
Oracle® Fusion Middleware
Administering Oracle GoldenGate for
Windows and UNIX

12c (12.2.0.1)
E66357-07
July 2018

Oracle Fusion Middleware Administering Oracle GoldenGate for Windows and UNIX, 12c (12.2.0.1)

E66357-07

Copyright © 2013, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xix

Documentation Accessibility xix

Related Information xix

Conventions xx

1 Introduction to Oracle GoldenGate

1.1 Oracle GoldenGate Supported Processing Methods and Databases 1-1

1.2 Overview of the Oracle GoldenGate Architecture 1-2

1.2.1 Overview of Extract 1-3

1.2.2 Overview of Data Pumps 1-4

1.2.3 Overview of Replicat 1-5

1.2.4 Overview of Trails 1-6

1.2.4.1 Processes that Write to, and Read a Trail 1-6

1.2.4.2 Trail Creation and Maintenance 1-7

1.2.4.3 Converting Existing Trails to 9 Digit Sequence Numbers 1-7

1.2.5 Overview of Extract Files 1-7

1.2.6 Overview of Checkpoints 1-8

1.2.7 Overview of Manager 1-9

1.2.8 Overview of Collector 1-9

1.3 Overview of Process Types 1-10

1.4 Overview of Groups 1-10

1.5 Overview of the Commit Sequence Number (CSN) 1-11

2 Oracle GoldenGate Globalization Support

2.1 Preserving the Character Set 2-1

2.1.1 Character Set of Database Structural Metadata 2-1

2.1.2 Character Set of Character-type Data 2-1

2.1.3 Character Set of Database Connection 2-2

2.1.4 Character Set of Text Input and Output 2-2

iii

2.2 Using Unicode and Native Characters 2-2

3 Configuring Manager and Network Communications

3.1 Overview of the Manager Process 3-1

3.2 Assigning Manager a Port for Local Communication 3-2

3.3 Maintaining Ports for Remote Connections through Firewalls 3-2

3.4 Choosing an Internet Protocol 3-3

3.5 Using the Recommended Manager Parameters 3-3

3.6 Creating the Manager Parameter File 3-4

3.7 Starting Manager 3-4

3.7.1 Starting Manager from the Command Shell of the Operating System 3-5

3.7.2 Starting Manager from GGSCI 3-5

3.8 Stopping Manager 3-5

3.8.1 Stopping Manager on UNIX and Linux 3-6

3.8.2 Stopping Manager on Windows 3-6

4 Getting Started with the Oracle GoldenGate Process Interfaces

4.1 Using the GGSCI Command-line Interface 4-1

4.1.1 Using Wildcards in Command Arguments 4-1

4.1.2 Globalization Support for the Command Interface 4-2

4.1.3 Using Command History 4-2

4.1.4 Storing and Calling Frequently Used Command Sequences 4-2

4.2 Controlling Oracle GoldenGate Processes 4-3

4.2.1 Controlling Manager 4-3

4.2.2 Controlling Extract and Replicat 4-4

4.2.3 Deleting Extract and Replicat 4-5

4.3 Automating Commands 4-6

4.3.1 Issuing Commands Through the IBM i CLI 4-6

4.4 Using Oracle GoldenGate Parameter Files 4-7

4.4.1 Globalization Support for Parameter Files 4-7

4.4.2 Working with the GLOBALS File 4-8

4.4.3 Working with Runtime Parameters 4-8

4.4.4 Creating a Parameter File 4-10

4.4.4.1 Creating a Parameter File in GGSCI 4-10

4.4.4.2 Creating a Parameter File with a Text Editor 4-12

4.4.5 Validating a Parameter File 4-12

4.4.6 Viewing a Parameter File 4-15

4.4.7 Changing a Parameter File 4-16

4.4.8 Simplifying the Creation of Parameter Files 4-16

iv

4.4.8.1 Using Wildcards 4-17

4.4.8.2 Using OBEY 4-17

4.4.8.3 Using Macros 4-17

4.4.8.4 Using Parameter Substitution 4-17

4.4.9 Getting Information about Oracle GoldenGate Parameters 4-18

4.5 Specifying Object Names in Oracle GoldenGate Input 4-18

4.5.1 Specifying Filesystem Path Names in Parameter Files on Windows
Systems 4-19

4.5.2 Supported Database Object Names 4-19

4.5.2.1 Supported Special Characters 4-20

4.5.2.2 Non-supported Special Characters 4-20

4.5.3 Specifying Names that Contain Slashes 4-21

4.5.4 Qualifying Database Object Names 4-21

4.5.4.1 Two-part Names 4-21

4.5.4.2 Three-part Names 4-22

4.5.4.3 Applying Data from Multiple Containers or Catalogs 4-22

4.5.4.4 Specifying a Default Container or Catalog 4-22

4.5.5 Specifying Case-Sensitive Database Object Names 4-23

4.5.6 Using Wildcards in Database Object Names 4-24

4.5.6.1 Rules for Using Wildcards for Source Objects 4-25

4.5.6.2 Rules for Using Wildcards for Target Objects 4-26

4.5.6.3 Fallback Name Mapping 4-26

4.5.6.4 Wildcard Mapping from Pre-11.2.1 Trail Version 4-26

4.5.6.5 Asterisks or Question Marks as Literals in Object Names 4-27

4.5.6.6 How Wildcards are Resolved 4-27

4.5.6.7 Excluding Objects from a Wildcard Specification 4-27

4.5.7 Differentiating Case-Sensitive Column Names from Literals 4-27

5 Using Oracle GoldenGate for Live Reporting

5.1 Overview of the Reporting Configuration 5-1

5.1.1 Filtering and Conversion 5-2

5.1.2 Read-only vs. High Availability 5-2

5.1.3 Additional Information 5-2

5.2 Creating a Standard Reporting Configuration 5-3

5.2.1 Source System 5-3

5.2.2 Target System 5-4

5.3 Creating a Reporting Configuration with a Data Pump on the Source System 5-5

5.3.1 Source System 5-5

5.3.2 Target System 5-7

5.4 Creating a Reporting Configuration with a Data Pump on an Intermediary
System 5-8

v

5.4.1 Source System 5-9

5.4.2 Intermediary System 5-10

5.4.3 Target System 5-11

5.5 Creating a Cascading Reporting Configuration 5-12

5.5.1 Source System 5-14

5.5.2 Second System in the Cascade 5-15

5.5.3 Third System in the Cascade 5-18

6 Using Oracle GoldenGate for Real-time Data Distribution

6.1 Overview of the Data-distribution Configuration 6-1

6.2 Considerations for a Data-distribution Configuration 6-1

6.2.1 Fault Tolerance 6-1

6.2.2 Filtering and Conversion 6-2

6.2.3 Read-only vs. High Availability 6-2

6.2.4 Additional Information 6-2

6.3 Creating a Data Distribution Configuration 6-2

6.3.1 Source System 6-3

6.3.2 Target Systems 6-4

7 Configuring Oracle GoldenGate for Real-time Data Warehousing

7.1 Overview of the Data Warehousing Configuration 7-1

7.2 Considerations for a Data Warehousing Configuration 7-1

7.2.1 Isolation of Data Records 7-1

7.2.2 Data Storage 7-2

7.2.3 Filtering and Conversion 7-2

7.2.4 Additional Information 7-2

7.3 Creating a Data Warehousing Configuration 7-2

7.3.1 Source Systems 7-3

7.3.2 Target System 7-5

8 Configuring Oracle GoldenGate to Maintain a Live Standby
Database

8.1 Overview of a Live Standby Configuration 8-1

8.2 Considerations for a Live Standby Configuration 8-2

8.2.1 Trusted Source 8-2

8.2.2 Duplicate Standby 8-2

8.2.3 DML on the Standby System 8-2

8.2.4 Oracle GoldenGate Processes 8-2

vi

8.2.5 Backup Files 8-3

8.2.6 Failover Preparedness 8-3

8.2.7 Sequential Values that are Generated by the Database 8-3

8.2.8 Additional Information 8-3

8.3 Creating a Live Standby Configuration 8-4

8.3.1 Prerequisites on Both Systems 8-4

8.3.2 Configuration from Active Source to Standby 8-4

8.4 Configuration from Standby to Active Source 8-6

8.5 Moving User Activity in a Planned Switchover 8-8

8.5.1 Moving User Activity to the Live Standby 8-9

8.5.2 Moving User Activity Back to the Primary System 8-10

8.6 Moving User Activity in an Unplanned Failover 8-11

8.6.1 Moving User Activity to the Live Standby 8-12

8.6.2 Moving User Activity Back to the Primary System 8-12

9 Configuring Oracle GoldenGate for Active-Active High Availability

9.1 Overview of an Active-active Configuration 9-1

9.2 Considerations for an Active-Active Configuration 9-2

9.2.1 TRUNCATES 9-2

9.2.2 Application Design 9-2

9.2.3 Keys 9-3

9.2.4 Triggers and Cascaded Deletes 9-3

9.2.5 Database-Generated Values 9-4

9.2.6 Database Configuration 9-4

9.3 Preventing Data Looping 9-4

9.3.1 Preventing the Capture of Replicat Operations 9-5

9.3.1.1 Preventing the Capture of Replicat Transactions (Oracle) 9-5

9.3.1.2 Preventing Capture of Replicat Transactions (Teradata) 9-5

9.3.1.3 Preventing Capture of Replicat Transactions (Other Databases) 9-5

9.3.2 Identifying Replicat Transactions 9-6

9.3.2.1 DB2 z/OS, DB2 LUW, DB2 for i, and Informix 9-6

9.3.2.2 MySQL and NonStop SQL/MX 9-6

9.3.2.3 Oracle 9-7

9.3.2.4 SQL Server 9-7

9.3.2.5 Sybase 9-7

9.3.2.6 Teradata 9-8

9.3.3 Replicating DDL in a Bi-directional Configuration 9-8

9.4 Managing Conflicts 9-8

9.5 Additional Information 9-9

9.6 Creating an Active-Active Configuration 9-9

vii

9.6.1 Prerequisites on Both Systems 9-10

9.6.2 Configuration from Primary System to Secondary System 9-10

9.6.3 Configuration from Secondary System to Primary System 9-13

10

Configuring Conflict Detection and Resolution

10.1 Overview of the Oracle GoldenGate CDR Feature 10-1

10.2 Configuring Oracle GoldenGate CDR 10-2

10.2.1 Making the Required Column Values Available to Extract 10-2

10.2.2 Configuring the Oracle GoldenGate Parameter Files for Conflict
Resolution 10-3

10.2.3 Configuring the Oracle GoldenGate Parameter Files for Error Handling 10-3

10.2.3.1 Tools for Mapping Extra Data to the Exceptions Table 10-5

10.2.3.2 Sample Exceptions Mapping with Source and Target Columns
Only 10-5

10.2.3.3 Sample Exceptions Mapping with Additional Columns in the
Exceptions Table 10-6

10.2.4 Viewing CDR Statistics 10-8

10.2.4.1 Report File 10-8

10.2.4.2 GGSCI 10-8

10.2.4.3 Column-conversion Functions 10-8

10.3 CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD 10-9

10.3.1 Table Used in this Example 10-9

10.3.2 MAP Statement with Conflict Resolution Specifications 10-10

10.3.3 Description of MAP Statement 10-10

10.3.4 Error Handling 10-11

10.3.5 INSERTROWEXISTS with the USEMAX Resolution 10-11

10.3.6 UPDATEROWEXISTS with the USEMAX Resolution 10-12

10.3.7 UPDATEROWMISSING with OVERWRITE Resolution 10-13

10.3.8 DELETEROWMISSING with DISCARD Resolution 10-14

10.3.9 DELETEROWEXISTS with OVERWRITE Resolution 10-15

10.4 CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX 10-16

10.4.1 Table Used in this Example 10-16

10.4.2 MAP Statement 10-16

10.4.3 Description of MAP Statement 10-17

10.4.4 Error Handling 10-17

10.5 CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and
IGNORE 10-18

10.5.1 Table Used in this Example 10-19

10.5.2 MAP Statement 10-19

10.5.3 Description of MAP Statement 10-19

viii

10.5.4 Error Handling 10-20

11

Configuring Oracle GoldenGate Security

11.1 Overview of Oracle GoldenGate Security Options 11-1

11.2 Encrypting Data with the Master Key and Wallet Method 11-3

11.2.1 Creating the Wallet and Adding a Master Key 11-4

11.2.2 Specifying Encryption Parameters in the Parameter File 11-5

11.2.3 Renewing the Master Key 11-6

11.2.4 Deleting Stale Master Keys 11-7

11.3 Encrypting Data with the ENCKEYS Method 11-9

11.3.1 Encrypting the Data with the ENCKEYS Method 11-10

11.3.2 Decrypting the Data with the ENCKEYS Method 11-11

11.3.3 Examples of Data Encryption using the ENCKEYS Method 11-12

11.4 Managing Identities in a Credential Store 11-13

11.4.1 Creating and Populating the Credential Store 11-14

11.4.2 Specifying the Alias in a Parameter File or Command 11-14

11.5 Encrypting a Password in a Command or Parameter File 11-15

11.5.1 Encrypting the Password 11-15

11.5.2 Specifying the Encrypted Password in a Parameter File or Command 11-16

11.6 Populating an ENCKEYS File with Encryption Keys 11-18

11.6.1 Defining Your Own Key 11-18

11.6.2 Using KEYGEN to Generate a Key 11-19

11.6.3 Creating and Populating the ENCKEYS Lookup File 11-19

11.7 Configuring GGSCI Command Security 11-20

11.7.1 Setting Up Command Security 11-20

11.7.2 Securing the CMDSEC File 11-22

11.8 Using Target System Connection Initiation 11-22

11.8.1 Configuring the Passive Extract Group 11-23

11.8.2 Configuring the Alias Extract Group 11-23

11.8.3 Starting and Stopping the Passive and Alias Processes 11-24

11.8.4 Managing Extraction Activities 11-24

11.8.5 Other Considerations when using Passive-Alias Extract 11-25

11.9 Securing Manager 11-25

12

Mapping and Manipulating Data

12.1 Limitations of Support 12-1

12.2 Parameters that Control Mapping and Data Integration 12-2

12.3 Mapping between Dissimilar Databases 12-2

12.4 Deciding Where Data Mapping and Conversion Will Take Place 12-2

ix

12.4.1 Mapping and Conversion on Windows and UNIX Systems 12-2

12.4.2 Mapping and Conversion on NonStop Systems 12-3

12.5 Globalization Considerations when Mapping Data 12-3

12.5.1 Conversion between Character Sets 12-3

12.5.1.1 Database Object Names 12-4

12.5.1.2 Column Data 12-4

12.5.2 Preservation of Locale 12-4

12.5.3 Support for Escape Sequences 12-4

12.6 Mapping Columns 12-6

12.6.1 Supporting Case and Special Characters in Column Names 12-7

12.6.2 Configuring Table-level Column Mapping with COLMAP 12-7

12.6.2.1 Specifying the Columns to be Mapped in the COLMAP Clause 12-7

12.6.2.2 Using USEDEFAULTS to Enable Default Column Mapping 12-9

12.6.2.3 Determining Whether COLMAP Requires a Data-definitions File 12-10

12.6.3 Configuring Global Column Mapping with COLMATCH 12-10

12.6.4 Understanding Default Column Mapping 12-13

12.6.5 Mapping Data Types from Column to Column 12-14

12.6.5.1 Numeric Columns 12-14

12.6.5.2 Character-type Columns 12-14

12.6.5.3 Datetime Columns 12-14

12.7 Selecting and Filtering Rows 12-15

12.7.1 Selecting Rows with a FILTER Clause 12-15

12.7.2 Selecting Rows with a WHERE Clause 12-18

12.7.3 Considerations for Selecting Rows with FILTER and WHERE 12-18

12.7.3.1 Ensuring Data Availability for Filters 12-19

12.7.3.2 Comparing Column Values 12-19

12.7.3.3 Testing for NULL Values 12-19

12.8 Retrieving Before and After Values 12-20

12.9 Selecting Columns 12-21

12.10 Selecting and Converting SQL Operations 12-21

12.11 Using Transaction History 12-21

12.12 Testing and Transforming Data 12-23

12.12.1 Handling Column Names and Literals in Functions 12-24

12.12.2 Using the Appropriate Function 12-24

12.12.3 Transforming Dates 12-25

12.12.4 Performing Arithmetic Operations 12-25

12.12.4.1 Omitting @COMPUTE 12-26

12.12.5 Manipulating Numbers and Character Strings 12-26

12.12.6 Handling Null, Invalid, and Missing Data 12-27

12.12.6.1 Using @COLSTAT 12-27

12.12.6.2 Using @COLTEST 12-27

x

12.12.6.3 Using @IF 12-28

12.12.7 Performing Tests 12-28

12.12.7.1 Using @CASE 12-28

12.12.7.2 Using @VALONEOF 12-28

12.12.7.3 Using @EVAL 12-28

12.13 Using Tokens 12-29

12.13.1 Defining Tokens 12-29

12.13.2 Using Token Data in Target Tables 12-30

13

Associating Replicated Data with Metadata

13.1 Overview 13-1

13.2 Understanding Data Definition Files 13-2

13.2.1 Contents of the Definitions File 13-2

13.2.2 Which Definitions File Type to Use, and Where 13-2

13.2.3 Understanding the Effect of Character Sets on Definitions Files 13-3

13.2.3.1 Confining Data Mapping and Conversion to the Replicat Process 13-3

13.2.3.2 Avoiding File Corruptions Due to Operating System Character
Sets 13-3

13.2.3.3 Changing the Character Set of Existing Definitions Files 13-4

13.2.3.4 Downloading from a z/OS system to another platform 13-4

13.2.4 Using a Definitions Template 13-4

13.2.5 Configuring Oracle GoldenGate to Capture Data-definitions 13-4

13.2.5.1 Configure DEFGEN 13-5

13.2.5.2 Run DEFGEN 13-6

13.2.5.3 Transfer the Definitions File to the Remote System 13-7

13.2.5.4 Specify the Definitions File 13-7

13.2.6 Adding Tables that Satisfy a Definitions Template 13-8

13.2.7 Examples of Using a Definitions File 13-8

13.2.7.1 Creating a Source-definitions file for Use on a Target System 13-8

13.2.7.2 Creating Target-definitions Files for Use on a Source System 13-9

13.2.7.3 Creating Multiple Source Definition Files for Use on a Target
System 13-9

13.3 Using Automatic Trail File Recovery 13-10

13.4 Configuring Oracle GoldenGate to Use Self-Describing Trail Files 13-10

13.4.1 Support Considerations 13-12

13.4.2 Using Self-Describing Trail Files 13-13

13.4.3 Examples of Parameter Files 13-13

13.5 Configuring Oracle GoldenGate to Assume Identical Metadata 13-14

13.5.1 Rules for Tables to be Considered Identical 13-14

13.6 Configuring Oracle GoldenGate to Assume Dissimilar Metadata 13-15

xi

13.7 Configuring Oracle GoldenGate to Use a Combination of Similar and
Dissimilar Definitions 13-15

14

Configuring Online Change Synchronization

14.1 Overview of Online Change Synchronization 14-1

14.1.1 Initial Synchronization 14-2

14.2 Choosing Names for Processes and Files 14-2

14.2.1 Naming Conventions for Processes 14-2

14.2.2 Choosing File Names 14-4

14.3 Creating a Checkpoint Table 14-4

14.3.1 Options for Creating the Checkpoint Table 14-4

14.3.2 Adjusting for Coordinated Replicat in Oracle RAC 14-6

14.4 Creating an Online Extract Group 14-6

14.5 Creating a Trail 14-9

14.5.1 Assigning Storage for Oracle GoldenGate Trails 14-10

14.5.2 Estimating Space for the Trails 14-10

14.5.3 Adding a Trail 14-11

14.6 Creating a Parameter File for Online Extraction 14-11

14.7 Creating an Online Replicat Group 14-14

14.7.1 About Classic Replicat Mode 14-14

14.7.2 About Coordinated Replicat Mode 14-15

14.7.2.1 About Barrier Transactions 14-16

14.7.2.2 How Barrier Transactions are Processed 14-16

14.7.2.3 About the Global Watermark 14-17

14.7.3 About Integrated Replicat Mode 14-17

14.7.4 Understanding Replicat Processing in Relation to Parameter Changes 14-17

14.7.5 Creating the Replicat Group 14-18

14.8 Creating a Parameter File for Online Replication 14-19

15

Handling Processing Errors

15.1 Overview of Oracle GoldenGate Error Handling 15-1

15.2 Handling Extract Errors 15-1

15.3 Handling Replicat Errors during DML Operations 15-2

15.3.1 Handling Errors as Exceptions 15-3

15.3.1.1 Using EXCEPTIONSONLY 15-3

15.3.1.2 Using MAPEXCEPTION 15-4

15.3.1.3 About the Exceptions Table 15-5

15.4 Handling Replicat errors during DDL Operations 15-5

15.5 Handling TCP/IP Errors 15-6

15.6 Maintaining Updated Error Messages 15-6

xii

15.7 Resolving Oracle GoldenGate Errors 15-7

16

Instantiating Oracle GoldenGate with an Initial Load

16.1 Overview of the Initial-Load Procedure 16-1

16.1.1 Improving the Performance of an Initial Load 16-2

16.1.2 Prerequisites for Initial Load 16-2

16.1.2.1 Disable DDL Processing 16-2

16.1.2.2 Prepare the Target Tables 16-2

16.1.2.3 Configure the Manager Process 16-3

16.1.2.4 Create Change-synchronization Groups 16-3

16.1.2.5 Sharing Parameters between Process Groups 16-3

16.2 Loading Data with a Database Utility 16-4

16.3 Loading Data with Oracle Data Pump 16-6

16.3.1 Using Automatic Per Table Instantiation 16-6

16.3.2 Using Oracle Data Pump Table Instantiation 16-7

16.4 Loading Data from File to Replicat 16-7

16.5 Loading Data from File to Database Utility 16-12

16.6 Loading Data with an Oracle GoldenGate Direct Load 16-18

16.7 Loading Data with a Direct Bulk Load to SQL*Loader 16-23

16.8 Loading Data with Teradata Load Utilities 16-28

17

Customizing Oracle GoldenGate Processing

17.1 Executing Commands, Stored Procedures, and Queries with SQLEXEC 17-1

17.1.1 Performing Processing with SQLEXEC 17-1

17.1.2 Using SQLEXEC 17-2

17.1.3 Executing SQLEXEC within a TABLE or MAP Statement 17-2

17.1.4 Executing SQLEXEC as a Standalone Statement 17-3

17.1.5 Using Input and Output Parameters 17-4

17.1.5.1 Passing Values to Input Parameters 17-4

17.1.5.2 Passing Values to Output Parameters 17-5

17.1.5.3 SQLEXEC Examples Using Parameters 17-5

17.1.6 Handling SQLEXEC Errors 17-6

17.1.6.1 Handling Missing Column Values 17-7

17.1.6.2 Handling Database Errors 17-7

17.1.7 Additional SQLEXEC Guidelines 17-7

17.2 Using Oracle GoldenGate Macros to Simplify and Automate Work 17-8

17.2.1 Defining a Macro 17-9

17.2.2 Calling a Macro 17-10

17.2.2.1 Calling a Macro that Contains Parameters 17-11

xiii

17.2.2.2 Calling a Macro without Input Parameters 17-13

17.2.3 Calling Other Macros from a Macro 17-14

17.2.4 Creating Macro Libraries 17-14

17.2.5 Tracing Macro Expansion 17-15

17.3 Using User Exits to Extend Oracle GoldenGate Capabilities 17-16

17.3.1 When to Implement User Exits 17-16

17.3.2 Making Oracle GoldenGate Record Information Available to the
Routine 17-17

17.3.3 Creating User Exits 17-17

17.3.4 Supporting Character-set Conversion in User Exits 17-18

17.3.5 Using Macros to Check Name Metadata 17-19

17.3.6 Describing the Character Format 17-20

17.3.7 Upgrading User Exits 17-21

17.3.8 Viewing Examples of How to Use the User Exit Functions 17-22

17.4 Using the Oracle GoldenGate Event Marker System to Raise Database
Events 17-22

17.4.1 Case Studies in the Usage of the Event Marker System 17-23

17.4.1.1 Trigger End-of-day Processing 17-24

17.4.1.2 Simplify Transition from Initial Load to Change Synchronization 17-24

17.4.1.3 Stop Processing When Data Anomalies are Encountered 17-24

17.4.1.4 Trace a Specific Order Number 17-25

17.4.1.5 Execute a Batch Process 17-25

17.4.1.6 Propagate Only a SQL Statement without the Resultant
Operations 17-25

17.4.1.7 Committing Other Transactions Before Starting a Long-running
Transaction 17-26

17.4.1.8 Execute a Shell Script to Validate Data 17-26

18

Monitoring Oracle GoldenGate Processing

18.1 Using the Information Commands in GGSCI 18-1

18.2 Monitoring an Extract Recovery 18-2

18.3 Monitoring Lag 18-3

18.3.1 About Lag 18-3

18.3.2 Controlling How Lag is Reported 18-3

18.4 Using Automatic Heartbeat Tables to Monitor 18-4

18.4.1 Understanding Heartbeat Table End-To-End Replication Flow 18-5

18.4.2 Updating Heartbeat Tables 18-12

18.4.3 Purging the Heartbeat History Tables 18-12

18.4.4 Best Practice 18-12

18.4.5 Using the Automatic Heartbeat Commands 18-12

18.5 Monitoring Processing Volume 18-13

xiv

18.6 Using the Error Log 18-13

18.7 Using the Process Report 18-14

18.7.1 Scheduling Runtime Statistics in the Process Report 18-14

18.7.2 Viewing Record Counts in the Process Report 18-15

18.7.3 Preventing SQL Errors from Filling the Replicat Report File 18-15

18.8 Using the Discard File 18-15

18.9 Maintaining the Discard and Report Files 18-16

18.10 Using the System Logs 18-17

18.11 Reconciling Time Differences 18-17

18.12 Sending Event Messages to a NonStop System 18-17

18.12.1 Running EMSCLNT on a Windows or UNIX System 18-18

18.12.2 Running the Collector on NonStop 18-19

18.13 Getting Help with Performance Tuning 18-19

19

Tuning the Performance of Oracle GoldenGate

19.1 Using Multiple Process Groups 19-1

19.1.1 Considerations for Using Multiple Process Groups 19-2

19.1.1.1 Maintaining Data Integrity 19-2

19.1.1.2 Number of Groups 19-2

19.1.1.3 Memory 19-3

19.1.1.4 Isolating Processing-Intensive Tables 19-3

19.1.2 Using Parallel Replicat Groups on a Target System 19-4

19.1.2.1 To Create the Extract Group 19-4

19.1.2.2 To Create the Replicat Groups 19-4

19.1.3 Using Multiple Extract Groups with Multiple Replicat Groups 19-5

19.1.3.1 To Create the Extract Groups 19-5

19.1.3.2 To Create the Replicat Groups 19-5

19.2 Splitting Large Tables Into Row Ranges Across Process Groups 19-6

19.3 Configuring Oracle GoldenGate to Use the Network Efficiently 19-6

19.3.1 Detecting a Network Bottleneck that is Affecting Oracle GoldenGate 19-7

19.3.2 Working Around Bandwidth Limitations by Using Data Pumps 19-8

19.3.3 Reducing the Bandwidth Requirements of Oracle GoldenGate 19-8

19.3.4 Increasing the TCP/IP Packet Size 19-8

19.4 Eliminating Disk I/O Bottlenecks 19-9

19.4.1 Improving I/O performance Within the System Configuration 19-9

19.4.2 Improving I/O Performance Within the Oracle GoldenGate
Configuration 19-10

19.5 Managing Virtual Memory and Paging 19-10

19.6 Optimizing Data Filtering and Conversion 19-11

19.7 Tuning Replicat Transactions 19-12

19.7.1 Tuning Coordination Performance Against Barrier Transactions 19-12

xv

19.7.2 Applying Similar SQL Statements in Arrays 19-12

19.7.3 Preventing Full Table Scans in the Absence of Keys 19-13

19.7.4 Splitting Large Transactions 19-13

19.7.5 Adjusting Open Cursors 19-13

19.7.6 Improving Update Speed 19-14

19.7.7 Set a Replicat Transaction Timeout 19-14

20

Performing Administrative Operations

20.1 Performing Application Patches 20-2

20.2 Initializing the Transaction Logs 20-3

20.3 Shutting Down the System 20-4

20.4 Changing Database Attributes 20-4

20.4.1 Changing Database Metadata 20-5

20.4.2 Adding Tables to the Oracle GoldenGate Configuration 20-6

20.4.3 Coordinating Table Attributes between Source and Target 20-7

20.4.4 Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables 20-9

20.4.5 Dropping and Recreating a Source Table 20-10

20.4.6 Changing the Number of Oracle RAC Threads when Using Classic
Capture 20-10

20.4.7 Changing the ORACLE_SID 20-11

20.4.8 Purging Archive Logs 20-11

20.4.9 Reorganizing a DB2 Table (z/OS Platform) 20-12

20.5 Adding Process Groups to an Active Configuration 20-12

20.5.1 Before You Start 20-12

20.5.2 Adding Another Extract Group to an Active Configuration 20-13

20.5.3 Adding Another Data Pump to an Active Configuration 20-15

20.5.4 Adding Another Replicat Group to an Active Configuration 20-17

20.6 Changing the Size of Trail Files 20-19

20.7 Switching Extract from Classic Mode to Integrated Mode 20-19

20.8 Switching Extract from Integrated Mode to Classic Mode 20-21

20.9 Switching Replicat from Nonintegrated Mode to Integrated Mode 20-22

20.10 Switching Replicat from Integrated Mode to Nonintegrated Mode 20-23

20.11 Switching Replicat to Coordinated Mode 20-24

20.11.1 Procedure Overview 20-25

20.11.2 Performing the Switch to Coordinated Replicat 20-25

20.12 Administering a Coordinated Replicat Configuration 20-27

20.12.1 Performing a Planned Re-partitioning of the Workload 20-28

20.12.2 Recovering Replicat After an Unplanned Re-partitioning 20-28

20.12.2.1 Reprocessing From the Low Watermark with
HANDLECOLLISIONS 20-28

20.12.2.2 Using the Auto-Saved Parameter File 20-30

xvi

20.12.3 Synchronizing Threads After an Unclean Stop 20-30

20.13 Restarting a Primary Extract after System Failure or Corruption 20-31

20.13.1 Details of This Procedure 20-31

20.13.2 Performing the Recovery 20-31

21

Undoing Data Changes with the Reverse Utility

21.1 Overview of the Reverse Utility 21-1

21.2 Reverse Utility Restrictions 21-2

21.3 Configuring the Reverse Utility 21-2

21.4 Creating Process Groups and Trails for Reverse Processing 21-5

21.5 Running the Reverse Utility 21-7

21.6 Undoing the Changes Made by the Reverse Utility 21-7

A Supported Character Sets

A.1 Supported Character Sets - Oracle A-1

A.2 Supported Character Sets - Non-Oracle A-8

B Supported Locales

C About the Oracle GoldenGate Trail

C.1 Trail Recovery Mode C-1

C.2 Trail File Header Record C-2

C.3 Trail Record Format C-2

C.4 Example of an Oracle GoldenGate Record C-3

C.5 Record Header Area C-3

C.5.1 Description of Header Fields C-3

C.5.2 Using Header Data C-5

C.6 Record Data Area C-5

C.6.1 Full Record Image Format (NonStop Sources) C-6

C.6.2 Compressed Record Image Format (Windows, UNIX, Linux Sources) C-6

C.7 Tokens Area C-7

C.8 Oracle GoldenGate Operation Types C-7

C.9 Oracle GoldenGate Trail Header Record C-10

D About the Commit Sequence Number

xvii

E About Checkpoints

E.1 Extract Checkpoints E-1

E.1.1 About Extract read checkpoints E-3

E.1.1.1 Startup Checkpoint E-3

E.1.1.2 Recovery Checkpoint E-3

E.1.1.3 Current Checkpoint E-4

E.1.2 About Extract Write Checkpoints E-4

E.2 Replicat Checkpoints E-4

E.2.1 About Replicat Checkpoints E-5

E.2.1.1 Startup Checkpoint E-5

E.2.1.2 Current Checkpoint E-5

E.3 Internal Checkpoint Information E-6

E.4 Oracle GoldenGate Checkpoint Tables E-6

F About Using NFS Mount Options

xviii

Preface

This guide contains instructions for:

• Working with the interface components that control Oracle GoldenGate.

• Monitoring and troubleshooting Oracle GoldenGate performance.

• Perform other administrative operations.

• Audience

• Documentation Accessibility

• Related Information

• Conventions

Audience
This guide is intended for the person or persons who are responsible for operating
Oracle GoldenGate and maintaining its performance. This audience typically includes,
but is not limited to, systems administrators and database administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at

Oracle GoldenGate

Oracle GoldenGate Application Adapters

Oracle GoldenGate for Big Data

Oracle GoldenGate Plug-in for EMCC

Oracle GoldenGate Monitor

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/goldengate/c1221/gg-winux/index.html
https://docs.oracle.com/goldengate/gg121211/gg-adapter/index.html
https://docs.oracle.com/goldengate/bd1221/gg-bd/index.html
http://docs.oracle.com/goldengate/em1321/gg-emplugin/index.html
https://docs.oracle.com/goldengate/m12212/gg-monitor/index.html

Oracle GoldenGate for HP NonStop (Guardian)

Oracle GoldenGate Veridata

Oracle GoldenGate Studio

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic
italic

Italic type indicates placeholder variables for which you supply
particular values, such as in the parameter statement: TABLE
table_name. Italic type also is used for book titles and emphasis.

monospace

MONOSPACE

Monospace type indicates code components such as user exits and
scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace
type is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{ } Braces within syntax enclose a set of options that are separated by
pipe symbols, one of which must be selected, for example: {option1 |
option2 | option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name [,
SAVE count]. Multiple options within an optional element are separated
by a pipe symbol, for example: [option1 | option2].

Preface

xx

http://docs.oracle.com/goldengate/ns1221/gg-nsk/index.html
http://docs.oracle.com/goldengate/v12212/gg-veridata/index.html
https://docs.oracle.com/goldengate/s1221/gg-studio/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

1
Introduction to Oracle GoldenGate

This chapter describes the capabilities of Oracle GoldenGate, its basic terminology,
and its processing logic and architecture.

