns the object or holds the

privileges WITH GRANT OPTION.

For example, if table t1 is owned by role g1, of which role u1 is a member, then

u1 can grant privileges on t1 to u2, but those privileges will appear to have been

granted directly by g1. Any other member of role g1 could revoke them later.

If the role executing GRANT holds the required privileges indirectly via more than one

role membership path, it is unspecified which containing role will be recorded as having

done the grant. In such cases it is best practice to use SET ROLE to become the specific

role you want to do the GRANT as.

Currently, Advanced Server does not support granting or revoking privileges for

individual columns of a table. One possible workaround is to create a view having just

the desired columns and then grant privileges to that view.

Examples

Grant insert privilege to all users on table emp:

GRANT INSERT ON emp TO PUBLIC;

Grant all available privileges to user mary on view salesemp:

GRANT ALL PRIVILEGES ON salesemp TO mary;

Note that while the above will indeed grant all privileges if executed by a superuser or the

owner of emp, when executed by someone else it will only grant those permissions for

which the someone else has grant options.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

191

Grant membership in role admins to user joe:

GRANT admins TO joe;

Grant CONNECT privilege to user joe:

GRANT CONNECT TO joe;

See Also

REVOKE, SET ROLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

192

2.3.64 GRANT on System Privileges

This variant of the GRANT command gives a role the ability to perform certain system

operations within a database. System privileges relate to the ability to create or delete

certain database objects that are not necessarily within the confines of one schema. Only

database superusers can grant system privileges.

CREATE [PUBLIC] DATABASE LINK

The CREATE [PUBLIC] DATABASE LINK privilege allows the specified role to create a

database link. Include the PUBLIC keyword to allow the role to create public database

links; omit the PUBLIC keyword to allow the specified role to create private database

links.

DROP PUBLIC DATABASE LINK

The DROP PUBLIC DATABASE LINK privilege allows a role to drop a public database

link. System privileges are not required to drop a private database link. A private

database link may be dropped by the link owner or a database superuser.

EXEMPT ACCESS POLICY

The EXEMPT ACCESS POLICY privilege allows a role to execute a SQL command

without invoking any policy function that may be associated with the target database

object. That is, the role is exempt from all security policies in the database.

The EXEMPT ACCESS POLICY privilege is not inheritable by membership to a role that

has the EXEMPT ACCESS POLICY privilege. For example, the following sequence of

GRANT commands does not result in user joe obtaining the EXEMPT ACCESS POLICY

privilege even though joe is granted membership to the enterprisedb role, which has

been granted the EXEMPT ACCESS POLICY privilege:

GRANT EXEMPT ACCESS POLICY TO enterprisedb;

GRANT enterprisedb TO joe;

The rolpolicyexempt column of the system catalog table pg_authid is set to true

if a role has the EXEMPT ACCESS POLICY privilege.

Examples

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

193

Grant CREATE PUBLIC DATABASE LINK privilege to user joe:

GRANT CREATE PUBLIC DATABASE LINK TO joe;

Grant DROP PUBLIC DATABASE LINK privilege to user joe:

GRANT DROP PUBLIC DATABASE LINK TO joe;

Grant the EXEMPT ACCESS POLICY privilege to user joe:

GRANT EXEMPT ACCESS POLICY TO joe;

Using the ALTER ROLE Command to Assign System Privileges

The Advanced Server ALTER ROLE command also supports syntax that you can use to

assign:

 the privilege required to create a public or private database link.

 the privilege required to drop a public database link.

 the EXEMPT ACCESS POLICY privilege.

The ALTER ROLE syntax is functionally equivalent to the respective commands

compatible with Oracle databases.

See Also

REVOKE, ALTER ROLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

194

2.3.65 INSERT

Name

INSERT -- create new rows in a table

Synopsis

INSERT INTO table[@dblink] [(column [, ...])]

 { VALUES ({ expression | DEFAULT } [, ...])

 [RETURNING return_expression [, ...]

 { INTO { record | variable [, ...] }

 | BULK COLLECT INTO collection [, ...] }]

 | query }

Description

INSERT allows you to insert new rows into a table. You can insert a single row at a time

or several rows as a result of a query.

The columns in the target list may be listed in any order. Each column not present in the

target list will be inserted using a default value, either its declared default value or null.

If the expression for each column is not of the correct data type, automatic type

conversion will be attempted.

The RETURNING INTO { record | variable [, ...] } clause may only be

specified when the INSERT command is used within an SPL program and only when the

VALUES clause is used.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be

specified if the INSERT command is used within an SPL program. If more than one

collection is specified as the target of the BULK COLLECT INTO clause, then each

collection must consist of a single, scalar field – i.e., collection must not be a

record. return_expression evaluated for each inserted row, becomes an element in

collection starting with the first element. Any existing rows in collection are

deleted. If the result set is empty, then collection will be empty.

You must have INSERT privilege to a table in order to insert into it. If you use the query

clause to insert rows from a query, you also need to have SELECT privilege on any table

used in the query.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

195

Parameters

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the CREATE DATABASE

LINK command for information on database links.

column

The name of a column in table.

expression

An expression or value to assign to column.

DEFAULT

This column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the

SELECT command for a description of the syntax.

return_expression

An expression that may include one or more columns from table. If a column

name from table is specified in return_expression, the value substituted for

the column when return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in

the INSERT command, then the assigned value is used in the evaluation of

return_expression.

If the column specified in return_expression is not assigned a value

in the INSERT command and there is no default value for the column in

the table’s column definition, then null is used in the evaluation of

return_expression.

If the column specified in return_expression is not assigned a value

in the INSERT command and there is a default value for the column in the

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

196

table’s column definition, then the default value is used in the evaluation

of return_expression.

record

A record whose field the evaluated return_expression is to be assigned. The

first return_expression is assigned to the first field in record, the second

return_expression is assigned to the second field in record, etc. The

number of fields in record must exactly match the number of expressions and

the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If

more than one return_expression and variable are specified, the first

return_expression is assigned to the first variable, the second

return_expression is assigned to the second variable, etc. The number of

variables specified following the INTO keyword must exactly match the number

of expressions following the RETURNING keyword and the variables must be

type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated

return_expression. There can be either a single collection which may be a

collection of a single field or a collection of a record type, or there may be more

than one collection in which case each collection must consist of a single field.

The number of return expressions must match in number and order the number of

fields in all specified collections. Each corresponding return_expression and

collection field must be type-compatible.

Examples

Insert a single row into table emp:

INSERT INTO emp VALUES (8021,'JOHN','SALESMAN',7698,'22-FEB-07',1250,500,30);

In this second example, the column, comm, is omitted and therefore it will have the

default value of null:

INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, deptno)

 VALUES (8022,'PETERS','CLERK',7698,'03-DEC-06',950,30);

The third example uses the DEFAULT clause for the hiredate and comm columns rather

than specifying a value:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

197

INSERT INTO emp VALUES (8023,'FORD','ANALYST',7566,NULL,3000,NULL,20);

This example creates a table for the department names and then inserts into the table by

selecting from the dname column of the dept table:

CREATE TABLE deptnames (

 deptname VARCHAR2(14)

);

INSERT INTO deptnames SELECT dname FROM dept;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

198

2.3.66 LOCK

Name

LOCK -- lock a table

Synopsis

LOCK TABLE name [, ...] IN lockmode MODE [NOWAIT]

where lockmode is one of:

ROW SHARE | ROW EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE |

EXCLUSIVE

Description

LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to

be released. If NOWAIT is specified, LOCK TABLE does not wait to acquire the desired

lock: if it cannot be acquired immediately, the command is aborted and an error is

emitted. Once obtained, the lock is held for the remainder of the current transaction.

(There is no UNLOCK TABLE command; locks are always released at transaction end.)

When acquiring locks automatically for commands that reference tables, Advanced

Server always uses the least restrictive lock mode possible. LOCK TABLE provides for

cases when you might need more restrictive locking. For example, suppose an application

runs a transaction at the isolation level read committed and needs to ensure that data in a

table remains stable for the duration of the transaction. To achieve this you could obtain

SHARE lock mode over the table before querying. This will prevent concurrent data

changes and ensure subsequent reads of the table see a stable view of committed data,

because SHARE lock mode conflicts with the ROW EXCLUSIVE lock acquired by writers,

and your LOCK TABLE name IN SHARE MODE statement will wait until any concurrent

holders of ROW EXCLUSIVE mode locks commit or roll back. Thus, once you obtain the

lock, there are no uncommitted writes outstanding; furthermore none can begin until you

release the lock.

To achieve a similar effect when running a transaction at the isolation level serializable,

you have to execute the LOCK TABLE statement before executing any data modification

statement. A serializable transaction’s view of data will be frozen when its first data

modification statement begins. A later LOCK TABLE will still prevent concurrent writes -

but it won’t ensure that what the transaction reads corresponds to the latest committed

values.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

199

If a transaction of this sort is going to change the data in the table, then it should use

SHARE ROW EXCLUSIVE lock mode instead of SHARE mode.

This ensures that only one transaction of this type runs at a time. Without this, a deadlock

is possible: two transactions might both acquire SHARE mode, and then be unable to also

acquire ROW EXCLUSIVE mode to actually perform their updates. (Note that a

transaction’s own locks never conflict, so a transaction can acquire ROW EXCLUSIVE

mode when it holds SHARE mode - but not if anyone else holds SHARE mode.) To avoid

deadlocks, make sure all transactions acquire locks on the same objects in the same order,

and if multiple lock modes are involved for a single object, then transactions should

always acquire the most restrictive mode first.

Parameters

name

The name (optionally schema-qualified) of an existing table to lock.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK

TABLE b. The tables are locked one-by-one in the order specified in the LOCK

TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with.

If no lock mode is specified, then the server uses the most restrictive mode,

ACCESS EXCLUSIVE. (ACCESS EXCLUSIVE is not compatible with Oracle

databases. In Advanced Server, this configuration mode ensures that no other

transaction can access the locked table in any manner.)

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be

released: if the specified lock cannot be immediately acquired without waiting,

the transaction is aborted.

Notes

All forms of LOCK require UPDATE and/or DELETE privileges.

LOCK TABLE is useful only inside a transaction block since the lock is dropped as soon

as the transaction ends. A LOCK TABLE command appearing outside any transaction

block forms a self-contained transaction, so the lock will be dropped as soon as it is

obtained.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

200

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are

all misnomers. These mode names should generally be read as indicating the intention of

the user to acquire row-level locks within the locked table. Also, ROW EXCLUSIVE mode

is a sharable table lock. Keep in mind that all the lock modes have identical semantics so

far as LOCK TABLE is concerned, differing only in the rules about which modes conflict

with which.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

201

2.3.67 REVOKE

Name

REVOKE -- remove access privileges

Synopsis

REVOKE { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }

 [,...] | ALL [PRIVILEGES] }

 ON tablename

 FROM { username | groupname | PUBLIC } [, ...]

 [CASCADE | RESTRICT]

REVOKE { SELECT | ALL [PRIVILEGES] }

 ON sequencename

 FROM { username | groupname | PUBLIC } [, ...]

 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }

 ON FUNCTION progname

 ([[argmode] [argname] argtype] [, ...])

 FROM { username | groupname | PUBLIC } [, ...]

 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }

 ON PROCEDURE progname

 [([[argmode] [argname] argtype] [, ...])]

 FROM { username | groupname | PUBLIC } [, ...]

 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }

 ON PACKAGE packagename

 FROM { username | groupname | PUBLIC } [, ...]

 [CASCADE | RESTRICT]

REVOKE role [, ...] FROM { username | groupname | PUBLIC }

 [, ...]

 [CASCADE | RESTRICT]

REVOKE { CONNECT | RESOURCE | DBA } [, ...]

 FROM { username | groupname } [, ...]

REVOKE CREATE [PUBLIC] DATABASE LINK

 FROM { username | groupname }

REVOKE DROP PUBLIC DATABASE LINK

 FROM { username | groupname }

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

202

REVOKE EXEMPT ACCESS POLICY

 FROM { username | groupname }

Description

The REVOKE command revokes previously granted privileges from one or more roles.

The key word PUBLIC refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it,

privileges granted to any role it is presently a member of, and privileges granted to

PUBLIC. Thus, for example, revoking SELECT privilege from PUBLIC does not

necessarily mean that all roles have lost SELECT privilege on the object: those who have

it granted directly or via another role will still have it.

If the privilege had been granted with the grant option, the grant option for the privilege

is revoked as well as the privilege, itself.

If a user holds a privilege with grant option and has granted it to other users then the

privileges held by those other users are called dependent privileges. If the privilege or the

grant option held by the first user is being revoked and dependent privileges exist, those

dependent privileges are also revoked if CASCADE is specified, else the revoke action will

fail. This recursive revocation only affects privileges that were granted through a chain of

users that is traceable to the user that is the subject of this REVOKE command. Thus, the

affected users may effectively keep the privilege if it was also granted through other

users.

Note: CASCADE is not an option compatible with Oracle databases. By default Oracle

always cascades dependent privileges, but Advanced Server requires the CASCADE

keyword to be explicitly given, otherwise the REVOKE command will fail.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION,

but the behavior is similar.

Notes

A user can only revoke privileges that were granted directly by that user. If, for example,

user A has granted a privilege with grant option to user B, and user B has in turned

granted it to user C, then user A cannot revoke the privilege directly from C. Instead, user

A could revoke the grant option from user B and use the CASCADE option so that the

privilege is in turn revoked from user C. For another example, if both A and B have

granted the same privilege to C, A can revoke his own grant but not B’s grant, so C will

still effectively have the privilege.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

203

When a non-owner of an object attempts to REVOKE privileges on the object, the

command will fail outright if the user has no privileges whatsoever on the object. As long

as some privilege is available, the command will proceed, but it will revoke only those

privileges for which the user has grant options. The REVOKE ALL PRIVILEGES forms

will issue a warning message if no grant options are held, while the other forms will issue

a warning if grant options for any of the privileges specifically named in the command

are not held. (In principle these statements apply to the object owner as well, but since the

owner is always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed

as though it were issued by the owner of the affected object. Since all privileges

ultimately come from the object owner (possibly indirectly via chains of grant options), it

is possible for a superuser to revoke all privileges, but this may require use of CASCADE

as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a

member of the role that owns the object, or is a member of a role that holds privileges

WITH GRANT OPTION on the object. In this case the command is performed as though it

were issued by the containing role that actually owns the object or holds the privileges

WITH GRANT OPTION. For example, if table t1 is owned by role g1, of which role u1 is

a member, then u1 can revoke privileges on t1 that are recorded as being granted by g1.

This would include grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly via more than one role

membership path, it is unspecified which containing role will be used to perform the

command. In such cases it is best practice to use SET ROLE to become the specific role

you want to do the REVOKE as. Failure to do so may lead to revoking privileges other

than the ones you intended, or not revoking anything at all.

Please Note: The Advanced Server ALTER ROLE command also supports syntax that

revokes the system privileges required to create a public or private database link, or

exemptions from fine-grained access control policies (DBMS_RLS). The ALTER ROLE

syntax is functionally equivalent to the respective REVOKE command, compatible with

Oracle databases.

Examples

Revoke insert privilege for the public on table emp:

REVOKE INSERT ON emp FROM PUBLIC;

Revoke all privileges from user mary on view salesemp:

REVOKE ALL PRIVILEGES ON salesemp FROM mary;

Note that this actually means “revoke all privileges that I granted”.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

204

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Revoke CONNECT privilege from user joe:

REVOKE CONNECT FROM joe;

Revoke CREATE DATABASE LINK privilege from user joe:

REVOKE CREATE DATABASE LINK FROM joe;

Revoke the EXEMPT ACCESS POLICY privilege from user joe:

REVOKE EXEMPT ACCESS POLICY FROM joe;

See Also

GRANT, SET ROLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

205

2.3.68 ROLLBACK

Name

ROLLBACK -- abort the current transaction

Synopsis

ROLLBACK [WORK]

Description

ROLLBACK rolls back the current transaction and causes all the updates made by the

transaction to be discarded.

Parameters

WORK

Optional key word - has no effect.

Notes

Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK when not inside a transaction does no harm.

Examples

To abort all changes:

ROLLBACK;

See Also

COMMIT, ROLLBACK TO SAVEPOINT, SAVEPOINT

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

206

2.3.69 ROLLBACK TO SAVEPOINT

Name

ROLLBACK TO SAVEPOINT -- roll back to a savepoint

Synopsis

ROLLBACK [WORK] TO [SAVEPOINT] savepoint_name

Description

Roll back all commands that were executed after the savepoint was established. The

savepoint remains valid and can be rolled back to again later, if needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after

the named savepoint.

Parameters

savepoint_name

The savepoint to which to roll back.

Notes

Specifying a savepoint name that has not been established is an error.

ROLLBACK TO SAVEPOINT is not supported within SPL programs.

Examples

To undo the effects of the commands executed savepoint depts was established:

\set AUTOCOMMIT off

INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');

SAVEPOINT depts;

INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);

INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);

ROLLBACK TO SAVEPOINT depts;

See Also

COMMIT, ROLLBACK, SAVEPOINT

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

207

2.3.70 SAVEPOINT

Name

SAVEPOINT -- define a new savepoint within the current transaction

Synopsis

SAVEPOINT savepoint_name

Description

SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are

executed after it was established to be rolled back, restoring the transaction state to what

it was at the time of the savepoint.

Parameters

savepoint_name

The name to be given to the savepoint.

Notes

Use ROLLBACK TO SAVEPOINT to roll back to a savepoint.

Savepoints can only be established when inside a transaction block. There can be

multiple savepoints defined within a transaction.

When another savepoint is established with the same name as a previous savepoint, the

old savepoint is kept, though only the more recent one will be used when rolling back.

SAVEPOINT is not supported within SPL programs.

Examples

To establish a savepoint and later undo the effects of all commands executed after it was

established:

\set AUTOCOMMIT off

INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');

SAVEPOINT depts;

INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

208

INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);

SAVEPOINT emps;

INSERT INTO jobhist VALUES (9001,'17-SEP-07',NULL,'CLERK',800,NULL,50,'New

Hire');

INSERT INTO jobhist VALUES (9002,'20-SEP-07',NULL,'CLERK',700,NULL,50,'New

Hire');

ROLLBACK TO depts;

COMMIT;

The above transaction will commit a row into the dept table, but the inserts into the emp

and jobhist tables are rolled back.

See Also

COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

209

2.3.71 SELECT

Name

SELECT -- retrieve rows from a table or view

Synopsis

SELECT [optimizer_hint] [ALL | DISTINCT]

 * | expression [AS output_name] [, ...]

 FROM from_item [, ...]

 [WHERE condition]

 [[START WITH start_expression]

 CONNECT BY { PRIOR parent_expr = child_expr |

 child_expr = PRIOR parent_expr }

 [ORDER SIBLINGS BY expression [ASC | DESC] [, ...]]]

 [GROUP BY { expression | ROLLUP (expr_list) |

 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]

 [LEVEL]]

 [HAVING condition [, ...]]

 [{ UNION [ALL] | INTERSECT | MINUS } select]

 [ORDER BY expression [ASC | DESC] [, ...]]

 [FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]]

where from_item can be one of:

 table_name[@dblink] [alias]

 (select) alias

 from_item [NATURAL] join_type from_item

 [ON join_condition | USING (join_column [, ...])]

Description

SELECT retrieves rows from one or more tables. The general processing of SELECT is as

follows:

1. All elements in the FROM list are computed. (Each element in the FROM list is a

real or virtual table.) If more than one element is specified in the FROM list, they

are cross-joined together. (See FROM clause, below.)

2. If the WHERE clause is specified, all rows that do not satisfy the condition are

eliminated from the output. (See WHERE clause, below.)

3. If the GROUP BY clause is specified, the output is divided into groups of rows that

match on one or more values. If the HAVING clause is present, it eliminates groups

that do not satisfy the given condition. (See GROUP BY clause and HAVING clause

below.)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

210

4. Using the operators UNION, INTERSECT, and MINUS, the output of more than one

SELECT statement can be combined to form a single result set. The UNION

operator returns all rows that are in one or both of the result sets. The INTERSECT

operator returns all rows that are strictly in both result sets. The MINUS operator

returns the rows that are in the first result set but not in the second. In all three

cases, duplicate rows are eliminated. In the case of the UNION operator, if ALL is

specified then duplicates are not eliminated. (See UNION clause, INTERSECT

clause, and MINUS clause below.)

5. The actual output rows are computed using the SELECT output expressions for

each selected row. (See SELECT list below.)

6. The CONNECT BY clause is used to select data that has a hierarchical relationship.

Such data has a parent-child relationship between rows. (See CONNECT BY

clause.)

7. If the ORDER BY clause is specified, the returned rows are sorted in the specified

order. If ORDER BY is not given, the rows are returned in whatever order the

system finds fastest to produce. (See ORDER BY clause below.)

8. DISTINCT eliminates duplicate rows from the result. ALL (the default) will return

all candidate rows, including duplicates. (See DISTINCT clause below.)

9. The FOR UPDATE clause causes the SELECT statement to lock the selected rows

against concurrent updates. (See FOR UPDATE clause below.)