This chapter includes the following sections:

• Oracle GoldenGate Supported Processing Methods and Databases

• Overview of the Oracle GoldenGate Architecture

• Overview of Process Types

• Overview of Groups

• Overview of the Commit Sequence Number (CSN)

• Oracle GoldenGate Supported Processing Methods and Databases

• Overview of the Oracle GoldenGate Architecture

• Overview of Process Types

• Overview of Groups

• Overview of the Commit Sequence Number (CSN)

1.1 Oracle GoldenGate Supported Processing Methods and
Databases

Oracle GoldenGate enables the exchange and manipulation of data at the transaction
level among multiple, heterogeneous platforms across the enterprise. It moves
committed transactions with transaction integrity and minimal overhead on your
existing infrastructure. Its modular architecture gives you the flexibility to extract and
replicate selected data records, transactional changes, and changes to DDL (data
definition language) across a variety of topologies.

Note:

Support for DDL, certain topologies, and capture or delivery configurations
varies by the database type. See the Oracle GoldenGate installation and
configuration documentation for your database for detailed information about
supported features and configurations.

With this flexibility, and the filtering, transformation, and custom processing features of
Oracle GoldenGate, you can support numerous business requirements:

• Business continuance and high availability.

• Initial load and database migration.

1-1

• Data integration.

• Decision support and data warehousing.

Figure 1-1 Oracle GoldenGate Supported Topologies

Table 1-1 Supported Processing Methods

Database Log-Based Extraction
(capture)

Non-Log-Based Extraction 1
(capture)

Replication (delivery)

DB2 for i N/A N/A X

DB2 LUW X N/A X

DB2 z/OS X N/A X

Oracle Database X N/A X

MySQL X N/A X

SQL Server X N/A X

Informix N/A N/A X

1 Non-Log-Based Extraction uses a capture module that communicates with the Oracle GoldenGate API to send change data to
Oracle GoldenGate.

For full information about processing methodology, supported topologies and
functionality, and configuration requirements, see the Oracle GoldenGate
documentation for your database.

1.2 Overview of the Oracle GoldenGate Architecture
Oracle GoldenGate can be configured for the following purposes:

• A static extraction of data records from one database and the loading of those
records to another database.

• Continuous extraction and replication of transactional Data Manipulation Language
(DML) operations and data definition language (DDL) changes (for supported
databases) to keep source and target data consistent.

• Extraction from a database and replication to a file outside the database.

Oracle GoldenGate is composed of the following components:

• Extract

• Data pump

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-2

• Replicat

• Trails or extract files

• Checkpoints

• Manager

• Collector

Figure 1-2 illustrates the logical architecture of Oracle GoldenGate for initial data loads
and for the synchronization of DML and DDL operations. This is the basic
configuration. Variations of this model are recommended depending on business
needs.

Figure 1-2 Oracle GoldenGate Logical Architecture

• Overview of Extract

• Overview of Data Pumps

• Overview of Replicat

• Overview of Trails

• Overview of Extract Files

• Overview of Checkpoints

• Overview of Manager

• Overview of Collector

1.2.1 Overview of Extract
The Extract process is the extraction (capture) mechanism of Oracle GoldenGate.
Extract runs on a source system or on a downstream database, or both, depending on
the database and the implementation requirements.

You can configure Extract in one of the following ways:

• Initial loads: For initial data loads, Extract extracts (captures) a current, static set
of data directly from their source objects.

• Change synchronization: To keep source data synchronized with another set of
data, Extract captures DML and DDL operations after the initial synchronization
has taken place.

Extract captures from a data source that can be one of the following:

• Source tables, if the run is an initial load.

• The database recovery logs or transaction logs (such as the Oracle redo logs or
SQL/MX audit trails). The actual method of capturing from the logs varies

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-3

depending on the database type. For example, Oracle GoldenGate for Oracle
offers an integrated capture mode, in which Extract interacts directly with a
database logmining server that mines the Oracle transaction stream. See "About
Integrated Capture" in Installing and Configuring Oracle GoldenGate for Oracle
Database for more information about integrated capture.

• A third-party capture module. This method provides a communication layer that
passes data and metadata from an external API to the Extract API. The database
vendor or a third-party vendor provides the components that extract the data
operations and pass them to Extract.

When configured for change synchronization, Extract captures the DML and DDL
operations that are performed on objects in the Extract configuration. Extract stores
these operations until it receives commit records or rollbacks for the transactions that
contain them. When a rollback is received, Extract discards the operations for that
transaction. When a commit is received, Extract persists the transaction to disk in a
series of files called a trail, where it is queued for propagation to the target system. All
of the operations in each transaction are written to the trail as a sequentially organized
transaction unit. This design ensures both speed and data integrity.

Note:

Extract ignores operations on objects that are not in the Extract
configuration, even though the same transaction may also include operations
on objects that are in the Extract configuration.

Multiple Extract processes can operate on different objects at the same time. For
example, two Extract processes can extract and transmit in parallel to two Replicat
processes (with two persistence trails) to minimize target latency when the databases
are large. To differentiate among different Extract processes, you assign each one a
group name (see Overview of Groups).

1.2.2 Overview of Data Pumps
A data pump is a secondary Extract group within the source Oracle GoldenGate
configuration. If a data pump is not used, Extract must send the captured data
operations to a remote trail on the target. In a typical configuration with a data pump,
however, the primary Extract group writes to a trail on the source system. The data
pump reads this trail and sends the data operations over the network to a remote trail
on the target. The data pump adds storage flexibility and also serves to isolate the
primary Extract process from TCP/IP activity.

In general, a data pump can perform data filtering, mapping, and conversion, or it can
be configured in pass-through mode, where data is passively transferred as-is, without
manipulation. Pass-through mode increases the throughput of the data pump, because
all of the functionality that looks up object definitions is bypassed.

Though configuring a data pump is optional, Oracle recommends it for most
configurations.. Some reasons for using a data pump include the following:

• Protection against network and target failures: In a basic Oracle GoldenGate
configuration, with only a trail on the target system, there is nowhere on the source
system to store the data operations that Extract continuously extracts into
memory. If the network or the target system becomes unavailable, Extract could

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-4

run out of memory and abend. However, with a trail and data pump on the source
system, captured data can be moved to disk, preventing the abend of the primary
Extract. When connectivity is restored, the data pump captures the data from the
source trail and sends it to the target system(s).

• You are implementing several phases of data filtering or transformation.
When using complex filtering or data transformation configurations, you can
configure a data pump to perform the first transformation either on the source
system or on the target system, or even on an intermediary system, and then use
another data pump or the Replicat group to perform the second transformation.

• Consolidating data from many sources to a central target. When
synchronizing multiple source databases with a central target database, you can
store extracted data operations on each source system and use data pumps on
each of those systems to send the data to a trail on the target system. Dividing the
storage load between the source and target systems reduces the need for
massive amounts of space on the target system to accommodate data arriving
from multiple sources.

• Synchronizing one source with multiple targets. When sending data to multiple
target systems, you can configure data pumps on the source system for each
target. If network connectivity to any of the targets fails, data can still be sent to the
other targets.

1.2.3 Overview of Replicat
The Replicat process runs on the target system, reads the trail on that system, and
then reconstructs the DML or DDL operations and applies them to the target database.
Replicat uses dynamic SQL to compile a SQL statement once, and then execute it
many times with different bind variables.

You can configure Replicat in one of the following ways:

• Initial loads: For initial data loads, Replicat can apply a static data copy to target
objects or route it to a high-speed bulk-load utility.

• Change synchronization: When configured for change synchronization, Replicat
applies the replicated source operations to the target objects using a native
database interface or ODBC, depending on the database type.

You can use multiple Replicat processes with one or more Extract processes and data
pumps in parallel to increase throughput. To preserve data integrity, each set of
processes handles a different set of objects. To differentiate among Replicat
processes, you assign each one a group name (see Overview of Groups).

Rather than use multiple Replicat processes, you can configure one Replicat in
coordinated or integrated mode.

• Coordinated mode is supported on all databases that Oracle GoldenGate
supports. In coordinated mode, Replicat is threaded. One coordinator thread
spawns and coordinates one or more threads that execute replicated SQL
operations in parallel. A coordinated Replicat uses one parameter file and is
monitored and managed as one unit. See Creating an Online Replicat Group for
more information.

• Integrated mode is supported for Oracle versions 11.2.0.4 or later. In integrated
mode, Replicat leverages the apply processing functionality that is available within
the Oracle database. Within a single Replicat configuration, multiple inbound
server child processes known as apply servers apply transactions in parallel while

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-5

preserving the original transaction atomicity. See Installing and Configuring Oracle
GoldenGate for Oracle Database for more information about integrated mode.

You can delay Replicat so that it waits a specific amount of time before applying the
replicated operations to the target database. A delay may be desirable, for example, to
prevent the propagation of errant SQL, to control data arrival across different time
zones, or to allow time for other planned events to occur. The length of the delay is
controlled by the DEFERAPPLYINTERVAL parameter.

Various parameters control the way that Replicat converts source transactions to
target transactions. These parameters include BATCHSQL, GROUPTRANSOPS, and
MAXTRANSOPS. For more information about these and other Replicat parameters, see
Reference for Oracle GoldenGate for Windows and UNIX.

1.2.4 Overview of Trails
To support the continuous extraction and replication of database changes, Oracle
GoldenGate stores records of the captured changes temporarily on disk in a series of
files called a trail. A trail can exist on the source system, an intermediary system, the
target system, or any combination of those systems, depending on how you configure
Oracle GoldenGate. On the local system it is known as an extract trail (or local trail).
On a remote system it is known as a remote trail.

By using a trail for storage, Oracle GoldenGate supports data accuracy and fault
tolerance (see Overview of Checkpoints). The use of a trail also allows extraction and
replication activities to occur independently of each other. With these processes
separated, you have more choices for how data is processed and delivered. For
example, instead of extracting and replicating changes continuously, you could extract
changes continuously but store them in the trail for replication to the target later,
whenever the target application needs them.

• Processes that Write to, and Read a Trail

• Trail Creation and Maintenance

• Converting Existing Trails to 9 Digit Sequence Numbers

1.2.4.1 Processes that Write to, and Read a Trail
The primary Extract and the data-pump Extract write to a trail. Every online Extract
process must be linked to a trail. Only one primary Extract process can write to a given
local trail. All local trails must have different names.

Multiple data pump Extract processes can each write to a trail of the same name, but
the physical trails themselves must reside on different remote systems, such as in a
data-distribution topology. For example, a data pump named 1pump and a data pump
named 2pump can both reside on sys01 and write to a remote trail named aa. Data
pump 1pump can write to trail aa on sys02, while data pump 2pump can write to trail aa on
sys03.

Processes that read the trail are:

• Data-pump Extract: Extracts DML and DDL operations from a local trail that is
linked to a previous Extract (typically the primary Extract), performs further
processing if needed, and transfers the data to a trail that is read by the next
Oracle GoldenGate process downstream (typically Replicat, but could be another
data pump if required).

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-6

• Replicat: Reads the trail and applies replicated DML and DDL operations to the
target database.

1.2.4.2 Trail Creation and Maintenance
The trail files themselves are created as needed during processing, but you specify a
two-character name for the trail when you add it to the Oracle GoldenGate
configuration with the ADD RMTTRAIL or ADD EXTTRAIL command. By default, trails are
stored in the dirdat sub-directory of the Oracle GoldenGate directory. You can specify
a six or nine digit sequence number using the TRAIL_SEQLEN_9D | TRAIL_SEQLEN_6D
GLOBALS parameter; TRAIL_SEQLEN_9D is set by default.

Trail files are aged automatically to allow processing to continue without interruption
for file maintenance. As each new file is created, it inherits the two-character trail
name appended with a unique nine digit sequence number from 000000000 through
999999999 (for example c:\ggs\dirdat\tr000000001). When the sequence number
reaches 999999999, the numbering starts over at 000000000, and previous trail files
are overwritten. Trail files can be purged on a routine basis by using the Manager
parameter PURGEOLDEXTRACTS. The 9 digits trail file format is the default.

You can create more than one trail to separate the data from different objects or
applications. You link the objects that are specified in a TABLE or SEQUENCE parameter to
a trail that is specified with an EXTTRAIL or RMTTRAIL parameter in the Extract parameter
file.

To maximize throughput, and to minimize I/O load on the system, extracted data is
sent into and out of a trail in large blocks. Transactional order is preserved.

See About the Oracle GoldenGate Trail for more information about the trail and the
records it contains.

1.2.4.3 Converting Existing Trails to 9 Digit Sequence Numbers
You can convert trail files from 9 digit to 6 digit checkpoint record for the named extract
groups. Use convchk native command to convert to 9 digit trail by stopping your Extract
gracefully then using convchk to upgrade as follows:

convchk extract trail seqlen_9d

Start your Extract.

You can downgrade from a 9 to 6 digit trail with the same process using this convchk
command:

convchk extract trail seqlen_6d

1.2.5 Overview of Extract Files
In some configurations, Oracle GoldenGate stores extracted data in an extract file
instead of a trail. The extract file can be a single file, or it can be configured to roll over
into multiple files in anticipation of limitations on file size that are imposed by the
operating system. In this sense, it is similar to a trail, except that checkpoints are not
recorded. The file or files are created automatically during the run. The same
versioning features that apply to trails also apply to extract files.

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-7

1.2.6 Overview of Checkpoints
Checkpoints store the current read and write positions of a process to disk for recovery
purposes. Checkpoints ensure that data changes that are marked for synchronization
actually are captured by Extract and applied to the target by Replicat, and they prevent
redundant processing. They provide fault tolerance by preventing the loss of data
should the system, the network, or an Oracle GoldenGate process need to be
restarted. For complex synchronization configurations, checkpoints enable multiple
Extract or Replicat processes to read from the same set of trails.

Checkpoints work with inter-process acknowledgments to prevent messages from
being lost in the network. Oracle GoldenGate has a proprietary guaranteed-message
delivery technology.

Extract creates checkpoints for its positions in the data source and in the trail.
Because Extract only captures committed transactions, it keeps track of the operations
in all open transactions, in the event that any of them are committed. This requires
Extract to record a checkpoint where it is currently reading in a transaction log, plus
the position of the start of the oldest open transaction, which can be in the current or
any preceding log.

To control the amount of transaction log that must be re-processed after an outage in
an Oracle database, Extract also persists the current state and data of processing to
disk at specific intervals, including the state and data (if any) of long-running
transactions. If Extract stops after one of these intervals, it can recover from a position
within the previous interval or at the last checkpoint, instead of having to return to the
log position where the oldest open long-running transaction first appeared. See the BR
parameter in Reference for Oracle GoldenGate for Windows and UNIX for more
information.

Replicat creates checkpoints for its position in the trail. Replicat stores these
checkpoints in a table, known as the checkpoint table, in the target database and also
in a checkpoint file on disk. The checkpoint table is stored with a user-specified name
and location. The checkpoint file is stored in the dirchk sub-directory of the Oracle
GoldenGate directory.

At the completion of each transaction, Replicat writes information about that
transaction to a row in the checkpoint table, linking the transaction with a unique
position in a specific trail file. Replicat also writes a checkpoint to the checkpoint file
when it completes a transaction. At regular intervals, Replicat also writes its current
read position to the checkpoint file. These positions are typically not at a transaction
boundary, but at some point within a transaction. The interval length is controlled by
the CHECKPOINTSECS parameter.

Because the checkpoint table is part of the database, and benefits from the database
recovery system, it provides a more efficient recovery point for Replicat. The last
checkpoint in the checkpoint file may not be the most recent transaction boundary. It
could be the middle of a transaction not yet applied by Replicat or an earlier
transaction that was already applied. The checkpoint table ensures that Replicat starts
at the correct transaction boundary, so that each transaction is applied only once. The
information in the checkpoint table can be used for recovery in some cases, but is
primarily used for purposes, such as for the INFO commands in GGSCI.

Regular backups of the Oracle GoldenGate environment, including the trails, should
match your database backup, recovery, and retention policies. Restoring the database
(and with it the checkpoint table) to an earlier period of time causes Replicat to

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-8

reposition to an earlier checkpoint that matches that time. If the required trail files for
this time period are already aged off the system, they must be restored from backup.
To understand how trails are maintained and aged, see "Overview of Trails".

Checkpoints are not required for non-continuous types of configurations, such as a
batch load or initial load. If there is a failure, these processes can be started again
from the original start point.

See About Checkpoints for additional information about checkpoints and the
checkpoint table.

1.2.7 Overview of Manager
Manager is the control process of Oracle GoldenGate. Manager must be running on
each system in the Oracle GoldenGate configuration before Extract or Replicat can be
started, and Manager must remain running while those processes are running so that
resource management functions are performed. Manager performs the following
functions:

• Start Oracle GoldenGate processes

• Start dynamic processes

• Maintain port numbers for processes

• Perform trail management

• Create event, error, and threshold reports

One Manager process can control many Extract or Replicat processes. On Windows
systems, Manager can run as a service. See Configuring Manager and Network
Communications for more information about the Manager process and configuring
TCP/IP connections.

1.2.8 Overview of Collector
Collector is a process that runs in the background on the target system when
continuous, online change synchronization is active. Collector does the following:

• Upon a connection request from a remote Extract to Manger, scan and bind to an
available port and then send the port number to Manager for assignment to the
requesting Extract process.

• Receive extracted database changes that are sent by Extract and write them to a
trail file. Manager starts Collector automatically when a network connection is
required, so Oracle GoldenGate users do not interact with it. Collector can receive
information from only one Extract process, so there is one Collector for each
Extract that you use. Collector terminates when the associated Extract process
terminates.

Chapter 1
Overview of the Oracle GoldenGate Architecture

1-9

Note:

Collector can be run manually, if needed. This is known as a static
Collector (as opposed to the regular, dynamic Collector). Several Extract
processes can share one static Collector; however, a one-to-one ratio is
optimal. A static Collector can be used to ensure that the process runs
on a specific port. See Reference for Oracle GoldenGate for Windows
and UNIX for more information about the static Collector. See
Configuring Manager and Network Communications for more information
about how Manager assigns ports.

By default, Extract initiates TCP/IP connections from the source system to Collector on
the target, but Oracle GoldenGate can be configured so that Collector initiates
connections from the target. Initiating connections from the target might be required if,
for example, the target is in a trusted network zone, but the source is in a less trusted
zone.

1.3 Overview of Process Types
Depending on the requirement, Oracle GoldenGate can be configured with the
following processing types.

• An online Extract or Replicat process runs until stopped by a user. Online
processes maintain recovery checkpoints in the trail so that processing can
resume after interruptions. You use online processes to continuously extract and
replicate DML and DDL operations (where supported) to keep source and target
objects synchronized. The EXTRACT and REPLICAT parameters apply to this process
type.

• A source-is-table (also known as in initial-load Extract) Extract process extracts a
current set of static data directly from the source objects in preparation for an initial
load to another database. This process type does not use checkpoints. The
SOURCEISTABLE parameter applies to this process type.

• A special-run Replicat process applies data within known begin and end points.
You use a special Replicat run for initial data loads, and it also can be used with
an online Extract to apply data changes from the trail in batches, such as once a
day rather than continuously. This process type does not maintain checkpoints,
because the run can be started over with the same begin and end points. The
SPECIALRUN parameter applies to this process type.

• A remote task is a special type of initial-load process in which Extract
communicates directly with Replicat over TCP/IP. Neither a Collector process nor
temporary disk storage in a trail or file is used. The task is defined in the Extract
parameter file with the RMTTASK parameter.

1.4 Overview of Groups
To differentiate among multiple Extract or Replicat processes on a system, you define
processing groups. For example, to replicate different sets of data in parallel, you
would create two Replicat groups.

A processing group consists of a process (either Extract or Replicat), its parameter file,
its checkpoint file, and any other files associated with the process. For Replicat, a

Chapter 1
Overview of Process Types

1-10

group may also include an associated checkpoint table. You define groups by using
the ADD EXTRACT and ADD REPLICAT commands in the Oracle GoldenGate command
interface, GGSCI.

All files and checkpoints relating to a group share the name that is assigned to the
group itself. Any time that you issue a command to control or view processing, you
supply a group name or multiple group names by means of a wildcard.

1.5 Overview of the Commit Sequence Number (CSN)
When working with Oracle GoldenGate, you might need to refer to a Commit
Sequence Number, or CSN. A CSN is an identifier that Oracle GoldenGate constructs
to identify a transaction for the purpose of maintaining transactional consistency and
data integrity. It uniquely identifies a point in time in which a transaction commits to the
database.

The CSN can be required to position Extract in the transaction log, to reposition
Replicat in the trail, or for other purposes. It is returned by some conversion functions
and is included in reports and certain GGSCI output.

See About the Commit Sequence Number for more information about the CSN and a
list of CSN values per database.

Chapter 1
Overview of the Commit Sequence Number (CSN)

1-11

2
Oracle GoldenGate Globalization Support

This chapter describes Oracle GoldenGate globalization support, which enables the
processing of data in its native language encoding.
This chapter includes the following sections:

• Preserving the Character Set

• Using Unicode and Native Characters

• Preserving the Character Set

• Using Unicode and Native Characters

2.1 Preserving the Character Set
In order to process the data in its native language encoding, Oracle GoldenGate takes
into consideration the character set of the database and the operating system locale, if
applicable.

• Character Set of Database Structural Metadata

• Character Set of Character-type Data

• Character Set of Database Connection

• Character Set of Text Input and Output

2.1.1 Character Set of Database Structural Metadata
Oracle GoldenGate processes catalog, schema, table and column names in their
native language as determined by the character set encoding of the source and target
databases. This processing is extended to the parameter files and command
interpreter, where they are processed according to the operating system locale. These
objects appear in their localized format throughout the client interface, on the console,
and in files.

2.1.2 Character Set of Character-type Data
The Oracle GoldenGate apply process (Replicat) supports the conversion of data from
one character set to another when the data is contained in character column types.
Character-set conversion support is limited to column-to-column mapping as
performed with the COLMAP or USEDEFAULTS clauses of a TABLE or MAP statement. It is not
supported by the column-conversion functions, by SQLEXEC, or by the TOKENS feature.

See Mapping and Manipulating Data for more information about character sets,
conversion between them, and data mapping.

2-1

2.1.3 Character Set of Database Connection
The Extract and Replicat processes use a session character set when connecting to
the database. For Oracle Databases, the session character set is set to the same as
the database character set by both Extract and Replicat. For MySQL, the session
character set is taken from the SESSIONCHARSET option of SOURCEDB and TARGETDB, or from
the SESSIONCHARSET parameter set globally in the GLOBALS file. For other database types,
it is obtained programmatically. In addition, Oracle GoldenGate processes use a
session character set for communication and data transfer between Oracle
GoldenGate and the database, such as for SQL queries, fetches, and applying data.

2.1.4 Character Set of Text Input and Output
Oracle GoldenGate supports text input and output in the default character set of the
host operating system for the following:

• Console

• Command-line input and output

• FORMATASCII, FORMATSQL, FORMATXML parameters, text files such as parameter files,
data-definitions files, error log, process reports, discard files, and other human-
readable files that are used by Oracle GoldenGate users to configure, run, and
monitor the Oracle GoldenGate environment.

In the event that the platform does not support a required character set as the default
in the operating system, you can use the following parameters to specify a character
set:

• CHARSET parameter to specify a character set to be used by processes to read their
parameter files.

• CHARSET option of the DEFSFILE parameter to generate a data-definitions file in a
specific character set.

The GGSCI command console always operates in the character set of the local
operating system for both keyboard and OBEY file input and console output.

2.2 Using Unicode and Native Characters
Oracle GoldenGate supports the use of an escape sequence to represent characters
in Unicode or in the native character encoding of the Windows, UNIX, and Linux
operating systems. You can use an escape sequence if the operating system does not
support the required character, or for any other purpose when needed. For more
information about this support, see Support for Escape Sequences.

Chapter 2
Using Unicode and Native Characters

2-2

3
Configuring Manager and Network
Communications

This chapter describes how to configure the Manager process and specify ports for
local and remote network communications.
This chapter includes the following sections:

• Overview of the Manager Process

• Assigning Manager a Port for Local Communication

• Maintaining Ports for Remote Connections through Firewalls

• Choosing an Internet Protocol

• Using the Recommended Manager Parameters

• Creating the Manager Parameter File

• Starting Manager

• Stopping Manager

• Overview of the Manager Process

• Assigning Manager a Port for Local Communication

• Maintaining Ports for Remote Connections through Firewalls

• Choosing an Internet Protocol

• Using the Recommended Manager Parameters

• Creating the Manager Parameter File

• Starting Manager

• Stopping Manager

3.1 Overview of the Manager Process
To configure and run Oracle GoldenGate, a Manager process must be running on all
Oracle GoldenGate source and target systems, and any intermediary systems if used
in your configuration. Manager is the controller process that instantiates the Oracle
GoldenGate processes, allocates port numbers, and performs file maintenance.
Together, the Manager process and its child processes, and their related programs
and files comprise an Oracle GoldenGate instance. The Manager process performs
the following functions:

• Start Oracle GoldenGate processes

• Start dynamic processes

• Start the Collector process

• Manage the port numbers for processes. (All Oracle GoldenGate ports are
configurable.)

3-1

• Perform trail management

• Create event, error, and threshold reports

There is one Manager per Oracle GoldenGate installation. One Manager can support
multiple Oracle GoldenGate extraction and replication processes.

3.2 Assigning Manager a Port for Local Communication
The Manager process in each Oracle GoldenGate installation requires a dedicated
port for communication between itself and other local Oracle GoldenGate processes.
To specify this port, use the PORT parameter in the Manager parameter file. Follow
these guidelines:

• The default port number for Manager is 7809. You must specify either the default
port number (recommended, if available) or a different one of your choice.

• The port must be unreserved and unrestricted.

• Each Manager instance on a system must use a different port number.

See Reference for Oracle GoldenGate for Windows and UNIX for more information
about PORT.

3.3 Maintaining Ports for Remote Connections through
Firewalls

If a firewall is being used at an Oracle GoldenGate target location, additional ports are
required on the target system to receive dynamic TCP/IP communications from remote
Oracle GoldenGate processes. These ports are:

• One port for each Collector process that is started by the local Manager to receive
propagated transaction data from remote online Extract processes. When an
Extract process sends data to a target, the Manager on the target starts a
dedicated Collector process.

• One port for each Replicat process that is started by the local Manager as part of a
remote task. A remote task is used for initial loads and is specified with the RMTTASK
parameter. This port is used to receive incoming requests from the remote Extract
process. See Reference for Oracle GoldenGate for Windows and UNIX for more
information about RMTTASK.

• Some extra ports in case they are needed for expansion of the local Oracle
GoldenGate configuration.

• Ports for the other Oracle GoldenGate products if they interact with the local
Oracle GoldenGate instance, as stated in the documentation of those products.

To specify these ports, use the DYNAMICPORTLIST parameter in the Manager parameter
file. Follow these guidelines:

• You can specify up to 5000 ports in any combination of the following formats:

7830, 7833, 7835
7830-7835
7830-7835, 7839

• The ports must be unreserved and unrestricted.

• Each Manager instance on a system must use a different port list.

Chapter 3
Assigning Manager a Port for Local Communication

3-2

Although not a required parameter, DYNAMICPORTLIST is strongly recommended for best
performance. The Collector process is responsible for finding and binding to an
available port, and having a known list of qualified ports speeds this process. In the
absence of DYNAMICPORTLIST (or if not enough ports are specified with it), Collector tries
to use port 7840 for remote requests. If 7840 is not available, Collector increments by
one until it finds an available port. This can delay the acceptance of the remote
request. If Collector runs out of ports in the DYNAMICPORTLIST list, the following occurs:

• Manager reports an error in its process report and in the Oracle GoldenGate
ggserr log.

• Collector retries based on the rules in the Oracle GoldenGate tcperrs file. For
more information about the tcperrs file, see Handling TCP/IP Errors.

See Reference for Oracle GoldenGate for Windows and UNIX for more information
about DYNAMICPORTLIST.

3.4 Choosing an Internet Protocol
By default, Oracle GoldenGate selects a socket in the following order of priority to
ensure the best chance of connection success:

• IPv6 dual-stack

• IPv4 if IPv6 dual-stack is not available

• IPv6

If your network has IPv6 network devices that do not support dual-stack mode, you
can use the USEIPV6 parameter to force Oracle GoldenGate to use IPv6 for all
connections. This is a GLOBALS parameter that applies to all processes of an Oracle
GoldenGate instance. When USEIPV6 is used, the entire network must be IPv6
compatible to avoid connection failures. See Reference for Oracle GoldenGate for
Windows and UNIX for more information.

3.5 Using the Recommended Manager Parameters
The following parameters are optional, but recommended, for the Manager process.

• AUTOSTART: Starts Extract and Replicat processes when Manager starts. This
parameter is required in a cluster configuration, and is useful when Oracle
GoldenGate activities must begin immediately at system startup. (Requires
Manager to be part of the startup routine.) You can use multiple AUTOSTART
statements in the same parameter file. See Reference for Oracle GoldenGate for
Windows and UNIX for more information.

• AUTORESTART: Starts Extract and Replicat processes again after abnormal
termination. This parameter is required in a cluster configuration, but is also useful
in any configuration to ensure continued processing. See Reference for Oracle
GoldenGate for Windows and UNIX for more information.

• PURGEOLDEXTRACTS: Purges trail files when Oracle GoldenGate is finished processing
them. Without PURGEOLDEXTRACTS, no purging is performed and trail files can
consume significant disk space. For best results, use PURGEOLDEXTRACTS as a
Manager parameter, not as an Extract or Replicat parameter. See Reference for
Oracle GoldenGate for Windows and UNIX for more information.

Chapter 3
Choosing an Internet Protocol

3-3

• STARTUPVALIDATIONDELAY | STARTUPVALIDATIONDELAYCSECS: Sets a delay time after
which Manager validates the run status of a process. Startup validation makes
Oracle GoldenGate users aware of processes that fail before they can generate an
error message or process report. See Reference for Oracle GoldenGate for
Windows and UNIX for more information.

3.6 Creating the Manager Parameter File
To configure Manager with required port information and optional parameters, create a
parameter file by following these steps. See "Getting Started with the Oracle
GoldenGate Process Interfaces" for more information about Oracle GoldenGate
parameter files.

Note:

If Oracle GoldenGate resides in a cluster, configure the Manager process
within the cluster application as directed by the vendor's documentation, so
that Oracle GoldenGate fails over properly with other applications.For more
information about installing Oracle GoldenGate in a cluster, see the Oracle
GoldenGate documentation for your database.

1. From the Oracle GoldenGate directory, run the GGSCI program to open the
Oracle GoldenGate Software Command Interface (GGSCI).

2. In GGSCI, issue the following command to edit the Manager parameter file.

EDIT PARAMS MGR

3. Add the parameters that you want to use for the Manager process, each on one
line.

4. Save, then close the file.

Example 3-1 Sample manager file on a UNIX system

PORT 7809
DYNAMICPORTLIST 7810-7820, 7830
AUTOSTART ER t*
AUTORESTART ER t*, RETRIES 4, WAITMINUTES 4
STARTUPVALIDATIONDELAY 5
USERIDALIAS mgr1
PURGEOLDEXTRACTS /ogg/dirdat/tt*, USECHECKPOINTS, MINKEEPHOURS 2

The following is a sample Manager parameter file on a UNIX system using required
and recommended parameters.

3.7 Starting Manager
Manager must be running before you start other Oracle GoldenGate processes. You
can start Manager from:

• The command line of the operating system. See "Starting Manager from the
Command Shell of the Operating System" for instructions.

Chapter 3
Creating the Manager Parameter File

3-4

• The GGSCI command interface. See "Starting Manager from GGSCI" for
instructions.

• The Services applet on a Windows system if Manager is installed as a service.
See the Windows documentation or your system administrator.

• The Cluster Administrator tool if the system is part of a Windows cluster. This is
the recommended way to bring the Manager resource online. See the cluster
documentation or your system administrator.

• The cluster software of a UNIX or Linux cluster. Refer to the documentation
provided by the cluster vendor to determine whether to start Manager from the
cluster or by using GGSCI or the command line of the operating system.

• Starting Manager from the Command Shell of the Operating System

• Starting Manager from GGSCI

3.7.1 Starting Manager from the Command Shell of the Operating
System

To start Manager from the command shell of the operating system, issue the following
command.

mgr paramfile parameter_file [reportfile report_file]

The reportfile argument is optional and can be used to store the Manager process
report in a location other than the default of the dirrpt directory in the Oracle
GoldenGate installation location.

3.7.2 Starting Manager from GGSCI
To start Manager from GGSCI, run GGSCI from the Oracle GoldenGate directory, and
then issue the following command.

START MANAGER

Note:

When starting Manager from the command line or GGSCI with User Account
Control enabled, you will receive a UAC prompt requesting you to allow or
deny the program to run.

3.8 Stopping Manager
Manager runs indefinitely or until stopped by a user. In general, Manager should
remain running when there are synchronization activities being performed. Manager
performs important monitoring and maintenance functions, and processes cannot be
started unless Manager is running.

• Stopping Manager on UNIX and Linux

• Stopping Manager on Windows

Chapter 3
Stopping Manager

3-5

3.8.1 Stopping Manager on UNIX and Linux
On UNIX and Linux (including USS on z/OS), Manager must be stopped by using the
STOP MANAGER command in GGSCI.

STOP MANAGER [!]

Where:

! stops Manager without user confirmation.

In a UNIX or Linux cluster, refer to the documentation provided by the cluster vendor
to determine whether Manager should be stopped from the cluster or by using GGSCI.

3.8.2 Stopping Manager on Windows
On Windows, you can stop Manager from the Services applet (if Manager is installed
as a service). See the Windows documentation or your system administrator.

If Manager is not installed as a service, you can stop it with the STOP MANAGER command
in GGSCI.

STOP MANAGER [!]

In a Windows cluster, you must take the Manager resource offline from the Cluster
Administrator. If you attempt to stop Manager from the GGSCI interface, the cluster
monitor interprets it as a resource failure and attempts to bring the resource online
again. Multiple start requests through GGSCI eventually will exceed the start threshold
of the Manager cluster resource, and the cluster monitor will mark the Manager
resource as failed.

Chapter 3
Stopping Manager

3-6

4
Getting Started with the Oracle
GoldenGate Process Interfaces

This chapter describes how Oracle GoldenGate users provide instructions to the
processes through the GGSCI (Oracle GoldenGate Software Command Interface),
batch and shell scripts, and parameter files.
This chapter includes the following sections:

• Using the GGSCI Command-line Interface

• Controlling Oracle GoldenGate Processes

• Automating Commands

• Using Oracle GoldenGate Parameter Files

• Specifying Object Names in Oracle GoldenGate Input

• Using the GGSCI Command-line Interface

• Controlling Oracle GoldenGate Processes

• Automating Commands

• Using Oracle GoldenGate Parameter Files

• Specifying Object Names in Oracle GoldenGate Input

4.1 Using the GGSCI Command-line Interface
GGSCI is the Oracle GoldenGate command-line interface. You can use GGSCI to
issue the complete range of commands that configure, control, and monitor Oracle
GoldenGate.