You must have SELECT privilege on a table to read its values. The use of FOR UPDATE

requires UPDATE privilege as well.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan. See

Section 3.4 for information about optimizer hints.

2.3.71.1 FROM Clause

The FROM clause specifies one or more source tables for a SELECT statement. The syntax

is:

 FROM source [, ...]

Where source can be one of following elements:

table_name[@dblink]

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

211

The name (optionally schema-qualified) of an existing table or view. dblink is a

database link name identifying a remote database. See the CREATE DATABASE

LINK command for information on database links.

alias

A substitute name for the FROM item containing the alias. An alias is used for

brevity or to eliminate ambiguity for self-joins (where the same table is scanned

multiple times). When an alias is provided, it completely hides the actual name of

the table or function; for example given FROM foo AS f, the remainder of the

SELECT must refer to this FROM item as f not foo.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were

created as a temporary table for the duration of this single SELECT command.

Note that the sub-SELECT must be surrounded by parentheses, and an alias must

be provided for it.

join_type

One of the following:

[INNNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely

exactly one of NATURAL, ON join_condition, or USING (join_column [,

...]). See below for the meaning. For CROSS JOIN, none of these clauses

may appear.

A JOIN clause combines two FROM items. Use parentheses if necessary to

determine the order of nesting. In the absence of parentheses, JOINs nest left-to-

right. In any case JOIN binds more tightly than the commas separating FROM

items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same

result as you get from listing the two items at the top level of FROM, but restricted

by the join condition (if any). CROSS JOIN is equivalent to INNER JOIN ON

(TRUE), that is, no rows are removed by qualification. These join types are just a

notational convenience, since they do nothing you couldn’t do with plain FROM

and WHERE.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

212

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all

combined rows that pass its join condition), plus one copy of each row in the left-

hand table for which there was no right-hand row that passed the join condition.

This left-hand row is extended to the full width of the joined table by inserting

null values for the right-hand columns. Note that only the JOIN clause’s own

condition is considered while deciding which rows have matches. Outer

conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for

each unmatched right-hand row (extended with nulls on the left). This is just a

notational convenience, since you could convert it to a LEFT OUTER JOIN by

switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched

left-hand row (extended with nulls on the right), plus one row for each unmatched

right-hand row (extended with nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type BOOLEAN (similar

to a WHERE clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON
left_table.a = right_table.a AND left_table.b =

right_table.b Also, USING implies that only one of each pair of equivalent

columns will be included in the join output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables

that have the same names.

If multiple sources are specified, the result is the Cartesian product (cross join) of all the

sources. Usually qualification conditions are added to restrict the returned rows to a small

subset of the Cartesian product.

Example

The following example selects all of the entries from the dept table:

SELECT * FROM dept;

deptno | dname | loc

-------+-------------+-----------

 10 | ACCOUNTING | NEW YORK

 20 | RESEARCH | DALLAS

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

213

 30 | SALES | CHICAGO

 40 | OPERATIONS | BOSTON

 (4 rows)

2.3.71.2 WHERE Clause

The optional WHERE clause has the form:

WHERE condition

where condition is any expression that evaluates to a result of type BOOLEAN. Any row

that does not satisfy this condition will be eliminated from the output. A row satisfies the

condition if it returns TRUE when the actual row values are substituted for any variable

references.

Example

The following example joins the contents of the emp and dept tables, WHERE the value of

the deptno column in the emp table is equal to the value of the deptno column in the

deptno table:

SELECT d.deptno, d.dname, e.empno, e.ename, e.mgr, e.hiredate

 FROM emp e, dept d

 WHERE d.deptno = e.deptno;

 deptno | dname | empno | ename | mgr | hiredate

--------+------------+-------+--------+------+--------------------

 10 | ACCOUNTING | 7934 | MILLER | 7782 | 23-JAN-82 00:00:00

 10 | ACCOUNTING | 7782 | CLARK | 7839 | 09-JUN-81 00:00:00

 10 | ACCOUNTING | 7839 | KING | | 17-NOV-81 00:00:00

 20 | RESEARCH | 7788 | SCOTT | 7566 | 19-APR-87 00:00:00

 20 | RESEARCH | 7566 | JONES | 7839 | 02-APR-81 00:00:00

 20 | RESEARCH | 7369 | SMITH | 7902 | 17-DEC-80 00:00:00

 20 | RESEARCH | 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00

 20 | RESEARCH | 7902 | FORD | 7566 | 03-DEC-81 00:00:00

 30 | SALES | 7521 | WARD | 7698 | 22-FEB-81 00:00:00

 30 | SALES | 7844 | TURNER | 7698 | 08-SEP-81 00:00:00

 30 | SALES | 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00

 30 | SALES | 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00

 30 | SALES | 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00

 30 | SALES | 7900 | JAMES | 7698 | 03-DEC-81 00:00:00

(14 rows)

2.3.71.3 GROUP BY Clause

The optional GROUP BY clause has the form:

GROUP BY { expression | ROLLUP (expr_list) |

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

214

 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]

GROUP BY will condense into a single row all selected rows that share the same values

for the grouped expressions. expression can be an input column name, or the name or

ordinal number of an output column (SELECT list item), or an arbitrary expression

formed from input-column values. In case of ambiguity, a GROUP BY name will be

interpreted as an input-column name rather than an output column name.

ROLLUP, CUBE, and GROUPING SETS are extensions to the GROUP BY clause for

supporting multidimensional analysis. See Section 2.3.71.3 for information on using

these extensions.

Aggregate functions, if any are used, are computed across all rows making up each

group, producing a separate value for each group (whereas without GROUP BY, an

aggregate produces a single value computed across all the selected rows). When GROUP

BY is present, it is not valid for the SELECT list expressions to refer to ungrouped

columns except within aggregate functions, since there would be more than one possible

value to return for an ungrouped column.

Example

The following example computes the sum of the sal column in the emp table, grouping

the results by department number:

SELECT deptno, SUM(sal) AS total

 FROM emp

 GROUP BY deptno;

 deptno | total

--------+----------

 10 | 8750.00

 20 | 10875.00

 30 | 9400.00

(3 rows)

2.3.71.4 HAVING Clause

The optional HAVING clause has the form:

HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the specified condition. HAVING is

different from WHERE; WHERE filters individual rows before the application of GROUP BY,

while HAVING filters group rows created by GROUP BY. Each column referenced in

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

215

condition must unambiguously reference a grouping column, unless the reference appears

within an aggregate function.

Example

To sum the column, sal of all employees, group the results by department number and

show those group totals that are less than 10000:

SELECT deptno, SUM(sal) AS total

 FROM emp

 GROUP BY deptno

 HAVING SUM(sal) < 10000;

 deptno | total

--------+---------

 10 | 8750.00

 30 | 9400.00

(2 rows)

2.3.71.5 SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that

form the output rows of the SELECT statement. The expressions can (and usually do)

refer to columns computed in the FROM clause. Using the clause AS output_name,

another name can be specified for an output column. This name is primarily used to label

the column for display. It can also be used to refer to the column’s value in ORDER BY

and GROUP BY clauses, but not in the WHERE or HAVING clauses; there you must write

out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the

columns of the selected rows.

Example

The SELECT list in the following example specifies that the result set should include the

empno column, the ename column, the mgr column and the hiredate column:

SELECT empno, ename, mgr, hiredate FROM emp;

 empno | ename | mgr | hiredate

-------+--------+------+--------------------

 7934 | MILLER | 7782 | 23-JAN-82 00:00:00

 7782 | CLARK | 7839 | 09-JUN-81 00:00:00

 7839 | KING | | 17-NOV-81 00:00:00

 7788 | SCOTT | 7566 | 19-APR-87 00:00:00

 7566 | JONES | 7839 | 02-APR-81 00:00:00

 7369 | SMITH | 7902 | 17-DEC-80 00:00:00

 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00

 7902 | FORD | 7566 | 03-DEC-81 00:00:00

 7521 | WARD | 7698 | 22-FEB-81 00:00:00

 7844 | TURNER | 7698 | 08-SEP-81 00:00:00

 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

216

 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00

 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00

 7900 | JAMES | 7698 | 03-DEC-81 00:00:00

(14 rows)

2.3.71.6 UNION Clause

The UNION clause has the form:

select_statement UNION [ALL] select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE

clause. (ORDER BY can be attached to a sub-expression if it is enclosed in parentheses.

Without parentheses, these clauses will be taken to apply to the result of the UNION, not

to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT

statements. A row is in the set union of two result sets if it appears in at least one of the

result sets. The two SELECT statements that represent the direct operands of the UNION

must produce the same number of columns, and corresponding columns must be of

compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is

specified. ALL prevents elimination of duplicates.

Multiple UNION operators in the same SELECT statement are evaluated left to right,

unless otherwise indicated by parentheses.

Currently, FOR UPDATE may not be specified either for a UNION result or for any input

of a UNION.

2.3.71.7 INTERSECT Clause

The INTERSECT clause has the form:

select_statement INTERSECT select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE

clause.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

217

The INTERSECT operator computes the set intersection of the rows returned by the

involved SELECT statements. A row is in the intersection of two result sets if it appears in

both result sets.

The result of INTERSECT does not contain any duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right,

unless parentheses dictate otherwise. INTERSECT binds more tightly than UNION. That is,

A UNION B INTERSECT C will be read as A UNION (B INTERSECT C).

2.3.71.8 MINUS Clause

The MINUS clause has this general form:

select_statement MINUS select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE

clause.

The MINUS operator computes the set of rows that are in the result of the left SELECT

statement but not in the result of the right one.

The result of MINUS does not contain any duplicate rows.

Multiple MINUS operators in the same SELECT statement are evaluated left to right,

unless parentheses dictate otherwise. MINUS binds at the same level as UNION.

2.3.71.9 CONNECT BY Clause

The CONNECT BY clause determines the parent-child relationship of rows when

performing a hierarchical query. It has the general form:

CONNECT BY { PRIOR parent_expr = child_expr |

 child_expr = PRIOR parent_expr }

parent_expr is evaluated on a candidate parent row. If parent_expr =

child_expr results in TRUE for a row returned by the FROM clause, then this row is

considered a child of the parent.

The following optional clauses may be specified in conjunction with the CONNECT BY

clause:

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

218

START WITH start_expression

The rows returned by the FROM clause on which start_expression evaluates

to TRUE become the root nodes of the hierarchy.

ORDER SIBLINGS BY expression [ASC | DESC] [, ...]

Sibling rows of the hierarchy are ordered by expression in the result set.

Note: Advanced Server does not support the use of AND (or other operators) in the

CONNECT BY clause.

2.3.71.10 ORDER BY Clause

The optional ORDER BY clause has the form:

ORDER BY expression [ASC | DESC] [, ...]

expression can be the name or ordinal number of an output column (SELECT list item),

or it can be an arbitrary expression formed from input-column values.

The ORDER BY clause causes the result rows to be sorted according to the specified

expressions. If two rows are equal according to the leftmost expression, they are

compared according to the next expression and so on. If they are equal according to all

specified expressions, they are returned in an implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This

feature makes it possible to define an ordering on the basis of a column that does not

have a unique name. This is never absolutely necessary because it is always possible to

assign a name to a result column using the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns

that do not appear in the SELECT result list. Thus the following statement is valid:

SELECT ename FROM emp ORDER BY empno;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION,

INTERSECT, or MINUS clause may only specify an output column name or number, not

an expression.

If an ORDER BY expression is a simple name that matches both a result column name and

an input column name, ORDER BY will interpret it as the result column name. This is the

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

219

opposite of the choice that GROUP BY will make in the same situation. This inconsistency

is made to be compatible with the SQL standard.

Optionally one may add the key word ASC (ascending) or DESC (descending) after any

expression in the ORDER BY clause. If not specified, ASC is assumed by default.

The null value sorts higher than any other value. In other words, with ascending sort

order, null values sort at the end, and with descending sort order, null values sort at the

beginning.

Character-string data is sorted according to the locale-specific collation order that was

established when the database cluster was initialized.

Examples

The following two examples are identical ways of sorting the individual results according

to the contents of the second column (dname):

SELECT * FROM dept ORDER BY dname;

 deptno | dname | loc

--------+------------+----------

 10 | ACCOUNTING | NEW YORK

 40 | OPERATIONS | BOSTON

 20 | RESEARCH | DALLAS

 30 | SALES | CHICAGO

(4 rows)

SELECT * FROM dept ORDER BY 2;

 deptno | dname | loc

--------+------------+----------

 10 | ACCOUNTING | NEW YORK

 40 | OPERATIONS | BOSTON

 20 | RESEARCH | DALLAS

 30 | SALES | CHICAGO

(4 rows)

2.3.71.11 DISTINCT Clause

If a SELECT statement specifies DISTINCT, all duplicate rows are removed from the

result set (one row is kept from each group of duplicates). The ALL keyword specifies

the opposite: all rows are kept; that is the default.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

220

2.3.71.12 FOR UPDATE Clause

The FOR UPDATE clause takes the form:

FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though

for update. This prevents a row from being modified or deleted by other transactions

until the current transaction ends; any transaction that attempts to UPDATE, DELETE, or

SELECT FOR UPDATE a selected row will be blocked until the current transaction ends.

If an UPDATE, DELETE, or SELECT FOR UPDATE from another transaction has already

locked a selected row or rows, SELECT FOR UPDATE will wait for the first transaction to

complete, and will then lock and return the updated row (or no row, if the row was

deleted).

FOR UPDATE cannot be used in contexts where returned rows cannot be clearly identified

with individual table rows (for example, with aggregation).

Use FOR UPDATE options to specify locking preferences:

 Include the WAIT n keywords to specify the number of seconds (or fractional

seconds) that the SELECT statement will wait for a row locked by another session.

Use a decimal form to specify fractional seconds; for example, WAIT 1.5

instructs the server to wait one and a half seconds. Specify up to 4 digits to the

right of the decimal.

 Include the NOWAIT keyword to report an error immediately if a row cannot be

locked by the current session.

 Include SKIP LOCKED to instruct the server to lock rows if possible, and skip

rows that are already locked by another session.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

221

2.3.72 SET CONSTRAINTS

Name

SET CONSTRAINTS -- set constraint checking modes for the current transaction

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description

SET CONSTRAINTS sets the behavior of constraint checking within the current

transaction. IMMEDIATE constraints are checked at the end of each statement. DEFERRED

constraints are not checked until transaction commit. Each constraint has its own

IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE

INITIALLY DEFERRED, DEFERRABLE INITIALLY IMMEDIATE, or NOT

DEFERRABLE. The third class is always IMMEDIATE and is not affected by the SET

CONSTRAINTS command. The first two classes start every transaction in the indicated

mode, but their behavior can be changed within a transaction by SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those

constraints (which must all be deferrable). If there are multiple constraints matching any

given name, all are affected. SET CONSTRAINTS ALL changes the mode of all

deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to

IMMEDIATE, the new mode takes effect retroactively: any outstanding data modifications

that would have been checked at the end of the transaction are instead checked during the

execution of the SET CONSTRAINTS command. If any such constraint is violated, the

SET CONSTRAINTS fails (and does not change the constraint mode). Thus, SET

CONSTRAINTS can be used to force checking of constraints to occur at a specific point in

a transaction.

Currently, only foreign key constraints are affected by this setting. Check and unique

constraints are always effectively not deferrable.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

222

Notes

This command only alters the behavior of constraints within the current transaction.

Thus, if you execute this command outside of a transaction block it will not appear to

have any effect.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

223

2.3.73 SET ROLE

Name

SET ROLE -- set the current user identifier of the current session

Synopsis

SET ROLE { rolename | NONE }

Description

This command sets the current user identifier of the current SQL session context to be

rolename. After SET ROLE, permissions checking for SQL commands is carried out as

though the named role were the one that had logged in originally.

The specified rolename must be a role that the current session user is a member of. (If

the session user is a superuser, any role can be selected.)

NONE resets the current user identifier to be the current session user identifier. These

forms may be executed by any user.

Notes

Using this command, it is possible to either add privileges or restrict one’s privileges. If

the session user role has the INHERITS attribute, then it automatically has all the

privileges of every role that it could SET ROLE to; in this case SET ROLE effectively

drops all the privileges assigned directly to the session user and to the other roles it is a

member of, leaving only the privileges available to the named role. On the other hand, if

the session user role has the NOINHERITS attribute, SET ROLE drops the privileges

assigned directly to the session user and instead acquires the privileges available to the

named role. In particular, when a superuser chooses to SET ROLE to a non-superuser

role, she loses her superuser privileges.

Examples

User mary takes on the identity of role admins:

SET ROLE admins;

User mary reverts back to her own identity:

SET ROLE NONE;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

224

2.3.74 SET TRANSACTION

Name

SET TRANSACTION -- set the characteristics of the current transaction

Synopsis

SET TRANSACTION transaction_mode

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }

 READ WRITE | READ ONLY

Description

The SET TRANSACTION command sets the characteristics of the current transaction. It

has no effect on any subsequent transactions. The available transaction characteristics are

the transaction isolation level and the transaction access mode (read/write or read-only).

The isolation level of a transaction determines what data the transaction can see when

other transactions are running concurrently:

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the

first query or data-modification statement was executed in this transaction.

The transaction isolation level cannot be changed after the first query or data-

modification statement (SELECT, INSERT, DELETE, UPDATE, or FETCH) of a transaction

has been executed. The transaction access mode determines whether the transaction is

read/write or read-only. Read/write is the default.

When a transaction is read-only, the following SQL commands are disallowed: INSERT,

UPDATE, and DELETE if the table they would write to is not a temporary table; all

CREATE, ALTER, and DROP commands; COMMENT, GRANT, REVOKE, TRUNCATE; and

EXECUTE if the command it would execute is among those listed. This is a high-level

notion of read-only that does not prevent all writes to disk.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

225

2.3.75 TRUNCATE

Name

TRUNCATE -- empty a table

Synopsis

TRUNCATE TABLE name [DROP STORAGE]

Description

TRUNCATE quickly removes all rows from a table. It has the same effect as an unqualified

DELETE but since it does not actually scan the table, it is faster. This is most useful on

large tables.

The DROP STORAGE clause is accepted for compatibility, but is ignored.

Parameters

name

The name (optionally schema-qualified) of the table to be truncated.

Notes

TRUNCATE cannot be used if there are foreign-key references to the table from other

tables. Checking validity in such cases would require table scans, and the whole point is

not to do one.

TRUNCATE will not run any user-defined ON DELETE triggers that might exist for the

table.

Examples

Truncate the table bigtable:

TRUNCATE TABLE bigtable;

See Also

DROP VIEW, DELETE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

226

2.3.76 UPDATE

Name

UPDATE -- update rows of a table

Synopsis

UPDATE [optimizer_hint] table[@dblink]

 SET column = { expression | DEFAULT } [, ...]

 [WHERE condition]

 [RETURNING return_expression [, ...]

 { INTO { record | variable [, ...] }

 | BULK COLLECT INTO collection [, ...] }]

Description

UPDATE changes the values of the specified columns in all rows that satisfy the condition.

Only the columns to be modified need be mentioned in the SET clause; columns not

explicitly modified retain their previous values.

The RETURNING INTO { record | variable [, ...] } clause may only be

specified within an SPL program. In addition the result set of the UPDATE command must

not return more than one row, otherwise an exception is thrown. If the result set is empty,

then the contents of the target record or variables are set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be

specified if the UPDATE command is used within an SPL program. If more than one

collection is specified as the target of the BULK COLLECT INTO clause, then each

collection must consist of a single, scalar field – i.e., collection must not be a

record. The result set of the UPDATE command may contain none, one, or more rows.

return_expression evaluated for each row of the result set, becomes an element in

collection starting with the first element. Any existing rows in collection are

deleted. If the result set is empty, then collection will be empty.

You must have the UPDATE privilege on the table to update it, as well as the SELECT

privilege to any table whose values are read in expression or condition.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

227

table

The name (optionally schema-qualified) of the table to update.

dblink

Database link name identifying a remote database. See the CREATE DATABASE

LINK command for information on database links.

column

The name of a column in table.

expression

An expression to assign to the column. The expression may use the old values of

this and other columns in the table.

DEFAULT

Set the column to its default value (which will be null if no specific default

expression has been assigned to it).

condition

An expression that returns a value of type BOOLEAN. Only rows for which this

expression returns true will be updated.

return_expression

An expression that may include one or more columns from table. If a column

name from table is specified in return_expression, the value substituted for

the column when return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in

the UPDATE command, then the assigned value is used in the evaluation of

return_expression.

If the column specified in return_expression is not assigned a value

in the UPDATE command, then the column’s current value in the affected

row is used in the evaluation of return_expression.

record

A record whose field the evaluated return_expression is to be assigned. The

first return_expression is assigned to the first field in record, the second

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

228

return_expression is assigned to the second field in record, etc. The

number of fields in record must exactly match the number of expressions and

the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If

more than one return_expression and variable are specified, the first

return_expression is assigned to the first variable, the second

return_expression is assigned to the second variable, etc. The number of

variables specified following the INTO keyword must exactly match the number

of expressions following the RETURNING keyword and the variables must be

type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated

return_expression. There can be either a single collection which may be a

collection of a single field or a collection of a record type, or there may be more

than one collection in which case each collection must consist of a single field.