To start GGSCI, change directories to the Oracle GoldenGate installation directory,
and then run the ggsci executable file.

For more information about Oracle GoldenGate commands, see Reference for Oracle
GoldenGate for Windows and UNIX.

• Using Wildcards in Command Arguments

• Globalization Support for the Command Interface

• Using Command History

• Storing and Calling Frequently Used Command Sequences

4.1.1 Using Wildcards in Command Arguments
You can use wildcards with certain Oracle GoldenGate commands to control multiple
Extract and Replicat groups as a unit. The wildcard symbol that is supported by Oracle
GoldenGate is the asterisk (*). An asterisk represents any number of characters. For

4-1

example, to start all Extract groups whose names contain the letter X, issue the
following command.

START EXTRACT *X*

4.1.2 Globalization Support for the Command Interface
All command input and related console output are rendered in the default character set
of the local operating system. To specify characters that are not compatible with the
character set of the local operating system, use Unicode notation. For example, the
following Unicode notation is equivalent to the name of a table that has the Euro
symbol as its name:

ADD TRANDATA \u20AC1

For more information, see Support for Escape Sequences for more information about
using Unicode notation.

Note:

Oracle GoldenGate group names are case-insensitive.

4.1.3 Using Command History
The execution of multiple commands is made easier with the following tools:

• Use the HISTORY command to display a list of previously executed commands.

• Use the ! command to execute a previous command again without editing it.

• Use the FC command to edit a previous command and then execute it again.

4.1.4 Storing and Calling Frequently Used Command Sequences
You can automate a frequently-used series of commands by using an OBEY file and the
OBEY command. The OBEY file takes the character set of the local operating system. To
specify a character that is not compatible with that character set, use Unicode
notation. See Support for Escape Sequences for more information about using
Unicode notation.

To use OBEY

1. Create and save a text file that contains the commands, one command per line.
This is your OBEY file. The name can be anything supported by the operating
system. You can nest other OBEY files within an OBEY file.

2. Run GGSCI.

3. (Optional) If using an OBEY file that contains nested OBEY files, issue the following
command. This command enables the use of nested OBEY files for the current
session of GGSCI and is required whenever using nested OBEY files. See
Reference for Oracle GoldenGate for Windows and UNIX for more information.

ALLOWNESTED

4. In GGSCI, call the OBEY file by using the OBEY command.

Chapter 4
Using the GGSCI Command-line Interface

4-2

OBEY file_name

Where:

file_name is the relative or fully qualified name of the OBEY file.

Example 4-1 OBEY command file

ADD EXTRACT myext, TRANLOG, BEGIN now
START EXTRACT myext

ADD REPLICAT myrep, EXTTRAIL /ggs/dirdat/aa
START REPLICAT myrep

INFO EXTRACT myext, DETAIL
INFO REPLICAT myrep, DETAIL

The following example illustrates an OBEY command file for use with the OBEY command.
It creates and starts Extract and Replicat groups and retrieves processing information.

See Reference for Oracle GoldenGate for Windows and UNIX for more information
about the OBEY command.

4.2 Controlling Oracle GoldenGate Processes
The standard way to control Oracle GoldenGate processes is through the GGSCI
interface. Typically, the first time that Oracle GoldenGate processes are started in a
production setting is during the initial synchronization process (also called instantiation
process). However, you will need to stop and start the processes at various points as
needed to perform maintenance, upgrades, troubleshooting, or other tasks.

These instructions show basic syntax. Additional syntax may be available and is
documented in Reference for Oracle GoldenGate for Windows and UNIX.

• Controlling Manager

• Controlling Extract and Replicat

• Deleting Extract and Replicat

4.2.1 Controlling Manager
Manager should not be stopped unless you want to stop replication processing.

To Stop Manager

1. From the Oracle GoldenGate directory, run GGSCI.

2. In GGSCI, issue the following command.

{START | STOP [!]} MANAGER

Where:

The ! bypasses the prompt that confirms the intent to shut down Manager.

Chapter 4
Controlling Oracle GoldenGate Processes

4-3

Note:

When starting Manager from the command line or GGSCI with User Account
Control enabled, you will receive a UAC prompt requesting you to allow or
deny the program to run.

4.2.2 Controlling Extract and Replicat
This section contains basic directions for controlling Extract and Replicat processes.
See Reference for Oracle GoldenGate for Windows and UNIX for additional command
options.

To Start Extract or Replicat

START {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups (for
example, * or fin*).

To Stop Extract or Replicat Gracefully

STOP {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups (for
example, * or fin*).

To Stop Replicat Forcefully

STOP REPLICAT group_name !

The current transaction is aborted and the process stops immediately. You cannot
stop Extract forcefully.

To Kill a Process that STOP Cannot Stop

KILL {EXTRACT | REPLICAT} group_name

Killing a process does not shut it down gracefully, and checkpoint information can be
lost.

To Control Multiple Processes at Once

command ER wildcard specification

Where:

• command is: KILL, START, or STOP

• wildcard specification is a wildcard specification for the names of the process
groups that you want to affect with the command. The command affects every
Extract and Replicat group that satisfies the wildcard. Oracle GoldenGate supports
up to 100,000 wildcard entries.

Chapter 4
Controlling Oracle GoldenGate Processes

4-4

4.2.3 Deleting Extract and Replicat
This section contains basic directions for deleting Extract and Replicat processes. See
Reference for Oracle GoldenGate for Windows and UNIX for additional command
options.

To Delete an Extract Group

1. Run GGSCI.

2. Issue the DBLOGIN command as the Extract database user (or a user with the same
privileges). You can use either of the following commands, depending on whether
a local credential store exists.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password [encryption_options] |
USERIDALIAS alias [DOMAIN domain]}

3. Stop the Extract process.

STOP EXTRACT group_name

4. Issue the following command.

DELETE EXTRACT group_name

5. (Oracle) Unregister the Extract group from the database.

UNREGISTER EXTRACT group_name,database_name

To Delete a Replicat Group

1. Stop the Replicat process.

STOP REPLICAT group_name

2. Issue one of the following commands from GGSCI to log into the database.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password [encryption_options] |
USERIDALIAS alias [DOMAIN domain]}

Where:

• SOURCEDB dsn supplies the data source name, if required as part of the
connection information.

• USERID user, PASSWORD password specifies an explicit database login credential.

• USERIDALIAS alias [DOMAIN domain] specifies an alias and optional domain of a
credential that is stored in a local credential store.

• encryption_options is one of the options that encrypt the password.

3. Issue the following command to delete the group.

DELETE REPLICAT group_name

Deleting a Replicat group preserves the checkpoints in the checkpoint table (if being
used). Deleting a process group also preserves the parameter file. You can create the
same group again, using the same parameter file, or you can delete the parameter file
to remove the group's configuration permanently.

Chapter 4
Controlling Oracle GoldenGate Processes

4-5

4.3 Automating Commands
Oracle GoldenGate supports the issuing of commands through scripts or jobs. This
section describes these options for UNIX- or Linux-based platforms and the IBMi
platform.

On a UNIX or Linux system, or within a runtime environment that supports UNIX or
Linux applications, you can issue Oracle GoldenGate commands from a script such as
a startup script, shutdown script, or failover script by running GGSCI and calling an
input file. The script file must be encoded in the operating system character set.
Unicode notation can be used for characters that are not supported by the operating
system character set. Before creating a script, see Globalization Support for the
Command Interface.

To Input a Script

Use the following syntax from the command line of the operating system.

ggsci < input_file

Where:

• The angle bracket (<) character pipes the file into the GGSCI program.

• input_file is a text file, known as an OBEY file, containing the commands that you
want to issue, in the order they are to be issued.

For detailed documentation of Oracle GoldenGate commands, see Reference for
Oracle GoldenGate for Windows and UNIX.

Note:

To stop the Manager process from a batch file, make certain to add the !
argument to the end of the STOP MANAGER command. Otherwise, GGSCI
issues a prompt that requires a response and causes the process to enter
into a loop. See Stopping Manager for more information about stopping
Manager.

• Issuing Commands Through the IBM i CLI

4.3.1 Issuing Commands Through the IBM i CLI
Oracle GoldenGate for IBM DB2 for i includes a set of native IBM i commands that
enables the operation of the most common Oracle GoldenGate programs from the IBM
i command-line interface (CLI). Because these commands are native, they do not
need to be run from a PASE environment. With this support, it is possible to issue
commands interactively or by using the typical job submission tools such as SBMJOB
to operate Oracle GoldenGate non-interactively.

The commands are as follows and correspond to the Oracle GoldenGate programs of
the same name. They reside in the Oracle GoldenGate installation library.

DEFGEN

Chapter 4
Automating Commands

4-6

EXTRACT

GGSCI

KEYGEN

LOGDUMP

MGR

REPLICAT

For more information about these commands, see Reference for Oracle GoldenGate
for Windows and UNIX.

4.4 Using Oracle GoldenGate Parameter Files
Most Oracle GoldenGate functionality is controlled by means of parameters specified
in parameter files. A parameter file is a plain text file that is read by an associated
Oracle GoldenGate process. Oracle GoldenGate uses two types of parameter files: a
GLOBALS file and runtime parameter files.

• Globalization Support for Parameter Files

• Working with the GLOBALS File

• Working with Runtime Parameters

• Creating a Parameter File

• Validating a Parameter File

• Viewing a Parameter File

• Changing a Parameter File

• Simplifying the Creation of Parameter Files

• Getting Information about Oracle GoldenGate Parameters

4.4.1 Globalization Support for Parameter Files
Oracle GoldenGate creates parameter files in the default character set of the local
operating system. In the event that the local platform does not support a required
character set as the default in the operating system, you can use the CHARSET
parameter either globally or per-process to specify a character set for parameter files.

To avoid issues caused by character-set incompatibilities, create or edit a parameter
file on the server where the associated process will be running. Avoid creating it on
one system (such as your Windows laptop) and then transferring the file to the UNIX
server where Oracle GoldenGate is installed and where the operating system
character set is different. Oracle GoldenGate provides some tools to help with
character set incompatibilities if you must create the parameter file on a different
system:

• You can use the CHARSET parameter to specify a compatible character set for the
parameter file. This parameter must be placed on the first line of the parameter file
and allows you to write the file in the specified character set. After the file is
transferred to the other system, do not edit the file on that system.

Chapter 4
Using Oracle GoldenGate Parameter Files

4-7

• You can use Unicode notation to substitute for characters that are not compatible
with the character set of the operating system where the file will be used. See
Support for Escape Sequences for more information about Unicode notation.

See Reference for Oracle GoldenGate for Windows and UNIX for more information
about the CHARSET parameter.

4.4.2 Working with the GLOBALS File
The GLOBALS file stores parameters that relate to the Oracle GoldenGate instance as a
whole. This is in contrast to runtime parameters, which are coupled with a specific
process such as Extract. The parameters in the GLOBALS file apply to all processes in
the Oracle GoldenGate instance, but can be overridden by specific process
parameters. A GLOBALS parameter file may or may not be required for your Oracle
GoldenGate environment.

When used, a GLOBALS file must exist before starting any Oracle GoldenGate
processes, including GGSCI. The GGSCI program reads the GLOBALS file and passes
the parameters to processes that need them.

To Create a GLOBALS File

1. From the Oracle GoldenGate installation location, run GGSCI and enter the
following command, or open a file in a text editor.

EDIT PARAMS ./GLOBALS

Note:

The ./ portion of this command must be used, because the GLOBALS file
must reside at the root of the Oracle GoldenGate installation file.

2. In the file, enter the GLOBALS parameters, one per line.

3. Save the file. If you used a text editor, save the file as GLOBALS (uppercase, without
a file extension) at the root of the Oracle GoldenGate installation directory. If you
created the file correctly in GGSCI, the file is saved that way automatically. Do not
move this file.

4. Exit GGSCI. You must start from a new GGSCI session before issuing commands
or starting processes that reference the GLOBALS file.

4.4.3 Working with Runtime Parameters
Runtime parameters give you control over the various aspects of Oracle GoldenGate
synchronization, such as:

• Data selection, mapping, transformation, and replication

• DDL and sequence selection, mapping, and replication (where supported)

• Error resolution

• Logging

• Status and error reporting

• System resource usage

Chapter 4
Using Oracle GoldenGate Parameter Files

4-8

• Startup and runtime behavior

There can be only one active parameter file for the Manager process or an Extract or
Replicat group; however, you can use parameters in other files by using the OBEY
parameter. See Simplifying the Creation of Parameter Files for more information about
simplifying the use of parameter files.

There are two types of parameters: global (not to be confused with GLOBALS
parameters) and object-specific:

• Global parameters apply to all database objects that are specified in a parameter
file. Some global parameters affect process behavior, while others affect such
things as memory utilization and so forth. USERIDALIAS in Example 4-2 and
Example 4-3 is an example of a global parameter. In most cases, a global
parameter can appear anywhere in the file before the parameters that specify
database objects, such as the TABLE and MAP statements in Example 4-2 and
Example 4-3. A global parameter should be listed only once in the file. When listed
more than once, only the last instance is active, and all other instances are
ignored.

• Object-specific parameters enable you to apply different processing rules for
different sets of database objects. GETINSERTS and IGNOREINSERTS in Example 4-3
are examples of object-specific parameters. Each precedes a MAP statement that
specifies the objects to be affected. Object-specific parameters take effect in the
order that each one is listed in the file.

Example 4-2 and Example 4-3 are examples of basic parameter files for Extract and
Replicat. Comments are preceded by double hyphens.

The preceding example reflects a case-insensitive Oracle database, where the object
names are specified in the TABLE statements in capitals. For a case-insensitive Oracle
database, it makes no difference how the names are entered in the parameter file
(upper, lower, mixed case). For other databases, the case of the object names may
matter. See Specifying Object Names in Oracle GoldenGate Input for more information
about specifying object names.

Note the use of single and double quote marks in the Replicat example in
Example 4-3. For databases that require quote marks to enforce case-sensitive object
names, such as Oracle, you must enclose case-sensitive object names within double
quotes in the parameter file as well. For other case-sensitive databases, specify the
names as they are stored in the database. For more information about specifying
names and literals, see Specifying Object Names in Oracle GoldenGate Input.

Example 4-2 Sample Extract Parameter File

-- Extract group name
EXTRACT capt
-- Extract database user login, with alias to credentials in the credential store.
USERIDALIAS ogg1
-- Remote host to where captured data is sent in encrypted format:
RMTHOSTOPTIONS sysb, MGRPORT 7809, ENCRYPT AES192 KEYNAME mykey
-- Encryption specification for trail data
ENCRYPTTRAIL AES192
-- Remote trail on the remote host
RMTTRAIL /ggs/dirdat/aa
-- TABLE statements that identify data to capture.
TABLE FIN.*;
TABLE SALES.*;

Chapter 4
Using Oracle GoldenGate Parameter Files

4-9

Example 4-3 Sample Replicat Parameter File

-- Replicat group name
REPLICAT deliv
-- Replicat database user login, with alias to credentials in the credential store
USERIDALIAS ogg2
-- Error handling rules
REPERROR DEFAULT, ABEND
-- Ignore INSERT operations
IGNOREINSERTS
-- MAP statement to map source objects to target objects and
-- specify column mapping
MAP "fin"."accTAB", TARGET "fin"."accTAB",
COLMAP ("Account" = "Acct",
"Balance" = "Bal",
"Branch" = "Branch");
-- Get INSERT operations
GETINSERTS
-- MAP statement to map source objects to target objects and
-- filter to apply only the 'NY' branch data.
MAP "fin"."teller", TARGET "fin"."tellTAB",
WHERE ("Branch" = 'NY');

4.4.4 Creating a Parameter File
Oracle recommends using GGSCI when writing the parameter file in the character set
of the operating system, but if using the CHARSET parameter and writing the file in a
different character set, use a text editor instead of GGSCI. See Reference for Oracle
GoldenGate for Windows and UNIX for more information about the CHARSET parameter.

Creating a Parameter File in GGSCI

Creating a Parameter File with a Text Editor

• Creating a Parameter File in GGSCI

• Creating a Parameter File with a Text Editor

4.4.4.1 Creating a Parameter File in GGSCI
To create a parameter file, use the EDIT PARAMS command within the GGSCI user
interface or use a text editor directly. When you use GGSCI, you are using a standard
text editor, but your parameter file is saved automatically with the correct file name and
in the correct directory.

When you create a parameter file with EDIT PARAMS in GGSCI, it is saved to the dirprm
sub-directory of the Oracle GoldenGate directory. You can create a parameter file in a
directory other than dirprm, but you also must specify the full path name with the
PARAMS option of the ADD EXTRACT or ADD REPLICAT command when you create your
process groups. Once paired with an Extract or Replicat group, a parameter file must
remain in its original location for Oracle GoldenGate to operate properly once
processing has started.

The EDIT PARAMS command launches the following text editors within the GGSCI
interface:

• Notepad on Microsoft Windows systems

Chapter 4
Using Oracle GoldenGate Parameter Files

4-10

• The vi editor on UNIX and Linux systems. DB2 for i only supports vi when
connected with SSH or xterm. For more information, see Creating a Parameter
File with a Text Editor.

Note:

You can change the default editor through the GGSCI interface by using
the SET EDITOR command. See Reference for Oracle GoldenGate for
Windows and UNIX.

1. From the directory where Oracle GoldenGate is installed, run GGSCI.

2. In GGSCI, issue the following command to open the default text editor.

EDIT PARAMS group_name

Where:

group_name is either mgr (for the Manager process) or the name of the Extract or
Replicat group for which the file is being created. The name of an Extract or
Replicat parameter file must match that of the process group.

The following creates or edits the parameter file for an Extract group named
extora.

EDIT PARAMS extora

The following creates or edits the parameter file for the Manager process.

EDIT PARAMS MGR

3. Using the editing functions of the text editor, enter as many comment lines as you
want to describe this file, making certain that each comment line is preceded with
two hyphens (--).

4. On non-commented lines, enter the Oracle GoldenGate parameters, starting a
new line for each parameter statement.

Oracle GoldenGate parameters have the following syntax:

PARAMETER_NAME argument [, option] [&]

Where:

• PARAMETER_NAME is the name of the parameter.

• argument is a required argument for the parameter. Some parameters take
arguments, but others do not. Commas between arguments are optional.

EXTRACT myext
USERIDALIAS ogg1
RMTHOSTOPTIONS sysb, MGRPORT 8040, ENCRYPT AES192 KEYNAME mykey
ENCRYPTTRAIL AES 192
RMTTRAIL /home/ggs/dirdat/c1, PURGE
CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, &
 PARAMS "init.properties"
TABLE myschema.mytable;

• [, option] is an optional argument.

• [&] is required at the end of each line in a multi-line parameter statement, as in
the CUSEREXIT parameter statement in the previous example. The exceptions

Chapter 4
Using Oracle GoldenGate Parameter Files

4-11

are the following, which can accept, but do not require, the ampersand
because they terminate with a semicolon:

– MAP

– TABLE

– SEQUENCE

– FILE

– QUERY

Note:

The RMTHOST and RMTHOSTOPTIONS parameters can be specified together;
the RMTHOST parameter is not required for RMTHOSTOPTIONS if the dynamic IP
assignment is properly configured. When RMTHOSTOPTIONS is used, the
MGRPORT option is ignored.

5. Save and close the file.

4.4.4.2 Creating a Parameter File with a Text Editor
You can create a parameter file outside GGSCI by using a text editor, but make
certain to:

• Save the parameter file with the name of the Extract or Replicat group that owns it,
or save it with the name mgr if the Manager process owns it. Use the .prm file
extension. For example: extfin.prm and mgr.prm.

• Save the parameter file in the dirprm directory of the Oracle GoldenGate
installation directory.

• For DB2 for i systems, you can edit parameter files from a 5250 terminal using
SEU or EDTF. If you use SEU, you must copy the file using the CPYTOSTMF
command, specify an encoding of CCSID 1208, and line endings of *LF. If editing
with EDTF from F15 (services) ensure that you change the CCSID of the file to
1208 and the EOL option to *LF.

Alternatively, you can use the Rfile command from the IBM Portable Application
Solutions Environment for i.

4.4.5 Validating a Parameter File
The checkprm validation native command is run from the command line and gives an
assessment of the specified parameter file, with a configurable application and running
environment. It can provide either a simple PASS/FAIL or with optional details about how
the values of each parameter are stored and interpreted.

The input to checkprm is case insensitive. If a value string contains spaces, it does not
need to be quoted because checkprm can recognize meaningful values. If no mode is
specified to checkprm, then all parameters applicable to any mode of the component
will be accepted.

The output of checkprm is assembled with four possible sections:

• help messages

Chapter 4
Using Oracle GoldenGate Parameter Files

4-12

• pre-validation error

• validation result

• parameter details

A pre-validation error is typically an error that prevents a normal parameter validation
from executing, such as missing options or an inaccessible parameter file. If an option
value is specified incorrectly, a list of possible inputs for that option is provided. If the
result is FAIL, each error is in the final result message. If the result is PASS, a message
that some of the parameters are subject to further runtime validation. The parameter
detailed output contains the validation context, the values read from GLOBALS (if it is
present), and the specified parameters. The parameter and options are printed with
proper indentation to illustrate these relationships.

Table 4-1 describes all of the arguments that you can use with the checkprm
commands. When you use checkprm and do not use any of these arguments, then
checkprm attempts to automatically detect Extract or Replicat and the platform and
database of the Oracle GoldenGate installation.

Table 4-1 checkprm Arguments

Argument Purpose & Behavior

None Displays usage information

-v Displays banner. Cannot be combined with other options.

? | help Displays detailed usage information, include all possible values of each
option. Cannot be combine with other options.

parameter_file Specifies the name of the parameter file, has to be the first argument if
a validation is requested. You must specify the absolute path to the
parameter file. For example, CHECKPRM ./dirprm/myext.prm.

-COMPONENT | -C Specifies the running component (application) that this parameter file is
validated for. This option can be omitted for Extract or Replicat because
automatic detection is attempted. Valid values include:

CACHEFILEDUMP COBGEN CONVCHK CONVPRM DDLCOB DEFGEN EMSCLNT
EXTRACT GGCMD GGSCI KEYGEN LOGDUMP

MGR OGGERR REPLICAT RETRACE

REVERSE SERVER GLOBALS

There is no default for this option.

Chapter 4
Using Oracle GoldenGate Parameter Files

4-13

Table 4-1 (Cont.) checkprm Arguments

Argument Purpose & Behavior

-MODE | -M Specifies the mode of the running application if applicable. This option
is optional, only applicable to Extract or Replicat. If no mode is
specified, the validation is performed for all Extract or Replicat modes.

Valid input of this option includes:

• Classic Extract
• Integrated Extract
• Initial Load Extract
• Remote Task Extract
• Data Pump Extract
• Passive Extract
• Classic Replicat
• Coordinated Replicat
• Integrated Replicat
• Special Run Replicat
• Remote Task
• Replicat All
When key in the value for this option, the application name is optional,
as long as it matches the value of component. For example, "Â"Data
Pump ExtractÂ" is equivalent to "Â"Data PumpÂ" if the component is
Extract. However, it is invalid if the component is Replicat.

-PLATFORM | -P Specifies the platform the application is supposed to run on. The default
value is the platform that this checkprm executable is running on.

The possible values are:

AIX HP-OSS HPUX-IT HPUX-PA

Linux OS400 ZOS Solaris SPARC

Solaris x86 Windows x64 All

-DATABASE | -D Specifies the database the application is built against. The default value
is the database for your Oracle GoldenGate installation.

The database options are:

Generic Oracle 8 Oracle 9i

Oracle 10g Oracle 11g Oracle 12c

DB2LUW 10.5 DB2LUW 10.1 DB2 Remote

Teradata Timesten Timesten 7

Ctree9 DB2 for I DB2 for i Remote

-VERBOSE | -V Directs checkprm to print out detailed parameter information, to
demonstrate how the values are read and interpreted.

It must be the last option specified in a validation.

Following are some use examples:

checkprm ?
checkprm ./dirprm/ext1.prm -C extract -m data pump -p Linux -v
checkprm ./dirprm/ext1.prm -m integrated
checkprm ./dirprm/rep1.prm -m integrated
checkprm ./dirprm/mgr.prm -C mgr -v
checkprm GLOBALS -c GLOBALS

Chapter 4
Using Oracle GoldenGate Parameter Files

4-14

Verifying Using CHECKPARAMS Parameter

An alternative to using the recommended checkprm utility, is to check the syntax of
parameters in an Extract or Replicat parameter file for accuracy using the CHECKPARAMS
parameter. This process can be used with Extract or Replicat.

To Verify Parameter Syntax

1. Include the CHECKPARAMS parameter in the parameter file.

2. Start the associated process by issuing the START EXTRACT or START REPLICAT
command in GGSCI.

START {EXTRACT | REPLICAT} group_name

The process audits the syntax, writes the results to the report file or the screen,
and then stops.

3. Do either of the following:

• If the syntax is correct, remove the CHECKPARAMS parameter before starting the
process to process data.

• If the syntax is wrong, correct it based on the findings in the report. You can
run another test to verify the changes, if desired. Remove CHECKPARAMS before
starting the process to process data.

For more information about the report file, see Monitoring Oracle GoldenGate
Processing.

For more information about CHECKPARAMS, see Reference for Oracle GoldenGate for
Windows and UNIX.

4.4.6 Viewing a Parameter File
You can view a parameter file directly from the command shell of the operating
system, or you can view it from the GGSCI user interface. To view the file from
GGSCI, use the VIEW PARAMS command.

VIEW PARAMS group_name

Where:

group_name is either mgr (for Manager) or the name of the Extract or Replicat group that
is associated with the parameter file.

Caution:

Do not use VIEW PARAMS to view an existing parameter file that is in a
character set other than that of the local operating system (such as one
where the CHARSET option was used to specify a different character set). The
contents may become corrupted. View the parameter file from outside
GGSCI.

Chapter 4
Using Oracle GoldenGate Parameter Files

4-15

If the parameter file was created in a location other than the dirprm sub-directory of the
Oracle GoldenGate directory, specify the full path name as shown in the following
example.

VIEW PARAMS c:\lpparms\replp.prm

4.4.7 Changing a Parameter File
An Oracle GoldenGate process must be stopped before changing its parameter file,
and then started again after saving the parameter file. Changing parameter settings
while a process is running can have unexpected results, especially if you are adding
tables or changing mapping or filtering rules.

Caution:

Do not use the EDIT PARAMS command to view or edit an existing parameter
file that is in a character set other than that of the local operating system
(such as one where the CHARSET option was used to specify a different
character set). The contents may become corrupted. View the parameter file
from outside GGSCI.

To Change Parameters:

1. Stop the process by issuing the following command in GGSCI. To stop Manager in
a Windows cluster, use the Cluster Administrator.

STOP {EXTRACT | REPLICAT | MANAGER} group_name

2. Open the parameter file by using a text editor or the EDIT PARAMS command in
GGSCI.

EDIT PARAMS mgr

3. Make the edits, and then save the file.

4. Start the process by issuing the following command in GGSCI. Use the Cluster
Administrator if starting Manager in a Windows cluster.

START {EXTRACT | REPLICAT | MANAGER} group_name

4.4.8 Simplifying the Creation of Parameter Files
You can reduce the number of times that a parameter must be specified by using the
following time-saving tools.

• Using Wildcards

• Using OBEY

• Using Macros

• Using Parameter Substitution

• Using Wildcards

• Using OBEY

• Using Macros

Chapter 4
Using Oracle GoldenGate Parameter Files

4-16

• Using Parameter Substitution

4.4.8.1 Using Wildcards
For parameters that accept object names, you can use asterisk (*) and question mark
(?) wildcards. The use of wildcards reduces the work of specifying numerous object
names or all objects within a given schema. For more information about using
wildcards, see Using Wildcards in Database Object Names.

4.4.8.2 Using OBEY
You can create a library of text files that contain frequently used parameter settings,
and then you can call any of those files from the active parameter file by means of the
OBEY parameter. The syntax for OBEY is:

OBEY file_name

Where:

file_name is the relative or full path name of the file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the referenced file and then returns to the active file to
process any remaining parameters. OBEY is not supported for the GLOBALS parameter
file.

If using the CHARSET parameter in a parameter file that includes an OBEY parameter, the
referenced parameter file does not inherit the CHARSET character set. The CHARSET
character set is used to read wildcarded object names in the referenced file, but you
must use an escape sequence (\uX) for all other multibyte specifications in the
referenced file.

See Reference for Oracle GoldenGate for Windows and UNIX for more information
about OBEY.

See Reference for Oracle GoldenGate for Windows and UNIX for more information
about CHARSET.

4.4.8.3 Using Macros
You can use macros to automate multiple uses of a parameter statement. See Using
Oracle GoldenGate Macros to Simplify and Automate Work.

4.4.8.4 Using Parameter Substitution
You can use parameter substitution to assign values to Oracle GoldenGate
parameters automatically at run time, instead of assigning static values when you
create the parameter file. That way, if values change from run to run, you can avoid
having to edit the parameter file or maintain multiple files with different settings. You
can simply export the required value at runtime. Parameter substitution can be used
for any Oracle GoldenGate process.

To Use Parameter Substitution

1. For each parameter for which substitution is to occur, declare a runtime parameter
instead of a value, and precede the runtime parameter name with a question mark
(?) as shown in the following example.

Chapter 4
Using Oracle GoldenGate Parameter Files

4-17

SOURCEISFILE
EXTFILE ?EXTFILE
MAP scott?TABNAME, TARGET tiger ACCOUNT_TARG;

2. Before starting the Oracle GoldenGate process, use the shell of the operating
system to pass the runtime values by means of an environment variable, as shown
in Example 4-4 and Example 4-5.

Example 4-4 Parameter substitution on Windows

C:\GGS> set EXTFILE=C:\ggs\extfile
C:\GGS> set TABNAME=PROD.ACCOUNTS
C:\GGS> replicat paramfile c:\ggs\dirprm\parmfl

Example 4-5 Parameter substitution on UNIX (Korn shell)

$ EXTFILE=/ggs/extfile
$ export EXTFILE
$ TABNAME=PROD.ACCOUNTS
$ export TABNAME
$ replicat paramfile ggs/dirprm/parmfl

UNIX is case-sensitive, so the parameter declaration in the parameter file must be the
same case as the shell variable assignments.

4.4.9 Getting Information about Oracle GoldenGate Parameters
You can use the INFO PARAM command to view a parameter's definition information from
GGSCI. The name provided in the command line can be a parameter, or an option, but
it must be a full name that is part of the names concatenated together using a period
(.) as the delimiter. For example:

INFO PARAM RMTHOST
RMTHOST.STREAMING
INFO PARAM RMTHOST.STREAMING

Using the GETPARAMINFO, you can query the runtime parameter values of a running
instance, including Extract, Replicat, and Manager. This command is similar to using
checkprm -v, see Validating a Parameter File. The default behavior is to display all that
has ever been queried by the application, parameters and their current values. If a
particular parameter name is specified, then the output is filtered by that name.
Optionally, the output can be redirect to a file specified by the -FILE option. For
example:

SEND ext1pmp GETPARAMINFO

For more information about these and all Oracle GoldenGate parameters including
exact syntax, see the Reference for Oracle GoldenGate for Windows and UNIX.

4.5 Specifying Object Names in Oracle GoldenGate Input
The following rules apply when specifying object names in parameter files (such as in
TABLE and MAP statements), column-conversion functions, commands, and in other
input.

Supported Database Object Names

Qualifying Database Object Names

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-18

Specifying Case-Sensitive Database Object Names

Using Wildcards in Database Object Names

Differentiating Case-Sensitive Column Names from Literals

• Specifying Filesystem Path Names in Parameter Files on Windows Systems

• Supported Database Object Names

• Specifying Names that Contain Slashes

• Qualifying Database Object Names

• Specifying Case-Sensitive Database Object Names

• Using Wildcards in Database Object Names

• Differentiating Case-Sensitive Column Names from Literals

4.5.1 Specifying Filesystem Path Names in Parameter Files on
Windows Systems

On Windows systems, if the name of any directory in a filesystem path name begins
with a number, the path must be specified with forward slashes, not backward slashes,
when listing that path in Oracle GoldenGate input, such as parameter files or
commands. This requirement prevents Oracle GoldenGate from interpreting the name
as an octal escape sequence. For example, the following paths contain a directory
named \2014 that will be interpreted as the octal sequence \201:

C:\ogg\2014\install\dirdat\aa
C:\ogg\install\2014\dirdat\aa

The preceding path can be used with forward slashes as follows:

C:/ogg/2014/install/dirdat/aa
C:/ogg/install/2014/dirdat/aa

For more information, see Support for Escape Sequences.

4.5.2 Supported Database Object Names
Object names in parameter files, command, and other input can be any length and in
any supported character set. For supported character sets, see Supported Character
Sets.

Oracle GoldenGate supports most characters in object and column names. Specify
object names in double quote marks if they contain special characters such as white
spaces or symbols.

The following lists of supported and non-supported characters covers all databases
supported by Oracle GoldenGate; a given database platform may or may not support
all listed characters.

• Supported Special Characters

• Non-supported Special Characters

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-19

4.5.2.1 Supported Special Characters
Oracle GoldenGate supports all characters that are supported by the database,
including the following special characters. Object names that contain these special
characters must be enclosed within double quotes in parameter files.

Character Description

/ Forward slash (See Specifying Names that Contain Slashes)

* Asterisk (Must be escaped by a backward slash when used in parameter file, as
in: *)

? Question mark (Must be escaped by a backward slash when used in parameter
file, as in: \?)

@ At symbol (Supported, but is often used as a resource locator by databases.
May cause problems in object names)

Pound symbol

$ Dollar symbol

% Percent symbol (Must be %% when used in parameter file)

^ Caret symbol

() Open and close parentheses

_ Underscore

- Dash

Space

4.5.2.2 Non-supported Special Characters
The following characters are not supported in object names and non-key column
names.

Character Description

\ Backward slash (Must be \\ when used in parameter file)

{ } Begin and end curly brackets (braces)

[] Begin and end brackets

= Equal symbol

+ Plus sign

! Exclamation point

~ Tilde

| Pipe

& Ampersand

: Colon

; Semi-colon

, Comma

' ' Single quotes

" " Double quotes

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-20

Character Description

' Accent mark (Diacritical mark)

. Period

< Less-than symbol (or beginning angle bracket)

> Greater-than symbol (or ending angle bracket)

4.5.3 Specifying Names that Contain Slashes
If a table name contains a forward-slash character (/) in any part of its name, that
name component must be enclosed within double quotes unless the object name is
from an IBM i platform . The following are some examples:

"c/d"
"/a".b
a."b/"

If the name contains a forward slash that is not enclosed within double quotes, Oracle
GoldenGate treats it as a name that originated on the IBM i platform (from a DB2 for i
database). The forward slash in the name is interpreted as a separator character.

4.5.4 Qualifying Database Object Names
Object names must be fully qualified in the parameter file. This means that every name
specification must be qualified, not only those supplied as input to Oracle GoldenGate
parameter syntax, but also names in a SQL procedure or query that is supplied as
SQLEXEC input, names in user exit input, and all other input supplied in the parameter
file.

Oracle GoldenGate supports two-part and three-part object names, as appropriate for
the database.

• Two-part Names

• Three-part Names

• Applying Data from Multiple Containers or Catalogs

• Specifying a Default Container or Catalog

4.5.4.1 Two-part Names
Most databases require only two-part names to be specified, in the following format:

owner.object

For example: HR.EMP

Where:

owner is a schema or database, depending on how the database defines a logical
namespace that contains database objects. object is a table or other supported
database object.

The databases for which Oracle GoldenGate supports two-part names are as follows,
shown with their appropriate two-part naming convention:

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-21

• DB2 for i: schema.object and library/file(member)

• DB2 LUW: schema.object

• DB2 on z/OS: schema.object

• MySQL: database.object

• Oracle Database (non-CDB databases): schema.object

• SQL Server: schema.object

• Teradata: database.object

4.5.4.2 Three-part Names
Oracle GoldenGate supports three-part names for the following databases:

• Oracle container databases (CDB)

Three-part names are required to capture from a source Oracle container database
because one Extract group can capture from more than one container. Thus, the name
of the container, as well as the schema, must be specified for each object or objects in
an Extract TABLE statement.

Specify a three-part Oracle CDB name as follows:

container.schema.object

For example: PDB1.HR.EMP

For more information about Oracle container databases, see Oracle Database
Administrator's Guide.

4.5.4.3 Applying Data from Multiple Containers or Catalogs
To apply data captured from multiple source containers or catalogs to a target Oracle
container database or SQL/MX database, both three- and two-part names are
required. In the MAP portion of the MAP statment, each source object must be associated
with a container or catalog, just as it was in the TABLE statement. This enables you (and
Replicat) to properly map data from multiple source containers or catalogs to the
appropriate target objects. In the TARGET portion of the MAP statement, however, only
two-part names are required. This is because Replicat can connect to only one target
container or catalog at a time, and schema.owner is a sufficient qualifier. Multiple
Replicat groups are required to support multiple target containers or catalogs. Specify
the target container or catalog with the TARGETDB parameter.

4.5.4.4 Specifying a Default Container or Catalog
You can use the SOURCECATALOG parameter to specify a default catalog for any
subsequent TABLE, MAP, (or Oracle SEQUENCE) specifications in the parameter file. The
following example shows the use of SOURCECATALOG to specify the default Oracle PDB
named pdb2 for schema2 and schema3 objects, and the default PDB named pdb3 for
schema4 objects. The objects in pdb1 are specified with a fully qualified three-part name,
which does not require a default catalog to be specified. This example would be
identical to a SQL/MX example if you substitute a catalog name for the names that
begin with pdb.

TABLE pdb1.schema1.table*;
SOURCECATALOG pdb2

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-22

TABLE schema2.table*;
TABLE schema3.table*;
SOURCECATALOG pdb3
TABLE schema4.table*;

4.5.5 Specifying Case-Sensitive Database Object Names
Oracle GoldenGate supports case-sensitive names. Follow these rules when
specifying case-sensitive objects.

• Specify object names from a case-sensitive database in the same case that is
used to store them in the host database. Keep in mind that, in some database
types, different levels of the database can have different case-sensitivity, such as
case-sensitive schema but case-insensitive table. If the database requires quotes
to enforce case-sensitivity, put quotes around each object that is case-sensitive in
the qualified name.

Correct: TABLE "Sales"."ACCOUNT"

Incorrect: TABLE "Sales.ACCOUNT"

• Oracle GoldenGate converts case-insensitive names to the case in which they are
stored when required for mapping purposes.

Table 4-2 provides an overview of the support for case-sensitivity in object names, per
supported database. Refer to the database documentation for details on this type of
support.

Table 4-2 Case Sensitivity of Object Names Per Database

Database Requires quotes to
enforce case-
sensitivity?

Unquoted object
name

Quoted object name

DB2 Yes. Differentiates
between case-
sensitive and case-
insensitive by use of
quotes.

Case-insensitive,
stores in upper case

Case-sensitive, stores
in mixed case

MySQL

(Case-sensitive
database)

No

• Always case-
sensitive, stores
in mixed case

• The names of
columns, triggers,
and procedures
are case-
insensitive

No effect No effect

Oracle Database Yes. Differentiates
between case-
sensitive and case-
insensitive by use of
quotes.

Case-insensitive,
stores in upper case

Case-sensitive, stores
in mixed case

SQL Server

(Database created as
case-sensitive)

No

Always case-sensitive,
stores in mixed case

No effect No effect

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-23

Table 4-2 (Cont.) Case Sensitivity of Object Names Per Database

Database Requires quotes to
enforce case-
sensitivity?

Unquoted object
name

Quoted object name

SQL Server

(Database created as
case-sensitive)

No

Always case-
insensitive, stores in
mixed case

No effect No effect

Teradata No

Always case-
insensitive, stores in
mixed case

No effect No effect

Note:

For all supported databases, passwords are always treated as case-sensitive
regardless of whether the associated object name is quoted or unquoted.

4.5.6 Using Wildcards in Database Object Names
You can use wildcards for any part of a fully qualified object name, if supported for the
specific database. These name parts can be the following: the container, database, or
catalog name, the owner (schema or database name), and table or sequence name.
For specifics on how object names and wildcards are supported, see the Oracle
GoldenGate installation and configuration guide for that database.

Where appropriate, Oracle GoldenGate parameters permit the use of two wildcard
types to specify multiple objects in one statement:

• A question mark (?) replaces one character. For example in a schema that
contains tables named TABn, where n is from 0 to 9, a wildcard specification of
HQ.TAB? returns HQ.TAB0, HQ.TAB1, HQ.TAB2, and so on, up to HQ.TAB9, but no others.
This wildcard is not supported for the DB2 LUW database nor for DEFGEN. This
wildcard can only be used to specify source objects in a TABLE or MAP parameter. It
cannot be used to specify target objects in the TARGET clause of TABLE or MAP.

• An asterisk (*) represents any number of characters (including zero sequence).
For example, the specification of HQ.T* could return such objects as HQ.TOTAL,
HQ.T123, and HQ.T. This wildcard is valid for all database types throughout all
Oracle GoldenGate commands and parameters where a wildcard is allowed.

• In TABLE and MAP statements, you can combine the asterisk and question-mark
wildcard characters in source object names only.

• Rules for Using Wildcards for Source Objects

• Rules for Using Wildcards for Target Objects

• Fallback Name Mapping

• Wildcard Mapping from Pre-11.2.1 Trail Version

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-24

• Asterisks or Question Marks as Literals in Object Names

• How Wildcards are Resolved

• Excluding Objects from a Wildcard Specification

4.5.6.1 Rules for Using Wildcards for Source Objects
For source objects, you can use the asterisk alone or with a partial name. For
example, the following source specifications are valid:

• TABLE HQ.*;

• TABLE PDB*.HQ.*;

• MAP HQ.T_*;

• MAP HQ.T_*, TARGET HQ.*;

The TABLE, MAP and SEQUENCE parameters take the case-sensitivity and locale of the
database into account for wildcard resolution. For databases that are created as case-
sensitive or case-insensitive, the wildcard matches the exact name and case. For
example, if the database is case-sensitive, SCHEMA.TABLE is matched to SCHEMA.TABLE,
Schema.Table is matched to Schema.Table, and so forth. If the database is case-
insensitive, the matching is not case-sensitive.

For databases that can have both case-sensitive and case-insensitive object names in
the same database instance, with the use of quote marks to enforce case-sensitivity,
the wildcarding works differently. When used alone for a source name in a TABLE
statement, an asterisk wildcard matches any character, whether or not the asterisk is
within quotes. The following statements produce the same results:

TABLE hr.*;
TABLE hr."*";

Similarly, a question mark wildcard used alone matches any single character, whether
or not it is within quotes. The following produce the same results:

TABLE hr.?;
TABLE hr."?";

If a question mark or asterisk wildcard is used with other characters, case-sensitivity is
applied to the non-wildcard characters, but the wildcard matches both case-sensitive
and case-insensitive names.

• The following TABLE statements capture any table name that begins with lower-
case abc. The quoted name case is preserved and a case-sensitive match is
applied. It captures table names that include "abcA" and "abca" because the
wildcard matches both case-sensitive and case-insensitive characters.

TABLE hr."abc*";
TABLE hr."abc?";

• The following TABLE statements capture any table name that begins with upper-
case ABC, because the partial name is case-insensitive (no quotes) and is stored in
upper case by this database. However, because the wildcard matches both case-
sensitive and case-insensitive characters, this example captures table names that
include ABCA and "ABCa".

TABLE hr.abc*;
TABLE hr.abc?;

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-25

4.5.6.2 Rules for Using Wildcards for Target Objects
When using wildcards in the TARGET clause of a MAP statement, the target objects must
exist in the target database. (The exception is when DDL replication is being used,
which allows new schemas and their objects to be replicated as they are created.)

For target objects, only an asterisk can be used. If an asterisk wildcard is used with a
partial name, Replicat replaces the wildcard with the entire name of the corresponding
source object. Therefore, specifications such as the following are incorrect:

TABLE HQ.T_*, TARGET RPT.T_*;
MAP HQ.T_*, TARGET RPT.T_*;

The preceding mappings produce incorrect results, because the wildcard in the target
specification is replaced with T_TEST (the name of a source object), making the whole
target name T_T_TESTn. The following illustrates the incorrect results:

• HQ.T_TEST1 maps to RPT.T_T_TEST1

• HQ.T_TEST2 maps to RPT.T_T_TEST2

• (The same pattern applies to all other HQ.T_TESTn mappings.)

The following examples show the correct use of asterisk wildcards.

MAP HQ.T_*, TARGET RPT.*;

The preceding example produces the following correct results:

• HQ.T_TEST1 maps to RPT.T_TEST1

• HQ.T_TEST2 maps to RPT.T_TEST2

• (The same pattern applies to all other HQ.T_TESTn mappings.)

4.5.6.3 Fallback Name Mapping
Oracle GoldenGate has a fallback mapping mechanism in the event that a source
name cannot be mapped to a target name. If an exact match cannot be found on the
target for a case-sensitive source object, Replicat tries to map the source name to the
same name in upper or lower case (depending on the database type) on the target.
Fallback name mapping is controlled by the NAMEMATCH parameters. For more
information, see Reference for Oracle GoldenGate for Windows and UNIX.

4.5.6.4 Wildcard Mapping from Pre-11.2.1 Trail Version
If Replicat is configured to read from a trail file that is a version prior to Oracle
GoldenGate 11.2.1, the target mapping is made in the following manner to provide
backward compatibility.

• Quoted object names are case-sensitive.

• Unquoted object names are case-insensitive.

The following maps a case-sensitive table name "abc" to target "abc". This only
happens with a trail that was written by pre-11.2.1 Extract for SQL Server databases
with a case-sensitive configuration. In this example, if the target database is Oracle
Database or DB2 fallback name mapping is performed if the target database does not
contain case-sensitive "abc" but does have table ABC. (See Fallback Name Mapping.)

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-26

MAP hq."abc", TARGET hq.*;

The following example maps a case-insensitive table name abc to target table name
ABC. Previous releases of Oracle GoldenGate stored case-insensitive object names to
the trail in upper case; thus the target table name is always upper cased. For case-
insensitive name conversion, the comparison is in uppercase, A to Z characters only,
in US-ASCII without taking locale into consideration.

MAP hq.abc, TARGET hq.*;

4.5.6.5 Asterisks or Question Marks as Literals in Object Names
If the name of an object itself includes an asterisk or a question mark, the entire name
must be escaped and placed within double quotes, as in the following example:

TABLE HT."\?ABC";

4.5.6.6 How Wildcards are Resolved
By default, when an object name is wildcarded, the resolution for that object occurs
when the first row from the source object is processed. (By contrast, when the name of
an object is stated explicitly, its resolution occurs at process startup.) To change the
rules for resolving wildcards, use the WILDCARDRESOLVE parameter. The default is
DYNAMIC.

4.5.6.7 Excluding Objects from a Wildcard Specification
You can combine the use of wildcard object selection with explicit object exclusion by
using the EXCLUDEWILDCARDOBJECTSONLY, CATALOGEXCLUDE, SCHEMAEXCLUDE, MAPEXCLUDE, and
TABLEEXCLUDE parameters. See Reference for Oracle GoldenGate for Windows and
UNIX for descriptions and syntax.

4.5.7 Differentiating Case-Sensitive Column Names from Literals
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and
literals. In Oracle GoldenGate parameter files, conversion functions, user exits, and
commands, case-sensitive column names must be enclosed within double quotes if
the database requires quotes around a name to support case-sensitivity. For example:

"columnA"

Case-sensitive column names in databases that do not require quotes to enforce
case-sensitivity must be specified as they are stored in the database. For example:

ColumnA

Literals must be enclosed within single quotes. In the following example, Product_Code
is a case-sensitive column name in an Oracle database, and the other strings are
literals.

@CASE ("Product_Code", 'CAR', 'A car', 'TRUCK', 'A truck')

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

4-27

5
Using Oracle GoldenGate for Live
Reporting

This chapter describes the usage of Oracle GoldenGate for live reporting.
This chapter includes the following sections:

• Overview of the Reporting Configuration

• Creating a Standard Reporting Configuration

• Creating a Reporting Configuration with a Data Pump on the Source System

• Creating a Reporting Configuration with a Data Pump on an Intermediary System

• Creating a Cascading Reporting Configuration

• Overview of the Reporting Configuration

• Creating a Standard Reporting Configuration

• Creating a Reporting Configuration with a Data Pump on the Source System

• Creating a Reporting Configuration with a Data Pump on an Intermediary System

• Creating a Cascading Reporting Configuration

5.1 Overview of the Reporting Configuration
The most basic Oracle GoldenGate configuration is a one-to-one configuration that
replicates in one direction: from a source database to a target database that is used
only for data retrieval purposes such as reporting and analysis. Oracle GoldenGate
supports like-to-like or heterogeneous transfer of data, with capabilities for filtering and
conversion on either system in the configuration (support varies by database platform).

Oracle GoldenGate supports different reporting topologies that enable you to custom-
configure the processes based on your requirements for scalability, availability, and
performance. This section contains things to take into consideration when choosing a
reporting configuration.

• Filtering and Conversion

• Read-only vs. High Availability

• Additional Information

5-1

5.1.1 Filtering and Conversion
Data filtering and data conversion both add overhead, and these activities are
sometimes prone to configuration errors. If Oracle GoldenGate must perform a large
amount of filtering and conversion, consider using one or more data pumps to handle
this work. You can use Replicat for this purpose, but you would be sending more data
across the network that way, as it will be unfiltered. You can split filtering and
conversion between the two systems by dividing it between the data pump and
Replicat.

To filter data, you can use:

• A FILTER or WHERE clause in a TABLE statement (Extract) or in a MAP statement
(Replicat)

• A SQL query or procedure

• User exits

To transform data, you can use:

• The Oracle GoldenGate conversion functions

• A user exit from the Extract or Replicat process that applies rules from an external
transformation solution, then returns the manipulated data to Oracle GoldenGate

• Replicat to deliver data directly to an ETL solution or other transformation engine

For more information about Oracle GoldenGate's filtering and conversion support, see:

• Mapping and Manipulating Data

• Customizing Oracle GoldenGate Processing

5.1.2 Read-only vs. High Availability
The Oracle GoldenGate live reporting configuration supports a read-only target. See
Configuring Oracle GoldenGate for Active-Active High Availability if the target in this
configuration will also be used for transactional activity in support of high availability.

5.1.3 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Chapter 5
Overview of the Reporting Configuration

5-2

5.2 Creating a Standard Reporting Configuration
In the standard Oracle GoldenGate configuration, one Extract group sends captured
data over TCP/IP to a trail on the target system, where it is stored until processed by
one Replicat group.

Refer to Figure 5-1 for a visual representation of the objects you will be creating.

Figure 5-1 Configuration Elements for Creating a Standard Reporting
Configuration

• Source System

• Target System

5.2.1 Source System
Configure the Manager process and Extract group on the source system.

To Configure the Manager Process

On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

To Configure the Extract Group

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail to be
created on the target system.

ADD RMTTRAIL remote_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the Extract group.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
Extract group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Chapter 5
Creating a Standard Reporting Configuration

5-3

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all of the supplementally logged columns if using integrated Replicat
LOGALLSUPCOLS
-- Valid for Oracle. Specify the name or IP address of the target system and
-- optional encryption across TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.2.2 Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1. On the target, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Replicat Group

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions. All Replicat groups
can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail
, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the remote trail.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]

Chapter 5
Creating a Standard Reporting Configuration

5-4

[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF. Since
Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

5.3 Creating a Reporting Configuration with a Data Pump on
the Source System

You can add a data pump on the source system to isolate the primary Extract from
TCP/IP functions, to add storage flexibility, and to offload the overhead of filtering and
conversion processing from the primary Extract.

In this configuration, the primary Extract writes to a local trail on the source system. A
local data pump reads that trail and moves the data to a remote trail on the target
system, which is read by Replicat.

You can, but are not required to, use a data pump to improve the performance and
fault tolerance of Oracle GoldenGate.

Refer to Figure 5-2 for a visual representation of the objects you will be creating.

Figure 5-2 Configuration Elements for Replicating to One Target with a Data
Pump

• Source System

• Target System

5.3.1 Source System
Configure the Manager process and Extract group on the source system.

To Configure the Manager Process

1. On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

5-5

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Primary Extract Group

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The primary
Extract group writes to this trail, and the data pump group reads it.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][,USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to and
-- encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump Extract Group

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump.

ADD EXTRACT pump, EXTTRAILSOURCE local_trail, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the target system.

ADD RMTTRAIL remote_trail, EXTRACT pump

Use the EXTRACT argument to link the remote trail to the data pump group. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

5-6

3. On the source, use the EDIT PARAMS command to create a parameter file for the
data pump. Include the following parameters plus any others that apply to your
database environment.

-- Identify the data pump group:
EXTRACT pump
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL alogrithm
RMTTRAIL remote_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.3.2 Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1. On the target, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Replicat Group

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail
, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the remote trail.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

5-7

REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF. Since
Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

5.4 Creating a Reporting Configuration with a Data Pump on
an Intermediary System

You can use an intermediary system as a transfer point between the source and target
systems. In this configuration, a data pump on the source system sends captured data
to a remote trail on the intermediary system. A data pump on the intermediary system
reads the trail and sends the data to a remote trail on the target. A Replicat on the
target reads the remote trail and applies the data to the target database.

Figure 5-3 Configuration Elements for Replication through an Intermediary
System

When considering this topology, take note of the following:

• This configuration is practical if the source and target systems are in different
networks and there is no direct connection between them. You can transfer the
data through an intermediary system that can connect to both systems.

• This configuration can be used to add storage flexibility to compensate for
deficiences on the source or target.

• This configuration can be used to perform data filtering and conversion if the
character sets on all systems are identical. If character sets differ, the data pump

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-8

cannot perform conversion between character sets, and you must configure
Replicat to perform the conversion and transformation on the target.

• To use the data pump on the intermediary system to perform data conversion and
transformation, assuming character sets are identical, you must create a source
definitions file and a target definitions file with the DEFGEN utility and then transfer
both files to the intermediary system. See Associating Replicated Data with
Metadata for more information about definitions files and conversion.

• This configuration is a form of cascaded replication. However, in this configuration,
data is not applied to a database on the intermediary system. See Creating a
Cascading Reporting Configuration to include a database on the intermediary
system in the Oracle GoldenGate configuration.

• Source System

• Intermediary System

• Target System

5.4.1 Source System
Refer to Figure 10 for a visual representation of the objects you will be creating.

To Configure the Manager Process

1. On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Primary Extract Group on the Source

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The primary
Extract group writes to this trail, and the data pump group reads it.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-9

LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to and
-- encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump on the Source

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail. For a local Extract, you must use EXTTRAIL not RMTTRAIL.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the intermediary system.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
pump_1 data pump. Include the following parameters plus any others that apply to
your database environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the intermediary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on intermediary system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.4.2 Intermediary System
Configure the Manager process and data pump on the intermediary system.

To Configure the Manager Process on the Intermediary System

1. On the intermediary system, configure the Manager process according to the
instructions in Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-10

To Configure the Data Pump on the Intermediary System

1. On the intermediary system, use the ADD EXTRACT command to create a data-pump
group. For documentation purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_1, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the trail
that you created on this system

2. On the intermediary system, use the ADD RMTTRAIL command to specify a remote
trail on the target system.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link the remote trail to the pump_2 data pump. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. On the intermediary system, use the EDIT PARAMS command to create a parameter
file for the pump_2 data pump. Include the following parameters plus any others
that apply to your database environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Note that no database login parameters are required in this case.
-- Specify the target definitions file if SOURCEDEFS was used:
TARGETDEFS full_pathname
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

•

5.4.3 Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process on the Target

1. On the target system, configure the Manager process according to the instructions
in Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group on the Target

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

5-11

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2,
, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the trail on this system.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF. Since
Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

5.5 Creating a Cascading Reporting Configuration
Oracle GoldenGate supports cascading synchronization, where Oracle GoldenGate
propagates data changes from the source database to a second database, and then
on to a third database. In this configuration:

• A primary Extract on the source writes captured data to a local trail, and a data
pump sends the data to a remote trail on the second system in the cascade.

• On the second system, Replicat applies the data to the local database.

• Another primary Extract on that same system captures the data from the local
database and writes it to a local trail.

• A data pump sends the data to a remote trail on the third system in the cascade,
where it is applied to the local database by another Replicat.

Chapter 5
Creating a Cascading Reporting Configuration

5-12

Note:

See Creating a Reporting Configuration with a Data Pump on an
Intermediary System if you do not need to apply the replicated changes
to a database on the secondary system.

Figure 5-4 Cascading Configuration

Use this configuration if:

• One or more of the target systems does not have a direct connection to the
source, but the second system can connect in both directions.

• You want to limit network activity from the source system.

• You are sending data to two or more servers that are very far apart geographically,
such as from Chicago to Los Angeles and then from Los Angeles to servers
throughout China.

When considering this topology, take note of the following:

• This configuration can be used to perform data filtering and conversion if the
character sets on all systems are identical. If character sets differ, a data pump
cannot perform conversion between character sets, and you must configure
Replicat to perform the conversion and transformation on the target.

• To use the data pump on the second system to perform data conversion and
transformation, assuming character sets are identical, you must create a source
definitions file on the first system with the DEFGEN utility and then transfer it to the
second system. Additionally, you must create a source definitions file on the
second system and transfer it to the third system. See Associating Replicated
Data with Metadata for more information about definitions files and conversion.

• On the second system, you must configure the Extract group to capture Replicat
activity and to ignore local business application activity. The Extract parameters
that control this behavior are IGNOREAPPLOPS and GETREPLICATES.

• Source System

• Second System in the Cascade

• Third System in the Cascade

Chapter 5
Creating a Cascading Reporting Configuration

5-13

5.5.1 Source System
Refer to Figure 5-4 for a visual representation of the objects you will be creating.

To Configure the Manager Process on the Source

1. On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Primary Extract Group on the Source

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

Use the EXTRACT argument to link this trail to the ext_1 Extract group.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
ext_1 Extract group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump on the Source

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the second system in the cascade.

Chapter 5
Creating a Cascading Reporting Configuration

5-14

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the
pump_1 data pump. Include the following parameters plus any others that apply to
your database environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information if using NOPASSTHROUGH:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of second system in cascade
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the second system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

5.5.2 Second System in the Cascade
Configure the Manager process, Replicat group, and data pump on the second system
in the cascade.

To Configure the Manager Process on the Second System

1. On the second system, configure the Manager process according to the
instructions in Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group on the Second System

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

2. On the second system, use the ADD REPLICAT command to create a Replicat group.
For documentation purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1,
, BEGIN time

Use the EXTTRAIL option to link the rep_1 group to the remote trail remote_trail_1
that is on the local system.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

Chapter 5
Creating a Cascading Reporting Configuration

5-15

3. On the second system, use the EDIT PARAMS command to create a parameter file
for the Replicat group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF. Since
Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

To Configure an Extract Group on the Second System

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. On the second system, use the ADD EXTTRAIL command to specify a local trail that
will be created on the third system.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

Use the EXTRACT argument to link this local trail to the ext_2 Extract group.

3. On the second system, use the EDIT PARAMS command to create a parameter file
for the ext_2 Extract group. Include the following parameters plus any others that
apply to your database environment. For possible additional required parameters,
see the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:

Chapter 5
Creating a Cascading Reporting Configuration

5-16

ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Ignore local DML, capture Replicat DML:
IGNOREAPPLOPS, GETREPLICATES
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Note:

If replicating DDL operations, IGNOREAPPLOPS, GETREPLICATES functionality is
controlled by the DDLOPTIONS parameter.

To Configure the Data Pump on the Second System

1. On the second system, use the ADD EXTRACT command to create a data pump
group. For documentation purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local
trail.

2. On the second system, use the ADD RMTTRAIL command to specify a remote trail
that will be created on the third system in the cascade.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link the remote trail to the pump_2 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. On the second system, use the EDIT PARAMS command to create a parameter file
for the pump_2 data pump. Include the following parameters plus any others that
apply to your database environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information if using NOPASSTHRU:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of third system in cascade
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the third system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Chapter 5
Creating a Cascading Reporting Configuration

5-17

5.5.3 Third System in the Cascade
Configure the Manager process and Replicat group on the third system in the
cascade.

To Configure the Manager Process

1. On the third system, configure the Manager process according to the instructions
in Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group

1. On the third system, create a Replicat checkpoint table (unless using Oracle
integrated Replicat). See Creating a Checkpoint Table for instructions.

2. On the third system, use the ADD REPLICAT command to create a Replicat group.
For documentation purposes, this group is called rep_2.

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2,
, BEGIN time

Use the EXTTRAIL option to link the rep_2 group to the remote_trail_2 trail.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

3. On the third system, use the EDIT PARAMS command to create a parameter file for
the Replicat group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Chapter 5
Creating a Cascading Reporting Configuration

5-18

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRJRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the IMAGES(*AFTER) option can be used with STRJRNPF. Since
Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

Chapter 5
Creating a Cascading Reporting Configuration

5-19

6
Using Oracle GoldenGate for Real-time
Data Distribution

This chapter describes the usage of Oracle GoldenGate for real-time data distribution.
This chapter includes the following sections:

• Overview of the Data-distribution Configuration

• Considerations for a Data-distribution Configuration

• Creating a Data Distribution Configuration

• Overview of the Data-distribution Configuration

• Considerations for a Data-distribution Configuration

• Creating a Data Distribution Configuration

6.1 Overview of the Data-distribution Configuration
A data distribution configuration is a one-to-many configuration. Oracle GoldenGate
supports synchronization of a source database to any number of target systems.
Oracle GoldenGate supports like-to-like or heterogeneous transfer of data, with
capabilities for filtering and conversion on any system in the configuration (support
varies by database platform).

6.2 Considerations for a Data-distribution Configuration
These sections describe considerations for a data-distribution configuration.

• Fault Tolerance

• Filtering and Conversion

• Read-only vs. High Availability

• Additional Information

6.2.1 Fault Tolerance
For a data distribution configuration, the use of data pumps on the source system
ensures that if network connectivity to any of the targets fails, the captured data still

6-1

can be sent to the other targets. Use a primary Extract group and one data-pump
Extract group for each target.

6.2.2 Filtering and Conversion
You can use any process to perform filtering and conversion. However, using the data
pumps to perform filtering operations removes that processing overhead from the
primary Extract group, and it reduces the amount of data that is sent across the
network. See Mapping and Manipulating Data for filtering and conversion options.

6.2.3 Read-only vs. High Availability
The data distribution configuration supports read-only targets. See Configuring Oracle
GoldenGate for Active-Active High Availability if any target in this configuration will
also be used for transactional activity in support of high availability.

6.2.4 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

6.3 Creating a Data Distribution Configuration
Refer to Figure 6-1 for a visual representation of the objects you will be creating.

Figure 6-1 Oracle GoldenGate Configuration Elements for Data Distribution

• Source System

• Target Systems

Chapter 6
Creating a Data Distribution Configuration

6-2

6.3.1 Source System
Configure the Manager process and primary Extract on the source system.

To Configure the Manager Process

1. On the source, configure the Manager process. See Configuring Manager and
Network Communications for instructions.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Primary Extract

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The primary
Extract group writes to this trail, and the data pump groups read it

3. On the source, use the EDIT PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Use EXTTRAIL to specify the local trail.

To Configure the Data Pump Extract Groups

1. On the source, use the ADD EXTRACT command to create a data pump for each
target system. For documentation purposes, these groups are called pump_1 and
pump_2.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail, BEGIN time
ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail, BEGIN time

Chapter 6
Creating a Data Distribution Configuration

6-3

Use EXTTRAILSOURCE as the data source option, and supply the name of the local
trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on each of the target systems.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1
ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link each remote trail to a different data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for each of
the data pumps. Include the following parameters plus any others that apply to
your database environment.

Parameter file for pump_1:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the first target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on first target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for pump_2:

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the second target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on second target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

6.3.2 Target Systems
Configure the Manager process and Replicat groups on the target systems.

Chapter 6
Creating a Data Distribution Configuration

6-4

To Configure the Manager Process

1. On each target, configure the Manager process. See Configuring Manager and
Network Communications for instructions.

2. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Groups

1. On each target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

2. On each target, use the ADD REPLICAT command to create a Replicat group for the
remote trail on that system. For documentation purposes, these groups are called
rep_1 and rep_2.

Command on target_1:

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

Command on target_2:

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the correct trail.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

3. On each target, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Use the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Parameter file for rep_2:

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:

Chapter 6
Creating a Data Distribution Configuration

6-5

MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

Chapter 6
Creating a Data Distribution Configuration

6-6

7
Configuring Oracle GoldenGate for Real-
time Data Warehousing

This chapter describes how to configure Oracle GoldenGate for real-time data
warehousing.
This chapter includes the following sections:

• Overview of the Data Warehousing Configuration

• Considerations for a Data Warehousing Configuration

• Creating a Data Warehousing Configuration

• Overview of the Data Warehousing Configuration

• Considerations for a Data Warehousing Configuration

• Creating a Data Warehousing Configuration

7.1 Overview of the Data Warehousing Configuration
A data warehousing configuration is a many-to-one configuration. Multiple source
databases send data to one target warehouse database. Oracle GoldenGate supports
like-to-like or heterogeneous transfer of data, with capabilities for filtering and
conversion on any system in the configuration (support varies by database platform).

7.2 Considerations for a Data Warehousing Configuration
This section describes considerations for a data warehousing configuration.

• Isolation of Data Records

• Data Storage

• Filtering and Conversion

• Additional Information

7.2.1 Isolation of Data Records
This configuration assumes that each source database contributes different records to
the target system. If the same record exists in the same table on two or more source
systems and can be changed on any of those systems, conflict resolution routines are

7-1

needed to resolve conflicts when changes to that record are made on both sources at
the same time and replicated to the target table. See Configuring Oracle GoldenGate
for Active-Active High Availability for more information about resolving conflicts.

7.2.2 Data Storage
You can divide the data storage between the source systems and the target system to
reduce the need for massive amounts of disk space on the target system. This is
accomplished by using a data pump on each source, rather than sending data directly
from each Extract across the network to the target.

• A primary Extract writes to a local trail on each source.

• A data-pump Extract on each source reads the local trail and sends it across
TCP/IP to a dedicated Replicat group.

7.2.3 Filtering and Conversion
If not all of the data from a source system will be sent to the data warehouse, you can
use the data pump to perform the filtering. This removes that processing overhead
from the primary Extract group, and it reduces the amount of data that is sent across
the network. See Mapping and Manipulating Data for filtering and conversion options.

7.2.4 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

7.3 Creating a Data Warehousing Configuration
Refer to Figure 7-1 for a visual representation of the objects you will be creating.

Figure 7-1 Configuration for Data Warehousing

Chapter 7
Creating a Data Warehousing Configuration

7-2

• Source Systems

• Target System

7.3.1 Source Systems
Configure the Manager process and primary Extract groups for the source systems.

To Configure the Manager Process

1. On each source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

2. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail on the local system.

To Configure the primary Extract Groups

1. On each source, use the ADD EXTRACT command to create a primary Extract group.
For documentation purposes, these groups are called ext_1 and ext_2.

Command on source_1:

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

Command on source_2:

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. On each source, use the ADD EXTTRAIL command to create a local trail.

Command on source_1:

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

Command on source_2:

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

Use the EXTRACT argument to link each Extract group to the local trail on the same
system. The primary Extract writes to this trail, and the data-pump reads it.

3. On each source, use the EDIT PARAMS command to create a parameter file for the
primary Extract. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for ext_1:

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1

Chapter 7
Creating a Data Warehousing Configuration

7-3

-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for ext_2:

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat or CDR
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pumps

1. On each source, use the ADD EXTRACT command to create a data pump Extract
group. For documentation purposes, these pumps are called pump_1 and
pump_2.

Command on source_1:

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

Command on source_2:

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the trail on
the local system

2. On each source, use the ADD RMTTRAIL command to create a remote trail on the
target.

Command on source_1:

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Command on source_2:

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link each remote trail to a different data pump. The
data pump writes to this trail over TCP/IP, and a Replicat reads from it.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. On each source, use the EDIT PARAMS command to create a parameter file for the
data pump group. Include the following parameters plus any others that apply to
your database environment.

Parameter file for pump_1:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]

Chapter 7
Creating a Data Warehousing Configuration

7-4

-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for pump_2:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

7.3.2 Target System
Configure the Manager process and primary Replicat groups for the target system.

To Configure the Manager Process

1. Configure the Manager process. See Configuring Manager and Network
Communications for instructions.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Groups

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each
remote trail that you created. For documentation purposes, these groups are
called rep_1 and rep_2.

Command to add rep_1:

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

Command to add rep_2:

Chapter 7
Creating a Data Warehousing Configuration

7-5

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the trail.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for each
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

Chapter 7
Creating a Data Warehousing Configuration

7-6

8
Configuring Oracle GoldenGate to Maintain
a Live Standby Database

This chapter describes how to configure Oracle GoldenGate to maintain a live standby
database.
This chapter includes the following sections:

• Overview of a Live Standby Configuration

• Considerations for a Live Standby Configuration

• Creating a Live Standby Configuration

• Configuration from Standby to Active Source

• Moving User Activity in a Planned Switchover

• Moving User Activity in an Unplanned Failover

• Overview of a Live Standby Configuration

• Considerations for a Live Standby Configuration

• Creating a Live Standby Configuration

• Configuration from Standby to Active Source

• Moving User Activity in a Planned Switchover

• Moving User Activity in an Unplanned Failover

8.1 Overview of a Live Standby Configuration
Oracle GoldenGate supports an active-passive bi-directional configuration, where
Oracle GoldenGate replicates data from an active primary database to a full replica
database on a live standby system that is ready for failover during planned and
unplanned outages.