The number of return expressions must match in number and order the number of

fields in all specified collections. Each corresponding return_expression and

collection field must be type-compatible.

Examples

Change the location to AUSTIN for department 20 in the dept table:

UPDATE dept SET loc = 'AUSTIN' WHERE deptno = 20;

For all employees with job = SALESMAN in the emp table, update the salary by 10% and

increase the commission by 500.

UPDATE emp SET sal = sal * 1.1, comm = comm + 500 WHERE job = 'SALESMAN';

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

229

2.4 Functions and Operators

Advanced Server provides a large number of functions and operators for the built-in data

types.

2.4.1 Logical Operators

The usual logical operators are available: AND, OR, NOT

SQL uses a three-valued Boolean logic where the null value represents "unknown".

Observe the following truth tables:

Table 2-11 AND/OR Truth Table

a b a AND b a OR b

True True True True

True False False True

True Null Null True

False False False False

False Null False Null

Null Null Null Null

Table 2-12 NOT Truth Table

a NOT a

True False

False True

Null Null

The operators AND and OR are commutative, that is, you can switch the left and right

operand without affecting the result.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

230

2.4.2 Comparison Operators

The usual comparison operators are shown in the following table.

Table 2-13 Comparison Operators

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal

<> Not equal

!= Not equal

Comparison operators are available for all data types where this makes sense. All

comparison operators are binary operators that return values of type BOOLEAN;

expressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a

Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available.

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Similarly,

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

There is no difference between the two respective forms apart from the CPU cycles

required to rewrite the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL

expression IS NOT NULL

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

231

Do not write expression = NULL because NULL is not "equal to" NULL. (The null

value represents an unknown value, and it is not known whether two unknown values are

equal.) This behavior conforms to the SQL standard.

Some applications may expect that expression = NULL returns true if expression

evaluates to the null value. It is highly recommended that these applications be modified

to comply with the SQL standard.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

232

2.4.3 Mathematical Functions and Operators

Mathematical operators are provided for many Advanced Server types. For types without

common mathematical conventions for all possible permutations (e.g., date/time types)

the actual behavior is described in subsequent sections.

The following table shows the available mathematical operators.

Table 2-14 Mathematical Operators

Operator Description Example Result

+ Addition 2 + 3 5

- Subtraction 2 – 3 -1

* Multiplication 2 * 3 6

/ Division (See the following note.) 4 / 2 2

** Exponentiation Operator 2 ** 3 8

Note: If the db_dialect configuration parameter in the postgresql.conf file is set

to redwood, then division of a pair of INTEGER data types does not result in a truncated

value. Any fractional result is retained as shown by the following example:

edb=# SET db_dialect TO redwood;

SET

edb=# SHOW db_dialect;

 db_dialect

 redwood

(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS INTEGER) FROM dual;

 ?column?

 3.3333333333333333

(1 row)

This behavior is compatible with Oracle databases where there is no native INTEGER data

type, and any INTEGER data type specification is internally converted to NUMBER(38),

which results in retaining any fractional result.

If the db_dialect configuration parameter is set to postgres, then division of a pair

of INTEGER data types results in a truncated value as shown by the following example:

edb=# SET db_dialect TO postgres;

SET

edb=# SHOW db_dialect;

 db_dialect

 postgres

(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS INTEGER) FROM dual;

 ?column?

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

233

 3

(1 row)

This behavior is compatible with PostgreSQL databases where division involving any

pair of INTEGER, SMALLINT, or BIGINT data types results in truncation of the result.

The same truncated result is returned by Advanced Server when db_dialect is set to

postgres as shown in the previous example.

Note however, that even when db_dialect is set to redwood, only division with a pair

of INTEGER data types results in no truncation of the result. Division that includes only

SMALLINT or BIGINT data types, with or without an INTEGER data type, does result in

truncation in the PostgreSQL fashion without retaining the fractional portion as shown by

the following where INTEGER and SMALLINT are involved in the division:

edb=# SHOW db_dialect;

 db_dialect

 redwood

(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS SMALLINT) FROM dual;

 ?column?

 3

(1 row)

The following table shows the available mathematical functions. Many of these functions

are provided in multiple forms with different argument types. Except where noted, any

given form of a function returns the same data type as its argument. The functions

working with DOUBLE PRECISION data are mostly implemented on top of the host

system’s C library; accuracy and behavior in boundary cases may therefore vary

depending on the host system.

Table 2-15 Mathematical Functions

Function Return Type Description Example Result

ABS(x) Same as x Absolute value ABS(-17.4) 17.4

CEIL(DOUBLE PRECISION

or NUMBER)
Same as input

Smallest integer not

less than argument
CEIL(-42.8) -42

EXP(DOUBLE PRECISION

or NUMBER)
Same as input Exponential EXP(1.0)

2.71828182845904

52

FLOOR(DOUBLE PRECISION

or NUMBER)
Same as input

Largest integer not

greater than argument
FLOOR(-42.8) 43

LN(DOUBLE PRECISION or

NUMBER)
Same as input Natural logarithm LN(2.0)

0.69314718055994

53

LOG(b NUMBER, x

NUMBER)
NUMBER Logarithm to base b LOG(2.0, 64.0)

6.00000000000000

00

MOD(y, x)
Same as

argument types
Remainder of y/x MOD(9, 4) 1

NVL(x, y)

Same as

argument types;

where both

arguments are of

If x is null, then NVL

returns y
NVL(9, 0) 9

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

234

Function Return Type Description Example Result

the same data

type

POWER(a DOUBLE

PRECISION, b DOUBLE

PRECISION)

DOUBLE

PRECISION

a raised to the power

of b
POWER(9.0, 3.0)

729.000000000000

0000

POWER(a NUMBER, b

NUMBER)
NUMBER

a raised to the power

of b
POWER(9.0, 3.0)

729.000000000000

0000

ROUND(DOUBLE PRECISION

or NUMBER)
Same as input

Round to nearest

integer
ROUND(42.4) 42

ROUND(v NUMBER, s

INTEGER)
NUMBER

Round to s decimal

places
ROUND(42.4382, 2) 42.44

SIGN(DOUBLE PRECISION

or NUMBER)
Same as input

Sign of the argument

(-1, 0, +1)
SIGN(-8.4) -1

SQRT(DOUBLE PRECISION

or NUMBER)
Same as input Square root SQRT(2.0)

1.41421356237309

5

TRUNC(DOUBLE PRECISION

or NUMBER)
Same as input Truncate toward zero TRUNC(42.8) 42

TRUNC(v NUMBER, s

INTEGER)
NUMBER

Truncate to s decimal

places
TRUNC(42.4382, 2) 42.43

WIDTH_BUCKET(op

NUMBER, b1 NUMBER, b2

NUMBER, count INTEGER)

INTEGER

Return the bucket to

which op would be

assigned in an

equidepth histogram

with count buckets,

in the range b1 to b2

WIDTH_BUCKET(5.35,

0.024, 10.06, 5)
3

The following table shows the available trigonometric functions. All trigonometric

functions take arguments and return values of type DOUBLE PRECISION.

Table 2-16 Trigonometric Functions

Function Description

ACOS(x) Inverse cosine

ASIN(x) Inverse sine

ATAN(x) Inverse tangent

ATAN2(x, y) Inverse tangent of x/y

COS(x) Cosine

SIN(x) Sine

TAN(x) Tangent

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

235

2.4.4 String Functions and Operators

This section describes functions and operators for examining and manipulating string

values. Strings in this context include values of the types CHAR, VARCHAR2, and CLOB.

Unless otherwise noted, all of the functions listed below work on all of these types, but be

wary of potential effects of automatic padding when using the CHAR type. Generally, the

functions described here also work on data of non-string types by converting that data to

a string representation first.

Table 2-17 SQL String Functions and Operators

Function
Return

Type
Description Example Result

string || string CLOB String concatenation
'Enterprise' ||

'DB'
EnterpriseDB

CONCAT(string,

string)
CLOB String concatenation 'a' || 'b' ab

HEXTORAW(varchar2) RAW
Converts a VARCHAR2 value

to a RAW value
HEXTORAW('303132') '012'

RAWTOHEX(raw) VARCHAR2
Converts a RAW value to a

HEXADECIMAL value
RAWTOHEX('012') '303132'

INSTR(string, set, [

start [, occurrence]

])

INTEGER

Finds the location of a set of

characters in a string, starting

at position start in the

string, string, and looking

for the first, second, third and

so on occurrences of the set.

Returns 0 if the set is not

found.

INSTR('PETER PIPER

PICKED a PECK of

PICKLED

PEPPERS','PI',1,3)

30

INSTRB(string, set) INTEGER

Returns the position of the

set within the string.

Returns 0 if set is not found.

INSTRB('PETER PIPER

PICKED a PECK of

PICKLED PEPPERS',

'PICK')

13

INSTRB(string, set,

start)
INTEGER

Returns the position of the

set within the string,

beginning at start. Returns

0 if set is not found.

INSTRB('PETER PIPER

PICKED a PECK of

PICKLED

PEPPERS','PICK',

14)

30

INSTRB(string, set,

start, occurrence)
INTEGER

Returns the position of the

specified occurrence of set

within the string, beginning

at start. Returns 0 if set is

not found.

INSTRB('PETER PIPER

PICKED a PECK of

PICKLED

PEPPERS','PICK', 1,

2)

30

LOWER(string) CLOB Convert string to lower case LOWER('TOM') tom

SUBSTR(string, start

[, count])
CLOB

Extract substring starting from

start and going for count

characters. If count is not

specified, the string is clipped

from the start till the end.

SUBSTR('This is a

test',6,2)
is

SUBSTRB(string, start

[, count])
CLOB

Same as SUBSTR except

start and count are in

SUBSTRB('abc',3)

(assuming a double-byte
c

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

236

Function
Return

Type
Description Example Result

number of bytes. character set)

SUBSTR2(string, start

[, count])
CLOB Alias for SUBSTR.

SUBSTR2('This is a

test',6,2)
is

SUBSTR2(string, start

[, count])
CLOB Alias for SUBSTRB.

SUBSTR2('abc',3)

(assuming a double-byte

character set)

c

SUBSTR4(string, start

[, count])
CLOB Alias for SUBSTR.

SUBSTR4('This is a

test',6,2)
is

SUBSTR4(string, start

[, count])
CLOB Alias for SUBSTRB.

SUBSTR4('abc',3)

(assuming a double-byte

character set)

c

SUBSTRC(string, start

[, count])
CLOB Alias for SUBSTR.

SUBSTRC('This is a

test',6,2)
is

SUBSTRC(string, start

[, count])
CLOB Alias for SUBSTRB.

SUBSTRC('abc',3)

(assuming a double-byte

character set)

c

TRIM([LEADING |

TRAILING | BOTH] [

characters] FROM

string)

CLOB

Remove the longest string

containing only the characters

(a space by default) from the

start/end/both ends of the

string.

TRIM(BOTH 'x' FROM

'xTomxx')
Tom

LTRIM(string [, set]) CLOB

Removes all the characters

specified in set from the left

of a given string. If set is

not specified, a blank space is

used as default.

LTRIM('abcdefghi',

'abc')
defghi

RTRIM(string [, set]) CLOB

Removes all the characters

specified in set from the right

of a given string. If set is

not specified, a blank space is

used as default.

RTRIM('abcdefghi',

'ghi')
abcdef

UPPER(string) CLOB Convert string to upper case UPPER('tom') TOM

Additional string manipulation functions are available and are listed in the following

table. Some of them are used internally to implement the SQL-standard string functions

listed in Table 2-17.

Table 2-18 Other String Functions

Function Return Type Description Example Result

ASCII(string) INTEGER
ASCII code of the first byte

of the argument
ASCII('x') 120

CHR(INTEGER) CLOB
Character with the given

ASCII code
CHR(65) A

DECODE(expr, expr1a,

expr1b [, expr2a,

expr2b]... [, default

])

Same as

argument

types of

expr1b,

expr2b,...,
default

Finds first match of expr

with expr1a, expr2a, etc.

When match found, returns

corresponding parameter

pair, expr1b, expr2b, etc.

If no match found, returns

default. If no match found

DECODE(3, 1,'One',

2,'Two', 3,'Three',

'Not found')

Three

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

237

Function Return Type Description Example Result

and default not specified,

returns null.

INITCAP(string) CLOB

Convert the first letter of

each word to uppercase and

the rest to lowercase. Words

are sequences of

alphanumeric characters

separated by non-

alphanumeric characters.

INITCAP('hi THOMAS')
Hi

Thomas

LENGTH INTEGER
Returns the number of

characters in a string value.
LENGTH('Côte d''Azur') 11

LENGTHC

INTEGER This function is identical in

functionality to LENGTH; the

function name is supported

for compatibility.

LENGTHC('Côte d''Azur') 11

LENGTH2

INTEGER This function is identical in

functionality to LENGTH; the

function name is supported

for compatibility.

LENGTH2('Côte d''Azur') 11

LENGTH4

INTEGER This function is identical in

functionality to LENGTH; the

function name is supported

for compatibility.

LENGTH4('Côte d''Azur') 11

LENGTHB

INTEGER Returns the number of bytes

required to hold the given

value.

LENGTHB('Côte d''Azur') 12

LPAD(string, length

INTEGER [, fill])
CLOB

Fill up string to size,

length by prepending the

characters, fill (a space by

default). If string is

already longer than length

then it is truncated (on the

right).

LPAD('hi', 5, 'xy') xyxhi

REPLACE(string,

search_string [,

replace_string]

CLOB

Replaces one value in a

string with another. If you

do not specify a value for

replace_string, the

search_string value

when found, is removed.

REPLACE('GEORGE',

'GE', 'EG')
EGOREG

RPAD(string, length

INTEGER [, fill])
CLOB

Fill up string to size,

length by appending the

characters, fill (a space by

default). If string is

already longer than length

then it is truncated.

RPAD('hi', 5, 'xy') hixyx

TRANSLATE(string, from,

to)
CLOB

Any character in string

that matches a character in

the from set is replaced by

the corresponding character

in the to set.

TRANSLATE('12345',

'14', 'ax')
a23x5

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

238

2.4.5 Pattern Matching String Functions

Advanced Server offers support for the REGEXP_COUNT, REGEXP_INSTR and

REGEXP_SUBSTR functions. These functions search a string for a pattern specified by a

regular expression, and return information about occurrences of the pattern within the

string. The pattern should be a POSIX-style regular expression; for more information

about forming a POSIX-style regular expression, please refer to the core documentation

at:

https://www.postgresql.org/docs/10/static/functions-matching.html

2.4.5.1 REGEXP_COUNT

REGEXP_COUNT searches a string for a regular expression, and returns a count of the

times that the regular expression occurs. The signature is:

INTEGER REGEXP_COUNT

(

 srcstr TEXT,

 pattern TEXT,

 position DEFAULT 1

 modifier DEFAULT NULL

)

Parameters

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_COUNT will search.

position

position is an integer value that indicates the position in the source string at

which REGEXP_COUNT will begin searching. The default value is 1.

https://www.postgresql.org/docs/10/static/functions-matching.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

239

modifier

modifier specifies values that control the pattern matching behavior. The

default value is NULL. For a complete list of the modifiers supported by

Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/10/static/functions-matching.html

Example

In the following simple example, REGEXP_COUNT returns a count of the number of times

the letter i is used in the character string 'reinitializing':

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 1) FROM DUAL;

 regexp_count

 5

(1 row)

In the first example, the command instructs REGEXP_COUNT begins counting in the first

position; if we modify the command to start the count on the 6th position:

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 6) FROM DUAL;

 regexp_count

 3

(1 row)

REGEXP_COUNT returns 3; the count now excludes any occurrences of the letter i that

occur before the 6th position.

2.4.5.2 REGEXP_INSTR

REGEXP_INSTR searches a string for a POSIX-style regular expression. This function

returns the position within the string where the match was located. The signature is:

INTEGER REGEXP_INSTR

(

 srcstr TEXT,

 pattern TEXT,

 position INT DEFAULT 1,

 occurrence INT DEFAULT 1,

 returnparam INT DEFAULT 0,

 modifier TEXT DEFAULT NULL,

 subexpression INT DEFAULT 0,

)

https://www.postgresql.org/docs/10/static/functions-matching.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

240

Parameters:

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_INSTR will search.

position

position specifies an integer value that indicates the start position in a source

string. The default value is 1.

occurrence

occurrence specifies which match is returned if more than one occurrence of

the pattern occurs in the string that is searched. The default value is 1.

returnparam

returnparam is an integer value that specifies the location within the string that

REGEXP_INSTR should return. The default value is 0. Specify:

0 to return the location within the string of the first character that matches

pattern.

A value greater than 0 to return the position of the first character

following the end of the pattern.

modifier

modifier specifies values that control the pattern matching behavior. The

default value is NULL. For a complete list of the modifiers supported by

Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/10/static/functions-matching.html

subexpression

subexpression is an integer value that identifies the portion of the pattern

that will be returned by REGEXP_INSTR. The default value of subexpression

is 0.

https://www.postgresql.org/docs/10/static/functions-matching.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

241

If you specify a value for subexpression, you must include one (or more) set

of parentheses in the pattern that isolate a portion of the value being searched

for. The value specified by subexpression indicates which set of parentheses

should be returned; for example, if subexpression is 2, REGEXP_INSTR will

return the position of the second set of parentheses.

Example

In the following simple example, REGEXP_INSTR searches a string that contains the a

phone number for the first occurrence of a pattern that contains three consecutive digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;

 regexp_instr

 1

(1 row)

The command instructs REGEXP_INSTR to return the position of the first occurrence. If

we modify the command to return the start of the second occurrence of three consecutive

digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;

 regexp_instr

 5

(1 row)

REGEXP_INSTR returns 5; the second occurrence of three consecutive digits begins in the

5
th

 position.

2.4.5.3 REGEXP_SUBSTR

The REGEXP_SUBSTR function searches a string for a pattern specified by a POSIX

compliant regular expression. REGEXP_SUBSTR returns the string that matches the

pattern specified in the call to the function. The signature of the function is:

TEXT REGEXP_SUBSTR

(

 srcstr TEXT,

 pattern TEXT,

 position INT DEFAULT 1,

 occurrence INT DEFAULT 1,

 modifier TEXT DEFAULT NULL,

 subexpression INT DEFAULT 0

)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

242

Parameters:

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_SUBSTR will search.

position

position specifies an integer value that indicates the start position in a source

string. The default value is 1.

occurrence

occurrence specifies which match is returned if more than one occurrence of

the pattern occurs in the string that is searched. The default value is 1.

modifier

modifier specifies values that control the pattern matching behavior. The

default value is NULL. For a complete list of the modifiers supported by

Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/10/static/functions-matching.html

subexpression

subexpression is an integer value that identifies the portion of the pattern

that will be returned by REGEXP_SUBSTR. The default value of subexpression

is 0.

If you specify a value for subexpression, you must include one (or more) set

of parentheses in the pattern that isolate a portion of the value being searched

for. The value specified by subexpression indicates which set of parentheses

should be returned; for example, if subexpression is 2, REGEXP_SUBSTR will

return the value contained within the second set of parentheses.

Example

In the following simple example, REGEXP_SUBSTR searches a string that contains a

phone number for the first set of three consecutive digits:

https://www.postgresql.org/docs/10/static/functions-matching.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

243

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM

DUAL;

 regexp_substr

 800

(1 row)

It locates the first occurrence of three digits and returns the string (800); if we modify the

command to check for the second occurrence of three consecutive digits:

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM

DUAL;

 regexp_substr

 555

(1 row)

REGEXP_SUBSTR returns 555, the contents of the second substring.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

244

2.4.6 Pattern Matching Using the LIKE Operator

Advanced Server provides pattern matching using the traditional SQL LIKE operator.

The syntax for the LIKE operator is as follows.

string LIKE pattern [ESCAPE escape-character]

string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns TRUE if string is

contained in the set of strings represented by pattern. As expected, the NOT LIKE

expression returns FALSE if LIKE returns TRUE, and vice versa. An equivalent expression

is NOT (string LIKE pattern).

If pattern does not contain percent signs or underscore, then the pattern only represents

the string itself; in that case LIKE acts like the equals operator. An underscore (_) in

pattern stands for (matches) any single character; a percent sign (%) matches any string

of zero or more characters.

Some examples:

'abc' LIKE 'abc' true

'abc' LIKE 'a%' true

'abc' LIKE '_b_' true

'abc' LIKE 'c' false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within

a string, the pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the

respective character in pattern must be preceded by the escape character. The default

escape character is the backslash but a different one may be selected by using the

ESCAPE clause. To match the escape character itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a

pattern constant that contains a backslash you must write two backslashes in an SQL

statement. Thus, writing a pattern that actually matches a literal backslash means writing

four backslashes in the statement. You can avoid this by selecting a different escape

character with ESCAPE; then a backslash is not special to LIKE anymore. (But it is still

special to the string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writing ESCAPE ''. This effectively

disables the escape mechanism, which makes it impossible to turn off the special

meaning of underscore and percent signs in the pattern.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

245

2.4.7 Data Type Formatting Functions

The Advanced Server formatting functions described in the following table provide a

powerful set of tools for converting various data types (date/time, integer, floating point,

numeric) to formatted strings and for converting from formatted strings to specific data

types. These functions all follow a common calling convention: the first argument is the

value to be formatted and the second argument is a string template that defines the output

or input format.