In this configuration, there is an inactive Oracle GoldenGate Extract group and an
inactive data pump on the live standby system. Both of those groups remain stopped
until just before user applications are switched to the live standby system in a
switchover or failover. When user activity moves to the standby, those groups begin
capturing transactions to a local trail, where the data is stored on disk until the primary
database can be used again.

8-1

In the case of a failure of the primary system, the Oracle GoldenGate Manager and
Replicat processes work in conjunction with a database instantiation taken from the
standby to restore parity between the two systems after the primary system is
recovered. At the appropriate time, users are moved back to the primary system, and
Oracle GoldenGate is configured in ready mode again, in preparation for future
failovers.

8.2 Considerations for a Live Standby Configuration
These sections describe considerations for a live standby configuration.

• Trusted Source

• Duplicate Standby

• DML on the Standby System

• Oracle GoldenGate Processes

• Backup Files

• Failover Preparedness

• Sequential Values that are Generated by the Database

• Additional Information

8.2.1 Trusted Source
The primary database is the trusted source. This is the database that is the active
source during normal operating mode, and it is the one from which the other database
is derived in the initial synchronization phase and in any subsequent
resynchronizations. Maintain frequent backups of the trusted source data.

8.2.2 Duplicate Standby
In most implementations of a live standby, the source and target databases are
identical in content and structure. Data mapping, conversion, and filtering typically are
not appropriate practices in this kind of configuration, but Oracle GoldenGate does
support such functionality if required by your business model. To support these
functions, use the options of the TABLE and MAP parameters.

8.2.3 DML on the Standby System
If your applications permit, you can use the live standby system for reporting and
queries, but not DML. If there will be active transactional applications on the live
standby system that affect objects in the Oracle GoldenGate configuration, you should
configure this as an active-active configuration. See Configuring Oracle GoldenGate
for Active-Active High Availability for more information.

8.2.4 Oracle GoldenGate Processes
During normal operating mode, leave the primary Extract and the data pump on the
live standby system stopped, and leave the Replicat on the active source stopped.
This prevents any DML that occurs accidentally on the standby system from being

Chapter 8
Considerations for a Live Standby Configuration

8-2

propagated to the active source. Only the Extract, data pump, and Replicat that move
data from the active source to the standby system can be active.

8.2.5 Backup Files
Make regular backups of the Oracle GoldenGate working directories on the primary
and standby systems. This backup must include all of the files that are installed at the
root level of the Oracle GoldenGate installation directory and all of the sub-directories
within that directory. Having a backup of the Oracle GoldenGate environment means
that you will not have to recreate your process groups and parameter files.

8.2.6 Failover Preparedness
Make certain that the primary and live standby systems are ready for immediate user
access in the event of a planned switchover or an unplanned source failure. The
following components of a high-availability plan should be made easily available for
use on each system:

• Scripts that grant insert, update, and delete privileges.

• Scripts that enable triggers and cascaded delete constraints on the live standby
system. (These may have been disabled during the setup procedures that were
outlined in the Oracle GoldenGate installation and configuration document for your
database type.)

• Scripts that switch over the application server, start applications, and copy
essential files that are not part of the replication environment.

• A failover procedure for moving users to the live standby if the source system fails.

8.2.7 Sequential Values that are Generated by the Database
If database-generated values, such as Oracle sequences, are used as part of a key,
the range of values must be different on each system, with no chance of overlap. If the
application permits, you can add a location identifier to the value to enforce
uniqueness.

For Oracle databases, Oracle GoldenGate can be configured to replicate sequences in
a manner that ensures uniqueness on each database. To replicate sequences, use the
SEQUENCE and MAP parameters. For more information, see Reference for Oracle
GoldenGate for Windows and UNIX.

8.2.8 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

Chapter 8
Considerations for a Live Standby Configuration

8-3

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

8.3 Creating a Live Standby Configuration
Refer to Figure 8-1 for a visual representation of the objects you will be creating.

Figure 8-1 Oracle GoldenGate configuration elements for live standby

• Prerequisites on Both Systems

• Configuration from Active Source to Standby

8.3.1 Prerequisites on Both Systems
Perform the following prerequisites on both systems.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). For
instructions, see Creating a Checkpoint Table.

2. Configure the Manager process according to the instructions in Configuring
Manager and Network Communications.

8.3.2 Configuration from Active Source to Standby
These steps configure Oracle GoldenGate to capture data from the primary database
and replicate it to the standby database.

To Configure the Primary Extract Group

Perform these steps on the active source.

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

For EXTRACT, specify the ext_1 group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the ext_1 group.
Include the following parameters plus any others that apply to your database

Chapter 8
Creating a Live Standby Configuration

8-4

environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Data Pump

Perform these steps on the active source.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

For EXTTRAILSOURCE, specify local_trail_1 as the data source.

2. Use the ADD RMTTRAIL command to specify a remote trail that will be created on the
standby system.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

For EXTRACT, specify the pump_1 data pump to write to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_1 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the standby system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the standby system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

Chapter 8
Creating a Live Standby Configuration

8-5

To Configure the Replicat Group

Perform these steps on the live standby system.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

2. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

3. Use the EDIT PARAMS command to create a parameter file for the rep_1 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

8.4 Configuration from Standby to Active Source
These steps configure Oracle GoldenGate in passive mode. In this mode, the Oracle
GoldenGate processes are ready, but not started, to capture data from the secondary
database and replicate it to the primary database after a switchover of transaction
activity to the secondary system.

Note:

This is a reverse image of the configuration that you just created.

To Configure the Primary Extract Group

Perform these steps on the live standby system.

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

Chapter 8
Configuration from Standby to Active Source

8-6

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_2.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

For EXTRACT, specify the ext_2 group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the ext_2 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail this Extract writes to and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Data Pump

Perform these steps on the live standby system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

For EXTTRAILSOURCE, specify local_trail_2 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail remote_trail_2 that will be
created on the active source system.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

For EXTRACT, specify the pump_2 data pump to write to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL

Chapter 8
Configuration from Standby to Active Source

8-7

-- Specify the name or IP address of the active source system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on active source system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Replicat Group

Perform these steps on the active source.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_2.

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

For EXTTRAIL, specify remote_trail_2 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

2. Use the EDIT PARAMS command to create a parameter file for the rep_2 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_2
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_1][, USERIDALIAS alias]
-- Handle collisions between failback data copy and replication:
HANDLECOLLISIONS
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

8.5 Moving User Activity in a Planned Switchover
This procedure moves user application activity from a primary database to a live
standby system in a planned, graceful manner so that system maintenance and other
procedures that do not affect the databases can be performed on the primary system.

• Moving User Activity to the Live Standby

• Moving User Activity Back to the Primary System

Chapter 8
Moving User Activity in a Planned Switchover

8-8

8.5.1 Moving User Activity to the Live Standby
To move user activity to the live standby:

1. (Optional) If you need to perform system maintenance on the secondary system,
you can do so now or at the specified time later in these procedures, after moving
users from the secondary system back to the primary system. In either case, be
aware of the following risks if you must shut down the secondary system for any
length of time:

• The local trail on the primary system could run out of disk space as data
accumulates while the standby is offline. This will cause the primary Extract to
abend.

• If the primary system fails while the standby is offline, the data changes will
not be available to be applied to the live standby when it is functional again,
thereby breaking the synchronized state and requiring a full re-instantiation of
the live standby.

2. On the primary system, stop the user applications, but leave the primary Extract
and the data pump on that system running so that they capture any backlogged
transaction data.

3. On the primary system, issue the following command for the primary Extract until
it returns "At EOF, no more records to process." This indicates that all transactions
are now captured.

LAG EXTRACT ext_1

Note:

Since capture continues to read REDO, the non-production workload
continues to work. In this case, there is possibility that At EOF is never
returned even though the production workload has already
stopped8.5.1..

4. On the primary system, stop the primary Extract process

STOP EXTRACT ext_1

5. On the primary system, issue the following command for the data pump until it
returns "At EOF, no more records to process." This indicates that the pump sent
all of the captured data to the live standby.

LAG EXTRACT pump_1

6. On the primary system, stop the data pump.

STOP EXTRACT pump_1

7. On the live standby system, issue the STATUS REPLICAT command until it returns
"At EOF (end of file)." This confirms that Replicat applied all of the data from the
trail to the database.

STATUS REPLICAT rep_1

8. On the live standby system, stop Replicat.

STOP REPLICAT rep_1

Chapter 8
Moving User Activity in a Planned Switchover

8-9

9. On the live standby system, do the following:

• Run the script that grants insert, update, and delete permissions to the users
of the business applications.

• Run the script that enables triggers and cascade delete constraints.

• Run the scripts that switch over the application server, start applications, and
copy essential files that are not part of the replication environment.

10. On the live standby system, alter the primary Extract to begin capturing data
based on the current timestamp. Otherwise, Extract will spend unnecessary time
looking for operations that date back to the time that the group was created with
the ADD EXTRACT command.

ALTER EXTRACT ext_2, BEGIN NOW

11. On the live standby system, start the primary Extract so that it is ready to capture
transactional changes.

START EXTRACT ext_2

Note:

Do not start the data pump on the live standby system, and do not start
the Replicat on the primary system. Data must be stored in the local trail
on the live standby until the primary database is ready for user activity
again.

12. Switch user activity to the live standby system.

13. On the primary system, perform the system maintenance.

8.5.2 Moving User Activity Back to the Primary System
To move user activity back to the primary system:

1. On the live standby system, stop the user applications, but leave the primary
Extract running so that it captures any backlogged transaction data.

2. On the primary system, start Replicat in preparation to receive changes from the
live standby system.

START REPLICAT rep_2

3. On the live standby system, start the data pump to begin moving the data that is
stored in the local trail across TCP/IP to the primary system.

START EXTRACT pump_2

4. On the live standby system, issue the following command for the primary Extract
until it returns "At EOF, no more records to process." This indicates that all
transactions are now captured.

LAG EXTRACT ext_2

5. On the live standby system, stop the primary Extract.

STOP EXTRACT ext_2

Chapter 8
Moving User Activity in a Planned Switchover

8-10

6. On the live standby system, issue the following command for the data pump until
it returns "At EOF, no more records to process." This indicates that the pump sent
all of the captured data to the primary system.

LAG EXTRACT pump_2

7. On the live standby system, stop the data pump.

STOP EXTRACT pump_2

8. On the primary system, issue the STATUS REPLICAT command until it returns "At
EOF (end of file)." This confirms that Replicat applied all of the data from the trail
to the database.

STATUS REPLICAT rep_2

9. On the primary system, stop Replicat.

STOP REPLICAT rep_2

10. On the primary system, do the following:

• Run the script that grants insert, update, and delete permissions to the users
of the business applications.

• Run the script that enables triggers and cascade delete constraints.

• Run the scripts that switch over the application server, start applications, and
copy essential files that are not part of the replication environment.

11. On the primary system, alter the primary Extract to begin capturing data based on
the current timestamp. Otherwise, Extract will spend unnecessary time looking for
operations that were already captured and replicated while users were working on
the standby system.

ALTER EXTRACT ext_1, BEGIN NOW

12. On the primary system, start the primary Extract so that it is ready to capture
transactional changes.

START EXTRACT ext_1

13. Switch user activity to the primary system.

14. (Optional) If system maintenance must be done on the live standby system, you
can do it now, before starting the data pump on the primary system. Note that
captured data will be accumulating on the primary system while the standby is
offline.

15. On the primary system, start the data pump.

START EXTRACT pump_1

16. On the live standby system, start Replicat.

START REPLICAT rep_1

8.6 Moving User Activity in an Unplanned Failover
These sections describe how to move user activity in an unplanned failover.

• Moving User Activity to the Live Standby

• Moving User Activity Back to the Primary System

Chapter 8
Moving User Activity in an Unplanned Failover

8-11

8.6.1 Moving User Activity to the Live Standby
This procedure does the following:

• Prepares the live standby for user activity.

• Ensures that all transactions from the primary system are applied to the live
standby.

• Activates Oracle GoldenGate to capture transactional changes on the live standby.

• Moves users to the live standby system.

Perform these steps on the live standby system

To move users to the live standby

1. Issue the STATUS REPLICAT command until it returns "At EOF (end of file)" to
confirm that Replicat applied all of the data from the trail to the database.

STATUS REPLICAT rep_1

2. Stop the Replicat process.

STOP REPLICAT rep_1

3. Run the script that grants insert, update, and delete permissions to the users of
the business applications.

4. Run the script that enables triggers and cascade delete constraints.

5. Run the scripts that fail over the application server, start applications, and copy
essential files that are not part of the replication environment.

6. Start the primary Extract process on the live standby.

START EXTRACT ext_2

7. Move the users to the standby system and let them start working.

Note:

Do not start the data pump group on the standby. The user transactions
must accumulate there until just before user activity is moved back to the
primary system.

8.6.2 Moving User Activity Back to the Primary System
This procedure does the following:

• Recovers the Oracle GoldenGate environment.

• Makes a copy of the live standby data to the restored primary system.

• Propagates user transactions that occurred while the copy was being made.

• Reconciles the results of the copy with the propagated changes.

• Moves users from the standby system to the restored primary system.

• Prepares replication to maintain the live standby again.

Chapter 8
Moving User Activity in an Unplanned Failover

8-12

Perform these steps after the recovery of the primary system is complete.

To Recover the Source Oracle GoldenGate Environment

1. On the primary system, recover the Oracle GoldenGate directory from your
backups.

2. On the primary system, run GGSCI.

3. On the primary system, delete the primary Extract group.

DELETE EXTRACT ext_1

4. On the primary system, delete the local trail.

DELETE EXTTRAIL local_trail_1

5. On the primary system, add the primary Extract group again, using the same
name so that it matches the parameter file that you restored from backup. For
documentation purposes, this group is called ext_1. This step initializes the Extract
checkpoint from its state before the failure to a clean state.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[, THREADS n]

• For TRANLOG and INTEGRATED TRANLOG, see Reference for Oracle GoldenGate for
Windows and UNIX. INTEGRATED TRANLOG enables integrated capture for an
Oracle database.

6. On the primary system, add the local trail again, using the same name as before.
For documentation purposes, this trail is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

• For EXTRACT, specify the ext_1 group to write to this trail.

7. On the primary system, start the Manager process.

START MANAGER

To Copy the Database from Standby to Primary System

1. On the primary system, run scripts to disable triggers and cascade delete
constraints.

2. On the standby system, start making a hot copy of the database.

3. On the standby system, record the time at which the copy finishes.

4. On the standby system, stop user access to the applications. Allow all open
transactions to be completed.

To Propagate Data Changes Made During the Copy

1. On the primary system, start Replicat.

START REPLICAT rep_2

2. On the live standby system, start the data pump. This begins transmission of the
accumulated user transactions from the standby to the trail on the primary system.

START EXTRACT pump_2

3. On the primary system, issue the INFO REPLICAT command until you see that it
posted all of the data changes that users generated on the standby system during

Chapter 8
Moving User Activity in an Unplanned Failover

8-13

the initial load. Refer to the time that you recorded previously. For example, if the
copy stopped at 12:05, make sure that change replication has posted data up to
that point.

INFO REPLICAT rep_2

4. On the primary system, issue the following command to turn off the
HANDLECOLLISIONS parameter and disable the initial-load error handling.

SEND REPLICAT rep_2, NOHANDLECOLLISIONS

5. On the primary system, issue the STATUS REPLICAT command until it returns "At
EOF (end of file)" to confirm that Replicat applied all of the data from the trail to
the database.

STATUS REPLICAT rep_2

6. On the live standby system, stop the data pump. This stops transmission of any
user transactions from the standby to the trail on the primary system.

STOP EXTRACT pump_2

7. On the primary system, stop the Replicat process.

STOP REPLICAT rep_2

At this point in time, the primary and standby databases should be in a state of
synchronization again.

(Optional) To Verify Synchronization

1. Use a compare tool, such as Oracle GoldenGate Veridata, to compare the source
and standby databases for parity.

2. Use a repair tool, such as Oracle GoldenGate Veridata, to repair any out-of-sync
conditions.

To Switch Users to the Primary System

1. On the primary system, run the script that grants insert, update, and delete
permissions to the users of the business applications.

2. On the primary system, run the script that enables triggers and cascade delete
constraints.

3. On the primary system, run the scripts that fail over the application server, start
applications, and copy essential files that are not part of the replication
environment.

4. On the primary system, start the primary Extract process.

START EXTRACT ext_1

5. On the primary system, allow users to access the applications.

Chapter 8
Moving User Activity in an Unplanned Failover

8-14

9
Configuring Oracle GoldenGate for Active-
Active High Availability

This chapter describes how to configure Oracle GoldenGate for active-active high
availability.
This chapter includes the following sections:

• Overview of an Active-active Configuration

• Considerations for an Active-Active Configuration

• Preventing Data Looping

• Managing Conflicts

• Additional Information

• Creating an Active-Active Configuration

• Overview of an Active-active Configuration

• Considerations for an Active-Active Configuration

• Preventing Data Looping

• Managing Conflicts

• Additional Information

• Creating an Active-Active Configuration

9.1 Overview of an Active-active Configuration
Oracle GoldenGate supports an active-active bi-directional configuration, where there
are two systems with identical sets of data that can be changed by application users
on either system. Oracle GoldenGate replicates transactional data changes from each
database to the other to keep both sets of data current.

In a bi-directional configuration, there is a complete set of active Oracle GoldenGate
processes on each system. Data captured by an Extract process on one system is
propagated to the other system, where it is applied by a local Replicat process.

This configuration supports load sharing. It can be used for disaster tolerance if the
business applications are identical on any two peers. Bidirectional synchronization is
supported for all database types that are supported by Oracle GoldenGate.

Oracle GoldenGate supports active-active configurations for:

9-1

• DB2 on z/OS, LUW, and IBM i

• MySQL

• Oracle

• SQL/MX

• SQL Server

• Sybase

• Teradata

Oracle GoldenGate supports DDL replication in an Oracle active-active configuration.
DDL support is available for Oracle and Teradata databases.

9.2 Considerations for an Active-Active Configuration
The following considerations apply in an active-active configuration. In addition, review
the Oracle GoldenGate installation and configuration document for your type of
database to see if there are any other limitations or requirements to support a bi-
directional configuration.

• TRUNCATES

• Application Design

• Keys

• Triggers and Cascaded Deletes

• Database-Generated Values

• Database Configuration

9.2.1 TRUNCATES
Bi-directional replication of TRUNCATES is not supported, but you can configure these
operations to be replicated in one direction, while data is replicated in both directions.
To replicate TRUNCATES (if supported by Oracle GoldenGate for the database) in an
active-active configuration, the TRUNCATES must originate only from one database, and
only from the same database each time.

Configure the environment as follows:

• Configure all database roles so that they cannot execute TRUNCATE from any
database other than the one that is designated for this purpose.

• On the system where TRUNCATE will be permitted, configure the Extract and Replicat
parameter files to contain the GETTRUNCATES parameter.

• On the other system, configure the Extract and Replicat parameter files to contain
the IGNORETRUNCATES parameter. No TRUNCATES should be performed on this system
by applications that are part of the Oracle GoldenGate configuration.

9.2.2 Application Design
When using Active-Active replication, the time zones must be the same on both
systems so that timestamp-based conflict resolution and detection can operate.

Chapter 9
Considerations for an Active-Active Configuration

9-2

Active-active replication is not recommended for use with commercially available
packaged business applications, unless the application is designed to support it.
Among the obstacles that these applications present are:

• Packaged applications might contain objects and data types that are not supported
by Oracle GoldenGate.

• They might perform automatic DML operations that you cannot control, but which
will be replicated by Oracle GoldenGate and cause conflicts when applied by
Replicat.

• You probably cannot control the data structures to make modifications that are
required for active-active replication.

9.2.3 Keys
For accurate detection of conflicts, all records must have a unique, not-null identifier. If
possible, create a primary key. If that is not possible, use a unique key or create a
substitute key with a KEYCOLS option of the MAP and TABLE parameters. In the absence of
a unique identifier, Oracle GoldenGate uses all of the columns that are valid in a WHERE
clause, but this will degrade performance if the table contains numerous columns.

To maintain data integrity and prevent errors, the following must be true of the key that
you use for any given table:

• contain the same columns in all of the databases where that table resides.

• contain the same values in each set of corresponding rows across the databases.

9.2.4 Triggers and Cascaded Deletes
Triggers and ON DELETE CASCADE constraints generate DML operations that can be
replicated by Oracle GoldenGate. To prevent the local DML from conflicting with the
replicated DML from these operations, do the following:

• Modify triggers to ignore DML operations that are applied by Replicat. If the target
is an Oracle database, Replicat handles triggers without any additional
configuration when in integrated mode. Parameter options are available for a
nonintegrated Replicat for Oracle. See Installing and Configuring Oracle
GoldenGate for Oracle Database.

• Disable ON DELETE CASCADE constraints and use a trigger on the parent table to
perform the required delete(s) to the child tables. Create it as a BEFORE trigger so
that the child tables are deleted before the delete operation is performed on the
parent table. This reverses the logical order of a cascaded delete but is necessary
so that the operations are replicated in the correct order to prevent "table not
found" errors on the target.

Note:

For MySQL targets, cascade delete queries result in the deletion of the
child of the parent operation.

Chapter 9
Considerations for an Active-Active Configuration

9-3

Note:

For Oracle Database targets, if Replicat is in integrated mode,
constraints are handled automatically without special configuration.

Note:

See other IDENTITY limitations for SQL Server in Installing and
Configuring Oracle GoldenGate for SQL Server.

9.2.5 Database-Generated Values
Do not replicate database-generated sequential values, such as Oracle sequences, in
a bi-directional configuration. The range of values must be different on each system,
with no chance of overlap. For example, in a two-database environment, you can have
one server generate even values, and the other odd. For an n-server environment,
start each key at a different value and increment the values by the number of servers
in the environment. This method may not be available to all types of applications or
databases. If the application permits, you can add a location identifier to the value to
enforce uniqueness.

9.2.6 Database Configuration
One of the databases must be designated as the trusted source. This is the primary
database and its host system from which the other database is derived in the initial
synchronization phase and in any subsequent resynchronizations that become
necessary. Maintain frequent backups of the trusted source data.

9.3 Preventing Data Looping
In a bidirectional configuration, SQL changes that are replicated from one system to
another must be prevented from being replicated back to the first system. Otherwise, it
moves back and forth in an endless loop, as in this example:

1. A user application updates a row on system A.

2. Extract extracts the row on system A and sends it to system B.

3. Replicat updates the row on system B.

4. Extract extracts the row on system B and sends it back to system A.

5. The row is applied on system A (for the second time).

6. This loop continues endlessly.

To prevent data loopback, you may need to provide instructions that:

• prevent the capture of SQL operations that are generated by Replicat, but enable
the capture of SQL operations that are generated by business applications if they
contain objects that are specified in the Extract parameter file.

• identify local Replicat transactions, in order for the Extract process to ignore them.

Chapter 9
Preventing Data Looping

9-4

• Preventing the Capture of Replicat Operations

• Identifying Replicat Transactions

• Replicating DDL in a Bi-directional Configuration

9.3.1 Preventing the Capture of Replicat Operations
Depending on which database you are using, you may or may not need to provide
explicit instructions to prevent the capture of Replicat operations.

• Preventing the Capture of Replicat Transactions (Oracle)

• Preventing Capture of Replicat Transactions (Teradata)

• Preventing Capture of Replicat Transactions (Other Databases)

9.3.1.1 Preventing the Capture of Replicat Transactions (Oracle)
To prevent the capture of SQL that is applied by Replicat to an Oracle database, there
are different options depending on the Extract capture mode:

• When Extract is in classic or integrated capture mode, use the TRANLOGOPTIONS
parameter with the EXCLUDETAG tag option. This parameter directs the Extract
process to ignore transactions that are tagged with the specified redo tag. See
Identifying Replicat Transactions to set the tag value.

• When Extract is in classic capture mode, use the Extract TRANLOGOPTIONS parameter
with the EXCLUDEUSER or EXCLUDEUSERID option to exclude the user name or ID that is
used by Replicat to apply the DDL and DML transactions. Multiple EXCLUDEUSER
statements can be used. The specified user is subject to the rules of the
GETREPLICATES or IGNOREREPLICATES parameter. See Preventing Capture of Replicat
Transactions (Other Databases) for more information.

9.3.1.2 Preventing Capture of Replicat Transactions (Teradata)
To prevent the capture of SQL that is applied by Replicat to a Teradata database, set
the Replicat session to override Teradata replication. Use the following SQLEXEC
statements at the root level of the Replicat parameter file:

SQLEXEC 'SET SESSION OVERRIDE REPLICATION ON;'
SQLEXEC 'COMMIT;'

These SQLEXEC statements execute a procedure that sets the Replicat session
automatically at startup.

9.3.1.3 Preventing Capture of Replicat Transactions (Other Databases)
To prevent the capture of SQL that is applied by Replicat to other database types
(including Oracle, if Extract operates in classic capture mode), use the following
parameters:

• GETAPPLOPS | IGNOREAPPLOPS: Controls whether or not data operations (DML)
produced by business applications except Replicat are included in the content that
Extract writes to a specific trail or file.

Chapter 9
Preventing Data Looping

9-5

• GETREPLICATES | IGNOREREPLICATES: Controls whether or not DML operations
produced by Replicat are included in the content that Extract writes to a specific
trail or file.

9.3.2 Identifying Replicat Transactions
To configure Extract to identify Replicat transactions, follow the instructions for the
database from which Extract will capture data.

• DB2 z/OS, DB2 LUW, DB2 for i, and Informix

• MySQL and NonStop SQL/MX

• Oracle

• SQL Server

• Sybase

• Teradata

9.3.2.1 DB2 z/OS, DB2 LUW, DB2 for i, and Informix
Identify the Replicat user name by using the following parameter statement in the
Extract parameter file.

TRANLOGOPTIONS EXCLUDEUSER user

This parameter statement marks all DDL and DML transactions that are generated by
this user as Replicat transactions. The user name is included in the transaction record
that is read by Extract.

Note:

With Informix, you must use the EXCLUDEUSERID Database_uid parameter since
the EXCLUDEUSER parameter is not supported.

With Informix, Oracle GoldenGate Replicat processes always perform a
DELETE operation on the target database when the source operation (in the
trail) is TRUNCATE.

9.3.2.2 MySQL and NonStop SQL/MX
Identify the name of the Replicat checkpoint table by using the following parameter
statement in the Extract parameter file.

TRANLOGOPTIONS FILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its
transactions as part of its checkpoint procedure. (This is the table that is created with
the ADD CHECKPOINTTABLE command.) Because every Replicat transaction includes a
write to this table, it can be used to identify Replicat transactions in a bi-directional
configuration. FILTERTABLE identifies the name of the checkpoint table, so that Extract
ignores transactions that contain any operations on it.

Chapter 9
Preventing Data Looping

9-6

Note:

PURGEDATA is not supported for NonStop SQL/MX in a bidirectional
configuration. Because PURGEDATA/TRUNCATE operations are DDL, they are
implicit transactions, so Oracle GoldenGate cannot update the checkpoint
table within that transaction.

9.3.2.3 Oracle
There are multiple ways to identify Replicat transaction in an Oracle environment.
When Replicat is in classic or integrated mode, you use the following parameters:

• Use DBOPTIONS with the SETTAG option in the Replicat parameter file. Replicat tags
the transactions being applied with the specified value, which identifies those
transactions in the redo stream. The default SETTAG value is 00. Valid values are a
single TAG value consisting of hexadecimal digits. For more information about
tags, see Reference for Oracle GoldenGate for Windows and UNIX.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in the Extract
parameter file. The logmining server associated with that Extract excludes redo
that is tagged with the SETTAG value.

The following shows how SETTAG can be set in the Replicat parameter file:

DBOPTIONS SETTAG 0935

The following shows how EXCLUDETAG can be set in the Extract parameter file:

TRANLOGOPTIONS EXCLUDETAG 0935

If you are excluding multiple tags, each must have a separate TRANLOGOPTIONS
EXCLUDETAG statement specified.

You can also use the transaction name or userid of the Replicat user to identify
Replicat transactions. You can choose which of these to ignore when you configure
Extract. See Preventing the Capture of Replicat Transactions (Oracle).

For more information, see Reference for Oracle GoldenGate for Windows and UNIX.

9.3.2.4 SQL Server
Identify the Replicat transaction name by using the following parameter statement in
the Extract parameter file.

TRANLOGOPTIONS EXCLUDETRANS transaction_name

This parameter statement is only required if the Replicat transaction name is set to
something other than the default of ggs_repl.

9.3.2.5 Sybase
Do any of the following:

• Identify a Replicat transaction name by using the following parameter statement in
the Extract parameter file.

Chapter 9
Preventing Data Looping

9-7

TRANLOGOPTIONS EXCLUDETRANS transaction name

• Identify the Replicat user name by using the following parameter statement in the
Extract parameter file.

TRANLOGOPTIONS EXCLUDEUSER user name

EXCLUDEUSER marks all transactions generated by this user as Replicat transactions.
The user name is included in the transaction record that is read by Extract.

• Do nothing and allow Replicat to use the default transaction name of ggs_repl.

9.3.2.6 Teradata
You do not need to identify Replicat transactions that are applied to a Teradata
database.

9.3.3 Replicating DDL in a Bi-directional Configuration
Additional consideration must be taken when replicating DDL, currently supported for
Oracle and Teradata. For more information, see, Installing and Configuring Oracle
GoldenGate for Oracle Database

9.4 Managing Conflicts
Uniform conflict-resolution procedures must be in place on all systems in an active-
active configuration. Conflicts should be identified immediately and handled with as
much automation as possible; however, different business applications will present
their own unique set of requirements in this area.

Because Oracle GoldenGate is an asynchronous solution, conflicts can occur when
modifications are made to identical sets of data on separate systems at (or almost at)
the same time. Conflicts occur when the timing of simultaneous changes results in one
of these out-of-sync conditions:

• A uniqueness conflict occurs when Replicat applies an insert or update
operation that violates a uniqueness integrity constraint, such as a PRIMARY KEY or
UNIQUE constraint. An example of this conflict type is when two transactions
originate from two different databases, and each one inserts a row into a table with
the same primary key value.

• An update conflict occurs when Replicat applies an update that conflicts with
another update to the same row. Update conflicts happen when two transactions
that originate from different databases update the same row at nearly the same
time. Replicat detects an update conflict when there is a difference between the
old values (the before values) that are stored in the trail record and the current
values of the same row in the target database.

• A delete conflict occurs when two transactions originate at different databases,
and one deletes a row while the other updates or deletes the same row. In this
case, the row does not exist to be either updated or deleted. Replicat cannot find
the row because the primary key does not exist.

For example, UserA on DatabaseA updates a row, and UserB on DatabaseB updates
the same row. If UserB's transaction occurs before UserA's transaction is
synchronized to DatabaseB, there will be a conflict on the replicated transaction.

Chapter 9
Managing Conflicts

9-8

A more complicated example involves three databases and illustrates a more complex
ordering conflict. Assume three databases A, B, and C. Suppose a user inserts a row
at database A, which is then replicated to database B. Another user then modifies the
row at database B, and the row modification is replicated to database C. If the row
modification from B arrives at database C before the row insert from database A, C will
detect a conflict.

Where possible, try to minimize or eliminate any chance of conflict. Some ways to do
so are:

• Configure the applications to restrict which columns can be modified in each
database. For example, you could limit access based on geographical area, such
as by allowing different sales regions to modify only the records of their own
customers. As another example, you could allow a customer service application on
one database to modify only the NAME and ADDRESS columns of a customer table,
while allowing a financial application on another database to modify only the
BALANCE column. In each of those cases, there cannot be a conflict caused by
concurrent updates to the same record.

• Keep synchronization latency low. If UserA on DatabaseA and UserB on
DatabaseB both update the same rows at about the same time, and UserA's
transaction gets replicated to the target row before UserB's transaction is
completed, conflict is avoided. See Tuning the Performance of Oracle GoldenGate
for suggestions on improving the performance of the Oracle GoldenGate
processes.

To avoid conflicts, replication latency must be kept as low as possible. When conflicts
are unavoidable, they must be identified immediately and resolved with as much
automation as possible, either through the Oracle GoldenGate Conflict Detection and
Resolution (CDR) feature, or through methods developed on your own. Custom
methods can be integrated into Oracle GoldenGate processing through the SQLEXEC
and user exit functionality. See Configuring Conflict Detection and Resolution for more
information about using Oracle GoldenGate to handle conflicts.

9.5 Additional Information
The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type.

• For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

9.6 Creating an Active-Active Configuration
Refer to Figure 9-1 for a visual representation of the objects you will be creating.

Chapter 9
Additional Information

9-9

Figure 9-1 Oracle GoldenGate Configuration for Active-active Synchronization

• Prerequisites on Both Systems

• Configuration from Primary System to Secondary System

• Configuration from Secondary System to Primary System

9.6.1 Prerequisites on Both Systems
Perform these prerequisite tasks on both systems:

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

2. Configure the Manager process. See Configuring Manager and Network
Communications for instructions.

9.6.2 Configuration from Primary System to Secondary System
These steps add the processes necessary to send data from the primary system to the
secondary database.

To Configure the Primary Extract Group

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

For EXTRACT, specify the ext_1 group to write to this trail

3. Use the EDIT PARAMS command to create a parameter file for the ext_1 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]

Chapter 9
Creating an Active-Active Configuration

9-10

-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1
-- Exclude Replicat transactions. Uncomment ONE of the following:
-- DB2 z/OS, DB2 LUW, DB2 IBM i, Oracle (classic capture), and
-- Sybase:
-- TRANLOGOPTIONS EXCLUDEUSER Replicat_user
-- Oracle (classic capture) alternative to EXCLUDEUSER:
-- EXCLUDEUSERID Oracle_uid
-- Oracle integrated capture:
-- EXCLUDETAG tag
-- SQL Server and Sybase:
-- TRANLOGOPTIONS EXCLUDETRANS transaction_name
-- SQL/MX:
-- TRANLOGOPTIONS FILTERTABLE checkpoint_table_name
-- Teradata:
-- SQLEXEC 'SET SESSION OVERRIDE REPLICATION ON;'
-- SQLEXEC 'COMMIT;'
-- Specify API commands if Teradata:
VAM library name, PARAMS ('param' [, 'param'] [, ...])
-- Capture before images for conflict resolution:
GETBEFORECOLS (ON operation {ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING
(col_list)})
-- Log all scheduling columns for CDR and if using integrated Replicat
LOGALLSUPCOLS
-- Specify tables to be captured and (optional) columns to fetch:
TABLE [container.|catalog.]owner.* [, FETCHCOLS cols | FETCHCOLSEXCEPT cols];

Note:

The VAM parameter in the examples is used only for heterogeneous
databases and does not apply to Oracle Database.

To Configure the Data Pump

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

For EXTTRAILSOURCE, specify local_trail_1 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the
secondary system. For documentation purposes, this trail is called remote_trail_1.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

For EXTRACT, specify the pump_1 data pump to write to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_1 group.
Include the following parameters plus any others that apply to your database
environment.

Chapter 9
Creating an Active-Active Configuration

9-11

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the secondary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on secondary system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables to be captured:
TABLE [container.|catalog.]owner.*;

To Configure the Replicat Group

Perform these steps on the secondary system.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

2. Use the EDIT PARAMS command to create a parameter file for the rep_1 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Set redo tag for Oracle only replicat via settag
-- Default is 00.
SETTAG tag_value
-- Specify tables for delivery, threads if coordinated Replicat
-- and conflict-resolution:
MAP [container.|catalog.]owner.*, TARGET owner.*, COMPARECOLS (ON operation
{ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING (col_list)}),
RESOLVECONFLICT (conflict type (resolution_name, resolution_type COLS
(col[,...]))
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
;
-- Specify mapping of exceptions to exceptions table:
MAP [container.|catalog.]owner.*, TARGET owner.exceptions, EXCEPTIONSONLY;

Chapter 9
Creating an Active-Active Configuration

9-12

9.6.3 Configuration from Secondary System to Primary System
These steps add the processes necessary to send data from the secondary system to
the primary database.

To Configure the Primary Extract Group

Perform these steps on the secondary system.

Note:

This is a reverse image of the configuration that you just created.

1. Use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other ADD EXTRACT options that may be required for
your installation.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes,
this trail is called local_trail_2.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

For EXTRACT, specify the ext_2 group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the ext_2 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Exclude Replicat transactions. Uncomment ONE of the following:
-- DB2 z/OS, DB2 LUW, DB2 IBM i, Oracle, and Sybase:
-- TRANLOGOPTIONS EXCLUDEUSER Replicat_user
-- Oracle alternative to EXCLUDEUSER:
-- EXCLUDEUSERID Oracle_uid
-- Oracle integrated capture:
-- EXCLUDETAG tag
-- SQL Server and Sybase:
-- TRANLOGOPTIONS EXCLUDETRANS transaction_name
-- SQL/MX:
-- TRANLOGOPTIONS FILTERTABLE checkpoint_table_name
-- Teradata:
-- SQLEXEC 'SET SESSION OVERRIDE REPLICATION ON;'
-- SQLEXEC 'COMMIT;'

Chapter 9
Creating an Active-Active Configuration

9-13

-- Oracle:
-- TRACETABLE trace_table_name
-- Log all scheduling columns for CDR and if using integrated Replicat
LOGALLSUPCOLS
-- Capture before images for conflict resolution:
GETBEFORECOLS (ON operation {ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING
(col_list)})
-- Specify tables to be captured and (optional) columns to fetch:
TABLE [container.|catalog.]owner.* [, FETCHCOLS cols | FETCHCOLSEXCEPT cols];

Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node. For more
information on identifying these tables and configuring DBFS for
propagation by Oracle GoldenGate, see Installing and Configuring
Oracle GoldenGate for Oracle Database.

To Configure the Data Pump

Perform these steps on the secondary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

For EXTTRAILSOURCE, specify local_trail_2 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the
primary system. For documentation purposes, this trail is called remote_trail_2.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

For EXTRACT, specify the pump_2 data pump to write to this trail.

See Reference for Oracle GoldenGate for Windows and UNIX for additional ADD
RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group.
Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the primary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the primary system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Pass data through without mapping, filtering, conversion:
PASSTHRU
-- Specify tables to be captured:
TABLE [container.|catalog.]owner.*;

Chapter 9
Creating an Active-Active Configuration

9-14

Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node. For more
information on identifying these tables and configuring DBFS for
propagation by Oracle GoldenGate, see Installing and Configuring
Oracle GoldenGate for Oracle Database.

To Configure the Replicat Group

Perform these steps on the primary system.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation
purposes, this group is called rep_2.

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2, BEGIN time

For EXTTRAIL, specify remote_trail_2 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for Windows and UNIX for detailed
information about these and other options that may be required for your
installation.

2. Use the EDIT PARAMS command to create a parameter file for the rep_2 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_2
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_1][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery, threads if coordinated Replicat
-- and conflict-resolution:
MAP [container.|catalog.]owner.*, TARGET owner.*, COMPARECOLS (ON operation
{ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING (col_list)}),
RESOLVECONFLICT (conflict type (resolution_name, resolution_type COLS
(col[,...]))
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
;
-- Specify mapping of exceptions to exceptions table:
MAP [container.|catalog.]owner.*, TARGET owner.exceptions, EXCEPTIONSONLY;

Chapter 9
Creating an Active-Active Configuration

9-15

Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node. For more
information on identifying these tables and configuring DBFS for
propagation by Oracle GoldenGate, see Installing and Configuring
Oracle GoldenGate for Oracle Database.

Chapter 9
Creating an Active-Active Configuration

9-16

10
Configuring Conflict Detection and
Resolution

This chapter contains instructions for using the Oracle GoldenGate Conflict Detection
and Resolution (CDR) feature. Conflict detection and resolution is required in active-
active configurations, where Oracle GoldenGate must maintain data synchronization
among multiple databases that contain the same data sets.
This chapter includes the following sections:

• Overview of the Oracle GoldenGate CDR Feature

• Configuring Oracle GoldenGate CDR

• CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

• CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

• CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and
IGNORE

• Overview of the Oracle GoldenGate CDR Feature

• Configuring Oracle GoldenGate CDR

• CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

• CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

• CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and
IGNORE

10.1 Overview of the Oracle GoldenGate CDR Feature
Oracle GoldenGate Conflict Detection and Resolution (CDR) provides basic conflict
resolution routines that:

• Resolve a uniqueness conflict for an INSERT.

• Resolve a "no data found" conflict for an UPDATE when the row exists, but the
before image of one or more columns is different from the current value in the
database.

• Resolve a "no data found" conflict for an UPDATE when the row does not exist.

• Resolve a "no data found" conflict for a DELETE when the row exists, but the before
image of one or more columns is different from the current value in the database.

• Resolve a "no data found" conflict for a DELETE when the row does not exist.

To use conflict detection and resolution (CDR), the target database must reside on a
Windows, Linux, or UNIX system. It is not supported for databases on the NonStop
platform.

CDR supports data types that can be compared with simple SQL and without explicit
conversion:

10-1

• NUMERIC

• DATE

• TIMESTAMP

• CHAR/NCHAR

• VARCHAR/ NVARCHAR

This means that these column types can be used with the COMPARECOLS parameter, the
GETBEFORECOLS parameter, and as the resolution column in the USEMIN and USEMAX
options of the RESOLVECONFLICT parameter. Only NUMERIC columns can be used for the
USEDELTA option of RESOLVECONFLICT. Do not use CDR for columns that contain LOBs,
abstract data types (ADT), or user-defined types (UDT).

Conflict resolution is not performed when Replicat operates in BATCHSQL mode. If a
conflict occurs in BATCHSQL mode, Replicat reverts to GROUPTRANSOPS mode, and then to
single-transaction mode. Conflict detection occurs in all three modes. For more
information, see Reference for Oracle GoldenGate for Windows and UNIX.

10.2 Configuring Oracle GoldenGate CDR
Follow these steps to configure the source database, target database, and Oracle
GoldenGate for conflict detection and resolution. These steps are:

• Making the Required Column Values Available to Extract

• Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution

• Configuring the Oracle GoldenGate Parameter Files for Error Handling

• Making the Required Column Values Available to Extract

• Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution

• Configuring the Oracle GoldenGate Parameter Files for Error Handling

• Viewing CDR Statistics

10.2.1 Making the Required Column Values Available to Extract
To use CDR, the following column values must be logged so that Extract can write
them to the trail.

• The full before image of each record. Some databases do not provide a before
image in the log record, and must be configured to do so with supplemental
logging. For most supported databases, you can use the ADD TRANDATA command
for this purpose.

• Use the LOGALLSUPCOLS parameter to ensure that the full before and after images of
the scheduling columns are written to the trail. Scheduling columns are primary
key, unique index, and foreign key columns. LOGALLSUPCOLS causes Extract to
include in the trail record the before image for UPDATE operations and the before
image of all supplementally logged columns for both UPDATE and DELETE operations.

• For NonStop SQL/MX source databases, create or alter the table to have the no
auditcompress attribute.

For detailed information about these parameters and commands, see the Reference
for Oracle GoldenGate for Windows and UNIX. See the examples starting on CDR

Chapter 10
Configuring Oracle GoldenGate CDR

10-2

Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD for more
information on how these parameters work with CDR.

10.2.2 Configuring the Oracle GoldenGate Parameter Files for Conflict
Resolution

The following parameters are required to support conflict detection and resolution.

1. Use the GETBEFORECOLS option of the Extract TABLE parameter to specify columns for
which you want Extract to capture the before image of an update or delete
operation. For DB2 databases, use the GETUPDATEBEFORES parameter instead of
GETBEFORECOLS, which is not supported for DB2.

2. Use the COMPARECOLS option of the MAP parameter in the Replicat parameter file to
specify columns that are to be used with before values in the Replicat WHERE
clause. The before values are compared with the current values in the target
database to detect update and delete conflicts. (By default, Replicat only uses the
primary key in the WHERE clause; this may not be enough for conflict detection).

3. Use the RESOLVECONFLICT option of the MAP parameter to specify conflict resolution
routines for different operations and conflict types. You can use RESOLVECONFLICT
multiple times in a MAP statement to specify different resolutions for different conflict
types. However, you cannot use RESOLVECONFLICT multiple times for the same type
of conflict. Use identical conflict-resolution procedures on all databases, so that
the same conflict produces the same end result. One conflict-resolution method
might not work for every conflict that could occur. You might need to create
several routines that can be called in a logical order of priority so that the risk of
failure is minimized.

Note:

Additional consideration should be given when a table has a primary key and
additional unique indexes or unique keys. The automated routines provided
with the COMPARECOLS and RESOLVECONFLICT parameters require a consistent
way to uniquely identify each row. Failure to consistently identify a row will
result in an error during conflict resolution. In these situations the additional
unique keys should be disabled or you can use the SQLEXEC feature to handle
the error thrown and resolve the conflict.

For detailed information about these parameters, see Reference for Oracle
GoldenGate for Windows and UNIX. See the examples starting on CDR Example 1:
All Conflict Types with USEMAX, OVERWRITE, DISCARD, for more information on
these parameters.

10.2.3 Configuring the Oracle GoldenGate Parameter Files for Error
Handling

CDR should be used in conjunction with error handling to capture errors that were
resolved and errors that CDR could not resolve.

Chapter 10
Configuring Oracle GoldenGate CDR

10-3

1. Conflict resolution is performed before these other error-handling parameters:
HANDLECOLLSIONS, INSERTMISSINGUPDATES, and REPERROR. Use the REPERROR parameter
to assign rules for handling errors that cannot be resolved by CDR, or for errors
that you do not want to handle through CDR. It might be appropriate to have
REPERROR handle some errors, and CDR handle others; however, if REPERROR and
CDR are configured to handle the same conflict, CDR takes precedence. The
INSERTMISSINGUPDATES and HANDLECOLLISIONS parameters also can be used to handle
some errors not handled by CDR. See the Reference for Oracle GoldenGate for
Windows and UNIX for details about these parameters.

2. (Optional) Create an exceptions table. When an exceptions table is used with an
exceptions MAP statment (see Configuring the Oracle GoldenGate Parameter Files
for Error Handling), Replicat sends every operation that generates a conflict
(resolved or not) to the exceptions MAP statement to be mapped to the exceptions
table. Omit a primary key on this table if Replicat is to process UPDATE and DELETE
conflicts; otherwise there can be integrity constraint errors.

At minimum, an exceptions table should contain the same columns as the target
table. These rows will contain each row image that Replicat applied to the target
(or tried to apply).

In addition, you can define additional columns to capture other information that
helps put the data in transactional context. Oracle GoldenGate provides tools to
capture this information through the exceptions MAP statement (see Configuring the
Oracle GoldenGate Parameter Files for Error Handling). Such columns can be, but
are not limited to, the following:

• The before image of the trail record. This is a duplicate set of the target
columns with names such as col1_before, col2_before, and so forth.

• The current values of the target columns. This also is a duplicate set of the
target columns with names such as col1_current, col2_current, and so forth.

• The name of the target table

• The timestamp of the conflict

• The operation type

• The database error number

• (Optional) The database error message

• Whether the conflict was resolved or not

3. Create an exceptions MAP statement to map the exceptions data to the exceptions
table. An exceptions MAP statement contains:

• (Required) The INSERTALLRECORDS option. This parameter converts all mapped
operations to INSERTs so that all column values are mapped to the exceptions
table.

• (Required) The EXCEPTIONSONLY option. This parameter causes Replicat to map
operations that generate an error, but not those that were successful.

• (Optional) A COLMAP clause. If the names and definitions of the columns in the
exceptions table are identical to those of the source table, and the exceptions
table only contains those columns, no COLMAP is needed. However, if any
names or definitions differ, or if there are extra columns in the exceptions table
that you want to populate with additional data, use a COLMAP clause to map all
columns.

• Tools for Mapping Extra Data to the Exceptions Table

Chapter 10
Configuring Oracle GoldenGate CDR

10-4

• Sample Exceptions Mapping with Source and Target Columns Only

• Sample Exceptions Mapping with Additional Columns in the Exceptions Table

10.2.3.1 Tools for Mapping Extra Data to the Exceptions Table
The following are some tools that you can use in the COLMAP clause to populate extra
columns:

• If the names and definitions of the source columns are identical to those of the
target columns in the exceptions table, you can use the USEDEFAULTS keyword
instead of explicitly mapping names. Otherwise, you must map those columns in
the COLMAP clause, for example:

COLMAP (exceptions_col1 = col1, [...])

• To map the before image of the source row to columns in the exceptions table,
use the @BEFORE conversion function, which captures the before image of a column
from the trail record. This example shows the @BEFORE usage.

COLMAP (USEDEFAULTS, exceptions_col1 = @BEFORE (source_col1), &
exceptions_col2 = @BEFORE (source_col2), [...])

• To map the current image of the target row to columns in the exceptions table, use
a SQLEXEC query to capture the image, and then map the results of the query to the
columns in the exceptions table by using the 'queryID.column' syntax in the COLMAP
clause, as in the following example:

COLMAP (USEDEFAULTS, name_current = queryID.name, phone_current =
queryID.phone, [...])

• To map timestamps, database errors, and other environmental information, use
the appropriate Oracle GoldenGate column-conversion functions. For example,
the following maps the current timestamp at time of execution.

res_date = @DATENOW ()

See Sample Exceptions Mapping with Additional Columns in the Exceptions Table , for
how to combine these features in a COLMAP clause in the exceptions MAP statement to
populate a detailed exceptions table.

See Reference for Oracle GoldenGate for Windows and UNIX for the usage and
syntax of the parameters and column-conversion functions shown in these examples.

10.2.3.2 Sample Exceptions Mapping with Source and Target Columns Only
The following is a sample parameter file that shows error handling and simple
exceptions mapping for the source and target tables that are used in the CDR
examples that begin. This example maps source and target columns, but no extra
columns. For the following reasons, a COLMAP clause is not needed in the exceptions
MAP statement in this example:

• The source and target exceptions columns are identical in name and definition.

• There are no other columns in the exceptions table.

Chapter 10
Configuring Oracle GoldenGate CDR

10-5

Note:

This example intentionally leaves out other parameters that are required
in a Replicat parameter file, such as process name and login credentials,
as well as any optional parameters that may be required for a given
database type. When using line breaks to split a parameter statement
into multiple lines, use an ampersand (&) at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies a discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)), &
);
 -- Starts the exceptions MAP statement by mapping the source table to the
 -- exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS
;

10.2.3.3 Sample Exceptions Mapping with Additional Columns in the
Exceptions Table

The following is a sample parameter file that shows error handling and complex
exceptions mapping for the source and target tables that are used in the CDR
examples that begin. In this example, the exceptions table has the same rows as the
source table, but it also has additional columns to capture context data.

Note:

This example intentionally leaves out other parameters that are required in a
Replicat parameter file, such as process name and login credentials, as well
as any optional parameters that may be required for a given database type.
When using line breaks to split a parameter statement into multiple lines, use
an ampersand (&) at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.

Chapter 10
Configuring Oracle GoldenGate CDR

10-6

REPERROR (DEFAULT, DISCARD)
 -- Specifies the discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD))
);
 -- Starts the exceptions MAP statement by mapping the source table to the --
exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS &
 -- SQLEXEC query to select the values from the target record before the
 -- Replicat statement is applied. These are mapped to the *_target
 -- columns later.
SQLEXEC (id qry, query 'select name, phone, address, salary, balance, & comment,
last_mod_time from fin.tgt where name = :p1', PARAMS(p1 = name)), &
 -- Start of the column mapping, specifies use default column definitions.
COLMAP (&
 -- USEDEFAULTS maps the source columns to the target exceptions columns
 -- that receive the after image that Replicat applied or tried to apply.
 -- In this case, USEDEFAULTS can be used because the names and definitions
 -- of the source and target exceptions columns are identical; otherwise
 -- the columns must be mapped explicitly in the COLMAP clause.
USEDEFAULTS, &
 -- captures the timestamp when the resolution was performed.
res_date = @DATENOW (), &
 -- captures and maps the DML operation type.
optype = @GETENV ('LASTERR', 'OPTYPE'), &
 -- captures and maps the database error number that was returned.
dberrnum = @GETENV ('LASTERR', 'DBERRNUM'), &
 -- captures and maps the database error that was returned.
dberrmsge = @GETENV ('LASTERR', 'DBERRMSG'), &
 -- captures and maps the name of the target table
tabname = @GETENV ('GGHEADER', 'TABLENAME'), &
 -- If the names and definitions of the source columns and the target
 -- exceptions columns were not identical, the columns would need to
 -- be mapped in the COLMAP clause instead of using USEDEFAULTS, as
 -- follows:
 -- name_after = name, &
 -- phone_after = phone, &
 -- address_after = address, &
 -- salary_after = salary, &
 -- balance_after = balance, &
 -- comment_after = comment, &
 -- last_mod_time_after = last_mod_time &
 -- maps the before image of each column from the trail to a column in the
 -- exceptions table.
name_before = @BEFORE (name), &
phone_before = @BEFORE (phone), &
address_before = @BEFORE (address), &

Chapter 10
Configuring Oracle GoldenGate CDR

10-7

salary_before = @BEFORE (salary), &
balance_before = @BEFORE (balance), &
comment_before = @BEFORE (comment), &
last_mod_time_before = @BEFORE (last_mod_time), &
 -- maps the results of the SQLEXEC query to rows in the exceptions table
 -- to show the current image of the row in the target.
name_current = qry.name, &
phone_current = qry.phone, &
address_current = qry.address, &
salary_current = qry.salary, &
balance_current = qry.balance, &
comment_current = qry.comment, &
last_mod_time_current = qry.last_mod_time)
;

For more information about creating an exceptions table and using exceptions
mapping, see Handling Replicat Errors during DML Operations.

Once you are confident that your routines work as expected in all situations, you can
reduce the amount of data that is logged to the exceptions table to reduce the
overhead of the resolution routines.

10.2.4 Viewing CDR Statistics
The CDR feature provides the following methods for viewing the results of conflict
resolution.

• Report File

• GGSCI

• Column-conversion Functions

10.2.4.1 Report File
Replicat writes CDR statistics to the report file:

Total CDR conflicts 7
 CDR resolutions succeeded 6
 CDR resolutions failed 1
 CDR INSERTROWEXISTS conflicts 1
 CDR UPDATEROWEXISTS conflicts 4
 CDR UPDATEROWMISSING conflicts
 CDR DELETEROWEXISTS conflicts 1
 CDR DELETEROWMISSING conflicts 1

10.2.4.2 GGSCI
You can view CDR statistics from GGSCI by using the STATS REPLICAT command with
the REPORTCDR option:

STATS REPLICAT group, REPORTCDR

10.2.4.3 Column-conversion Functions
The following CDR statistics can be retrieved and mapped to an exceptions table or
used in other Oracle GoldenGate parameters that accept input from column-
conversion functions, as appropriate.

Chapter 10
Configuring Oracle GoldenGate CDR

10-8

• Number of conflicts that Replicat detected

• Number of resolutions that Replicat resolved

• Number of resolutions that Replicat could not resolve

To retrieve these statistics, use the @GETENV column-conversion function with the
'STATS' or 'DELTASTATS' information type. The results are based on the current Replicat
session. If Replicat stops and restarts, it resets the statistics.

You can return these statistics for a specific table or set of wildcarded tables:

@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_CONFLICTS')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_FAILED')

You can return these statistics for all of the tables in all of the MAP statements in the
Replicat parameter file:

@GETENV ('STATS','CDR_CONFLICTS')
@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

The 'STATS' information type in the preceding examples can be replaced by
'DELTASTATS' to return the requested counts since the last execution of 'DELTASTATS'.

For more information about @GETENV, see Reference for Oracle GoldenGate for
Windows and UNIX.

10.3 CDR Example 1: All Conflict Types with USEMAX,
OVERWRITE, DISCARD

This example resolves all conflict types by using the USEMAX, OVERWRITE, and DISCARD
resolutions.

• Table Used in this Example

• MAP Statement with Conflict Resolution Specifications

• Description of MAP Statement

• Error Handling

• INSERTROWEXISTS with the USEMAX Resolution

• UPDATEROWEXISTS with the USEMAX Resolution

• UPDATEROWMISSING with OVERWRITE Resolution

• DELETEROWMISSING with DISCARD Resolution

• DELETEROWEXISTS with OVERWRITE Resolution

10.3.1 Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

10-9

 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

10.3.2 MAP Statement with Conflict Resolution Specifications
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),
 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
);

10.3.3 Description of MAP Statement
The following describes the MAP statement:

• Per COMPARECOLS, use the before image of all columns in the trail record in the
Replicat WHERE clause for updates and deletes.

• Per DEFAULT, use all columns as the column group for all conflict types; thus the
resolution applies to all columns.

• For an INSERTROWEXISTS conflict, use the USEMAX resolution: If the row exists during
an insert, use the last_mod_time column as the resolution column for deciding
which is the greater value: the value in the trail or the one in the database. If the
value in the trail is greater, apply the record but change the insert to an update. If
the database value is higher, ignore the record.

• For an UPDATEROWEXISTS conflict, use the USEMAX resolution: If the row exists during
an update, use the last_mod_time column as the resolution column: If the value in
the trail is greater, apply the update.

• If you use USEMIN or USEMAX, and the values are exactly the same, then
RESOLVECONFLICT isn't triggered and the incoming row is ignored. If you use USEMINEQ
or USEMAXEQ, and the values are exactly the same, then the resolution is triggered.

• For a DELETEROWEXISTS conflict, use the OVERWRITE resolution: If the row exists during
a delete operation, apply the delete.

• For an UPDATEROWMISSING conflict, use the OVERWRITE resolution: If the row does not
exist during an update, change the update to an insert and apply it.

• For a DELETROWMISSING conflict use the DISCARD resolution: If the row does not exist
during a delete operation, discard the trail record.

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

10-10

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply
a >= condition. For more information, see Reference for Oracle
GoldenGate for Windows and UNIX.

10.3.4 Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

10.3.5 INSERTROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve an
insert where the row exists in the source and target, but some or all row values are
different.

Table 10-1 INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail
None (row was inserted on the
source).

N/A

After image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the after
image of the resolution column. Since there
is an after image, this will be used to
determine the resolution.

Target database image
name='Mary'
phone='111111'
address='Ralston'
salary=200
balance=500
comment='aaa'
last_mod_time='9/1/10 1:00'

last_mod_time='9/1/10 1:00 is the current
image of the resolution column in the target
against which the resolution column value in
the trail is compared.

Initial INSERT applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'1234567890'
3)'Oracle Pkwy'
4)100
5)100
6)NULL
7)'9/1/10 3:00'

This SQL returns a uniqueness conflict on
'Mary'.

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

10-11

Table 10-1 (Cont.) INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

UPDATE applied by Replicat
to resolve the conflict

SQL bind variables:

1)'1234567890'
2)'Oracle Pkwy'
3)100
4)100
5)NULL
6)'9/1/10 3:00'
7)'Mary'
8)'9/1/10 3:00'

Because USEMAX is specified for
INSERTROWEXISTS, Replicat converts the
insert to an update, and it compares the
value of last_mod_time in the trail record
with the value in the database. The value in
the record is greater, so the after images for
columns in the trail file are applied to the
target.

10.3.6 UPDATEROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve an
update where the row exists in the source and target, but some or all row values are
different.

Table 10-2 UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column.

After image in trail
phone='222222'
address='Holly'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the after
image of the resolution column. Since
there is an after image, this will be used
to determine the resolution.

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment='com'
last_mod_time='9/1/10 6:00'

last_mod_time='9/1/10 6:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

10-12

Table 10-2 (Cont.) UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)'9/1/10 5:00'
4)'Mary'
5)'1234567890'
6)'Oracle Pkwy'
7)100
8)100
9)NULL
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the balance,
comment, and last_mod_time are different
in the target.

All columns are used in the WHERE clause
because the COMPARECOLS statement is
set to ALL.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100
6)NULL
7)'9/1/10 5:00'
8)'Mary'
9)'9/1/10 5:00'

Because the after value of last_mod_time
in the trail record is less than the current
value in the database, the database value
is retained. Replicat applies the operation
with a WHERE clause that contains the
primary key plus a last_mod_time value
set to less than 9/1/10 5:00. No rows
match this criteria, so the statement fails
with a "data not found" error, but Replicat
ignores the error because a USEMAX
resolution is expected to fail if the
condition is not satisfied.

10.3.7 UPDATEROWMISSING with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the
case where the target row is missing. The logical resolution, and the one used, is to
overwrite the row into the target so that both databases are in sync again.

Table 10-3 UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail
name='Jane'
phone='333'
address='Oracle Pkwy'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 7:00'

N/A

After image in trail
phone='4444'
address='Holly'
last_mod_time='9/1/10 8:00'

Target database image
None (row for Jane is missing)

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

10-13

Table 10-3 (Cont.) UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'4444'
2)'Holly'
3)'9/1/10 8:00'
4)'Jane'
5)'333'
6)'Oracle Pkwy'
7)200
8)200
9)NULL
10)'9/1/10 7:00'

This SQL returns a no-data-found error.
All columns are used in the WHERE clause
because the COMPARECOLS statement is
set to ALL.

INSERT applied by Replicat
to resolve the conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

The update is converted to an insert
because OVERWRITE is the resolution.
The after image of a column is used if
available; otherwise the before image is
used.

10.3.8 DELETEROWMISSING with DISCARD Resolution
For this example, the DISCARD resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the
case where the target row is missing. In the case of a delete on the source, it is
acceptable for the target row not to exist (it would need to be deleted anyway), so the
resolution is to discard the DELETE operation that is in the trail.

Table 10-4 DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Before image in trail
name='Jane'
phone='4444'
address='Holly'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 8:00'

N/A

After image in trail
None

N/A

Target database image
None (row missing)

N/A

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

10-14

Table 10-4 (Cont.) DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

This SQL returns a no-data-found error.
All columns are used in the WHERE clause
because the COMPARECOLS statement is
set to ALL.

SQL applied by Replicat to
resolve the conflict

None
Because DISCARD is specified as the
resolution for DELETEROWMISSING, so the
delete from the trail goes to the discard
file.

10.3.9 DELETEROWEXISTS with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the
case where the source row was deleted but the target row exists. In this case, the
OVERWRITE resolution applies the delete to the target.

Table 10-5 DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail
name='Mary'
phone='222222'
address='Holly'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 5:00'

N/A

After image in trail
None

N/A

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment=com
last_mod_time='9/1/10 7:00'

The row exists on the target, but the
phone, address, balance, comment, and
last_mod_time columns are different
from the before image in the trail.

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

10-15

Table 10-5 (Cont.) DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100d
6)NULL
7)'9/1/10 5:00'

All columns are used in the WHERE clause
because the COMPARECOLS statement is
set to ALL.

A no-data-found error occurs because of
the difference between the before and
current values.

DELETE applied by Replicat
to resolve the conflict

SQL bind variables:

1)'Mary'

Because OVERWRITE is the resolution. the
DELETE is applied using only the primary
key (to avoid an integrity error).

10.4 CDR Example 2: UPDATEROWEXISTS with
USEDELTA and USEMAX

This example resolves the condition where a target row exists on UPDATE but non-key
columns are different, and it uses two different resolution types to handle this condition
based on the affected column.

• Table Used in this Example

• MAP Statement

• Description of MAP Statement

• Error Handling

10.4.1 Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

10.4.2 MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE KEYINCLUDING (address, phone, salary, last_mod_time),

Chapter 10
CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

10-16

 ON DELETE KEYINCLUDING (address, phone, salary, last_mod_time)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary)),
 (DEFAULT, USEMAX (last_mod_time)));

10.4.3 Description of MAP Statement
For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key
columns are different, use two different resolutions depending on the column:

• Per the delta_res_method resolution, use the USEDELTA resolution logic for the salary
column so that the change in value will be added to the current value of the
column.

• Per DEFAULT, use the USEMAX resolution logic for all other columns in the table (the
default column group), using the last_mod_time column as the resolution column.
This column is updated with the current time whenever the row is modified; the
value of this column in the trail is compared to the value in the target. If the value
of last_mod_time in the trail record is greater than the current value of
last_mod_time in the target database, the changes to name, phone, address, balance,
comment and last_mod_time are applied to the target.

Per COMPARECOLS, use the primary key (name column) plus the address, phone, salary,
and last_mod_time columns as the comparison columns for conflict detection for UPDATE
and DELETE operations. (The balance and comment columns are not compared.)

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Reference for Oracle GoldenGate for
Windows and UNIX.

10.4.4 Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 10-6 UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column
for the USEMAX resolution.

salary=100 is the before image for the
USEDELTA resolution.

Chapter 10
CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

10-17

Table 10-6 (Cont.) UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image,
this will be used to determine the
resolution.

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

salary=600 is the current image of the
target column for the USEDELTA
resolution.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the salary and
last_mod_time are different. (The values
for comment and balance are also
different, but these columns are not
compared.)

UPDATE applied by Replicat
to resolve the conflict for
salary, using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

Per USEDELTA, the difference between
the after image of salary (200) in the
trail and the before image of salary
(100) in the trail is added to the current
value of salary in the target (600). The
result is 700.

600 + (200 - 100) = 700

UPDATE applied by Replicat
to resolve the conflict for the
default columns, using
USEMAX.

SQL bind variables:

1)'222222'
2)'Holly'
3)'new'
4)'9/1/10 5:00'
5)'Mary'
6)'9/1/10 5:00'

Per USEMAX, because the after value of
last_mod_time in the trail record is
greater than the current value in the
database, the row is updated with the
after values from the trail record.

Note that the salary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

10.5 CDR Example 3: UPDATEROWEXISTS with
USEDELTA, USEMAX, and IGNORE

This example resolves the conflict where a target row exists on UPDATE but non-key
columns are different, and it uses three different resolution types to handle this
condition based on the affected column.

Chapter 10
CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

10-18

• Table Used in this Example

• MAP Statement

• Description of MAP Statement

• Error Handling

10.5.1 Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

10.5.2 MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE ALLEXCLUDING (comment)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary, balance)),
 (max_res_method, USEMAX (last_mod_time), COLS (address, last_mod_time)),
 (DEFAULT, IGNORE));

10.5.3 Description of MAP Statement
• For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key

columns are different, use two different resolutions depending on the column:

– Per the delta_res_method resolution, use the USEDELTA resolution logic for the
salary and balance columns so that the change in each value will be added to
the current value of each column.

– Per the max_res_method resolution, use the USEMAX resolution logic for the
address and last_mod_time columns. The last_mod_time column is the
resolution column. This column is updated with the current time whenever the
row is modified; the value of this column in the trail is compared to the value in
the target. If the value of last_mod_time in the trail record is greater than the
current value of last_mod_time in the target database, the changes to address
and last_mod_time are applied to the target; otherwise, they are ignored in
favor of the target values.

– Per DEFAULT, use the IGNORE resolution logic for the remaining columns (phone
and comment) in the table (the default column group). Changes to these
columns will always be ignored by Replicat.

Chapter 10
CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

10-19

• Per COMPARECOLS, use all columns except the comment column as the comparison
columns for conflict detection for UPDATE operations. Comment will not be used in
the WHERE clause for updates, but all other columns that have a before image in the
trail record will be used.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply
a >= condition. For more information, see Reference for Oracle
GoldenGate for Windows and UNIX.

10.5.4 Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 10-7 UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00

last_mod_time='9/1/10 3:00 is the
before image of the resolution column
for the USEMAX resolution.

salary=100 and balance=100 are the
before images for the USEDELTA
resolution.

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image,
this will be used to determine the
resolution.

salary=200 is the only after image
available for the USEDELTA resolution.
For balance, the before image will be
used in the calculation.

Target database image
name='Mary'
phone='1234567890'
address='Ralston'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared for
USEMAX.

salary=600 and balance=600 are the
current images of the target columns for
USEDELTA.

Chapter 10
CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

10-20

Table 10-7 (Cont.) UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)100
11)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the address,
salary, balance and last_mod_time
columns are different.

UPDATE applied by Replicat
to resolve the conflict for
salary, using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

For salary, there is a difference of 100,
but there was no change in value for
balance, so it is not needed in the
update SQL. Per USEDELTA, the
difference (delta) between the after
(200) image and the before image (100)
of salary in the trail is added to the
current value of salary in the target
(600). The result is 700.

UPDATE applied by Replicat
to resolve the conflict for
USEMAX.

SQL bind variables:

1)'Holly'
2)'9/1/10 5:00'
3)'Mary'
4)'9/1/10 5:00'

Because the after value of
last_mod_time in the trail record is
greater than the current value in the
database, that column plus the address
column are updated with the after values
from the trail record.

Note that the salary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

UPDATE applied by Replicat
for IGNORE.

SQL bind variables:

1)'222222'
2)'new'
3)'Mary'

IGNORE is specified for the DEFAULT
column group (phone and comment), so
no resolution SQL is applied.