Table 2-19 Formatting Functions

Function
Return

Type
Description Example Result

TO_CHAR(DATE [,

format])
VARCHAR2

Convert a date/time

to a string with

output, format. If

omitted default

format is DD-MON-

YY.

TO_CHAR(SYSDATE, 'MM/DD/YYYY

HH12:MI:SS AM')

07/25/2007

09:43:02 AM

TO_CHAR(TIMESTAMP [,

format])
VARCHAR2

Convert a timestamp

to a string with

output, format. If

omitted default

format is DD-MON-

YY.

TO_CHAR(CURRENT_TIMESTAMP,

'MM/DD/YYYY HH12:MI:SS AM')

08/13/2015

08:55:22 PM

TO_CHAR(INTEGER [,

format])
VARCHAR2

Convert an integer to

a string with output,
format

TO_CHAR(2412, '999,999S') 2,412+

TO_CHAR(NUMBER [,

format])
VARCHAR2

Convert a decimal

number to a string

with output, format

TO_CHAR(10125.35,

'999,999.99')
10,125.35

TO_CHAR(DOUBLE

PRECISION, format)
VARCHAR2

Convert a floating-

point number to a

string with output,
format

TO_CHAR(CAST(123.5282 AS

REAL), '999.99')
123.53

TO_DATE(string [,

format])
DATE

Convert a date

formatted string to a

DATE data type

TO_DATE('2007-07-04

13:39:10', 'YYYY-MM-DD

HH24:MI:SS')

04-JUL-07

13:39:10

TO_NUMBER(string [,

format])
NUMBER

Convert a number

formatted string to a

NUMBER data type

TO_NUMBER('2,412-',

'999,999S')
-2412

TO_TIMESTAMP(string,

format)
TIMESTAMP

Convert a timestamp

formatted string to a

TIMESTAMP data type

TO_TIMESTAMP('05 Dec 2000

08:30:25 pm', 'DD Mon YYYY

hh12:mi:ss pm')

05-DEC-00

20:30:25

In an output template string (for TO_CHAR), there are certain patterns that are recognized

and replaced with appropriately-formatted data from the value to be formatted. Any text

that is not a template pattern is simply copied verbatim. Similarly, in an input template

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

246

string (for anything but TO_CHAR), template patterns identify the parts of the input data

string to be looked at and the values to be found there.

The following table shows the template patterns available for formatting date values

using the TO_CHAR and TO_DATE functions.

Table 2-20 Template Date/Time Format Patterns

Pattern Description

HH Hour of day (01-12)

HH12 Hour of day (01-12)

HH24 Hour of day (00-23)

MI Minute (00-59)

SS Second (00-59)

SSSSS Seconds past midnight (0-86399)

FFn
Fractional seconds where n is an optional integer from 1 to 9 for the number of digits to

return. If omitted, the default is 6.

AM or A.M. or PM

or P.M.
Meridian indicator (uppercase)

am or a.m. or pm

or p.m.
Meridian indicator (lowercase)

Y,YYY Year (4 and more digits) with comma

YEAR Year (spelled out)

SYEAR Year (spelled out) (BC dates prefixed by a minus sign)

YYYY Year (4 and more digits)

SYYYY Year (4 and more digits) (BC dates prefixed by a minus sign)

YYY Last 3 digits of year

YY Last 2 digits of year

Y Last digit of year

IYYY ISO year (4 and more digits)

IYY Last 3 digits of ISO year

IY Last 2 digits of ISO year

I Last 1 digit of ISO year

BC or B.C. or AD

or A.D.
Era indicator (uppercase)

bc or b.c. or ad

or a.d.
Era indicator (lowercase)

MONTH Full uppercase month name

Month Full mixed-case month name

month Full lowercase month name

MON Abbreviated uppercase month name (3 chars in English, localized lengths vary)

Mon Abbreviated mixed-case month name (3 chars in English, localized lengths vary)

mon Abbreviated lowercase month name (3 chars in English, localized lengths vary)

MM Month number (01-12)

DAY Full uppercase day name

Day Full mixed-case day name

day Full lowercase day name

DY Abbreviated uppercase day name (3 chars in English, localized lengths vary)

Dy Abbreviated mixed-case day name (3 chars in English, localized lengths vary)

dy Abbreviated lowercase day name (3 chars in English, localized lengths vary)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

247

Pattern Description

DDD Day of year (001-366)

DD Day of month (01-31)

D Day of week (1-7; Sunday is 1)

W Week of month (1-5) (The first week starts on the first day of the month)

WW Week number of year (1-53) (The first week starts on the first day of the year)

IW ISO week number of year; the first Thursday of the new year is in week 1

CC Century (2 digits); the 21st century starts on 2001-01-01

SCC Same as CC except BC dates are prefixed by a minus sign

J Julian Day (days since January 1, 4712 BC)

Q Quarter

RM Month in Roman numerals (I-XII; I=January) (uppercase)

rm Month in Roman numerals (i-xii; i=January) (lowercase)

RR

First 2 digits of the year when given only the last 2 digits of the year. Result is based upon an

algorithm using the current year and the given 2-digit year. The first 2 digits of the given 2-

digit year will be the same as the first 2 digits of the current year with the following

exceptions:

If the given 2-digit year is < 50 and the last 2 digits of the current year is >= 50, then the first

2 digits for the given year is 1 greater than the first 2 digits of the current year.

If the given 2-digit year is >= 50 and the last 2 digits of the current year is < 50, then the first

2 digits for the given year is 1 less than the first 2 digits of the current year.

RRRR

Only affects TO_DATE function. Allows specification of 2-digit or 4-digit year. If 2-digit

year given, then returns first 2 digits of year like RR format. If 4-digit year given, returns the

given 4-digit year.

Certain modifiers may be applied to any template pattern to alter its behavior. For

example, FMMonth is the Month pattern with the FM modifier. The following table shows

the modifier patterns for date/time formatting.

Table 2-21 Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FM prefix Fill mode (suppress padding blanks and zeros) FMMonth

TH suffix Uppercase ordinal number suffix DDTH

th suffix Lowercase ordinal number suffix DDth

FX prefix Fixed format global option (see usage notes) FX Month DD Day

SP suffix Spell mode DDSP

Usage notes for date/time formatting:

 FM suppresses leading zeroes and trailing blanks that would otherwise be added to

make the output of a pattern fixed-width.

 TO_TIMESTAMP and TO_DATE skip multiple blank spaces in the input string if the

FX option is not used. FX must be specified as the first item in the template. For

example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct, but

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

248

TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because

TO_TIMESTAMP expects one space only.

 Ordinary text is allowed in TO_CHAR templates and will be output literally.

 In conversions from string to timestamp or date, the CC field is ignored if there

is a YYY, YYYY or Y,YYY field. If CC is used with YY or Y then the year is

computed as (CC-1)*100+YY.

The following table shows the template patterns available for formatting numeric values.

Table 2-22 Template Patterns for Numeric Formatting

Pattern Description

9 Value with the specified number of digits

0 Value with leading zeroes

. (period) Decimal point

, (comma) Group (thousand) separator

$ Dollar sign

PR Negative value in angle brackets

S Sign anchored to number (uses locale)

L Currency symbol (uses locale)

D Decimal point (uses locale)

G Group separator (uses locale)

MI Minus sign specified in right-most position (if number < 0)

RN or rn Roman numeral (input between 1 and 3999)

V Shift specified number of digits (see notes)

Usage notes for numeric formatting:

 9 results in a value with the same number of digits as there are 9s. If a digit is not

available it outputs a space.

 TH does not convert values less than zero and does not convert fractional

numbers.

V effectively multiplies the input values by 10n, where n is the number of digits following

V. TO_CHAR does not support the use of V combined with a decimal point. (E.g.,

99.9V99 is not allowed.)

The following table shows some examples of the use of the TO_CHAR and TO_DATE

functions.

Table 2-23 TO_CHAR Examples

Expression Result

TO_CHAR(CURRENT_TIMESTAMP, 'Day, DD HH12:MI:SS') 'Tuesday , 06 05:39:18'

TO_CHAR(CURRENT_TIMESTAMP,

'FMDay, FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

TO_CHAR(-0.1, '99.99') ' -.10'

TO_CHAR(-0.1, 'FM9.99') '-.1'

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

249

Expression Result

TO_CHAR(0.1, '0.9') ' 0.1'

TO_CHAR(12, '9990999.9') ' 0012.0'

TO_CHAR(12, 'FM9990999.9') '0012.'

TO_CHAR(485, '999') ' 485'

TO_CHAR(-485, '999') '-485'

TO_CHAR(1485, '9,999') ' 1,485'

TO_CHAR(1485, '9G999') ' 1,485'

TO_CHAR(148.5, '999.999') ' 148.500'

TO_CHAR(148.5, 'FM999.999') '148.5'

TO_CHAR(148.5, 'FM999.990') '148.500'

TO_CHAR(148.5, '999D999') ' 148.500'

TO_CHAR(3148.5, '9G999D999') ' 3,148.500'

TO_CHAR(-485, '999S') '485-'

TO_CHAR(-485, '999MI') '485-'

TO_CHAR(485, '999MI') '485 '

TO_CHAR(485, 'FM999MI') '485'

TO_CHAR(-485, '999PR') '<485>'

TO_CHAR(485, 'L999') '$ 485'

TO_CHAR(485, 'RN') ' CDLXXXV'

TO_CHAR(485, 'FMRN') 'CDLXXXV'

TO_CHAR(5.2, 'FMRN') 'V'

TO_CHAR(12, '99V999') ' 12000'

TO_CHAR(12.4, '99V999') ' 12400'

TO_CHAR(12.45, '99V9') ' 125'

2.4.7.1 IMMUTABLE TO_CHAR(TIMESTAMP, format) Function

There are certain cases of the TO_CHAR function that can result in usage of an

IMMUTABLE form of the function. Basically, a function is IMMUTABLE if the function

does not modify the database, and the function returns the same, consistent value

dependent upon only its input parameters. That is, the settings of configuration

parameters, the locale, the content of the database, etc. do not affect the results returned

by the function.

For more information about function volatility categories VOLATILE, STABLE, and

IMMUTABLE, please see the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/10/static/xfunc-volatility.html

A particular advantage of an IMMUTABLE function is that it can be used in the CREATE

INDEX command to create an index based on that function.

In order for the TO_CHAR function to use the IMMUTABLE form the following conditions

must be satisfied:

 The first parameter of the TO_CHAR function must be of data type TIMESTAMP.

https://www.postgresql.org/docs/10/static/xfunc-volatility.html

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

250

 The format specified in the second parameter of the TO_CHAR function must not

affect the return value of the function based on factors such as language, locale,

etc. For example a format of 'YYYY-MM-DD HH24:MI:SS' can be used for an

IMMUTABLE form of the function since, regardless of locale settings, the result of

the function is the date and time expressed solely in numeric form. However, a

format of 'DD-MON-YYYY' cannot be used for an IMMUTABLE form of the

function because the 3-character abbreviation of the month may return different

results depending upon the locale setting.

Format patterns that result in a non-immutable function include any variations of spelled

out or abbreviated months (MONTH, MON), days (DAY, DY), median indicators (AM, PM), or

era indicators (BC, AD).

For the following example, a table with a TIMESTAMP column is created.

CREATE TABLE ts_tbl (ts_col TIMESTAMP);

The following shows the successful creation of an index with the IMMUTABLE form of the

TO_CHAR function.

edb=# CREATE INDEX ts_idx ON ts_tbl (TO_CHAR(ts_col,'YYYY-MM-DD HH24:MI:SS'));

CREATE INDEX

edb=# \dS ts_idx

 Index "public.ts_idx"

 Column | Type | Definition

---------+-------------------+---

 to_char | character varying | to_char(ts_col, 'YYYY-MM-DD HH24:MI:SS'::character

varying)

btree, for table "public.ts_tbl"

The following results in an error because the format specified in the TO_CHAR function

prevents the use of the IMMUTABLE form since the 3-character month abbreviation, MON,

may result in different return values based on the locale setting.

edb=# CREATE INDEX ts_idx_2 ON ts_tbl (TO_CHAR(ts_col, 'DD-MON-YYYY'));

ERROR: functions in index expression must be marked IMMUTABLE

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

251

2.4.8 Date/Time Functions and Operators

Table 2-25 shows the available functions for date/time value processing, with details

appearing in the following subsections. The following table illustrates the behaviors of

the basic arithmetic operators (+, -). For formatting functions, refer to Section 2.4.7. You

should be familiar with the background information on date/time data types from Section

2.2.4.

Table 2-24 Date/Time Operators

Operator Example Result

+ DATE '2001-09-28' + 7 05-OCT-01 00:00:00

+ TIMESTAMP '2001-09-28 13:30:00' + 3 01-OCT-01 13:30:00

- DATE '2001-10-01' – 7 24-SEP-01 00:00:00

- TIMESTAMP '2001-09-28 13:30:00' - 3 25-SEP-01 13:30:00

-
TIMESTAMP '2001-09-29 03:00:00' -

TIMESTAMP '2001-09-27 12:00:00'
@ 1 day 15 hours

In the date/time functions of the following table the use of the DATE and TIMESTAMP

data types are interchangeable.

Table 2-25 Date/Time Functions

Function
Return

Type
Description Example Result

ADD_MONTHS(DATE,

NUMBER)
DATE

Add months to a date; see

Section 2.4.8.1

ADD_MONTHS('28-FEB-97',

3.8)

31-MAY-97

00:00:00

CURRENT_DATE DATE
Current date; see Section

2.4.8.8
CURRENT_DATE 04-JUL-07

CURRENT_TIMESTAMP TIMESTAMP

Returns the current date

and time; see Section

2.4.8.8

CURRENT_TIMESTAMP
04-JUL-07

15:33:23.484

EXTRACT(field FROM

TIMESTAMP)

DOUBLE

PRECISION

Get subfield; see Section

2.4.8.2

EXTRACT(hour FROM

TIMESTAMP '2001-02-16

20:38:40')

20

LAST_DAY(DATE) DATE

Returns the last day of the

month represented by the

given date. If the given

date contains a time

portion, it is carried

forward to the result

unchanged.

LAST_DAY('14-APR-98')
30-APR-98

00:00:00

LOCALTIMESTAMP [

(precision)]
TIMESTAMP

Current date and time

(start of current

transaction); see Section

2.4.8.8

LOCALTIMESTAMP
04-JUL-07

15:33:23.484

MONTHS_BETWEEN(DATE,

DATE)
NUMBER

Number of months

between two dates; see

Section 2.4.8.3

MONTHS_BETWEEN('28-FEB-

07', '30-NOV-06')
3

NEXT_DAY(DATE, DATE Date falling on NEXT_DAY('16-APR- 20-APR-07

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

252

Function
Return

Type
Description Example Result

dayofweek) dayofweek following

specified date; see Section

2.4.8.4

07','FRI') 00:00:00

NEW_TIME(DATE,

VARCHAR, VARCHAR)
DATE

Converts a date and time

to an alternate time zone

NEW_TIME(TO_DATE

'2005/05/29 01:45',

'AST', 'PST')

2005/05/29

21:45:00

NUMTODSINTERVAL(NUMB

ER, INTERVAL)
INTERVAL

Converts a number to a

specified day or second

interval; see Section

2.4.8.9.

SELECT

numtodsinterval(100,

„hour‟);

4 days

04:00:00

NUMTOYMINTERVAL(NUMB

ER, INTERVAL)
INTERVAL

Converts a number to a

specified year or month

interval; see Section

2.4.8.10.

SELECT

numtoyminterval(100,

„month‟);

8 years 4

mons

ROUND(DATE [, format

])
DATE

Date rounded according to

format; see Section

2.4.8.6

ROUND(TO_DATE('29-MAY-

05'),'MON')

01-JUN-05

00:00:00

SYS_EXTRACT_UTC(TIME

STAMP WITH TIME

ZONE)

TIMESTAMP
Returns Coordinated

Universal Time

SYS_EXTRACT_UTC(CAST('24

-MAR-11 12:30:00PM -

04:00' AS TIMESTAMP WITH

TIME ZONE))

24-MAR-11

16:30:00

SYSDATE DATE
Returns current date and

time
SYSDATE

01-AUG-12

11:12:34

SYSTIMESTAMP() TIMESTAMP
Returns current date and

time
SYSTIMESTAMP

01-AUG-12

11:11:23.665

229 -07:00

TRUNC(DATE [format]) DATE

Truncate according to

format; see Section

2.4.8.7

TRUNC(TO_DATE('29-MAY-

05'), 'MON')

01-MAY-05

00:00:00

2.4.8.1 ADD_MONTHS

The ADD_MONTHS functions adds (or subtracts if the second parameter is negative) the

specified number of months to the given date. The resulting day of the month is the same

as the day of the month of the given date except when the day is the last day of the month

in which case the resulting date always falls on the last day of the month.

Any fractional portion of the number of months parameter is truncated before performing

the calculation.

If the given date contains a time portion, it is carried forward to the result unchanged.

The following are examples of the ADD_MONTHS function.

SELECT ADD_MONTHS('13-JUN-07',4) FROM DUAL;

 add_months

 13-OCT-07 00:00:00

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

253

(1 row)

SELECT ADD_MONTHS('31-DEC-06',2) FROM DUAL;

 add_months

 28-FEB-07 00:00:00

(1 row)

SELECT ADD_MONTHS('31-MAY-04',-3) FROM DUAL;

 add_months

 29-FEB-04 00:00:00

(1 row)

2.4.8.2 EXTRACT

The EXTRACT function retrieves subfields such as year or hour from date/time values.

The EXTRACT function returns values of type DOUBLE PRECISION. The following are

valid field names:

YEAR

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2001

(1 row)

MONTH

The number of the month within the year (1 - 12)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2

(1 row)

DAY

The day (of the month) field (1 - 31)

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 16

(1 row)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

254

HOUR

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 20

(1 row)

MINUTE

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 38

(1 row)

SECOND

The seconds field, including fractional parts (0 - 59)

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 40

(1 row)

2.4.8.3 MONTHS_BETWEEN

The MONTHS_BETWEEN function returns the number of months between two dates. The

result is a numeric value which is positive if the first date is greater than the second date

or negative if the first date is less than the second date.

The result is always a whole number of months if the day of the month of both date

parameters is the same, or both date parameters fall on the last day of their respective

months.

The following are some examples of the MONTHS_BETWEEN function.

SELECT MONTHS_BETWEEN('15-DEC-06','15-OCT-06') FROM DUAL;

 months_between

 2

(1 row)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

255

SELECT MONTHS_BETWEEN('15-OCT-06','15-DEC-06') FROM DUAL;

 months_between

 -2

(1 row)

SELECT MONTHS_BETWEEN('31-JUL-00','01-JUL-00') FROM DUAL;

 months_between

 0.967741935

(1 row)

SELECT MONTHS_BETWEEN('01-JAN-07','01-JAN-06') FROM DUAL;

 months_between

 12

(1 row)

2.4.8.4 NEXT_DAY

The NEXT_DAY function returns the first occurrence of the given weekday strictly greater

than the given date. At least the first three letters of the weekday must be specified - e.g.,

SAT. If the given date contains a time portion, it is carried forward to the result

unchanged.

The following are examples of the NEXT_DAY function.

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'SUNDAY') FROM DUAL;

 next_day

 19-AUG-07 00:00:00

(1 row)

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'MON') FROM DUAL;

 next_day

 20-AUG-07 00:00:00

(1 row)

2.4.8.5 NEW_TIME

The NEW_TIME function converts a date and time from one time zone to another.

NEW_TIME returns a value of type DATE. The syntax is:

NEW_TIME(DATE, time_zone1, time_zone2)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

256

time_zone1 and time_zone2 must be string values from the Time Zone column of the

following table:

Table 2-26 Time Zones

Time Zone Offset from UTC Description
AST UTC+4 Atlantic Standard Time

ADT UTC+3 Atlantic Daylight Time
BST UTC+11 Bering Standard Time
BDT UTC+10 Bering Daylight Time

CST UTC+6 Central Standard Time
CDT UTC+5 Central Daylight Time

EST UTC+5 Eastern Standard Time
EDT UTC+4 Eastern Daylight Time
GMT UTC Greenwich Mean Time

HST UTC+10 Alaska-Hawaii Standard Time
HDT UTC+9 Alaska-Hawaii Daylight Time
MST UTC+7 Mountain Standard Time

MDT UTC+6 Mountain Daylight Time
NST UTC+3:30 Newfoundland Standard Time
PST UTC+8 Pacific Standard Time

PDT UTC+7 Pacific Daylight Time
YST UTC+9 Yukon Standard Time

YDT UTC+8 Yukon Daylight Time

Following is an example of the NEW_TIME function.

SELECT NEW_TIME(TO_DATE('08-13-07 10:35:15','MM-DD-YY HH24:MI:SS'),'AST',

'PST') "Pacific Standard Time" FROM DUAL;

Pacific Standard Time

 13-AUG-07 06:35:15

(1 row)

2.4.8.6 ROUND

The ROUND function returns a date rounded according to a specified template pattern. If

the template pattern is omitted, the date is rounded to the nearest day. The following table

shows the template patterns for the ROUND function.