Chapter 10
CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

10-21

11
Configuring Oracle GoldenGate Security

This chapter describes how to configure Oracle GoldenGate security.
This chapter includes the following sections:

• Overview of Oracle GoldenGate Security Options

• Encrypting Data with the Master Key and Wallet Method

• Encrypting Data with the ENCKEYS Method

• Managing Identities in a Credential Store

• Encrypting a Password in a Command or Parameter File

• Populating an ENCKEYS File with Encryption Keys

• Configuring GGSCI Command Security

• Using Target System Connection Initiation

• Securing Manager

• Overview of Oracle GoldenGate Security Options

• Encrypting Data with the Master Key and Wallet Method

• Encrypting Data with the ENCKEYS Method

• Managing Identities in a Credential Store

• Encrypting a Password in a Command or Parameter File

• Populating an ENCKEYS File with Encryption Keys

• Configuring GGSCI Command Security

• Using Target System Connection Initiation

• Securing Manager

11.1 Overview of Oracle GoldenGate Security Options
You can use the following security features to protect your Oracle GoldenGate
environment and the data that is being processed.

11-1

Security Feature What it Secures Supported Databases Description

Data Encryption

Two methods are available:

• Encrypting Data with
the Master Key and
Wallet Method

• Encrypting Data with
the ENCKEYS Method

• Data in the trails or an
extract file

• Data sent across
TCP/IP networks

Master key and wallet
method is the preferred
method on platforms that
support it. Not valid for the
iSeries, z/OS, and NonStop
platforms.

ENCKEYS method is valid for
all Oracle GoldenGate-
supported databases and
platforms. Blowfish must be
used on the iSeries, z/OS,
and NonStop platforms.

Encrypts the data in files,
across data links, and
across TCP/IP. Use any of
the following:

• Any Advanced
Encryption Security
(AES)1 cipher:

AES-128

AES-192

AES-256
• Blowfish2

Credential Store Identity
Management

See Managing Identities in
a Credential Store.

User IDs and passwords
(credentials) assigned to
Oracle GoldenGate
processes to log into a
database.

Credential store is the
preferred password
management method on
platforms that support it.
Not valid on the iSeries,
z/OS, and NonStop
platforms.

User credentials are
maintained in secure wallet
storage. Aliases for the
credentials are specified in
commands and
parameters.

Password Encryption

See Encrypting a
Password in a Command
or Parameter File.

Passwords specified in
commands and parameter
files that are used by
Oracle GoldenGate
processes to log into a
database.

Valid for all Oracle
GoldenGate-supported
databases and platforms.
Blowfish must be used on
the iSeries, z/OS, and
NonStop platforms. On
other platforms, the
credential store is the
preferred password-
management method.

Encrypts a password and
then provides for specifying
the encrypted password in
the command or parameter
input. Use any of the
following:

• AES-128
• AES-192
• AES-256
• Blowfish

Command Authentication

See Configuring GGSCI
Command Security.

Oracle GoldenGate
commands issued through
GGSCI.

Valid for all Oracle
GoldenGate-supported
databases and platforms.

Stores authentication
permissions in an
operating-system-secured
file. Configure a CMDSEC
(Command Security) file.

Trusted Connection

See Using Target System
Connection Initiation.

TCP/IP connection to
untrusted Oracle
GoldenGate host machines
that are outside a firewall.

Valid for all Oracle
GoldenGate-supported
databases and platforms.

Use any of the following:

• AES-128
• AES-192
• AES-256
• Blowfish

Chapter 11
Overview of Oracle GoldenGate Security Options

11-2

Security Feature What it Secures Supported Databases Description

Manager Security Access rules for Manager. Valid for all Oracle
GoldenGate-supported
databases and platforms.

You can secure the
following:

• GGSCI: Secures access
to the GGSCI
command-line
interface.

• GUI: Secures access to
Oracle GoldenGate
from the Activity
Console.

• MGR | MANAGER:
Secures access to all
inter-process
commands controlled
by Manager, such as
START, STOP, and KILL

• REPLICAT: Secures
connection to the
Replicat process.

• COLLECTOR | SERVER:
Secures the ability to
dynamically create a
Collector process.

CryptoEngine Allows you to select the
cryptographic library that
better suits your needs:
Portability
(Classic), Portability and
compliance with FIPS-140
standard (FIPS140), or
enhanced throughput
(Native).

Valid for all Oracle
GoldenGate-supported
databases and platforms
(Classic and FIPS140).

Valid for all Oracle
GoldenGate-supported
databases on Linux.x64
and Windows.x64 (Native).

Selects which
cryptographic library the
Oracle GoldenGate
processes will use.

1 Advanced Encryption Standard (AES) is a symmetric-key encryption standard that is used by governments and other
organizations that require a high degree of data security. It offers three 128-bit block-ciphers: a 128-bit key cipher, a 192-bit key
cipher, and a 256-bit key cipher. To use AES for any database other than Oracle on a 32-bit platform, the path to the lib sub-
directory of the Oracle GoldenGate installation directory must be set with the LD_LIBRARY_PATH or SHLIB_PATH variable
(UNIX) or the PATH variable (Windows). Not required for 64-bit platforms.

2 Blowfish encryption: A keyed symmetric-block cipher. The Oracle GoldenGate implementation of Blowfish has a 64-bit block
size with a variable-length key size from 32 bits to 256 bits.

11.2 Encrypting Data with the Master Key and Wallet
Method

To use this method of data encryption, you create a master-key wallet and add a
master key to the wallet. This method works as follows, depending on whether the
data is encrypted in the trails or across TCP/IP:

• Each time Oracle GoldenGate creates a trail file, it generates a new encryption
key automatically. This encryption key encrypts the trail contents. The master key
encrypts the encryption key. This process of encrypting encryption keys is known
as key wrap and is described in standard ANS X9.102 from American Standards
Committee.

Chapter 11
Encrypting Data with the Master Key and Wallet Method

11-3

• To encrypt data across the network, Oracle GoldenGate generates a session key
using a cryptographic function based on the master key.

Oracle GoldenGate uses an auto-login wallet (file extension .sso), meaning that it is an
obfuscated container that does not require human intervention to supply the necessary
passwords.

Encrypting data with a master key and wallet is not supported on the iSeries, z/OS or
NonStop platforms.

This section guides you through the following tasks:

Creating the Wallet and Adding a Master Key

Specifying Encryption Parameters in the Parameter File

Renewing the Master Key

Deleting Stale Master Keys

• Creating the Wallet and Adding a Master Key

• Specifying Encryption Parameters in the Parameter File

• Renewing the Master Key

• Deleting Stale Master Keys

11.2.1 Creating the Wallet and Adding a Master Key
The wallet is created in a platform-independent format. The wallet can be stored on a
shared file system that is accessible by all systems in the Oracle GoldenGate
environment. Alternatively, you can use an identical wallet on each system in the
Oracle GoldenGate environment. If you use a wallet on each system, you must create
the wallet on one system, typically the source system, and then copy it to all of the
other systems in the Oracle GoldenGate environment. This must also be done every
time you add, change, or delete a master key.

This procedure creates the wallet on the source system and then guides you through
copying it to the other systems in the Oracle GoldenGate environment.

1. (Optional) To store the wallet in a location other than the dirwlt subdirectory of the
Oracle GoldenGate installation directory, specify the desired location with the
WALLETLOCATION parameter in the GLOBALS file. (See Working with the GLOBALS File
for more information about the GLOBALS file.)

WALLETLOCATION directory_path

2. Create a master-key wallet with the CREATE WALLET command in GGSCI.

CREATE WALLET

3. Add a master key to the wallet with the ADD MASTERKEY command in GGSCI.

ADD MASTERKEY

4. Issue the INFO MASTERKEY command to confirm that the key you added is the
current version. In a new installation, the version should be 1.

INFO MASTERKEY

Chapter 11
Encrypting Data with the Master Key and Wallet Method

11-4

5. Issue the INFO MASTERKEY command with the VERSION option, where the version is
the current version number. Record the version number and the AES hash value
of that version.

INFO MASTERKEY VERSION version

6. Copy the wallet to all of the other Oracle GoldenGate systems.

7. Issue the INFO MASTERKEY command with the VERSION option on each system to
which you copied the wallet, where the version is the version number that you
recorded. For each wallet, make certain the Status is Current and compare the
AES hash value with the one that you originally recorded. All wallets must show
identical key versions and hash values.

INFO MASTERKEY VERSION version

11.2.2 Specifying Encryption Parameters in the Parameter File
This procedure adds the parameters that are required to support data encryption in the
trails and across the network with the master key and wallet method.

1. In the following parameter files, add the following:

• To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAIL parameter statement before any parameter
that specifies a trail or file that you want to be encrypted. Parameters that
specify trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The syntax
is:

ENCRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

• To encrypt data across TCP/IP: In the parameter file of the data pump (or the
primary Extract, if no pump is being used), use the ENCRYPT option of the
RMTHOSTOPTIONS parameter. The syntax is:

RMTHOSTOPTIONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256 |
BLOWFISH}

RMTHOSTOPTIONS ENCRYPT {AES128 | AES192 | AES256 | BLOWFISH}

Where:

• RMTHOSTOPTIONS is used for Extract including passive extracts. See Using Target
System Connection Initiation for more information about passive Extract.

• ENCRYPTTRAIL without options specifies 256-key byte substitution. This format is
not secure and should not be used in a production environment. Use only for
backward compatibility with earlier Oracle GoldenGate versions.

• AES128 encrypts with the AES-128 encryption algorithm.

• AES192 encrypts with AES-192 encryption algorithm.

• AES256 encrypts with AES-256 encryption algorithm.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the platform.
Use BLOWFISH for backward compatibility with earlier Oracle GoldenGate
versions, and for DB2 on z/OS, DB2 for i, and SQL/MX on NonStop. AES is
not supported on those platforms.

2. Use the DECRYPTTRAIL parameter for a data pump if you want trail data to be
decrypted before it is written to the output trail. Otherwise, the data pump

Chapter 11
Encrypting Data with the Master Key and Wallet Method

11-5

automatically decrypts it, if processing is required, and then reencrypts it before
writing to the output trail. (Replicat decrypts the data automatically without any
parameter input.)

DECRYPTTRAIL

Note:

You can explicitly decrypt incoming trail data and then re-encrypt it again for
any output trails or files. First, enter DECRYPTTRAIL to decrypt the data, and
then enter ENCRYPTTRAIL and its output trail specifications. DECRYPTTRAIL must
precede ENCRYPTTRAIL. Explicit decryption and re-encryption enables you to
vary the AES algorithm from trail to trail, if desired. For example, you can use
AES 128 to encrypt a local trail and AES 256 to encrypt a remote trail.
Alternatively, you can use the master key and wallet method to encrypt from
one process to a second process, and then use the ENCKEYS method to
encrypt from the second process to the third process.

11.2.3 Renewing the Master Key
This procedure renews the master encryption key in the encryption-key wallet.
Renewing the master key creates a new version of the key. Its name remains the
same, but the bit ordering changes. As part of your security policy, you should renew
the current master key regularly so that it does not get stale.

All renewed versions of a master key remain in the wallet until they are marked for
deletion with the DELETE MASTERKEY command and then the wallet is purged with the
PURGE WALLET command. See Deleting Stale Master Keys for more information.

Unless the wallet is maintained centrally on shared storage (as a shared wallet), the
updated wallet must be copied to all of the other systems in the Oracle GoldenGate
configuration that use that wallet. To do so, the Oracle GoldenGate must be stopped.
This procedure includes steps for performing those tasks in the correct order.

1. Stop Extract.

STOP EXTRACT group

2. On the target systems, issue the following command for each Replicat until it
returns At EOF.

SEND REPLICAT group STATUS

3. On the source system, stop the data pumps.

STOP EXTRACT group

4. On the target systems, stop the Replicat groups.

STOP REPLICAT group

5. On the source system, issue the following command to open the wallet.

OPEN WALLET

6. On the source system, issue the following command to confirm the version of the
current key. Make a record of the version.

INFO MASTERKEY

Chapter 11
Encrypting Data with the Master Key and Wallet Method

11-6

7. On the source system, issue the following command to renew the master key.

RENEW MASTERKEY

8. On the source system, issue the following command to confirm that a new version
is current.

INFO MASTERKEY

Note:

If you are using a shared wallet, go to step 12. If you are using a wallet
on each system, continue to the next step.

9. On the source system, issue the following command, where version is the new
version of the master key. Make a record of the hash value.

INFO MASTERKEY VERSION version

10. Copy the updated wallet from the source system to the same location as the old
wallet on all of the target systems.

11. On each target, issue the following command, where version is the new version
number of the master key. For each wallet, make certain the Status is Current and
compare the new hash value with the one that you originally recorded. All wallets
must show identical key versions and hash values.

INFO MASTERKEY VERSION version

12. Restart Extract.

START EXTRACT group

13. Restart the data pumps.

START EXTRACT group

14. Restart Replicat.

START REPLICAT group

11.2.4 Deleting Stale Master Keys
This procedure deletes stale versions of the master key. Deleting stale keys should be
part of the overall policy for maintaining a secure Oracle GoldenGate wallet. It is
recommended that you develop a policy for how many versions of a key you want to
keep in the wallet and how long you want to keep them.

Chapter 11
Encrypting Data with the Master Key and Wallet Method

11-7

Note:

For Oracle GoldenGate deployments using a shared wallet, the older
versions of the master key should be retained after the master key is
renewed until all processes are using the newest version. The time to wait
depends on the topology, latency, and data load of the deployment. A
minimum wait of 24 hours is a conservative estimate, but you may need to
perform testing to determine how long it takes for all processes to start using
a new key. To determine whether all of the processes are using the newest
version, view the report file of each Extract immediately after renewing the
master key to confirm the last SCN that was mined with the old key. Then,
monitor the Replicat report files to verify that this SCN was applied by all
Replicat groups. At this point, you can delete the older versions of the master
key.

If the wallet is on central storage that is accessible by all Oracle GoldenGate
installations that use that wallet, you need only perform these steps once to the shared
wallet. You do not need to stop the Oracle GoldenGate processes.

If the wallet is not on central storage (meaning there is a copy on each Oracle
GoldenGate system) you can do one of the following:

• If you can stop the Oracle GoldenGate processes, you only need to perform the
steps to change the wallet once and then copy the updated wallet to the other
systems before restarting the Oracle GoldenGate processes.

• If you cannot stop the Oracle GoldenGate processes, you must perform the steps
to change the wallet on each system, making certain to perform them exactly the
same way on each one.

These steps include prompts for both scenarios.

1. On the source system, issue the following command to determine the versions of
the master key that you want to delete. Typically, the oldest versions should be the
ones deleted. Make a record of these versions.

INFO MASTERKEY

2. On the source system, issue the following command to open the wallet.

OPEN WALLET

3. Issue the following command to delete the stale master keys. Options are
available to delete a specific version, a range of versions, or all versions including
the current one. To delete all of the versions, transaction activity and the Oracle
GoldenGate processes must be stopped.

DELETE MASTERKEY {VERSION version | RANGE FROM begin_value TO end_value}

Note:

DELETE MASTERKEY marks the key versions for deletion but does not
actually delete them.

Chapter 11
Encrypting Data with the Master Key and Wallet Method

11-8

4. Review the messages returned by the DELETE MASTERKEY command to ensure that
the correct versions were marked for deletion. To unmark any version that was
marked erroneously, use the UNDELETE MASTERKEY VERSION version command before
proceeding with these steps. If desired, you can confirm the marked deletions with
the INFO MASTERKEY command.

5. When you are satisfied that the correct versions are marked for deletion, issue the
following command to purge them from the wallet. This is a permanent deletion
and cannot be undone.

PURGE WALLET

Next steps:

• If the wallet resides on shared storage, you are done with these steps.

• If there is a wallet on each system and you cannot stop the Oracle
GoldenGate processes, repeat the preceding steps on each Oracle
GoldenGate system.

• If there is a wallet on each system and you can stop the Oracle GoldenGate
processes, continue with these steps to stop the processes and copy the
wallet to the other systems in the correct order.

6. Stop Extract.

STOP EXTRACT group

7. In GGSCI, issue the following command for each data pump Extract until each
returns At EOF, indicating that all of the data in the local trail has been processed.

SEND EXTRACT group STATUS

8. Stop the data pumps.

STOP EXTRACT group

9. On the target systems, issue the following command for each Replicat until it
returns At EOF.

SEND REPLICAT group STATUS

10. Stop the Replicat groups.

STOP REPLICAT group

11. Copy the updated wallet from the source system to the same location as the old
wallet on all of the target systems.

12. Restart Extract.

START EXTRACT group

13. Restart the data pumps.

START EXTRACT group

14. Restart Replicat.

START REPLICAT group

11.3 Encrypting Data with the ENCKEYS Method
To use this method of data encryption, you configure Oracle GoldenGate to generate
an encryption key and store the key in a local ENCKEYS file. This method makes use of a

Chapter 11
Encrypting Data with the ENCKEYS Method

11-9

permanent key that can only be changed by regenerating the algorithm according to
the instructions in Populating an ENCKEYS File with Encryption Keys. The ENCKEYS file
must be secured through the normal method of assigning file permissions in the
operating system.

This procedure generates an AES encryption key and provides instructions for storing
it in the ENCKEYS file.

• Encrypting the Data with the ENCKEYS Method

• Decrypting the Data with the ENCKEYS Method

• Examples of Data Encryption using the ENCKEYS Method

11.3.1 Encrypting the Data with the ENCKEYS Method
1. Generate an encryption key and store it in the ENCKEYS file. See Populating an

ENCKEYS File with Encryption Keys. Make certain to copy the finished ENCKEYS file
to the Oracle GoldenGate installation directory on any intermediary systems and
all target systems.

2. In the following parameter files, add the following:

• To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAIL parameter before any parameter that
specifies a trail or file that you want to be encrypted. Parameters that specify
trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The syntax is one of
the following:

ENCRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

ENCRYPTTRAIL AES192, KEYNAME keyname

• To encrypt data across TCP/IP: In the RMTHOSTOPTIONS parameter in the
parameter file of the data pump (or the primary Extract, if no pump is being
used), add the ENCRYPT option with the KEYWORD clause. The syntax is one of the
following:

RMTHOSTOPTIONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256 |
BLOWFISH} KEYNAME keyname

RMTHOSTOPTIONS ENCRYPT {AES128 | AES192 | AES256 | BLOWFISH} KEYNAME keyname

Where:

• RMTHOSTOPTIONS is used for Extract. See Using Target System Connection
Initiation for more information about passive Extract.

• ENCRYPTTRAIL without options uses AES128 as the default for all database
types except the iSeries, z/OS, and NonStop platforms, where BLOWFISH is the
default.

• AES128 encrypts with the AES-128 encryption algorithm. Not supported for
iSeries, z/OS, and NonStop platforms.

• AES192 encrypts with AES-192 encryption algorithm. Not supported for iSeries,
z/OS, and NonStop platforms.

• AES256 encrypts with AES-256 encryption algorithm. Not supported for iSeries,
z/OS, and NonStop platforms.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the platform.

Chapter 11
Encrypting Data with the ENCKEYS Method

11-10

Use BLOWFISH for backward compatibility with earlier Oracle GoldenGate
versions, and for DB2 on z/OS, DB2 for i, and SQL/MX on NonStop. AES is
not supported on those platforms.

• KEYNAME keyname specifies the logical look-up name of an encryption key in the
ENCKEYS file. Not an option of ENCRYPTTRAIL.

Note:

RMTHOST is used unless the Extract is in a passive configuration. See
Using Target System Connection Initiation for more information.

3. If using a static Collector with data encrypted over TCP/IP, append the following
parameters in the Collector startup string:

-KEYNAME keyname
-ENCRYPT algorithm

The specified key name and algorithm must match those specified with the KEYNAME
and ENCRYPT options of RMTHOST.

11.3.2 Decrypting the Data with the ENCKEYS Method
Data that is encrypted over TCP/IP connections is decrypted automatically at the
destination before it is written to a trail, unless trail encryption also is specified.

Data that is encrypted in the trail remains encrypted unless the DECRYPTTRAIL parameter
is used. DECRYPTTRAIL is required by Replicat before it can apply encrypted data to the
target. A data pump passes encrypted data untouched to the output trail, unless the
DECRYPTTRAIL and ENCRYPTTRAIL parameters are used. If the data pump must perform
work on the data, decrypt and encrypt the data as follows.

To Decrypt Data for Processing by a Data Pump

Add the DECRYPTTRAIL parameter to the parameter file of the data pump. The decryption
algorithm and key must match the ones that were used to encrypt the trail (see
Encrypting the Data with the ENCKEYS Method).

DECRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

To Encrypt Data After Processing by a Data Pump

To encrypt data before the data pump writes it to an output trail or file, use the
ENCRYPTTRAIL parameter before the parameters that specify those trails or files.
Parameters that specify trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The
ENCRYPTTRAIL parameter and the trail or file specifications must occur after the
DECRYPTTRAIL parameter. See Encrypting the Data with the ENCKEYS Method.

Note:

The algorithm specified with ENCRYPTTRAIL can vary from trail to trail. For
example, you can use AES 128 to encrypt a local trail and AES 256 to
encrypt a remote trail.

Chapter 11
Encrypting Data with the ENCKEYS Method

11-11

To Decrypt Data for Processing by Replicat

If a trail that Replicat reads is encrypted, add a DECRYPTTRAIL parameter statement to
the Replicat parameter file. The decryption algorithm and key must match the ones
that were used to encrypt the trail. See Encrypting the Data with the ENCKEYS
Method.

11.3.3 Examples of Data Encryption using the ENCKEYS Method
The following example shows how to turn encryption on and off for different trails or
files. In this example, Extract writes to two local trails, only one of which must be
encrypted.

In the Extract configuration, trail bb is the non-encrypted trail, so its EXTTRAIL parameter
is placed before the ENCRYPTTRAIL parameter that encrypts trail aa. Alternatively, you
can use the NOENCRYPTTRAIL parameter before the EXTTRAIL parameter that specifies trail
bb and then use the ENCRYPTTRAIL parameter before the EXTTRAIL parameter that
specifies trail aa.

In this example, the encrypted data must be decrypted so that data pump 1pump can
perform work on it. Therefore, the DECRYPTTRAIL parameter is used in the parameter file
of the data pump. To re-encrypt the data for output, the ENCRYPTTRAIL parameter must
be used after DECRYPTTRAIL but before the output trail specification(s). If the data pump
did not have to perform work on the data, the DECRYPTTRAIL and ENCRYPTTRAIL
parameters could have been omitted to retain encryption all the way to Replicat.

Example 11-1 Extract Parameter File

EXTRACT capt
USERIDALIAS ogg
DISCARDFILE /ogg/capt.dsc, PURGE
-- Do not encrypt this trail.
EXTTRAIL /ogg/dirdat/bb
TABLE SALES.*;
-- Encrypt this trail with AES-192.
ENCRYPTTRAIL AES192
EXTTRAIL /ogg/dirdat/aa
TABLE FIN.*;

Example 11-2 Data Pump 1 Parameter File

EXTRACT 1pump
USERIDALIAS ogg
DISCARDFILE /ogg/1pmp.dsc, PURGE
-- Decrypt the trail this pump reads. Use encryption key mykey1.

Chapter 11
Encrypting Data with the ENCKEYS Method

11-12

DECRYPTTRAIL AES192
-- Encrypt the trail this pump writes to, using AES-192.
RMTHOSTOPTIONS myhost1, MGRPORT 7809
ENCRYPTTRAIL AES192
RMTTRAIL /ogg/dirdat/cc
TABLE FIN.*;

Example 11-3 Data pump 2 Parameter File

EXTRACT 2pump
USERIDALIAS ogg
DISCARDFILE /ogg/2pmp.dsc, PURGE
RMTHOST myhost2, MGRPORT 7809
RMTTRAIL /ogg/dirdat/dd
TABLE SALES.*;

Example 11-4 Replicat1 (on myhost1) Parameter File

REPLICAT 1deliv
USERIDALIAS ogg
ASSUMETARGETDEFS
DISCARDFILE /ogg/1deliv.dsc, PURGE
-- Decrypt the trail this Replicat reads. Use encryption key mykey2.
DECRYPTTRAIL AES192
MAP FIN.*, TARGET FIN.*;

Example 11-5 Replicat 2 (on myhost2) parameter file

REPLICAT 2deliv
USERIDALIAS ogg
ASSUMETARGETDEFS
DISCARDFILE /ogg/2deliv.dsc, PURGE
MAP SALES.*, TARGET SALES.*;

11.4 Managing Identities in a Credential Store
This section shows how to use an Oracle GoldenGate credential store to maintain
encrypted database passwords and user IDs and associate them with an alias. It is the
alias, not the actual user ID or password, that is specified in a command or parameter
file, and no user input of an encryption key is required. The credential store is
implemented as an autologin wallet within the Oracle Credential Store Framework
(CSF).

Another benefit of using a credential store is that multiple installations of Oracle
GoldenGate can use the same one, while retaining control over their local credentials.
You can partition the credential store into logical containers known as domains, for
example, one domain per installation of Oracle GoldenGate. Domains enable you to
develop one set of aliases (for example ext for Extract, rep for Replicat) and then
assign different local credentials to those aliases in each domain. For example,
credentials for user ogg1 can be stored as ALIAS ext under DOMAIN system1, while
credentials for user ogg2 can be stored as ALIAS ext under DOMAIN system2.

The credential store security feature is not supported on the iSeries, z/OS, and
NonStop platforms. For those platforms, as well as any other supported platforms, see
Encrypting a Password in a Command or Parameter File.

Using a credential store involves these steps:

• Creating and Populating the Credential Store

Chapter 11
Managing Identities in a Credential Store

11-13

• Specifying the Alias in a Parameter File or Command

• Creating and Populating the Credential Store

• Specifying the Alias in a Parameter File or Command

11.4.1 Creating and Populating the Credential Store
1. (Optional) To store the credential store in a location other than the dircrd

subdirectory of the Oracle GoldenGate installation directory, specify the desired
location with the CREDENTIALSTORELOCATION parameter in the GLOBALS file. (See
Working with the GLOBALS File for more information about the GLOBALS file.)

2. From the Oracle GoldenGate installation directory, run GGSCI.

3. Issue the following command to create the credential store.

ADD CREDENTIALSTORE

4. Issue the following command to add each set of credentials to the credential store.

ALTER CREDENTIALSTORE ADD USER userid,
 [PASSWORD password]
 [ALIAS alias]
 [DOMAIN domain]

Where:

• userid is the user name. Only one instance of a user name can exist in the
credential store unless the ALIAS or DOMAIN option is used.

• password is the password. The password is echoed (not obfuscated) when this
option is used. For security reasons, it is recommended that you omit this
option and allow the command to prompt for the password, so that it is
obfuscated as it is entered.

• alias is an alias for the user name. The alias substitutes for the credential in
parameters and commands where a login credential is required. If the ALIAS
option is omitted, the alias defaults to the user name. If you do not want user
names in parameters or command input, use ALIAS and specify a different
name from that of the user.

• domain is the domain that is to contain the specified alias. The default domain
is Oracle GoldenGate.

For more information about the commands used in this procedure and additional
credential store commands, see Reference for Oracle GoldenGate for Windows and
UNIX.

11.4.2 Specifying the Alias in a Parameter File or Command
The following commands and parameters accept an alias as substitution for a login
credential.

Table 11-1 Specifying Credential Aliases in Parameters and Commands

Purpose of the Credential Parameter or Command to Use

Oracle GoldenGate database login1
USERIDALIAS alias

Chapter 11
Managing Identities in a Credential Store

11-14

Table 11-1 (Cont.) Specifying Credential Aliases in Parameters and Commands

Purpose of the Credential Parameter or Command to Use

Oracle GoldenGate database login for Oracle
ASM instance

TRANLOGOPTIONS ASMUSERALIAS alias

Oracle GoldenGate database login for a
downstream Oracle mining database

TRANLOGOPTIONS MININGUSERALIAS alias

Password substitution for {CREATE | ALTER}
USER name IDENTIFIED BY password

DDLOPTIONS DEFAULTUSERPASSWORDALIAS alias

Oracle GoldenGate database login from
GGSCI

DBLOGIN USERIDALIAS alias

Oracle GoldenGate database login to a
downstream Oracle mining database from
GGSCI

MININGDBLOGIN USERIDALIAS alias

1 Syntax elements required for USERIDALIAS vary by database type. See Reference for Oracle
GoldenGate for Windows and UNIX for more information.

11.5 Encrypting a Password in a Command or Parameter
File

This section shows how to encrypt a database password that is to be specified in a
command or parameter file. This method takes a clear-text password as input and
produces an obfuscated password string and a lookup key, both of which can then be
used in the command or parameter file. This encryption method supports all of the
databases that require a login for an Oracle GoldenGate process to access the
database.

Depending on the database, you may be able to use a credential store as an
alternative to this method. See Managing Identities in a Credential Store.

Using an encrypted password in a command or parameter file involves these steps:

• Encrypting the Password.

• Specifying the Encrypted Password in a Parameter File or Command.

• Encrypting the Password

• Specifying the Encrypted Password in a Parameter File or Command

11.5.1 Encrypting the Password
1. Run GGSCI.

2. Issue the ENCRYPT PASSWORD command.

ENCRYPT PASSWORD password algorithm ENCRYPTKEY {key_name | DEFAULT}

Where:

• password is the clear-text login password. Do not enclose the password within
quotes. If the password is case-sensitive, type it that way.

Chapter 11
Encrypting a Password in a Command or Parameter File

11-15

• algorithm specifies the encryption algorithm to use:

– AES128 uses the AES-128 cipher, which has a key size of 128 bits.

– AES192 uses the AES-192 cipher, which has a key size of 192 bits.

– AES256 uses the AES-256 cipher, which has a key size of 256 bits.

– BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the
platform. Use BLOWFISH for backward compatibility with earlier Oracle
GoldenGate versions, and for DB2 on z/OS, DB2 for i, and SQL/MX on
NonStop. AES is not supported on those platforms.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption
key in the ENCKEYS lookup file. The key name is used to look up the actual key
in the ENCKEYS file. Using a user-defined key and an ENCKEYS file is required for
AES encryption. To create a key and ENCKEYS file, see Populating an
ENCKEYS File with Encryption Keys.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to generate a predefined
Blowfish key. This type of key is insecure and should not be used in a
production environment if the platform supports AES. Use this option only for
DB2 on /OS, DB2 for i, and SQL/MX when BLOWFISH is specified. ENCRYPT
PASSWORD returns an error if AES is used with DEFAULT.

If no algorithm is specified, AES128 is the default for all database types except
DB2 on z/OS and NonStop SQL/MX, where BLOWFISH is the default.

The following are examples of ENCRYPT PASSWORD with its various options.

ENCRYPT PASSWORD mypassword AES256 ENCRYPTKEY mykey1
ENCRYPT PASSWORD mypassword BLOWFISH ENCRYPTKEY mykey1
ENCRYPT PASSWORD mypassword BLOWFISH ENCRYPTKEY DEFAULT

3. The encrypted password is output to the screen when you run the ENCRYPT
PASSWORD command. Copy the encrypted password and then see Specifying the
Encrypted Password in a Parameter File or Command for instructions on pasting it
to a command or parameter.

11.5.2 Specifying the Encrypted Password in a Parameter File or
Command

Copy the encrypted password that you generated with the ENCRYPT PASSWORD command
(see Encrypting a Password in a Command or Parameter File), and then paste it into
the appropriate Oracle GoldenGate parameter statement or command as shown in
Table 11-2. Option descriptions follow the table.

Table 11-2 Specifying Encrypted Passwords in Parameters and Commands

Purpose of the Password Parameter or Command to Use

Oracle GoldenGate database
login1 USERID user, PASSWORD password, &

algorithm ENCRYPTKEY {keyname | DEFAULT}

Chapter 11
Encrypting a Password in a Command or Parameter File

11-16

Table 11-2 (Cont.) Specifying Encrypted Passwords in Parameters and
Commands

Purpose of the Password Parameter or Command to Use

Oracle GoldenGate database login
for Oracle ASM instance

TRANLOGOPTIONS ASMUSER SYS@ASM_instance_name, &
ASMPASSWORD password, &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
for a downstream Oracle mining
database

[MININGUSER {/ | user}[, MININGPASSWORD password]&
[algorithm ENCRYPTKEY {key_name | DEFAULT}]&
[SYSDBA]]

Password substitution for {CREATE
| ALTER} USER name IDENTIFIED
BY password

DDLOPTIONS DEFAULTUSERPASSWORD password &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle TDE shared-secret
password

DBOPTIONS DECRYPTPASSWORD password2 algorithm &
ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
from GGSCI

DBLOGIN USERID user, PASSWORD password, &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
to a downstream Oracle mining
database from GGSCI

MININGDBLOGIN USERID user, PASSWORD password,&
algorithm ENCRYPTKEY {keyname | DEFAULT}

1 Syntax elements required for USERID vary by database type. See Reference for Oracle GoldenGate for
Windows and UNIX for more information.

2 This is the shared secret.

Where:

• user is the database user name for the Oracle GoldenGate process or (Oracle
only) a host string. For Oracle ASM, the user must be SYS.

• password is the encrypted password that is copied from the ENCRYPT PASSWORD
command results.

• algorithm specifies the encryption algorithm that was used to encrypt the
password: AES128, AES192, AES256, or BLOWFISH. AES128 is the default if the default
key is used and no algorithm is specified.

• ENCRYPTKEY keyname specifies the logical name of a user-created encryption key in
the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME keyname
option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if ENCRYPT
PASSWORD was used with the KEYNAME DEFAULT option.

The following are examples of using an encrypted password in parameters and
command:

SOURCEDB db1 USERID ogg,&
PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekey1

Chapter 11
Encrypting a Password in a Command or Parameter File

11-17

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
BLOWFISH, ENCRYPTKEY securekey1

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
BLOWFISH, ENCRYPTKEY DEFAULT

TRANLOGOPTIONS ASMUSER SYS@asm1, &
ASMPASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekey1

DBLOGIN USERID ogg, PASSWORD &
AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekey1

DDLOPTIONS DEFAULTUSERPASSWORD &
AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

DDLOPTIONS PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

11.6 Populating an ENCKEYS File with Encryption Keys
You must generate and store encryption keys when using the following security
features:

• ENCRYPTTRAIL (see Encrypting Data with the ENCKEYS Method)

• ENCRYPT PASSWORD with ENCRYPTKEY keyname (see Encrypting a Password in a
Command or Parameter File)

• RMTHOST or RMTHOSTOPTIONS with ENCRYPT (see Encrypting Data with the ENCKEYS
Method)

In this procedure you will:

• Create one or more encryption keys.

• Store the keys in an ENCKEYS lookup file on the source system.

• Copy the ENCKEYS file to each target system.

You can define your own key or run the Oracle GoldenGate KEYGEN utility to create a
random key.

• Defining Your Own Key

• Using KEYGEN to Generate a Key

• Creating and Populating the ENCKEYS Lookup File

11.6.1 Defining Your Own Key
Use a tool of your choice. The key value can be up to 256 bits (32 bytes) as either of
the following:

• a quoted alphanumeric string (for example "Dailykey")

• a hex string with the prefix 0x (for example 0x420E61BE7002D63560929CCA17A4E1FB)

Chapter 11
Populating an ENCKEYS File with Encryption Keys

11-18

11.6.2 Using KEYGEN to Generate a Key
Change directories to the Oracle GoldenGate home directory on the source system,
and issue the following shell command. You can create multiple keys, if needed. The
key values are returned to your screen. You can copy and paste them into the ENCKEYS
file.

KEYGEN key_length n

Where:

• key_length is the encryption key length, up to 256 bits (32 bytes).

• n represents the number of keys to generate.

Example:

KEYGEN 128 4

11.6.3 Creating and Populating the ENCKEYS Lookup File
1. On the source system, open a new ASCII text file.

2. For each key value that you generated, enter a logical name of your choosing,
followed by the key value itself.

• The key name can be a string of 1 to 24 alphanumeric characters without
spaces or quotes.

• Place multiple key definitions on separate lines.

• Do not enclose a key name or value within quotes; otherwise it will be
interpreted as text.

Use the following sample ENCKEYS file as a guide.

Encryption key name Encryption key value

Key name
superkey
secretkey
superkey1
superkey2
superkey3

Key value
0x420E61BE7002D63560929CCA17A4E1FB
0x027742185BBF232D7C664A5E1A76B040
0x42DACD1B0E94539763C6699D3AE8E200
0x0343AD757A50A08E7F9A17313DBAB045
0x43AC8DCE660CED861B6DC4C6408C7E8A

3. Save the file as the name ENCKEYS in all upper case letters, without an extension, in
the Oracle GoldenGate installation directory.

4. Copy the ENCKEYS file to the Oracle GoldenGate installation directory on every
system. The key names and values in all of the ENCKEYS files must be identical, or
else the data exchange will fail and Extract and Collector will abort with the
following message:

GGS error 118 – TCP/IP Server with invalid data.

Chapter 11
Populating an ENCKEYS File with Encryption Keys

11-19

11.7 Configuring GGSCI Command Security
You can establish command security for Oracle GoldenGate to control which users
have access to which Oracle GoldenGate functions. For example, you can allow
certain users to issue INFO and STATUS commands, while preventing their use of START
and STOP commands. Security levels are defined by the operating system's user
groups.

To implement security for Oracle GoldenGate commands, you create a CMDSEC file in
the Oracle GoldenGate directory. Without this file, access to all Oracle GoldenGate
commands is granted to all users.

Note:

The security of the ggsci program itself is controlled by the security controls
of the operating system.

• Setting Up Command Security

• Securing the CMDSEC File

11.7.1 Setting Up Command Security
1. Open a new ASCII text file.

2. Referring to the following syntax and the example on , create one or more security
rules for each command that you want to restrict, one rule per line. List the rules in
order from the most specific (those with no wildcards) to the least specific. Security
rules are processed from the top of the CMDSEC file downward. The first rule
satisfied is the one that determines whether or not access is allowed.

Separate each of the following components with spaces or tabs.

command_name command_object OS_group OS_user {YES | NO}

Where:

• command_name is a GGSCI command name or a wildcard, for example START or
STOP or *.

• command_object is any GGSCI command object or a wildcard, for example
EXTRACT or REPLICAT or MANAGER.

• OS_group is the name of a Windows or UNIX user group. On a UNIX system,
you can specify a numeric group ID instead of the group name. You can use a
wildcard to specify all groups.

• OS_user is the name of a Windows or UNIX user. On a UNIX system, you can
specify a numeric user ID instead of the user name. You can use a wildcard to
specify all users.

• YES | NO specifies whether access to the command is granted or prohibited.

3. Save the file as CMDSEC (using upper case letters on a UNIX system) in the Oracle
GoldenGate home directory.

Chapter 11
Configuring GGSCI Command Security

11-20

The following example illustrates the correct implementation of a CMDSEC file on a UNIX
system.

Table 11-3 Sample CMDSEC File with Explanations

File Contents Explanation

#GG command security
Comment line

STATUS REPLICAT * Smith NO
STATUS REPLICAT is denied to user Smith.

STATUS * dpt1 * YES
Except for the preceding rule, all users in dpt1 are granted
all STATUS commands.

START REPLICAT root * YES
START REPLICAT is granted to all members of the root
group.

START REPLICAT * * NO
Except for the preceding rule, START REPLICAT is denied
to all users.

* EXTRACT 200 * NO
All EXTRACT commands are denied to all groups with ID of
200.

* * root root YES
Grants the root user any command.

* * * * NO
Denies all commands to all users. This line covers security
for any other users that were not explicitly granted or
denied access by preceding rules. Without it, all
commands would be granted to all users except for
preceding explicit grants or denials.

The following incorrect example illustrates what to avoid when creating a CMDSEC file.

Table 11-4 Incorrect CMDSEC Entries

File Contents Description

STOP * dpt2 * NO
All STOP commands are denied to everyone in group dpt2.

STOP * * Chen YES
All STOP commands are granted to Chen.

The order of the entries in Table 11-4 causes a logical error. The first rule (line 1)
denies all STOP commands to all members of group dpt2. The second rule (line 2)
grants all STOP commands to user Chen. However, because Chen is a member of the
dpt2 group, he has been denied access to all STOP commands by the second rule, even
though he is supposed to have permission to issue them.

The proper way to configure this security rule is to set the user-specific rule before the
more general rule(s). Thus, to correct the error, you would reverse the order of the two
STOP rules.

Chapter 11
Configuring GGSCI Command Security

11-21

11.7.2 Securing the CMDSEC File
The security of the GGSCI program and that of the CMDSEC file is controlled by the
security controls of the operating system. Because the CMDSEC file is a source of
security, it must be secured. You can grant read access as needed, but Oracle
GoldenGate recommends denying write and delete access to everyone but Oracle
GoldenGate Administrators.

11.8 Using Target System Connection Initiation
When a target system resides inside a trusted intranet zone, initiating connections
from the source system (the standard Oracle GoldenGate method) may violate
security policies if the source system is in a less trusted zone. It also may violate
security policies if a system in a less trusted zone contains information about the ports
or IP address of a system in the trusted zone, such as that normally found in an Oracle
GoldenGate Extract parameter file.

In this kind of intranet configuration, you can use a passive-alias Extract configuration.
Connections are initiated from the target system inside the trusted zone by an alias
Extract group, which acts as an alias for a regular Extract group on the source system,
known in this case as the passive Extract. Once a connection between the two
systems is established, data is processed and transferred across the network by the
passive Extract group in the usual way.

Figure 11-1 Connection Initiation from Trusted Network Zone

1. An Oracle GoldenGate user starts the alias Extract on the trusted system, or an
AUTOSTART or AUTORESTART parameter causes it to start.

2. GGSCI on the trusted system sends a message to Manager on the less trusted
system to start the associated passive Extract. The host name or IP address and
port number of the Manager on the trusted system are sent to the less trusted
system.

3. On the less trusted system, Manager starts the passive Extract, and the passive
Extract finds an open port (according to rules in the DYNAMICPORTLIST Manager
parameter) and listens on that port.

4. The Manager on the less trusted system returns that port to GGSCI on the trusted
system.

5. GGSCI on the trusted system sends a request to the Manager on that system to
start a Collector process on that system.

6. The target Manager starts the Collector process and passes it the port number
where Extract is listening on the less trusted system.

Chapter 11
Using Target System Connection Initiation

11-22

7. Collector on the trusted system opens a connection to the passive Extract on the
less trusted system.

8. Data is sent across the network from the passive Extract to the Collector on the
target and is written to the trail in the usual manner for processing by Replicat.

• Configuring the Passive Extract Group

• Configuring the Alias Extract Group

• Starting and Stopping the Passive and Alias Processes

• Managing Extraction Activities

• Other Considerations when using Passive-Alias Extract

11.8.1 Configuring the Passive Extract Group
The passive Extract group on the less trusted source system will be one of the
following, depending on which one is responsible for sending data across the network:

• A solo Extract group that reads the transaction logs and also sends the data to the
target, or:

• A data pump Extract group that reads a local trail supplied by a primary Extract
and then sends the data to the target. In this case, there are no special
configuration requirements for the primary Extract, just the data pump.

To create an Extract group in passive mode, use the standard ADD EXTRACT command
and options, but add the PASSIVE keyword in any location relative to other command
options. Examples:

ADD EXTRACT fin, TRANLOG, BEGIN NOW, PASSIVE, DESC 'passive Extract'
ADD EXTRACT fin, PASSIVE, TRANLOG, BEGIN NOW, DESC 'passive Extract'

To configure parameters for the passive Extract group, create a parameter file in the
normal manner, except:

• Exclude the RMTHOST parameter, which normally would specify the host and port
information for the target Manager.

• Use the optional RMTHOSTOPTIONS parameter to specify any compression and
encryption rules. For information about the RMTHOSTOPTIONS options, see Reference
for Oracle GoldenGate for Windows and UNIX.

For more information about configuring an Extract group, see Configuring Online
Change Synchronization.

11.8.2 Configuring the Alias Extract Group
The alias Extract group on the trusted target does not perform any data processing
activities. Its sole purpose is to initiate and terminate connections to the less trusted
source. In this capacity, the alias Extract group does not use a parameter file nor does
it write processing checkpoints. A checkpoint file is used only to determine whether the
passive Extract group is running or not and to record information required for the
remote connection.

To create an Extract group in alias mode, use the ADD EXTRACT command without any
other options except the following:

Chapter 11
Using Target System Connection Initiation

11-23

ADD EXTRACT group
, RMTHOST {host_name | IP_address}
, MGRPORT port
[, RMTNAME name]
[, DESC 'description']

The RMTHOST specification identifies this group as an alias Extract, and the information
is written to the checkpoint file. The host_name and IP_address options specify the name
or IP address of the source system. MGRPORT specifies the port on the source system
where Manager is running.

The alias Extract name can be the same as that of the passive Extract, or it can be
different. If the names are different, use the optional RMTNAME specification to specify the
name of the passive Extract. If RMTNAME is not used, Oracle GoldenGate expects the
names to be identical and writes the name to the checkpoint file of the alias Extract for
use when establishing the connection.

Error handling for TCP/IP connections is guided by the TCPERRS file on the target
system. It is recommended that you set the response values for the errors in this file to
RETRY. The default is ABEND. This file also provides options for setting the number of
retries and the delay between attempts. For more information about error handling for
TCP/IP and the TCPERRS file, see Handling Processing Errors.

11.8.3 Starting and Stopping the Passive and Alias Processes
To start or stop Oracle GoldenGate extraction in the passive-alias Extract
configuration, you must start or stop the alias Extract group from GGSCI on the target.

START EXTRACT alias_group_name

or,

STOP EXTRACT alias_group_name

The command is sent to the source system to start or stop the passive Extract group.
Do not issue these commands directly against the passive Extract group. You can
issue a KILL EXTRACT command directly for the passive Extract group.

When using the Manager parameters AUTOSTART and AUTORESTART to automatically start
or restart processes, use them on the target system, not the source system. The alias
Extract is started first and then the start command is sent to the passive Extract.

11.8.4 Managing Extraction Activities
Once extraction processing has been started, you can manage and monitor it in the
usual manner by issuing commands against the passive Extract group from GGSCI on
the source system. The standard GGSCI monitoring commands, such as INFO and VIEW
REPORT, can be issued from either the source or target systems. If a monitoring
command is issued for the alias Extract group, it is forwarded to the passive Extract
group. The alias Extract group name is replaced in the command with the passive
Extract group name. For example, INFO EXTRACT alias becomes INFO EXTRACT passive.
The results of the command are displayed on the system where the command was
issued.

Chapter 11
Using Target System Connection Initiation

11-24

11.8.5 Other Considerations when using Passive-Alias Extract
When using a passive-alias Extract configuration, these rules apply:

• In this configuration, Extract can only write to one target system.

• This configuration can be used in an Oracle RAC installation by creating the
Extract group in the normal manner (using the THREADS option to specify the
number of redo threads).

• The ALTER EXTRACT command cannot be used for the alias Extract, because that
group does not do data processing.

• To use the DELETE EXTRACT command for a passive or alias Extract group, issue the
command from the local GGSCI.

• Remote tasks, specified with RMTTASK in the Extract parameter file and used for
some initial load methods, are not supported in this configuration. A remote task
requires the connection to be initiated from the source system and uses a direct
connection between Extract and Replicat.

11.9 Securing Manager
You can use the Manager parameter, ACCESSRULE, to set security access rules for
Manager. It allows GGSCI access from a remote host if you are using passive Extract
or Director. ACCESSRULE controls connection access to the Manager process and the
processes under its control. You can establish multiple rules by specifying multiple
ACCESSRULE statements in the parameter file and control their priority. To establish
priority, you can either list the rules in order from most important to least important, or
you can explicitly set the priority of each rule with the PRI option.

You must specify one of the following options:

IPADDR, login_ID, or PROGRAM

For example, the following access rules have been assigned explicit priority levels
through the PRI option. These rules allow any user to access the Collector process
(the SERVER program), and in addition, allow the IP address 122.11.12.13 to access
GGSCI commands. Access to all other Oracle GoldenGate programs is denied.

ACCESSRULE, PROG *, DENY, PRI 99
ACCESSRULE, PROG SERVER, ALLOW, PRI 1
ACCESSRULE, PROG GGSCI, IPADDR 122.11.12.13, PRI 1

Another example, the following access rule grants access to all programs to the user
JOHN and designates an encryption key to decrypt the password. If the password
provided with PASSWORD matches the one in the ENCKEYS lookup file, connection is
granted.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEAN1, ENCRYPTKEY lookup1

For information about the ACCESSRULE options, see Reference for Oracle GoldenGate
for Windows and UNIX

Chapter 11
Securing Manager

11-25

12
Mapping and Manipulating Data

This chapter describe how you can integrate data between source and target tables.
This chapter includes the following sections:

• Limitations of Support

• Parameters that Control Mapping and Data Integration

• Mapping between Dissimilar Databases

• Deciding Where Data Mapping and Conversion Will Take Place

• Globalization Considerations when Mapping Data

• Mapping Columns

• Selecting and Filtering Rows

• Retrieving Before and After Values

• Selecting Columns

• Selecting and Converting SQL Operations

• Using Transaction History

• Testing and Transforming Data

• Using Tokens

• Limitations of Support

• Parameters that Control Mapping and Data Integration

• Mapping between Dissimilar Databases

• Deciding Where Data Mapping and Conversion Will Take Place

• Globalization Considerations when Mapping Data

• Mapping Columns

• Selecting and Filtering Rows

• Retrieving Before and After Values

• Selecting Columns

• Selecting and Converting SQL Operations

• Using Transaction History

• Testing and Transforming Data

• Using Tokens

12.1 Limitations of Support
The following are limitations to the support of data mapping and manipulation.

12-1

• Oracle GoldenGate does not support the filtering, column mapping, or
manipulation of large objects.

• Some Oracle GoldenGate features and functionality do not support the use of data
filtering and manipulation. Where applicable, this limitation is documented.

12.2 Parameters that Control Mapping and Data Integration
All data selection, mapping, and manipulation that Oracle GoldenGate performs is
accomplished by using one or more options of the TABLE and MAP parameters.

• Use TABLE in the Extract parameter file.

• Use MAP in the Replicat parameter file.

TABLE and MAP specify the database objects that are affected by the other parameters in
the parameter file. See Specifying Object Names in Oracle GoldenGate Input for
instructions for specifying object names in these parameters.

12.3 Mapping between Dissimilar Databases
Mapping and conversion between tables that have different data structures requires
either a source-definitions file, a target-definitions file, or in some cases both. When
used, this file must be specified with the SOURCEDEFS or TARGETDEFS parameter.

This is not applicable if you are using self-describing trail files.

For more information about how to create a source-definitions or target-definitions file,
see Associating Replicated Data with Metadata.

12.4 Deciding Where Data Mapping and Conversion Will
Take Place

If the configuration you are planning involves a large amount of column mapping or
data conversion, observe the following guidelines to determine which process or
processes will perform these functions.

• Mapping and Conversion on Windows and UNIX Systems

• Mapping and Conversion on NonStop Systems

12.4.1 Mapping and Conversion on Windows and UNIX Systems
When Oracle GoldenGate is operating only on Windows-based and UNIX-based
systems, column mapping and conversion can be performed on the source system, on
the target system, or on an intermediary system. To prevent the added overhead of
this processing on the source system, you can configure the mapping and conversion
to be performed on the target system or on an intermediary system.

In the case where there are multiple sources and one target, it might be more efficient
to perform the mapping and conversion on the source. You can use one target-
definitions file generated from the target tables, rather than having to manage an
individual source-definitions file for each source database, which needs to be copied to
the target each time the applications make layout changes.

Chapter 12
Parameters that Control Mapping and Data Integration

12-2

For more information on which types of definitions files to use, and where, see
Associating Replicated Data with Metadata.

12.4.2 Mapping and Conversion on NonStop Systems
If you are mapping or converting data from a Windows or UNIX system to a NonStop
Enscribe target, the mapping or conversion must be performed on the Windows or
UNIX source system. Replicat for NonStop cannot convert three-part or two-part SQL
table names and data types to the three-part file names that are used for the Enscribe
platform. Extract can format the trail data with Enscribe names and target data types.

12.5 Globalization Considerations when Mapping Data
When planning to map and convert data between databases and platforms, take into
consideration what is supported or not supported by Oracle GoldenGate in terms of
globalization. These considerations encompass the following topics:

Conversion between Character Sets

Preservation of Locale

Support for Escape Sequences

• Conversion between Character Sets

• Preservation of Locale

• Support for Escape Sequences

12.5.1 Conversion between Character Sets
Oracle GoldenGate converts between source and target character sets if they are
different, so that object names and column data are compared, mapped, and
manipulated properly from one database to another. See Supported Character Sets,
for a list of supported character sets.

To ensure accurate character representation from one database to another, the
following must be true:

• The character set of the target database must be a superset or equivalent of the
character set of the source database. Equivalent means not equal, but having the
same set of characters. For example, Shift-JIS and EUC-JP technically are not
completely equal, but have the same characters in most cases.

• If your client applications use different character sets, the database character set
must also be a superset or equivalent of the character sets of the client
applications.

In this configuration, every character is represented when converting from a client or
source character set to the local database character set.

A Replicat process can support conversion from one source character set to one
target character set.

• Database Object Names

• Column Data

Chapter 12
Globalization Considerations when Mapping Data

12-3

12.5.1.1 Database Object Names
Oracle GoldenGate processes catalog, schema, table and column names in their
native language as determined by the character set encoding of the source and target
databases. This support preserves single-byte and multibyte names, symbols, accent
characters, and case-sensitivity with locale taken into account where available, at all
levels of the database hierarchy.

12.5.1.2 Column Data
Oracle GoldenGate supports the conversion of column data between character sets
when the data is contained in the following column types:

• Character-type columns: CHAR/VARCHAR/CLOB to CHAR/VARCHAR/CLOB of another
character set; and CHAR/VARCHAR/CLOB to and from NCHAR/NVARCHAR/NCLOB.

• Columns that contain string-based numbers and date-time data. Conversions of
these columns is performed between z/OS EBCDIC and non-z/OS ASCII data.
Conversion is not performed between ASCII and ASCII versions of this data, nor
between EBCDIC and EBCDIC versions, because the data are compatible in
these cases.

Note:

Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to
9999-12-31 23:59:59. If a timestamp is converted from GMT to local time,
these limits also apply to the resulting timestamp. Depending on the
timezone, conversion may add or subtract hours, which can cause the
timestamp to exceed the lower or upper supported limit.

Character-set conversion for column data is limited to a direct mapping of a source
column and a target column in the COLMAP or USEDEFAULTS clauses of the Replicat MAP
parameter. A direct mapping is a name-to-name mapping without the use of a stored
procedure or column-conversion function. Replicat performs the character-set
conversion. No conversion is performed by Extract or a data pump.

If the trail is written by a version of Extract that is prior to version 11.2.1, the character
set for character-type columns must be supplied to Replicat with the SOURCECHARSET
parameter. For more information, see Reference for Oracle GoldenGate for Windows
and UNIX.

12.5.2 Preservation of Locale
Oracle GoldenGate takes the locale of the database into account when comparing
case-insensitive object names. See Supported Locales for a list of supported locales.

12.5.3 Support for Escape Sequences
Oracle GoldenGate supports the use of an escape sequence to represent a string
column, literal text, or object name in the parameter file. You can use an escape
sequence if the operating system does not support the required character, such as a

Chapter 12
Globalization Considerations when Mapping Data

12-4

control character, or for any other purpose that requires a character that cannot be
used in a parameter file.

An escape sequence can be used anywhere in the parameter file, but is particularly
useful in the following elements within a TABLE or MAP statement:

• An object name

• WHERE clause

• COLMAP clause to assign a Unicode character to a Unicode column, or to assign a
native-encoded character to a column.

• Oracle GoldenGate column conversion functions within a COLMAP clause.

Oracle GoldenGate supports the following types of escape sequence:

• \uFFFF Unicode escape sequence. Any UNICODE code point can be used except
surrogate pairs.

• \377 Octal escape sequence

• \xFF Hexadecimal escape sequence

The following rules apply:

• If used for mapping of an object name in TABLE or MAP, no restriction apply. For
example, the following TABLE specification is valid:

TABLE schema."\u3000ABC";

• If used with a column-mapping function, any code point can be used, but only for
an NCHAR/NVARCHAR column. For an CHAR/VARCHAR column, the code point is limited to
the equivalent of 7-bit ASCII.

• The source and target data types must be identical (for example, NCHAR to NCHAR).

• Begin each escape sequence with a reverse solidus (code point U+005C), followed
by the character code point. (A solidus is more commonly known as the backslash
symbol.) Use the escape sequence, instead of the actual character, within your
input string in the parameter statement or column-conversion function.

Note:

To specify an actual backslash in the parameter file, specify a double
backslash. For example, the following finds a backslash in COL1: @STRFIND
(COL1, '\\').

To Use the \uFFFF Unicode Escape Sequence

• The \uFFFF Unicode escape sequence must begin with a lowercase u, followed by
exactly four hexadecimal digits.

• Supported ranges are as follows:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\u20ac is the Unicode escape sequence for the Euro currency sign.

Chapter 12
Globalization Considerations when Mapping Data

12-5

Note:

For reliable cross-platform support, use the Unicode escape sequence. Octal
and hexadecimal escape sequences are not standardized on different
operating systems.

To Use the \377 Octal Escape Sequence

• Must contain exactly three octal digits.

• Supported ranges:

– Range for first digit is 0 to 3 (U+0030 to U+0033)

– Range for second and third digits is 0 to 7 (U+0030 to U+0037)

\200 is the octal escape sequence for the Euro currency sign on Microsoft
Windows

To Use the \xFF Hexadecimal Escape Eequence

• Must begin with a lowercase x followed by exactly two hexadecimal digits.

• Supported ranges:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\x80 is the hexadecimal escape sequence for the Euro currency sign on Microsoft
Windows 1252 Latin1 code page.

12.6 Mapping Columns
Oracle GoldenGate provides for column mapping at the table level and at the global
level. Default column mapping is also provided in the absence of explicit column
mapping rules.

This section contains the following guidelines for mapping columns:

Configuring Table-level Column Mapping with COLMAP

Configuring Global Column Mapping with COLMATCH

Understanding Default Column Mapping

Mapping Data Types from Column to Column

Supporting Case and Special Characters in Column Names

• Supporting Case and Special Characters in Column Names

• Configuring Table-level Column Mapping with COLMAP

• Configuring Global Column Mapping with COLMATCH

• Understanding Default Column Mapping

• Mapping Data Types from Column to Column

Chapter 12
Mapping Columns

12-6

12.6.1 Supporting Case and Special Characters in Column Names
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and
literals. In Oracle GoldenGate parameter files, conversion functions, user exits, and
commands, case-sensitive column names must be enclosed within double quotes if
double quotes are required by the database to enforce case-sensitivity. For other
case-sensitive databases that do not require quotes, case-sensitive column names
must be specified as they are stored in the database. Literals must be enclosed within
single quotes. See Differentiating Case-Sensitive Column Names from Literals for
more information.

12.6.2 Configuring Table-level Column Mapping with COLMAP
Use the COLMAP option of the MAP and TABLE parameters to:

• map individual source columns to target columns that have different names.

• specify default column mapping when an explicit column mapping is not needed.

• Provide instructions for selecting, mapping, translating, and moving data from a
source column into a target column.

• Specifying the Columns to be Mapped in the COLMAP Clause

• Using USEDEFAULTS to Enable Default Column Mapping

• Determining Whether COLMAP Requires a Data-definitions File

12.6.2.1 Specifying the Columns to be Mapped in the COLMAP Clause
The COLMAP syntax is the following:

COLMAP ([USEDEFAULTS,] target_column = source_expression)

In this syntax, target_column is the name of the target column, and source_expression
can be any of the following, allowing you to map the source column by name, so as to
pass the source value exactly as recorded in the trail, or to transform the data before
passing it to the target column:

• The name of a source column, such as ORD_DATE.

• Numeric constant, such as 123.

• String constant enclosed within single quotes, such as 'ABCD'.

• An expression using an Oracle GoldenGate column-conversion function. Within a
COLMAP statement, you can employ any of the Oracle GoldenGate column-
conversion functions to transform data for the mapped columns, for example:

@STREXT (COL1, 1, 3)

If the column mapping involves case-sensitive columns from different database types,
specify each column as it is stored in the database.

• If the database requires double quotes to enforce case-sensitivity, specify the
case-sensitive column name within double quotes.

• If the database is case-sensitive without requiring double quotes, specify the
column name as it is stored in the database.

Chapter 12
Mapping Columns

12-7

The following shows a mapping between a target column in an Oracle database and a
source column in a case-sensitive SQL Server database.

COLMAP ("ColA" = ColA)

See Specifying Object Names in Oracle GoldenGate Input for more information about
specifying names to Oracle GoldenGate.

See Globalization Considerations when Mapping Data for globalization considerations
when mapping source and target columns in databases that have different character
sets and locales.

Avoid using COLMAP to map a value to a key column (which causes the operation to
become a primary key update), The WHERE clause that Oracle GoldenGate uses to
locate the target row will not use the correct before image of the key column. Instead,
it will use the after image. This will cause errors if you are using any functions based
on that key column, such as a SQLEXEC statement, as shown in the following example.

• Source table TCUSTMER1

• Target table TCUSTMER2

• Column layout, both tables:

Column 1 = Cust
Column 2 = Name
Column 3 = City
Column 4 = State

• Primary key consiste of the Cust, Name, and City columns.

• SQLEXEC query in the MAP statement:

SQLEXEC (id mytest, query 'select city from TCUSTMER1 WHERE state = 'CA'',
noparams, ERROR RAISE)

• COLMAP statement in the MAP statement:

COLMAP (usedefaults, city = mytest.city)

This is the sequence of events that causes the error:

1. INSERT statement inserts the following:

INSERT into TCUSTMER1 values (Cust = '1234', Name = 'Ace', City = 'SF', State =
'CA');
Commit;

The SQLEXEC query returns the correct value, and the target table also has a value
of SF for City and CA for State.

mytest.city = 'SF'

2. UPDATE statement changes City from SF to LA on the source. This does not succeed
on the target. The SQLEXEC query looks up the City column in TCUSTMER1 and returns
a value of LA. Based on the COLMAP clause, the before and after versions of City
both are now LA. This generates SQL error 1403 when executing the target WHERE
clause, because a value of LA does not exist for the City column in the target table.

Chapter 12
Mapping Columns

12-8

12.6.2.2 Using USEDEFAULTS to Enable Default Column Mapping
You can use the USEDEFAULTS option of COLMAP to specify automatic default column
mapping for any corresponding source and target columns that have identical names.
USEDEFAULTS can save you time by eliminating the need to map every target column
explicitly.

Default mapping causes Oracle GoldenGate to map those columns and, if required,
translate the data types based on the data-definitions file (see Determining Whether
COLMAP Requires a Data-definitions File). Do not specify default mapping for
columns that are mapped already with an explicit mapping statement.

The following example of a column mapping illustrates the use of both default and
explicit column mapping for a source table ACCTBL and a target table ACCTTAB. Most
columns are the same in both tables, except for the following differences:

• The source table has a CUST_NAME column, whereas the target table has a NAME
column.

• A ten-digit PHONE_NO column in the source table corresponds to separate AREA_CODE,
PHONE_PREFIX, and PHONE_NUMBER columns in the target table.

• Separate YY, MM, and DD columns in the source table correspond to a single
TRANSACTION_DATE column in the target table.

To address those differences, USEDEFAULTS is used to map the similar columns
automatically, while explicit mapping and conversion functions are used for dissimilar
columns.

Table 12-1 Sample Column Mapping

Parameter statement Description

MAP SALES.ACCTBL,
TARGET SALES.ACCTTAB,

Maps the source table ACCTBL to the target table ACCTTAB.

COLMAP(
Begins the COLMAP statement.

USEDEFAULTS,
Maps source columns as-is when the target column names
are identical.

NAME = CUST_NAME,
Maps the source column CUST_NAME to the target column
NAME.

TRANSACTION_DATE =
@DATE ('YYYY-MM-DD', 'YY',
YEAR, 'MM', MONTH, 'DD', DAY),

Converts the transaction date from the source date
columns to the target column TRANSACTION_DATE by using
the @DATE column conversion function.

AREA_CODE =
@STREXT (PHONE_NO, 1, 3),
PHONE_PREFIX =
@STREXT (PHONE_NO, 4, 6),
PHONE_NUMBER =
@STREXT (PHONE_NO, 7, 10))
;

Converts the source column PHONE_NO into the separate
target columns of AREA_CODE, PHONE_PREFIX, and
PHONE_NUMBER by using the @STREXT column conversion
function.

Chapter 12
Mapping Columns

12-9

See Understanding Default Column Mapping for more information about the rules
followed by Oracle GoldenGate for default column mapping.

12.6.2.3 Determining Whether COLMAP Requires a Data-definitions File
When using COLMAP, you might need to create a data-definitions file. To make this
determination, you must consider whether the source and target column structures are
identical, as defined by Oracle GoldenGate.

For source and target structures to be identical, they must:

• be of the same database type, that is, all Oracle.

• have the same character set and locale.

• contain the same number of columns.

• have identical column names (including case, white spaces, and quotes if
applicable).

• have identical data types.

• have identical column lengths.

• have the same column length semantics for character columns (bytes versus
characters).

• define all of the columns in the same order.

When using COLMAP for source and target tables that are not identical in structure, you
must:

• generate data definitions for the source tables, the target tables, or both,
depending on the Oracle GoldenGate configuration and the databases that are
being used.

• transfer the definitions file to the system where they will be used.

• use the SOURCEDEFS parameter to identify the definitions file for Replicat on a target
system or use the TARGETDEFS parameter to identify the definitions file for Extract or
a data pump on a source system or intermediary system.

When using COLMAP for source and target tables that are identical in structure, and you
are only using COLMAP for other functions such as conversion, a source definitions file is
not needed. When a definitions file is not being used, you must use the
ASSUMETARGETDEFS parameter instead, unless you are using self-describing trail files.
See Reference for Oracle GoldenGate for Windows and UNIX for more information.

See Associating Replicated Data with Metadata for more information about using a
definitions file.

12.6.3 Configuring Global Column Mapping with COLMATCH
Use the COLMATCH parameter to create global rules for column mapping. With COLMATCH,
you can map between similarly structured tables that have different column names for
the same sets of data. COLMATCH provides a more convenient way to map columns of
this type than does using table-level mapping with a COLMAP clause in individual TABLE
or MAP statements.

Case-sensitivity is supported as follows:

Chapter 12
Mapping Columns

12-10

• For MySQL, SQL Server, and Teradata, if the database is case-sensitive, COLMATCH
looks for an exact case and name match regardless of whether or not a name is
specified in quotes.

• For Oracle Database and DB2 databases, where names can be either case-
sensitive or case-insensitive in the same database and double quotes are required
to show case-sensitivity, COLMATCH requires an exact case and name match when a
name is in quotes in the database.

See Specifying Object Names in Oracle GoldenGate Input for more information about
case-sensitivity support.

Syntax

COLMATCH
{NAMES target_column = source_column |
PREFIX prefix |
SUFFIX suffix |
RESET}

Table 12-2 COLMATCH Options

Argument Description

NAMES target_column = source_column
Maps based on column names.

Put double quotes around the column name if
it is case-sensitive and the database requires
quotes to enforce case-sensitivity. For these
database types, an unquoted column name is
treated as case-insensitive by Oracle
GoldenGate.

For databases that support case-sensitivity
without requiring quotes, specify the column
name as it is stored in the database.

If the COLMATCH is between columns in different
database types, make certain the names
reflect the appropriate case representation for
each one. For example, the following specifies
a case-sensitive target column name "aBc" in
an Oracle Database and a case-sensitive
source column name aBc in a case-sensitive
SQL Server database.

COLMATCH NAMES "aBc" = aBc

Chapter 12
Mapping Columns

12-11

Table 12-2 (Cont.) COLMATCH Options

Argument Description

PREFIX prefix | SUFFIX suffix
Ignores the specified name prefix or suffix.

Put double quotes around the prefix or suffix if
the database requires quotes to enforce case-
sensitivity, for example "P_". For those
database types, an unquoted prefix or suffix is
treated as case-insensitive.

For databases that support case-sensitivity
without requiring quotes, specify the prefix or
suffix as it is stored in the database. For
example, P_ specifies a capital P prefix.

The following example specifies a case-
insensitive prefix to ignore. The target column
name P_ABC is mapped to source column
name ABC, and target column name P_abc is
mapped to source column name abc.

COLMATCH PREFIX p_

The following example specifies a case-
sensitive suffix to ignore. The target column
name ABC_k is mapped to the source column
name ABC, and the target column name
"abc_k" is mapped to the source column name
"abc".

SUFFIX "_k"

RESET
Turns off previously defined COLMATCH rules for
subsequent TABLE or MAP statements.

The following example illustrates when to use COLMATCH. The source and target tables
are identical except for slightly different table and column names.The database is
case-insensitive.

Table 12-3 COLMATCH Example Table: Source Database

ACCT Table ORD Table

CUST_CODE
CUST_NAME
CUST_ADDR
PHONE
S_REP
S_REPCODE

CUST_CODE
CUST_NAME
ORDER_ID
ORDER_AMT
S_REP
S_REPCODE

Chapter 12
Mapping Columns

12-12

Table 12-4 COLMATCH Example Table: Target Database

ACCOUNT Table ORDER