Table 2-27 Template Date Patterns for the ROUND Function

Pattern Description

CC, SCC

Returns January 1, cc01 where cc is first 2 digits of the given year if last 2 digits <=

50, or 1 greater than the first 2 digits of the given year if last 2 digits > 50; (for AD

years)

SYYY, YYYY,

YEAR, SYEAR,

Returns January 1, yyyy where yyyy is rounded to the nearest year; rounds down on

June 30, rounds up on July 1

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

257

Pattern Description

YYY, YY, Y

IYYY, IYY, IY, I

Rounds to the beginning of the ISO year which is determined by rounding down if

the month and day is on or before June 30th, or by rounding up if the month and day

is July 1st or later

Q

Returns the first day of the quarter determined by rounding down if the month and

day is on or before the 15th of the second month of the quarter, or by rounding up if

the month and day is on the 16th of the second month or later of the quarter

MONTH, MON, MM,

RM

Returns the first day of the specified month if the day of the month is on or prior to

the 15th; returns the first day of the following month if the day of the month is on

the 16th or later

WW
Round to the nearest date that corresponds to the same day of the week as the first

day of the year

IW
Round to the nearest date that corresponds to the same day of the week as the first

day of the ISO year

W
Round to the nearest date that corresponds to the same day of the week as the first

day of the month

DDD, DD, J
Rounds to the start of the nearest day; 11:59:59 AM or earlier rounds to the start of

the same day; 12:00:00 PM or later rounds to the start of the next day

DAY, DY, D Rounds to the nearest Sunday

HH, HH12, HH24 Round to the nearest hour

MI Round to the nearest minute

Following are examples of usage of the ROUND function.

The following examples round to the nearest hundred years.

SELECT TO_CHAR(ROUND(TO_DATE('1950','YYYY'),'CC'),'DD-MON-YYYY') "Century"

FROM DUAL;

 Century

 01-JAN-1901

(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century"

FROM DUAL;

 Century

 01-JAN-2001

(1 row)

The following examples round to the nearest year.

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')

"Year" FROM DUAL;

 Year

 01-JAN-1999

(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')

"Year" FROM DUAL;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

258

 Year

 01-JAN-2000

(1 row)

The following examples round to the nearest ISO year. The first example rounds to 2004

and the ISO year for 2004 begins on December 29
th

 of 2003. The second example rounds

to 2005 and the ISO year for 2005 begins on January 3
rd

 of that same year.

(An ISO year begins on the first Monday from which a 7 day span, Monday thru Sunday,

contains at least 4 days of the new year. Thus, it is possible for the beginning of an ISO

year to start in December of the prior year.)

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-

YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003

(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-

YYYY') "ISO Year" FROM DUAL;

 ISO Year

 03-JAN-2005

(1 row)

The following examples round to the nearest quarter.

SELECT ROUND(TO_DATE('15-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00

(1 row)

SELECT ROUND(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-APR-07 00:00:00

(1 row)

The following examples round to the nearest month.

SELECT ROUND(TO_DATE('15-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00

(1 row)

SELECT ROUND(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

259

 Month

 01-JAN-08 00:00:00

(1 row)

The following examples round to the nearest week. The first day of 2007 lands on a

Monday so in the first example, January 18
th

 is closest to the Monday that lands on

January 15
th

. In the second example, January 19
th

 is closer to the Monday that falls on

January 22
nd

.

SELECT ROUND(TO_DATE('18-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00

(1 row)

SELECT ROUND(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 22-JAN-07 00:00:00

(1 row)

The following examples round to the nearest ISO week. An ISO week begins on a

Monday. In the first example, January 1, 2004 is closest to the Monday that lands on

December 29, 2003. In the second example, January 2, 2004 is closer to the Monday that

lands on January 5, 2004.

SELECT ROUND(TO_DATE('01-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00

(1 row)

SELECT ROUND(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 05-JAN-04 00:00:00

(1 row)

The following examples round to the nearest week where a week is considered to start on

the same day as the first day of the month.

SELECT ROUND(TO_DATE('05-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 08-MAR-07 00:00:00

(1 row)

SELECT ROUND(TO_DATE('04-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

260

 01-MAR-07 00:00:00

(1 row)

The following examples round to the nearest day.

SELECT ROUND(TO_DATE('04-AUG-07 11:59:59 AM','DD-MON-YY HH:MI:SS AM'),'J')

"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00

(1 row)

SELECT ROUND(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')

"Day" FROM DUAL;

 Day

 05-AUG-07 00:00:00

(1 row)

The following examples round to the start of the nearest day of the week (Sunday).

SELECT ROUND(TO_DATE('08-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00

(1 row)

SELECT ROUND(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 12-AUG-07 00:00:00

(1 row)

The following examples round to the nearest hour.

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:29','DD-MON-YY HH:MI'),'HH'),'DD-

MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00

(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-

MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 09:00:00

(1 row)

The following examples round to the nearest minute.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

261

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:29','DD-MON-YY

HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00

(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY

HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:31:00

(1 row)

2.4.8.7 TRUNC

The TRUNC function returns a date truncated according to a specified template pattern. If

the template pattern is omitted, the date is truncated to the nearest day. The following

table shows the template patterns for the TRUNC function.

Table 2-28 Template Date Patterns for the TRUNC Function

Pattern Description

CC, SCC Returns January 1, cc01 where cc is first 2 digits of the given year

SYYY, YYYY,

YEAR, SYEAR,

YYY, YY, Y

Returns January 1, yyyy where yyyy is the given year

IYYY, IYY, IY, I Returns the start date of the ISO year containing the given date

Q Returns the first day of the quarter containing the given date

MONTH, MON, MM,

RM
Returns the first day of the specified month

WW
Returns the largest date just prior to, or the same as the given date that corresponds

to the same day of the week as the first day of the year

IW Returns the start of the ISO week containing the given date

W
Returns the largest date just prior to, or the same as the given date that corresponds

to the same day of the week as the first day of the month

DDD, DD, J Returns the start of the day for the given date

DAY, DY, D Returns the start of the week (Sunday) containing the given date

HH, HH12, HH24 Returns the start of the hour

MI Returns the start of the minute

Following are examples of usage of the TRUNC function.

The following example truncates down to the hundred years unit.

SELECT TO_CHAR(TRUNC(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century"

FROM DUAL;

 Century

 01-JAN-1901

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

262

(1 row)

The following example truncates down to the year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY')

"Year" FROM DUAL;

 Year

 01-JAN-1999

(1 row)

The following example truncates down to the beginning of the ISO year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-

YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003

(1 row)

The following example truncates down to the start date of the quarter.

SELECT TRUNC(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00

(1 row)

The following example truncates to the start of the month.

SELECT TRUNC(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00

(1 row)

The following example truncates down to the start of the week determined by the first

day of the year. The first day of 2007 lands on a Monday so the Monday just prior to

January 19
th

 is January 15
th

.

SELECT TRUNC(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00

(1 row)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

263

The following example truncates to the start of an ISO week. An ISO week begins on a

Monday. January 2, 2004 falls in the ISO week that starts on Monday, December 29,

2003.

SELECT TRUNC(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00

(1 row)

The following example truncates to the start of the week where a week is considered to

start on the same day as the first day of the month.

SELECT TRUNC(TO_DATE('21-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 15-MAR-07 00:00:00

(1 row)

The following example truncates to the start of the day.

SELECT TRUNC(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')

"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00

(1 row)

The following example truncates to the start of the week (Sunday).

SELECT TRUNC(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00

(1 row)

The following example truncates to the start of the hour.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-

MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00

(1 row)

The following example truncates to the minute.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY

HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

264

 Minute

 09-AUG-07 08:30:00

(1 row)

2.4.8.8 CURRENT DATE/TIME

Advanced Server provides a number of functions that return values related to the current

date and time. These functions all return values based on the start time of the current

transaction.

 CURRENT_DATE

 CURRENT_TIMESTAMP

 LOCALTIMESTAMP

 LOCALTIMESTAMP(precision)

CURRENT_DATE returns the current date and time based on the start time of the current

transaction. The value of CURRENT_DATE will not change if called multiple times within

a transaction.

SELECT CURRENT_DATE FROM DUAL;

 date

 06-AUG-07

CURRENT_TIMESTAMP returns the current date and time. When called from a single SQL

statement, it will return the same value for each occurrence within the statement. If

called from multiple statements within a transaction, may return different values for each

occurrence. If called from a function, may return a different value than the value

returned by current_timestamp in the caller.

SELECT CURRENT_TIMESTAMP, CURRENT_TIMESTAMP FROM DUAL;

 current_timestamp | current_timestamp

----------------------------------+----------------------------------

 02-SEP-13 17:52:29.261473 +05:00 | 02-SEP-13 17:52:29.261474 +05:00

LOCALTIMESTAMP can optionally be given a precision parameter which causes the result

to be rounded to that many fractional digits in the seconds field. Without a precision

parameter, the result is given to the full available precision.

SELECT LOCALTIMESTAMP FROM DUAL;

 timestamp

 06-AUG-07 16:11:35.973

(1 row)

SELECT LOCALTIMESTAMP(2) FROM DUAL;

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

265

 timestamp

 06-AUG-07 16:11:44.58

(1 row)

Since these functions return the start time of the current transaction, their values do not

change during the transaction. This is considered a feature: the intent is to allow a single

transaction to have a consistent notion of the “current” time, so that multiple

modifications within the same transaction bear the same time stamp. Other database

systems may advance these values more frequently.

2.4.8.9 NUMTODSINTERVAL

The NUMTODSINTERVAL function converts a numeric value to a time interval that

includes day through second interval units. When calling the function, specify the

smallest fractional interval type to be included in the result set. The valid interval types

are DAY, HOUR, MINUTE, and SECOND.

The following example converts a numeric value to a time interval that includes days and

hours:

SELECT numtodsinterval(100, „hour‟);

numtodsinterval

4 days 04:00:00

(1 row)

The following example converts a numeric value to a time interval that includes minutes

and seconds:

SELECT numtodsinterval(100, „second‟);

numtodsinterval

1 min 40 secs

(1 row)

2.4.8.10 NUMTOYMINTERVAL

The NUMTOYMINTERVAL function converts a numeric value to a time interval that

includes year through month interval units. When calling the function, specify the

smallest fractional interval type to be included in the result set. The valid interval types

are YEAR and MONTH.

The following example converts a numeric value to a time interval that includes years

and months:

SELECT numtoyminterval(100, „month‟);

numtoyminterval

8 years 4 mons

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

266

(1 row)

The following example converts a numeric value to a time interval that includes years

only:

SELECT numtoyminterval(100, „year‟);

numtoyminterval

100 years

(1 row)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

267

2.4.9 Sequence Manipulation Functions

This section describes Advanced Server’s functions for operating on sequence objects.

Sequence objects (also called sequence generators or just sequences) are special single-

row tables created with the CREATE SEQUENCE command. A sequence object is usually

used to generate unique identifiers for rows of a table. The sequence functions, listed

below, provide simple, multiuser-safe methods for obtaining successive sequence values

from sequence objects.

sequence.NEXTVAL

sequence.CURRVAL

sequence is the identifier assigned to the sequence in the CREATE SEQUENCE

command. The following describes the usage of these functions.

NEXTVAL

Advance the sequence object to its next value and return that value. This is done

atomically: even if multiple sessions execute NEXTVAL concurrently, each will

safely receive a distinct sequence value.

CURRVAL

Return the value most recently obtained by NEXTVAL for this sequence in the

current session. (An error is reported if NEXTVAL has never been called for this

sequence in this session.) Notice that because this is returning a session-local

value, it gives a predictable answer whether or not other sessions have executed

NEXTVAL since the current session did.

If a sequence object has been created with default parameters, NEXTVAL calls on it will

return successive values beginning with 1. Other behaviors can be obtained by using

special parameters in the CREATE SEQUENCE command.

Important: To avoid blocking of concurrent transactions that obtain numbers from the

same sequence, a NEXTVAL operation is never rolled back; that is, once a value has been

fetched it is considered used, even if the transaction that did the NEXTVAL later aborts.

This means that aborted transactions may leave unused "holes" in the sequence of

assigned values.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

268

2.4.10 Conditional Expressions

The following section describes the SQL-compliant conditional expressions available in

Advanced Server.

2.4.10.1 CASE

The SQL CASE expression is a generic conditional expression, similar to if/else

statements in other languages:

CASE WHEN condition THEN result

 [WHEN ...]

 [ELSE result]

END

CASE clauses can be used wherever an expression is valid. condition is an expression

that returns a BOOLEAN result. If the result is TRUE then the value of the CASE expression

is the result that follows the condition. If the result is FALSE any subsequent WHEN

clauses are searched in the same manner. If no WHEN condition is TRUE then the value

of the CASE expression is the result in the ELSE clause. If the ELSE clause is omitted

and no condition matches, the result is NULL.

An example:

SELECT * FROM test;

 a

 1

 2

 3

(3 rows)

SELECT a,

 CASE WHEN a=1 THEN 'one'

 WHEN a=2 THEN 'two'

 ELSE 'other'

 END

FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

(3 rows)

The data types of all the result expressions must be convertible to a single output type.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

269

The following “simple” CASE expression is a specialized variant of the general form

above:

CASE expression

 WHEN value THEN result

 [WHEN ...]

 [ELSE result]

END

The expression is computed and compared to all the value specifications in the WHEN

clauses until one is found that is equal. If no match is found, the result in the ELSE

clause (or a null value) is returned.

The example above can be written using the simple CASE syntax:

SELECT a,

 CASE a WHEN 1 THEN 'one'

 WHEN 2 THEN 'two'

 ELSE 'other'

 END

FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

(3 rows)

A CASE expression does not evaluate any subexpressions that are not needed to determine

the result. For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

2.4.10.2 COALESCE

The COALESCE function returns the first of its arguments that is not null. Null is returned

only if all arguments are null.

COALESCE(value [, value2] ...)

It is often used to substitute a default value for null values when data is retrieved for

display or further computation. For example:

SELECT COALESCE(description, short_description, '(none)') ...

Like a CASE expression, COALESCE will not evaluate arguments that are not needed to

determine the result; that is, arguments to the right of the first non-null argument are not

evaluated. This SQL-standard function provides capabilities similar to NVL and IFNULL,

which are used in some other database systems.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

270

2.4.10.3 NULLIF

The NULLIF function returns a null value if value1 and value2 are equal; otherwise it

returns value1.

NULLIF(value1, value2)

This can be used to perform the inverse operation of the COALESCE example given

above:

SELECT NULLIF(value1, '(none)') ...

If value1 is (none), return a null, otherwise return value1.

2.4.10.4 NVL

The NVL function returns the first of its arguments that is not null. NVL evaluates the first

expression; if that expression evaluates to NULL, NVL returns the second expression.

NVL(expr1, expr2)

The return type is the same as the argument types; all arguments must have the same data

type (or be coercible to a common type). NVL returns NULL if all arguments are NULL.

The following example computes a bonus for non-commissioned employees, If an

employee is a commissioned employee, this expression returns the employees

commission; if the employee is not a commissioned employee (that is, his commission is

NULL), this expression returns a bonus that is 10% of his salary.

bonus = NVL(emp.commission, emp.salary * .10)

2.4.10.5 NVL2

NVL2 evaluates an expression, and returns either the second or third expression,

depending on the value of the first expression. If the first expression is not NULL, NVL2

returns the value in expr2; if the first expression is NULL, NVL2 returns the value in

expr3.

NVL2(expr1, expr2, expr3)

The return type is the same as the argument types; all arguments must have the same data

type (or be coercible to a common type).

The following example computes a bonus for commissioned employees - if a given

employee is a commissioned employee, this expression returns an amount equal to 110%

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

271

of his commission; if the employee is not a commissioned employee (that is, his

commission is NULL), this expression returns 0.

bonus = NVL2(emp.commission, emp.commission * 1.1, 0)

2.4.10.6 GREATEST and LEAST

The GREATEST and LEAST functions select the largest or smallest value from a list of any

number of expressions.

GREATEST(value [, value2] ...)

LEAST(value [, value2] ...)

The expressions must all be convertible to a common data type, which will be the type of

the result. Null values in the list are ignored. The result will be null only if all the

expressions evaluate to null.

Note that GREATEST and LEAST are not in the SQL standard, but are a common

extension.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

272

2.4.11 Aggregate Functions

Aggregate functions compute a single result value from a set of input values. The built-in

aggregate functions are listed in the following tables.

Table 2-29 General-Purpose Aggregate Functions

Function Argument Type Return Type Description

AVG(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

NUMBER for any integer

type, DOUBLE PRECISION

for a floating-point

argument, otherwise the

same as the argument data

type

The average (arithmetic mean) of

all input values

COUNT(*) BIGINT Number of input rows

COUNT(expression)
Any

BIGINT
Number of input rows for which

the value of expression is not null

MAX(expression)
Any numeric, string,

date/time, or bytea type
Same as argument type

Maximum value of expression

across all input values

MIN(expression)
Any numeric, string,

date/time, or bytea type
Same as argument type

Minimum value of expression

across all input values

SUM(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

BIGINT for SMALLINT or

INTEGER arguments,

NUMBER for BIGINT

arguments, DOUBLE

PRECISION for floating-

point arguments, otherwise

the same as the argument

data type

Sum of expression across all input

values

It should be noted that except for COUNT, these functions return a null value when no

rows are selected. In particular, SUM of no rows returns null, not zero as one might

expect. The COALESCE function may be used to substitute zero for null when necessary.

The following table shows the aggregate functions typically used in statistical analysis.

(These are separated out merely to avoid cluttering the listing of more-commonly-used

aggregates.) Where the description mentions N, it means the number of input rows for

which all the input expressions are non-null. In all cases, null is returned if the

computation is meaningless, for example when N is zero.

Table 2-30 Aggregate Functions for Statistics

Function Argument Type Return Type Description

CORR(Y, X) DOUBLE PRECISION DOUBLE PRECISION Correlation coefficient

COVAR_POP(Y, X) DOUBLE PRECISION DOUBLE PRECISION Population covariance

COVAR_SAMP(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sample covariance

REGR_AVGX(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Average of the independent

variable (sum(X) / N)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

273

Function Argument Type Return Type Description

REGR_AVGY(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Average of the dependent

variable (sum(Y) / N)

REGR_COUNT(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Number of input rows in

which both expressions are

nonnull

REGR_INTERCEPT(Y, X) DOUBLE PRECISION DOUBLE PRECISION

y-intercept of the least-

squares-fit linear equation

determined by the (X, Y)

pairs

REGR_R2(Y, X) DOUBLE PRECISION DOUBLE PRECISION
Square of the correlation

coefficient

REGR_SLOPE(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Slope of the least-squares-

fit linear equation

determined by the (X, Y)

pairs

REGR_SXX(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Sum (X
2
) – sum (X)

2
 / N

(“sum of squares” of the

independent variable)

REGR_SXY(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Sum (X*Y) – sum (X) * sum

(Y) / N (“sum of products”

of independent times

dependent variable)

REGR_SYY(Y, X) DOUBLE PRECISION DOUBLE PRECISION

Sum (Y
2
) – sum (Y)

2
 / N

(“sum of squares” of the

dependent variable)

STDDEV(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

DOUBLE PRECISION for

floating-point arguments,

otherwise NUMBER

Historic alias for
STDDEV_SAMP

STDDEV_POP(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

DOUBLE PRECISION for

floating-point arguments,

otherwise NUMBER

Population standard

deviation of the input

values

STDDEV_SAMP(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

DOUBLE PRECISION for

floating-point arguments,

otherwise NUMBER

Sample standard deviation

of the input values

VARIANCE(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

DOUBLE PRECISION for

floating-point arguments,

otherwise NUMBER

Historical alias for
VAR_SAMP

VAR_POP(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

DOUBLE PRECISION for

floating-point arguments,

otherwise NUMBER

Population variance of the

input values (square of the

population standard

deviation)

VAR_SAMP(expression)

INTEGER, REAL,

DOUBLE PRECISION,

NUMBER

DOUBLE PRECISION for

floating-point arguments,

otherwise NUMBER

Sample variance of the

input values (square of the

sample standard deviation)

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

274

2.4.12 Subquery Expressions

This section describes the SQL-compliant subquery expressions available in Advanced

Server. All of the expression forms documented in this section return Boolean

(TRUE/FALSE) results.

2.4.12.1 EXISTS

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is

evaluated to determine whether it returns any rows. If it returns at least one row, the

result of EXISTS is TRUE; if the subquery returns no rows, the result of EXISTS is

FALSE.

EXISTS(subquery)

The subquery can refer to variables from the surrounding query, which will act as

constants during any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least

one row is returned, not all the way to completion. It is unwise to write a subquery that

has any side effects (such as calling sequence functions); whether the side effects occur

or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents

of those rows, the output list of the subquery is normally uninteresting. A common

coding convention is to write all EXISTS tests in the form EXISTS(SELECT 1 WHERE

...). There are exceptions to this rule however, such as subqueries that use INTERSECT.

This simple example is like an inner join on deptno, but it produces at most one output

row for each dept row, even though there are multiple matching emp rows:

SELECT dname FROM dept WHERE EXISTS (SELECT 1 FROM emp WHERE emp.deptno =

dept.deptno);

 dname

 ACCOUNTING

 RESEARCH

 SALES

(3 rows)

2.4.12.2 IN

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

275

The result of IN is TRUE if any equal subquery row is found. The result is FALSE if no

equal row is found (including the special case where the subquery returns no rows).

expression IN (subquery)

Note that if the left-hand expression yields NULL, or if there are no equal right-hand

values and at least one right-hand row yields NULL, the result of the IN construct will be

NULL, not FALSE. This is in accordance with SQL’s normal rules for Boolean

combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

2.4.12.3 NOT IN

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result.

The result of NOT IN is TRUE if only unequal subquery rows are found (including the

special case where the subquery returns no rows). The result is FALSE if any equal row is

found.

expression NOT IN (subquery)

Note that if the left-hand expression yields NULL, or if there are no equal right-hand

values and at least one right-hand row yields NULL, the result of the NOT IN construct

will be NULL, not TRUE. This is in accordance with SQL’s normal rules for Boolean

combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

2.4.12.4 ANY/SOME

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result

using the given operator, which must yield a Boolean result. The result of ANY is TRUE if

any true result is obtained. The result is FALSE if no true result is found (including the

special case where the subquery returns no rows).

expression operator ANY (subquery)

expression operator SOME (subquery)

SOME is a synonym for ANY. IN is equivalent to = ANY.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

276

Note that if there are no successes and at least one right-hand row yields NULL for the

operator’s result, the result of the ANY construct will be NULL, not FALSE. This is in

accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

2.4.12.5 ALL

The right-hand side is a parenthesized subquery, which must return exactly one column.

The left-hand expression is evaluated and compared to each row of the subquery result

using the given operator, which must yield a Boolean result. The result of ALL is TRUE if

all rows yield true (including the special case where the subquery returns no rows). The

result is FALSE if any false result is found. The result is NULL if the comparison does not

return FALSE for any row, and it returns NULL for at least one row.

expression operator ALL (subquery)

NOT IN is equivalent to <> ALL. As with EXISTS, it’s unwise to assume that the

subquery will be evaluated completely.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

277

3 Oracle Catalog Views

The Oracle Catalog Views provide information about database objects in a manner

compatible with the Oracle data dictionary views.

3.1 ALL_ALL_TABLES

The ALL_ALL_TABLES view provides information about the tables accessible by the

current user.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT The name of the table.

tablespace_name TEXT
Name of the tablespace in which the table resides if other than

the default tablespace.

status
CHARACTER

VARYING (5)
Included for compatibility only; always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

3.2 ALL_CONS_COLUMNS

The ALL_CONS_COLUMNS view provides information about the columns specified in

constraints placed on tables accessible by the current user.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to which the constraint belongs.

column_name TEXT The name of the column referenced in the constraint.

position SMALLINT The position of the column within the object definition.

constraint_def TEXT The definition of the constraint.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

278

3.3 ALL_CONSTRAINTS

The ALL_CONSTRAINTS view provides information about the constraints placed on

tables accessible by the current user.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:

C – check constraint

F – foreign key constraint

P – primary key constraint

U – unique key constraint

R – referential integrity constraint

V – constraint on a view

O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.

search_condition TEXT Search condition that applies to a check constraint.

r_owner TEXT Owner of a table referenced by a referential constraint.

r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values

are:

C – cascade

R – restrict

N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (T or F).

deferred BOOLEAN Specifies if the constraint has been deferred (T or F).

index_owner TEXT User name of the index owner.

index_name TEXT The name of the index.

constraint_def TEXT The definition of the constraint.

3.4 ALL_DB_LINKS

The ALL_DB_LINKS view provides information about the database links accessible by

the current user.

Name Type Description

owner TEXT User name of the database link’s owner.

db_link TEXT The name of the database link.

type
CHARACTER

VARYING
Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.

host TEXT Name or IP address of the remote server.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

279

3.5 ALL_DIRECTORIES

The ALL_DIRECTORIES view provides information about all directories created with the

CREATE DIRECTORY command.

Name Type Description

owner
CHARACTER

VARYING(30)
User name of the directory’s owner.

directory_name
CHARACTER

VARYING(30)
The alias name assigned to the directory.

directory_path
CHARACTER

VARYING(4000)
The path to the directory.

3.6 ALL_IND_COLUMNS

The ALL_IND_COLUMNS view provides information about columns included in indexes

on the tables accessible by the current user.

Name Type Description

index_owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT The name of the index.

table_owner TEXT User name of the table owner.

table_name TEXT The name of the table to which the index belongs.

column_name TEXT The name of the column.

column_position SMALLINT The position of the column within the index.

column_length SMALLINT The length of the column (in bytes).

char_length NUMERIC The length of the column (in characters).

descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

3.7 ALL_INDEXES

The ALL_INDEXES view provides information about the indexes on tables that may be

accessed by the current user.

Name Type Description

owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT The name of the index.

index_type TEXT
The index type is always BTREE. Included for compatibility

only.

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Always set to TABLE.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

280

Name Type Description

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHARACTER(1)
Always set to N (not compressed). Included for compatibility

only.

tablespace_name TEXT
Name of the tablespace in which the table resides if other than

the default tablespace.

logging TEXT Always set to LOGGING. Included for compatibility only.

status TEXT Included for compatibility only; always set to VALID.

partitioned CHARACTER(3)
Indicates that the index is partitioned. Currently, always set to

NO.

temporary CHARACTER(1)
Indicates that an index is on a temporary table. Always set to

N; included for compatibility only.

secondary CHARACTER(1) Included for compatibility only. Always set to N.

join_index CHARACTER(3) Included for compatibility only. Always set to NO.

dropped CHARACTER(3) Included for compatibility only. Always set to NO.

3.8 ALL_JOBS

The ALL_JOBS view provides information about all jobs that reside in the database.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT The name of the user that submitted the job.

priv_user TEXT Same as log_user. Included for compatibility only.

schema_user TEXT The name of the schema used to parse the job.

last_date
TIMESTAMP WITH

TIME ZONE
The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date
TIMESTAMP WITH

TIME ZONE
The date that the job began executing.

this_sec TEXT Same as this_date

next_date
TIMESTAMP WITH

TIME ZONE
The next date that this job will be executed.

next_sec TEXT Same as next_date.

total_time INTERVAL The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.

If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT
The number of times that the job has failed to complete since

it’s last successful execution.

what TEXT
The job definition (PL/SQL code block) that runs when the

job executes.

nls_env
CHARACTER

VARYING(4000)
Always NULL. Provided for compatibility only.

misc_env BYTEA Always NULL. Provided for compatibility only.

instance NUMERIC Always 0. Provided for compatibility only.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

281

3.9 ALL_OBJECTS

The ALL_OBJECTS view provides information about all objects that reside in the

database.

Name Type Description

owner TEXT User name of the object’s owner.

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object.

object_type

TEXT Type of the object – possible values are: INDEX, FUNCTION,

PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,

SYNONYM, TABLE, TRIGGER, and VIEW.

status
CHARACTER

VARYING
Whether or not the state of the object is valid. Currently,

Included for compatibility only; always set to VALID.

temporary TEXT Y if a temporary object; N if this is a permanent object.

3.10 ALL_PART_KEY_COLUMNS

The ALL_PART_KEY_COLUMNS view provides information about the key columns of the

partitioned tables that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which the

table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key

is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

282

3.11 ALL_PART_TABLES

The ALL_PART_TABLES view provides information about all of the partitioned tables

that reside in the database.

Name Type Description
owner TEXT The owner of the partitioned table.
schema_name TEXT The name of the schema in which the table

resides.
table_name TEXT The name of the table.
partitioning_type TEXT The partitioning type used to define table

partitions.
subpartitioning_type TEXT The subpartitioning type used to define table

subpartitions.
partition_count BIGINT The number of partitions in the table.
def_subpartition_count INTEGER The number of subpartitions in the table.
partitioning_key_count INTEGER The number of partitioning keys specified.
subpartitioning_key_count INTEGER The number of subpartitioning keys specified.
status CHARACTER

VARYING(8)
Provided for compatibility only. Always

VALID.
def_tablespace_name CHARACTER

VARYING(30)
Provided for compatibility only. Always NULL.

def_pct_free NUMERIC Provided for compatibility only. Always NULL.
def_pct_used NUMERIC Provided for compatibility only. Always NULL.
def_ini_trans NUMERIC Provided for compatibility only. Always NULL.
def_max_trans NUMERIC Provided for compatibility only. Always NULL.
def_initial_extent CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_next_extent CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_min_extents CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_max_extents CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_pct_increase CHARACTER

VARYING(40)
Provided for compatibility only. Always NULL.

def_freelists NUMERIC Provided for compatibility only. Always NULL.
def_freelist_groups NUMERIC Provided for compatibility only. Always NULL.
def_logging CHARACTER

VARYING(7)
Provided for compatibility only. Always YES.

def_compression CHARACTER

VARYING(8)
Provided for compatibility only. Always NONE

def_buffer_pool CHARACTER

VARYING(7)
Provided for compatibility only. Always
DEFAULT

ref_ptn_constraint_name CHARACTER

VARYING(30)
Provided for compatibility only. Always NULL

interval CHARACTER

VARYING(1000)
Provided for compatibility only. Always NULL

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

283

3.12 ALL_POLICIES

The ALL_POLICIES view provides information on all policies in the database. This view

is accessible only to superusers.

Name Type Description

object_owner TEXT Name of the owner of the object.

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object on which the policy applies.

policy_group TEXT Included for compatibility only; always set to an empty string.

policy_name TEXT Name of the policy.

pf_owner

TEXT Name of the schema containing the policy function, or the

schema containing the package that contains the policy

function.

package
TEXT Name of the package containing the policy function (if the

function belongs to a package).

function TEXT Name of the policy function.

sel TEXT
Whether or not the policy applies to SELECT commands.

Possible values are YES or NO.

ins TEXT
Whether or not the policy applies to INSERT commands.

Possible values are YES or NO.

upd TEXT
Whether or not the policy applies to UPDATE commands.

Possible values are YES or NO.

del TEXT
Whether or not the policy applies to DELETE commands.

Possible values are YES or NO.

idx TEXT
Whether or not the policy applies to index maintenance.

Possible values are YES or NO.

chk_option TEXT
Whether or not the check option is in force for INSERT and

UPDATE commands. Possible values are YES or NO.

enable TEXT
Whether or not the policy is enabled on the object. Possible

values are YES or NO.

static_policy TEXT Included for compatibility only; always set to NO.

policy_type TEXT Included for compatibility only; always set to UNKNOWN.

long_predicate TEXT Included for compatibility only; always set to YES.

3.13 ALL_QUEUES

The ALL_QUEUES view provides information about any currently defined queues.

Name Type Description

owner TEXT User name of the queue owner.

name TEXT The name of the queue.

queue_table TEXT The name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

284

Name Type Description

queue_type
CHARACTER

VARYING

The queue type; may be EXCEPTION_QUEUE,

NON_PERSISTENT_QUEUE, or NORMAL_QUEUE.

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled
CHARACTER

VARYING
YES if the queue allows enqueuing; NO if the queue does not.

dequeue_enabled
CHARACTER

VARYING
YES if the queue allows dequeuing; NO if the queue does not.

retention
CHARACTER

VARYING

The number of seconds that a processed message is retained in

the queue.

user_comment
CHARACTER

VARYING
A user-specified comment.

network_name
CHARACTER

VARYING
The name of the network on which the queue resides.

sharded
CHARACTER

VARYING

YES if the queue resides on a sharded network; NO if the queue

does not.

3.14 ALL_QUEUE_TABLES

The ALL_QUEUE_TABLES view provides information about all of the queue tables in the

database.

Name Type Description

owner TEXT Role name of the owner of the queue table.

queue_table TEXT The user-specified name of the queue table.

type
CHARACTER

VARYING
The type of data stored in the queue table.

object_type TEXT The user-defined payload type.

sort_order
CHARACTER

VARYING
The order in which the queue table is sorted.

recipients
CHARACTER

VARYING Always SINGLE.

message_grouping
CHARACTER

VARYING
Always NONE.

compatible
CHARACTER

VARYING
The release number of the Advanced Server release with

which this queue table is compatible.

primary_instance NUMERIC Always 0.

secondary_instance NUMERIC Always 0.

owner_instance NUMERIC
The instance number of the instance that owns the queue

table.

user_comment
CHARACTER

VARYING
The user comment provided when the table was created.

secure
CHARACTER

VARYING
YES indicates that the queue table is secure; NO indicates that

it is not.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

285

3.15 ALL_SEQUENCES

The ALL_SEQUENCES view provides information about all user-defined sequences on

which the user has SELECT, or UPDATE privileges.

Name Type Description

sequence_owner TEXT User name of the sequence's owner.

schema_name TEXT Name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC The lowest value that the server will assign to the sequence.

max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC
The value added to the current sequence number to create the

next sequent number.

cycle_flag
CHARACTER

VARYING

Specifies if the sequence should wrap when it reaches

min_value or max_value.

order_flag
CHARACTER

VARYING
Will always return Y.

cache_size NUMERIC
The number of pre-allocated sequence numbers stored in

memory.

last_number NUMERIC The value of the last sequence number saved to disk.

3.16 ALL_SOURCE

The ALL_SOURCE view provides a source code listing of the following program types:

functions, procedures, triggers, package specifications, and package bodies.

Name Type Description

owner TEXT User name of the program’s owner.

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type
TEXT Type of program – possible values are: FUNCTION, PACKAGE,

PACKAGE BODY, PROCEDURE, and TRIGGER.

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

286

3.17 ALL_SUBPART_KEY_COLUMNS

The ALL_SUBPART_KEY_COLUMNS view provides information about the key columns of

those partitioned tables which are subpartitioned that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which the

table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key

is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

3.18 ALL_SYNONYMS

The ALL_SYNONYMS view provides information on all synonyms that may be referenced

by the current user.

Name Type Description

owner TEXT User name of the synonym’s owner.

schema_name TEXT The name of the schema in which the synonym resides.

synonym_name TEXT Name of the synonym.

table_owner TEXT User name of the object’s owner.

table_schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the object that the synonym refers to.

db_link TEXT The name of any associated database link.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

287

3.19 ALL_TAB_COLUMNS

The ALL_TAB_COLUMNS view provides information on all columns in all user-defined

tables and views.

Name Type Description

owner CHARACTER VARYING
User name of the owner of the table or view in which the

column resides.

schema_name CHARACTER VARYING Name of the schema in which the table or view resides.

table_name CHARACTER VARYING Name of the table or view.

column_name CHARACTER VARYING Name of the column.

data_type CHARACTER VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)

Whether or not the column is nullable. Possible values

are:

 Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the table or view.

data_default CHARACTER VARYING Default value assigned to the column.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

288

3.20 ALL_TAB_PARTITIONS

The ALL_TAB_PARTITIONS view provides information about all of the partitions that

reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the partition resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
composite TEXT YES if the table is subpartitioned; NO if the table is not

subpartitioned.
partition_name TEXT The name of the partition.
subpartition_count BIGINT The number of subpartitions in the partition.
high_value TEXT The high partitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the partitioning value.
partition_position INTEGER 1 for the first partition; 2 for the second partition, etc.
tablespace_name TEXT The name of the tablespace in which the partition resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER

VARYING(8)
Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER

VARYING(7)
Included for compatibility only; always NULL

global_stats CHARACTER

VARYING(3)
Included for compatibility only; always YES

user_stats CHARACTER

VARYING(3)
Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

289

3.21 ALL_TAB_SUBPARTITIONS

The ALL_TAB_SUBPARTITIONS view provides information about all of the subpartitions

that reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the subpartition

resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
partition_name TEXT The name of the partition.
subpartition_name TEXT The name of the subpartition.
high_value TEXT The high subpartitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the subpartitioning value.
subpartition_position INTEGER 1 for the first subpartition; 2 for the second

subpartition, etc.
tablespace_name TEXT The name of the tablespace in which the subpartition

resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER

VARYING(8)
Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER

VARYING(7)
Included for compatibility only; always NULL

global_stats CHARACTER

VARYING(3)
Included for compatibility only; always YES

user_stats CHARACTER

VARYING(3)
Included for compatibility only; always NO

backing_table REGCLASS Name of the subpartition backing table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

290

3.22 ALL_TABLES

The ALL_TABLES view provides information on all user-defined tables.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name
TEXT Name of the tablespace in which the table resides if other than

the default tablespace.

status
CHARACTER

VARYING(5)

Whether or not the state of the table is valid. Currently,

Included for compatibility only; always set to VALID.

temporary CHARACTER(1) Y if this is a temporary table; N if this is not a temporary table.

3.23 ALL_TRIGGERS

The ALL_TRIGGERS view provides information about the triggers on tables that may be

accessed by the current user.

Name Type Description

owner TEXT User name of the trigger’s owner.

schema_name TEXT The name of the schema in which the trigger resides.

trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW

BEFORE STATEMENT

AFTER ROW

AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT
The user name of the owner of the table on which the trigger

is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.

table_name TEXT The name of the table on which the trigger is defined.

referencing_name
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description TEXT Included for compatibility only.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL command that executes when the trigger fires.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

291

3.24 ALL_TYPES

The ALL_TYPES view provides information about the object types available to the

current user.

Name Type Description

owner TEXT The owner of the object type.

schema_name TEXT The name of the schema in which the type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT

COLLECTION

OTHER

attributes INTEGER The number of attributes in the type.

3.25 ALL_USERS

The ALL_USERS view provides information on all user names.

Name Type Description

username TEXT Name of the user.

user_id OID Numeric user id assigned to the user.

created TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only; always NULL.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

292

3.26 ALL_VIEW_COLUMNS

The ALL_VIEW_COLUMNS view provides information on all columns in all user-defined

views.

Name Type Description

owner
CHARACTER

VARYING
User name of the view’s owner.

schema_name
CHARACTER

VARYING Name of the schema in which the view belongs.

view_name
CHARACTER

VARYING Name of the view.

column_name
CHARACTER

VARYING Name of the column.

data_type
CHARACTER

VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable – possible values are: Y

– column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the view.

data_default CHARACTER

VARYING
Default value assigned to the column.

3.27 ALL_VIEWS

The ALL_VIEWS view provides information about all user-defined views.

Name Type Description

owner TEXT User name of the view’s owner.

schema_name TEXT Name of the schema in which the view belongs.

view_name TEXT Name of the view.

text TEXT The SELECT statement that defines the view.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

293

3.28 DBA_ALL_TABLES

The DBA_ALL_TABLES view provides information about all tables in the database.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT
Name of the tablespace in which the table resides if other than

the default tablespace.

status
CHARACTER

VARYING(5)
Included for compatibility only; always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

3.29 DBA_CONS_COLUMNS

The DBA_CONS_COLUMNS view provides information about all columns that are included

in constraints that are specified in on all tables in the database.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to which the constraint belongs.

column_name TEXT The name of the column referenced in the constraint.

position SMALLINT The position of the column within the object definition.

constraint_def TEXT The definition of the constraint.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

294

3.30 DBA_CONSTRAINTS

The DBA_CONSTRAINTS view provides information about all constraints on tables in the

database.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:

C – check constraint

F – foreign key constraint

P – primary key constraint

U – unique key constraint

R – referential integrity constraint

V – constraint on a view

O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.

search_condition TEXT Search condition that applies to a check constraint.

r_owner TEXT Owner of a table referenced by a referential constraint.

r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values

are:

C – cascade

R - restrict

N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (T or F).

deferred BOOLEAN Specifies if the constraint has been deferred (T or F).

index_owner TEXT User name of the index owner.

index_name TEXT The name of the index.

constraint_def TEXT The definition of the constraint.

3.31 DBA_DB_LINKS

The DBA_DB_LINKS view provides information about all database links in the database.

Name Type Description

owner TEXT User name of the database link’s owner.

db_link TEXT The name of the database link.

type
CHARACTER

VARYING
Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.

host TEXT Name or IP address of the remote server.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

295

3.32 DBA_DIRECTORIES

The DBA_DIRECTORIES view provides information about all directories created with the

CREATE DIRECTORY command.

Name Type Description

owner
CHARACTER

VARYING(30)
User name of the directory’s owner.

directory_name
CHARACTER

VARYING(30)
The alias name assigned to the directory.

directory_path
CHARACTER

VARYING(4000)
The path to the directory.

3.33 DBA_IND_COLUMNS

The DBA_IND_COLUMNS view provides information about all columns included in

indexes, on all tables in the database.

Name Type Description

index_owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT Name of the index.

table_owner TEXT User name of the table’s owner.

table_name TEXT Name of the table in which the index belongs.

column_name TEXT Name of column or attribute of object column.

column_position SMALLINT The position of the column in the index.

column_length SMALLINT The length of the column (in bytes).

char_length NUMERIC The length of the column (in characters).

descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

3.34 DBA_INDEXES

The DBA_INDEXES view provides information about all indexes in the database.

Name Type Description

owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index resides.

index_name TEXT The name of the index.

index_type TEXT
The index type is always BTREE. Included for compatibility

only.

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Always set to TABLE.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

296

Name Type Description

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHARACTER(1)
Always set to N (not compressed). Included for compatibility

only.

tablespace_name TEXT
Name of the tablespace in which the table resides if other than

the default tablespace.

logging TEXT Included for compatibility only. Always set to LOGGING.

status TEXT
Whether or not the state of the object is valid. (VALID or

INVALID).

partitioned CHARACTER(3) Indicates that the index is partitioned. Always set to NO.

temporary CHARACTER(1)
Indicates that an index is on a temporary table. Always set to

N.

secondary CHARACTER(1) Included for compatibility only. Always set to N.

join_index CHARACTER(3) Included for compatibility only. Always set to NO.

dropped CHARACTER(3) Included for compatibility only. Always set to NO.

3.35 DBA_JOBS

The DBA_JOBS view provides information about all jobs in the database.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT The name of the user that submitted the job.

priv_user TEXT Same as log_user. Included for compatibility only.

schema_user TEXT The name of the schema used to parse the job.

last_date
TIMESTAMP WITH

TIME ZONE
The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date
TIMESTAMP WITH

TIME ZONE
The date that the job began executing.

this_sec TEXT Same as this_date

next_date
TIMESTAMP WITH

TIME ZONE
The next date that this job will be executed.

next_sec TEXT Same as next_date.

total_time INTERVAL The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.

If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT
The number of times that the job has failed to complete since

it’s last successful execution.

what TEXT
The job definition (PL/SQL code block) that runs when the

job executes.

nls_env
CHARACTER

VARYING(4000)
Always NULL. Provided for compatibility only.

misc_env BYTEA Always NULL. Provided for compatibility only.

instance NUMERIC Always 0. Provided for compatibility only.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

297

3.36 DBA_OBJECTS

The DBA_OBJECTS view provides information about all objects in the database.

Name Type Description

owner TEXT User name of the object’s owner.

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object.

object_type TEXT

Type of the object – possible values are: INDEX, FUNCTION,

PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,

SYNONYM, TABLE, TRIGGER, and VIEW.

status
CHARACTER

VARYING
Included for compatibility only; always set to VALID.

temporary TEXT Y if the table is temporary; N if the table is permanent.

3.37 DBA_PART_KEY_COLUMNS

The DBA_PART_KEY_COLUMNS view provides information about the key columns of the

partitioned tables that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which the

table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key

is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

298

3.38 DBA_PART_TABLES

The DBA_PART_TABLES view provides information about all of the partitioned tables in

the database.

Name Type Description
owner TEXT The owner of the partitioned table.
schema_name TEXT The schema in which the table resides.
table_name TEXT The name of the table.
partitioning_type TEXT The type used to define table partitions.
subpartitioning_type TEXT The subpartitioning type used to define table

subpartitions.
partition_count BIGINT The number of partitions in the table.
def_subpartition_count INTEGER The number of subpartitions in the table.
partitioning_key_count INTEGER The number of partitioning keys specified.
subpartitioning_key_count INTEGER The number of subpartitioning keys specified.
status CHARACTER

VARYING(8)
Provided for compatibility only. Always

VALID.
def_tablespace_name CHARACTER

VARYING(30)
Provided for compatibility only. Always

NULL.
def_pct_free NUMERIC Provided for compatibility only. Always

NULL.
def_pct_used NUMERIC Provided for compatibility only. Always

NULL.
def_ini_trans NUMERIC Provided for compatibility only. Always

NULL.
def_max_trans NUMERIC Provided for compatibility only. Always

NULL.
def_initial_extent CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_next_extent CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_min_extents CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_max_extents CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_pct_increase CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_freelists NUMERIC Provided for compatibility only. Always

NULL.
def_freelist_groups NUMERIC Provided for compatibility only. Always

NULL.
def_logging CHARACTER

VARYING(7)
Provided for compatibility only. Always YES.

def_compression CHARACTER

VARYING(8)
Provided for compatibility only. Always
NONE

def_buffer_pool CHARACTER

VARYING(7)
Provided for compatibility only. Always
DEFAULT

ref_ptn_constraint_name CHARACTER

VARYING(30)
Provided for compatibility only. Always
NULL

interval CHARACTER

VARYING(1000)
Provided for compatibility only. Always
NULL

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

299

3.39 DBA_POLICIES

The DBA_POLICIES view provides information on all policies in the database. This view

is accessible only to superusers.

Name Type Description

object_owner TEXT Name of the owner of the object.

schema_name TEXT The name of the schema in which the object resides.

object_name TEXT Name of the object to which the policy applies.

policy_group
TEXT Name of the policy group. Included for compatibility only;

always set to an empty string.

policy_name TEXT Name of the policy.

pf_owner

TEXT Name of the schema containing the policy function, or the

schema containing the package that contains the policy

function.

package
TEXT Name of the package containing the policy function (if the

function belongs to a package).

function TEXT Name of the policy function.

sel
TEXT Whether or not the policy applies to SELECT commands.

Possible values are YES or NO.

ins
TEXT Whether or not the policy applies to INSERT commands.

Possible values are YES or NO.

upd
TEXT Whether or not the policy applies to UPDATE commands.

Possible values are YES or NO.

del
TEXT Whether or not the policy applies to DELETE commands.

Possible values are YES or NO.

idx
TEXT Whether or not the policy applies to index maintenance.

Possible values are YES or NO.

chk_option
TEXT Whether or not the check option is in force for INSERT and

UPDATE commands. Possible values are YES or NO.

Enable
TEXT Whether or not the policy is enabled on the object. Possible

values are YES or NO.

static_policy TEXT Included for compatibility only; always set to NO.

policy_type TEXT Included for compatibility only; always set to UNKNOWN.

long_predicate TEXT Included for compatibility only; always set to YES.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

300

3.40 DBA_PROFILES

The DBA_PROFILES view provides information about existing profiles. The table

includes a row for each profile/resource combination.

Name Type Description

profile
CHARACTER

VARYING(128)
The name of the profile.

resource_name
CHARACTER

VARYING(32)
The name of the resource associated with the profile.

resource_type
CHARACTER

VARYING(8)
The type of resource governed by the profile; currently

PASSWORD for all supported resources.

limit
CHARACTER

VARYING(128)
The limit values of the resource.

common
CHARACTER

VARYING(3)
YES for a user-created profile; NO for a system-defined profile.

3.41 DBA_QUEUES

The DBA_QUEUES view provides information about any currently defined queues.

Name Type Description

owner TEXT User name of the queue owner.

name TEXT The name of the queue.

queue_table TEXT The name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

queue_type
CHARACTER

VARYING

The queue type; may be EXCEPTION_QUEUE,

NON_PERSISTENT_QUEUE, or NORMAL_QUEUE.

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled
CHARACTER

VARYING
YES if the queue allows enqueuing; NO if the queue does not.

dequeue_enabled
CHARACTER

VARYING
YES if the queue allows dequeuing; NO if the queue does not.

retention
CHARACTER

VARYING

The number of seconds that a processed message is retained in

the queue.

user_comment
CHARACTER

VARYING
A user-specified comment.

network_name
CHARACTER

VARYING
The name of the network on which the queue resides.

sharded
CHARACTER

VARYING

YES if the queue resides on a sharded network; NO if the queue

does not.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

301

3.42 DBA_QUEUE_TABLES

The DBA_QUEUE_TABLES view provides information about all of the queue tables in the

database.

Name Type Description

owner TEXT Role name of the owner of the queue table.

queue_table TEXT The user-specified name of the queue table.

type
CHARACTER

VARYING
The type of data stored in the queue table.

object_type TEXT The user-defined payload type.

sort_order
CHARACTER

VARYING
The order in which the queue table is sorted.

recipients
CHARACTER

VARYING Always SINGLE.

message_grouping
CHARACTER

VARYING
Always NONE.

compatible
CHARACTER

VARYING
The release number of the Advanced Server release with

which this queue table is compatible.

primary_instance NUMERIC Always 0.

secondary_instance NUMERIC Always 0.

owner_instance NUMERIC
The instance number of the instance that owns the queue

table.

user_comment
CHARACTER

VARYING
The user comment provided when the table was created.

secure
CHARACTER

VARYING
YES indicates that the queue table is secure; NO indicates that

it is not.

3.43 DBA_ROLE_PRIVS

The DBA_ROLE_PRIVS view provides information on all roles that have been granted to

users. A row is created for each role to which a user has been granted.

Name Type Description

grantee TEXT User name to whom the role was granted.

granted_role TEXT Name of the role granted to the grantee.

admin_option
TEXT YES if the role was granted with the admin option, NO

otherwise.

default_role TEXT YES if the role is enabled when the grantee creates a session.

3.44 DBA_ROLES

The DBA_ROLES view provides information on all roles with the NOLOGIN attribute

(groups).

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

302

Name Type Description

role TEXT Name of a role having the NOLOGIN attribute – i.e., a group.

password_required TEXT Included for compatibility only; always N.

3.45 DBA_SEQUENCES

The DBA_SEQUENCES view provides information about all user-defined sequences.

Name Type Description

sequence_owner TEXT User name of the sequence's owner.

schema_name TEXT The name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC The lowest value that the server will assign to the sequence.

max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC
The value added to the current sequence number to create the

next sequent number.

cycle_flag
CHARACTER

VARYING

Specifies if the sequence should wrap when it reaches

min_value or max_value.

order_flag
CHARACTER

VARYING
Will always return Y.

cache_size NUMERIC
The number of pre-allocated sequence numbers stored in

memory.

last_number NUMERIC The value of the last sequence number saved to disk.

3.46 DBA_SOURCE

The DBA_SOURCE view provides the source code listing of all objects in the database.

Name Type Description

owner TEXT User name of the program’s owner.

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type
TEXT Type of program – possible values are: FUNCTION, PACKAGE,

PACKAGE BODY, PROCEDURE, and TRIGGER.

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

303

3.47 DBA_SUBPART_KEY_COLUMNS

The DBA_SUBPART_KEY_COLUMNS view provides information about the key columns of

those partitioned tables which are subpartitioned that reside in the database.

Name Type Description
owner TEXT The owner of the table.
schema_name TEXT The name of the schema in which the

table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key

is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

3.48 DBA_SYNONYMS

The DBA_SYNONYM view provides information about all synonyms in the database.

Name Type Description

owner TEXT User name of the synonym’s owner.

schema_name TEXT Name of the schema in which the synonym belongs.

synonym_name TEXT Name of the synonym.

table_owner
TEXT User name of the table’s owner on which the synonym is

defined.

table_schema_name TEXT The name of the schema in which the table resides.

table_name TEXT Name of the table on which the synonym is defined.

db_link TEXT Name of any associated database link.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

304

3.49 DBA_TAB_COLUMNS

The DBA_TAB_COLUMNS view provides information about all columns in the database.

Name Type Description

owner
CHARACTER

VARYING

User name of the owner of the table or view in which the

column resides.

schema_name
CHARACTER

VARYING Name of the schema in which the table or view resides.

table_name
CHARACTER

VARYING Name of the table or view in which the column resides.

column_name
CHARACTER

VARYING Name of the column.

data_type
CHARACTER

VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable – possible values are:

 Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the table or view.

data_default CHARACTER

VARYING
Default value assigned to the column.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

305

3.50 DBA_TAB_PARTITIONS

The DBA_TAB_PARTITIONS view provides information about all of the partitions that

reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the partition resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
composite TEXT YES if the table is subpartitioned; NO if the table is not

subpartitioned.
partition_name TEXT The name of the partition.
subpartition_count BIGINT The number of subpartitions in the partition.
high_value TEXT The high partitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the partitioning value.
partition_position INTEGER 1 for the first partition; 2 for the second partition, etc.
tablespace_name TEXT The name of the tablespace in which the partition resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER

VARYING(8)
Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER

VARYING(7)
Included for compatibility only; always NULL

global_stats CHARACTER

VARYING(3)
Included for compatibility only; always YES

user_stats CHARACTER

VARYING(3)
Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

306

3.51 DBA_TAB_SUBPARTITIONS

The DBA_TAB_SUBPARTITIONS view provides information about all of the subpartitions

that reside in the database.

Name Type Description
table_owner TEXT The owner of the table in which the subpartition

resides.
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
partition_name TEXT The name of the partition.
subpartition_name TEXT The name of the subpartition.
high_value TEXT The high subpartitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the subpartitioning value.
subpartition_position INTEGER 1 for the first subpartition; 2 for the second

subpartition, etc.
tablespace_name TEXT The name of the tablespace in which the subpartition

resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER

VARYING(8)
Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER

VARYING(7)
Included for compatibility only; always NULL

global_stats CHARACTER

VARYING(3)
Included for compatibility only; always YES

user_stats CHARACTER

VARYING(3)
Included for compatibility only; always NO

backing_table REGCLASS Name of the subpartition backing table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

307

3.52 DBA_TABLES

The DBA_TABLES view provides information about all tables in the database.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT
Name of the tablespace in which the table resides if other than

the default tablespace.

status
CHARACTER

VARYING(5)
Included for compatibility only; always set to VALID.

temporary CHARACTER(1) Y if the table is temporary; N if the table is permanent.

3.53 DBA_TRIGGERS

The DBA_TRIGGERS view provides information about all triggers in the database.

Name Type Description

owner TEXT User name of the trigger’s owner.

schema_name TEXT The name of the schema in which the trigger resides.

trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW

BEFORE STATEMENT

AFTER ROW

AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT
The user name of the owner of the table on which the trigger

is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.

table_name TEXT The name of the table on which the trigger is defined.

referencing_names
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description TEXT Included for compatibility only.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL command that executes when the trigger fires.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

308

3.54 DBA_TYPES

The DBA_TYPES view provides information about all object types in the database.

Name Type Description

owner TEXT The owner of the object type.

schema_name TEXT The name of the schema in which the type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT

COLLECTION

OTHER

attributes INTEGER The number of attributes in the type.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

309

3.55 DBA_USERS

The DBA_USERS view provides information about all users of the database.

Name Type Description

username TEXT User name of the user.

user_id OID ID number of the user.

password
CHARACTER

VARYING(30)
The password (encrypted) of the user.

account_status
CHARACTER

VARYING(32)

The current status of the account. Possible values

are:
 OPEN

 EXPIRED

 EXPIRED(GRACE)

 EXPIRED & LOCKED

 EXPIRED & LOCKED(TIMED)

 EXPIRED(GRACE) & LOCKED

 EXPIRED(GRACE) & LOCKED(TIMED)

 LOCKED

 LOCKED(TIMED)

Use the edb_get_role_status(role_id)

function to get the current status of the account.

lock_date

TIMESTAMP

WITHOUT TIME

ZONE

If the account status is LOCKED, lock_date

displays the date and time the account was locked.

expiry_date

TIMESTAMP

WITHOUT TIME

ZONE

The expiration date of the password. Use the
edb_get_password_expiry_date(role_id)

function to get the current password expiration date.

default_tablespace TEXT The default tablespace associated with the account.

temporary_tablespace
CHARACTER

VARYING(30)

Included for compatibility only. The value will

always be '' (an empty string).

created

TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only. The value is

always NULL.

profile
CHARACTER

VARYING(30)
The profile associated with the user.

initial_rsrc_consumer_group
CHARACTER

VARYING(30)

Included for compatibility only. The value is

always NULL.

external_name CHARACTER

VARYING(4000)
Included for compatibility only. The value is

always NULL.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

310

3.56 DBA_VIEW_COLUMNS

The DBA_VIEW_COLUMNS view provides information on all columns in the database.

Name Type Description

owner
CHARACTER

VARYING
User name of the view’s owner.

schema_name
CHARACTER

VARYING
Name of the schema in which the view belongs.

view_name
CHARACTER

VARYING
Name of the view.

column_name
CHARACTER

VARYING
Name of the column.

data_type
CHARACTER

VARYING
Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable – possible values are:

 Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the view.

data_default
CHARACTER

VARYING
Default value assigned to the column.

3.57 DBA_VIEWS

The DBA_VIEWS view provides information about all views in the database.

Name Type Description

owner TEXT User name of the view’s owner.

schema_name TEXT Name of the schema in which the view belongs.

view_name TEXT Name of the view.

text TEXT The text of the SELECT statement that defines the view.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

311

3.58 USER_ALL_TABLES

The USER_ALL_TABLES view provides information about all tables owned by the current

user.

Name Type Description

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT
Name of the tablespace in which the table resides if other than

the default tablespace.

status
CHARACTER

VARYING(5)
Included for compatibility only; always set to VALID..

temporary TEXT Y if the table is temporary; N if the table is permanent.

3.59 USER_CONS_COLUMNS

The USER_CONS_COLUMNS view provides information about all columns that are

included in constraints in tables that are owned by the current user.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to which the constraint belongs.

column_name TEXT The name of the column referenced in the constraint.

position SMALLINT The position of the column within the object definition.

constraint_def TEXT The definition of the constraint.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

312

3.60 USER_CONSTRAINTS

The USER_CONSTRAINTS view provides information about all constraints placed on

tables that are owned by the current user.

Name Type Description

owner TEXT The name of the owner of the constraint.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

constraint_type TEXT

The constraint type. Possible values are:

C – check constraint

F – foreign key constraint

P – primary key constraint

U – unique key constraint

R – referential integrity constraint

V – constraint on a view

O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.

search_condition TEXT Search condition that applies to a check constraint.

r_owner TEXT Owner of a table referenced by a referential constraint.

r_constraint_name TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT

The delete rule for a referential constraint. Possible values

are:

C – cascade

R – restrict

N – no action

deferrable BOOLEAN Specified if the constraint is deferrable (T or F).

deferred BOOLEAN Specifies if the constraint has been deferred (T or F).

index_owner TEXT User name of the index owner.

index_name TEXT The name of the index.

constraint_def TEXT The definition of the constraint.

3.61 USER_DB_LINKS

The USER_DB_LINKS view provides information about all database links that are owned

by the current user.

Name Type Description

db_link TEXT The name of the database link.

type
CHARACTER

VARYING
Type of remote server. Value will be either REDWOOD or EDB

username TEXT User name of the user logging in.

password TEXT Password used to authenticate on the remote server.

host TEXT Name or IP address of the remote server.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

313

3.62 USER_IND_COLUMNS

The USER_IND_COLUMNS view provides information about all columns referred to in

indexes on tables that are owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT The name of the index.

table_name TEXT The name of the table to which the index belongs.

column_name TEXT The name of the column.

column_position SMALLINT The position of the column within the index.

column_length SMALLINT The length of the column (in bytes).

char_length NUMERIC The length of the column (in characters).

descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

3.63 USER_INDEXES

The USER_INDEXES view provides information about all indexes on tables that are

owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT The name of the index.

index_type TEXT
Included for compatibility only. The index type is always

BTREE.

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Always set to TABLE.

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE.

compression CHARACTER(1)
Included for compatibility only. Always set to N (not

compressed).

tablespace_name TEXT
Name of the tablespace in which the table resides if other than

the default tablespace.

logging TEXT Included for compatibility only. Always set to LOGGING.

status TEXT
Whether or not the state of the object is valid. (VALID or

INVALID).

partitioned CHARACTER(3) Included for compatibility only. Always set to NO.

temporary CHARACTER(1) Included for compatibility only. Always set to N.

secondary CHARACTER(1) Included for compatibility only. Always set to N.

join_index CHARACTER(3) Included for compatibility only. Always set to NO.

dropped CHARACTER(3) Included for compatibility only. Always set to NO.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

314

3.64 USER_JOBS

The USER_JOBS view provides information about all jobs owned by the current user.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT The name of the user that submitted the job.

priv_user TEXT Same as log_user. Included for compatibility only.

schema_user TEXT The name of the schema used to parse the job.

last_date
TIMESTAMP WITH

TIME ZONE
The last date that this job executed successfully.

last_sec TEXT Same as last_date.

this_date
TIMESTAMP WITH

TIME ZONE
The date that the job began executing.

this_sec TEXT Same as this_date.

next_date
TIMESTAMP WITH

TIME ZONE
The next date that this job will be executed.

next_sec TEXT Same as next_date.

total_time INTERVAL The execution time of this job (in seconds).

broken TEXT
If Y, no attempt will be made to run this job.

If N, this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT
The number of times that the job has failed to complete since

it’s last successful execution.

what TEXT
The job definition (PL/SQL code block) that runs when the

job executes.

nls_env
CHARACTER

VARYING(4000)
Always NULL. Provided for compatibility only.

misc_env BYTEA Always NULL. Provided for compatibility only.

instance NUMERIC Always 0. Provided for compatibility only.

3.65 USER_OBJECTS

The USER_OBJECTS view provides information about all objects that are owned by the

current user.

Name Type Description

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object.

object_type TEXT

Type of the object – possible values are: INDEX, FUNCTION,

PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE,

SYNONYM, TABLE, TRIGGER, and VIEW.

status
CHARACTER

VARYING
Included for compatibility only; always set to VALID.

temporary TEXT Y if the object is temporary; N if the object is not temporary.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

315

3.66 USER_PART_KEY_COLUMNS

The USER_PART_KEY_COLUMNS view provides information about the key columns of

the partitioned tables that reside in the database.

Name Type Description
schema_name TEXT The name of the schema in which the

table resides.
name TEXT The name of the table in which the

column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key

is defined.
column_position INTEGER 1 for the first column; 2 for the second

column, etc.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

316

3.67 USER_PART_TABLES

The USER_PART_TABLES view provides information about all of the partitioned tables in

the database that are owned by the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table

resides.
table_name TEXT The name of the table.
partitioning_type TEXT The partitioning type used to define table

partitions.
subpartitioning_type TEXT The subpartitioning type used to define table

subpartitions.
partition_count BIGINT The number of partitions in the table.
def_subpartition_count INTEGER The number of subpartitions in the table.
partitioning_key_count INTEGER The number of partitioning keys specified.
subpartitioning_key_count INTEGER The number of subpartitioning keys specified.
status CHARACTER

VARYING(8)
Provided for compatibility only. Always

VALID.
def_tablespace_name CHARACTER

VARYING(30)
Provided for compatibility only. Always

NULL.
def_pct_free NUMERIC Provided for compatibility only. Always

NULL.
def_pct_used NUMERIC Provided for compatibility only. Always

NULL.
def_ini_trans NUMERIC Provided for compatibility only. Always

NULL.
def_max_trans NUMERIC Provided for compatibility only. Always

NULL.
def_initial_extent CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_min_extents CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_max_extents CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_pct_increase CHARACTER

VARYING(40)
Provided for compatibility only. Always

NULL.
def_freelists NUMERIC Provided for compatibility only. Always

NULL.
def_freelist_groups NUMERIC Provided for compatibility only. Always

NULL.
def_logging CHARACTER

VARYING(7)
Provided for compatibility only. Always YES.

def_compression CHARACTER

VARYING(8)
Provided for compatibility only. Always
NONE

def_buffer_pool CHARACTER

VARYING(7)
Provided for compatibility only. Always
DEFAULT

ref_ptn_constraint_name CHARACTER

VARYING(30)
Provided for compatibility only. Always
NULL

interval CHARACTER

VARYING(1000)
Provided for compatibility only. Always
NULL

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

317

3.68 USER_POLICIES

The USER_POLICIES view provides information on policies where the schema

containing the object on which the policy applies has the same name as the current

session user. This view is accessible only to superusers.

Name Type Description

schema_name TEXT The name of the schema in which the object resides.

object_name TEXT Name of the object on which the policy applies.

policy_group
TEXT Name of the policy group. Included for compatibility only;

always set to an empty string.

policy_name TEXT Name of the policy.

pf_owner

TEXT Name of the schema containing the policy function, or the

schema containing the package that contains the policy

function.

package
TEXT Name of the package containing the policy function (if the

function belongs to a package).

function TEXT Name of the policy function.

sel
TEXT Whether or not the policy applies to SELECT commands.

Possible values are YES or NO.

ins
TEXT Whether or not the policy applies to INSERT commands.

Possible values are YES or NO.

upd
TEXT Whether or not the policy applies to UPDATE commands.

Possible values are YES or NO.

del
TEXT Whether or not the policy applies to DELETE commands.

Possible values are YES or NO.

idx
TEXT Whether or not the policy applies to index maintenance.

Possible values are YES or NO.

chk_option
TEXT Whether or not the check option is in force for INSERT and

UPDATE commands. Possible values are YES or NO.

enable
TEXT Whether or not the policy is enabled on the object. Possible

values are YES or NO.

static_policy
TEXT Whether or not the policy is static. Included for compatibility

only; always set to NO.

policy_type
TEXT Policy type. Included for compatibility only; always set to

UNKNOWN.

long_predicate TEXT Included for compatibility only; always set to YES.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

318

3.69 USER_QUEUES

The USER_QUEUES view provides information about any queue on which the current user

has usage privileges.

Name Type Description

name TEXT The name of the queue.

queue_table TEXT The name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

queue_type
CHARACTER

VARYING

The queue type; may be EXCEPTION_QUEUE,

NON_PERSISTENT_QUEUE, or NORMAL_QUEUE.

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled
CHARACTER

VARYING
YES if the queue allows enqueuing; NO if the queue does not.

dequeue_enabled
CHARACTER

VARYING
YES if the queue allows dequeuing; NO if the queue does not.

retention
CHARACTER

VARYING

The number of seconds that a processed message is retained in

the queue.

user_comment
CHARACTER

VARYING
A user-specified comment.

network_name
CHARACTER

VARYING
The name of the network on which the queue resides.

sharded
CHARACTER

VARYING

YES if the queue resides on a sharded network; NO if the queue

does not.

3.70 USER_QUEUE_TABLES

The USER_QUEUE_TABLES view provides information about all of the queue tables

accessible by the current user.

Name Type Description

queue_table TEXT The user-specified name of the queue table.

type
CHARACTER

VARYING
The type of data stored in the queue table.

object_type TEXT The user-defined payload type.

sort_order
CHARACTER

VARYING
The order in which the queue table is sorted.

recipients
CHARACTER

VARYING Always SINGLE.

message_grouping
CHARACTER

VARYING
Always NONE.

compatible
CHARACTER

VARYING
The release number of the Advanced Server release with

which this queue table is compatible.

primary_instance NUMERIC Always 0.

secondary_instance NUMERIC Always 0.

owner_instance NUMERIC
The instance number of the instance that owns the queue

table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

319

Name Type Description

user_comment
CHARACTER

VARYING
The user comment provided when the table was created.

secure
CHARACTER

VARYING
YES indicates that the queue table is secure; NO indicates that

it is not.

3.71 USER_ROLE_PRIVS

The USER_ROLE_PRIVS view provides information about the privileges that have been

granted to the current user. A row is created for each role to which a user has been

granted.

Name Type Description

username TEXT The name of the user to which the role was granted.

granted_role TEXT Name of the role granted to the grantee.

admin_option
TEXT YES if the role was granted with the admin option, NO

otherwise.

default_role
TEXT

YES if the role is enabled when the grantee creates a session.

os_granted CHARACTER

VARYING(3)
Included for compatibility only; always NO.

3.72 USER_SEQUENCES

The USER_SEQUENCES view provides information about all user-defined sequences that

belong to the current user.

Name Type Description

schema_name TEXT The name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC The lowest value that the server will assign to the sequence.

max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC
The value added to the current sequence number to create the

next sequent number.

cycle_flag
CHARACTER

VARYING

Specifies if the sequence should wrap when it reaches

min_value or max_value.

order_flag
CHARACTER

VARYING
Included for compatibility only; always Y.

cache_size NUMERIC The number of pre-allocated sequence numbers in memory.

last_number NUMERIC The value of the last sequence number saved to disk.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

320

3.73 USER_SOURCE

The USER_SOURCE view provides information about all programs owned by the current

user.

Name Type Description

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type
TEXT Type of program – possible values are: FUNCTION, PACKAGE,

PACKAGE BODY, PROCEDURE, and TRIGGER.

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

3.74 USER_SUBPART_KEY_COLUMNS

The USER_SUBPART_KEY_COLUMNS view provides information about the key columns

of those partitioned tables which are subpartitioned that belong to the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table resides.
name TEXT The name of the table in which the column resides.
object_type CHARACTER(5) For compatibility only; always TABLE.
column_name TEXT The name of the column on which the key is defined.
column_position INTEGER 1 for the first column; 2 for the second column, etc.

3.75 USER_SYNONYMS

The USER_SYNONYMS view provides information about all synonyms owned by the

current user.

Name Type Description

schema_name TEXT The name of the schema in which the synonym resides.

synonym_name TEXT Name of the synonym.

table_owner
TEXT User name of the table’s owner on which the synonym is

defined.

table_schema_name TEXT The name of the schema in which the table resides.

table_name TEXT Name of the table on which the synonym is defined.

db_link TEXT Name of any associated database link.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

321

3.76 USER_TAB_COLUMNS

The USER_TAB_COLUMNS view displays information about all columns in tables and

views owned by the current user.

Name Type Description

schema_name
CHARACTER

VARYING Name of the schema in which the table or view resides.

table_name
CHARACTER

VARYING Name of the table or view in which the column resides.

column_name
CHARACTER

VARYING Name of the column.

data_type
CHARACTER

VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable – possible values are: Y

Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the table.

data_default CHARACTER

VARYING
Default value assigned to the column.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

322

3.77 USER_TAB_PARTITIONS

The USER_TAB_PARTITIONS view provides information about all of the partitions that

are owned by the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
composite TEXT YES if the table is subpartitioned; NO if the table is not

subpartitioned.
partition_name TEXT The name of the partition.
subpartition_count BIGINT The number of subpartitions in the partition.
high_value TEXT The high partitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the partitioning value.
partition_position INTEGER 1 for the first partition; 2 for the second partition, etc.
tablespace_name TEXT The name of the tablespace in which the partition resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER

VARYING(8)
Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER

VARYING(7)
Included for compatibility only; always NULL

global_stats CHARACTER

VARYING(3)
Included for compatibility only; always YES

user_stats CHARACTER

VARYING(3)
Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

323

3.78 USER_TAB_SUBPARTITIONS

The USER_TAB_SUBPARTITIONS view provides information about all of the

subpartitions owned by the current user.

Name Type Description
schema_name TEXT The name of the schema in which the table resides.
table_name TEXT The name of the table.
partition_name TEXT The name of the partition.
subpartition_name TEXT The name of the subpartition.
high_value TEXT The high subpartitioning value specified in the CREATE

TABLE statement.
high_value_length INTEGER The length of the subpartitioning value.
subpartition_position INTEGER 1 for the first subpartition; 2 for the second

subpartition, etc.
tablespace_name TEXT The name of the tablespace in which the subpartition

resides.
pct_free NUMERIC Included for compatibility only; always 0
pct_used NUMERIC Included for compatibility only; always 0
ini_trans NUMERIC Included for compatibility only; always 0
max_trans NUMERIC Included for compatibility only; always 0
initial_extent NUMERIC Included for compatibility only; always NULL
next_extent NUMERIC Included for compatibility only; always NULL
min_extent NUMERIC Included for compatibility only; always 0
max_extent NUMERIC Included for compatibility only; always 0
pct_increase NUMERIC Included for compatibility only; always 0
freelists NUMERIC Included for compatibility only; always NULL
freelist_groups NUMERIC Included for compatibility only; always NULL
logging CHARACTER

VARYING(7)
Included for compatibility only; always YES

compression CHARACTER

VARYING(8)
Included for compatibility only; always NONE

num_rows NUMERIC Same as pg_class.reltuples.
blocks INTEGER Same as pg_class.relpages.
empty_blocks NUMERIC Included for compatibility only; always NULL
avg_space NUMERIC Included for compatibility only; always NULL
chain_cnt NUMERIC Included for compatibility only; always NULL
avg_row_len NUMERIC Included for compatibility only; always NULL
sample_size NUMERIC Included for compatibility only; always NULL
last_analyzed TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only; always NULL

buffer_pool CHARACTER

VARYING(7)
Included for compatibility only; always NULL

global_stats CHARACTER

VARYING(3)
Included for compatibility only; always YES

user_stats CHARACTER

VARYING(3)
Included for compatibility only; always NO

backing_table REGCLASS Name of the partition backing table.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

324

3.79 USER_TABLES

The USER_TABLES view displays information about all tables owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name
TEXT Name of the tablespace in which the table resides if other than

the default tablespace.

status
CHARACTER

VARYING(5)
Included for compatibility only; always set to VALID..

temporary CHARACTER(1) Y if the table is temporary; N if the table is not temporary.

3.80 USER_TRIGGERS

The USER_TRIGGERS view displays information about all triggers on tables owned by

the current user.

Name Type Description

schema_name TEXT The name of the schema in which the trigger resides.

trigger_name TEXT The name of the trigger.

trigger_type TEXT

The type of the trigger. Possible values are:
BEFORE ROW

BEFORE STATEMENT

AFTER ROW

AFTER STATEMENT

triggering_event TEXT The event that fires the trigger.

table_owner TEXT
The user name of the owner of the table on which the trigger

is defined.

base_object_type TEXT Included for compatibility only. Value will always be TABLE.

table_name TEXT The name of the table on which the trigger is defined.

referencing_names
TEXT Included for compatibility only. Value will always be

REFERENCING NEW AS NEW OLD AS OLD.

status
TEXT Status indicates if the trigger is enabled (VALID) or disabled

(NOTVALID).

description TEXT Included for compatibility only.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL command that executes when the trigger fires.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

325

3.81 USER_TYPES

The USER_TYPES view provides information about all object types owned by the current

user.

Name Type Description

schema_name TEXT The name of the schema in which the type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT

The typecode of the type. Possible values are:
OBJECT

COLLECTION

OTHER

attributes INTEGER The number of attributes in the type.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

326

3.82 USER_USERS

The USER_USERS view provides information about the current user.

Name Type Description

username TEXT User name of the user.

user_id OID ID number of the user.

account_status
CHARACTER

VARYING(32)

The current status of the account. Possible values

are:
OPEN

EXPIRED

EXPIRED(GRACE)

EXPIRED & LOCKED

EXPIRED & LOCKED(TIMED)

EXPIRED(GRACE) & LOCKED

EXPIRED(GRACE) & LOCKED(TIMED)

LOCKED

LOCKED(TIMED)

Use the
edb_get_role_status(role_id)

function to get the current status of the

account.

lock_date

TIMESTAMP

WITHOUT TIME

ZONE

If the account status is LOCKED, lock_date

displays the date and time the account was locked.

expiry_date

TIMESTAMP

WITHOUT TIME

ZONE

The expiration date of the account.

default_tablespace TEXT The default tablespace associated with the account.

temporary_tablespace
CHARACTER

VARYING(30)

Included for compatibility only. The value will

always be '' (an empty string).

created

TIMESTAMP

WITHOUT TIME

ZONE

Included for compatibility only. The value will

always be NULL.

initial_rsrc_consumer_group
CHARACTER

VARYING(30)

Included for compatibility only. The value will

always be NULL.

external_name CHARACTER

VARYING(4000)
Included for compatibility only; always set to

NULL.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

327

3.83 USER_VIEW_COLUMNS

The USER_VIEW_COLUMNS view provides information about all columns in views owned

by the current user.

Name Type Description

schema_name
CHARACTER

VARYING
Name of the schema in which the view belongs.

view_name
CHARACTER

VARYING Name of the view.

column_name
CHARACTER

VARYING Name of the column.

data_type
CHARACTER

VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1)
Whether or not the column is nullable – possible values are: Y

– column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column within the view.

data_default CHARACTER

VARYING
Default value assigned to the column.

3.84 USER_VIEWS

The USER_VIEWS view provides information about all views owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the view resides.

view_name TEXT Name of the view.

text TEXT The SELECT statement that defines the view.

3.85 V$VERSION

The V$VERSION view provides information about product compatibility.

Name Type Description

banner TEXT Displays product compatibility information.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

328

3.86 PRODUCT_COMPONENT_VERSION

The PRODUCT_COMPONENT_VERSION view provides version information about product

version compatibility.

Name Type Description

product
CHARACTER

VARYING(74)
The name of the product.

version
CHARACTER

VARYING(74
The version number of the product.

status CHARACTER

VARYING(74)
Included for compatibility; always Available.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

329

4 System Catalog Tables

The following system catalog tables contain definitions of database objects. The layout

of the system tables is subject to change; if you are writing an application that depends on

information stored in the system tables, it would be prudent to use an existing catalog

view, or create a catalog view to isolate the application from changes to the system table.

4.1 dual

dual is a single-row, single-column table that is provided for compatibility with Oracle

databases only.

Column Type Modifiers Description
dummy VARCHAR2(1) Provided for compatibility only.

4.2 edb_dir

The edb_dir table contains one row for each alias that points to a directory created with

the CREATE DIRECTORY command. A directory is an alias for a pathname that allows a

user limited access to the host file system.

You can use a directory to fence a user into a specific directory tree within the file

system. For example, the UTL_FILE package offers functions that permit a user to read

and write files and directories in the host file system, but only allows access to paths that

the database administrator has granted access to via a CREATE DIRECTORY command.

Column Type Modifiers Description
dirname "name" not null The name of the alias.
dirowner oid not null The OID of the user that owns the alias.
dirpath text The directory name to which access is granted.
diracl aclitem[] The access control list that determines which users

may access the alias.

4.3 edb_password_history

The edb_password_history table contains one row for each password change. The

table is shared across all databases within a cluster.

Column Type References Description
passhistroleid oid pg_authid.oid The ID of a role.
passhistpassword text Role password in md5 encrypted form.
passhistpasswordsetat timestamptz The time the password was set.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

330

4.4 edb_policy

The edb_policy table contains one row for each policy.

Column Type Modifiers Description
policyname name not null The policy name.
policygroup oid not null Currently unused.
policyobject oid not null The OID of the table secured by this policy

(the object_schema plus the object_name).
policykind char not null The kind of object secured by this policy:

'r' for a table

'v' for a view

= for a synonym

Currently always 'r'.
policyproc oid not null The OID of the policy function

(function_schema plus policy_function).
policyinsert boolean not null True if the policy is enforced by INSERT

statements.
policyselect boolean not null True if the policy is enforced by SELECT

statements.
policydelete boolean not null True if the policy is enforced by DELETE

statements.
policyupdate boolean not null True if the policy is enforced by UPDATE

statements.
policyindex boolean not null Currently unused.
policyenabled boolean not null True if the policy is enabled.
policyupdatecheck boolean not null True if rows updated by an UPDATE

statement must satisfy the policy.
policystatic boolean not null Currently unused.
policytype integer not null Currently unused.
policyopts integer not null Currently unused.
policyseccols int2vector not null The column numbers for columns listed in

sec_relevant_cols.

4.5 edb_profile

The edb_profile table stores information about the available profiles. edb_profiles

is shared across all databases within a cluster.

Column Type References Description
oid oid Row identifier (hidden attribute;

must be explicitly selected).
prfname name The name of the profile.
prffailedloginattempts integer The number of failed login attempts

allowed by the profile. -1 indicates

that the value from the default

profile should be used. -2 indicates

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

331

Column Type References Description
no limit on failed login attempts.

prfpasswordlocktime integer The password lock time associated

with the profile (in seconds). -1

indicates that the value from the

default profile should be used. -2

indicates that the account should be

locked permanently.
prfpasswordlifetime integer The password life time associated

with the profile (in seconds). -1

indicates that the value from the

default profile should be used. -2

indicates that the password never

expires.
prfpasswordgracetime integer The password grace time associated

with the profile (in seconds). -1

indicates that the value from the

default profile should be used. -2

indicates that the password never

expires.
prfpasswordreusetime integer The number of seconds that a user

must wait before reusing a

password. -1 indicates that the

value from the default profile

should be used. -2 indicates that the

old passwords can never be reused.
prfpasswordreusemax integer The number of password changes

that have to occur before a

password can be reused. -1

indicates that the value from the

default profile should be used. -2

indicates that the old passwords can

never be reused.
prfpasswordverifyfuncdb oid pg_database.oid The OID of the database in which

the password verify function exists.
prfpasswordverifyfunc oid pg_proc.oid The OID of the password verify

function associated with the profile.

4.6 edb_variable

The edb_variable table contains one row for each package level variable (each

variable declared within a package).

Column Type Modifiers Description
varname "name" not null The name of the variable.
varpackage oid not null The OID of the pg_namespace row that stores the

package.
vartype oid not null The OID of the pg_type row that defines the type of

the variable.
varaccess "char" not null + if the variable is visible outside of the package.

- if the variable is only visible within the package.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

332

Column Type Modifiers Description
Note: Public variables are declared within the

package header; private variables are declared

within the package body.
varsrc text Contains the source of the variable declaration,

including any default value expressions for the

variable.
varseq smallint not null The order in which the variable was declared in the

package.

4.7 pg_synonym

The pg_synonym table contains one row for each synonym created with the CREATE

SYNONYM command or CREATE PUBLIC SYNONYM command.

Column Type Modifiers Description
synname "name" not null The name of the synonym.
synnamespace oid not null Replaces synowner. Contains the OID of the

pg_namespace row where the synonym is stored
synowner oid not null The OID of the user that owns the synonym.
synobjschema "name" not null The schema in which the referenced object is

defined.
synobjname "name" not null The name of the referenced object.
synlink text The (optional) name of the database link in which

the referenced object is defined.

4.8 product_component_version

The product_component_version table contains information about feature

compatibility; an application can query this table at installation or run time to verify that

features used by the application are available with this deployment.

Column Type Description
product character varying (74) The name of the product.
version character varying (74) The version number of the product.
status character varying (74) The status of the release.

Database Compatibility for Oracle® Developers

Reference Guide

Copyright © 2007 - 2018 EnterpriseDB Corporation. All rights reserved.

333

5 Acknowledgements

The PostgreSQL 8.3, 8.4, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, and 10 Documentation provided

the baseline for the portions of this guide that are common to PostgreSQL, and is hereby

acknowledged:

Portions of this EnterpriseDB Software and Documentation may utilize the following

copyrighted material, the use of which is hereby acknowledged.

PostgreSQL Documentation, Database Management System

PostgreSQL is Copyright © 1996-2017 by the PostgreSQL Global Development Group

and is distributed under the terms of the license of the University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for

any purpose, without fee, and without a written agreement is hereby granted, provided

that the above copyright notice and this paragraph and the following two paragraphs

appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY

FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,

INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS

DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE

PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF

CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,

ENHANCEMENTS, OR MODIFICATIONS.

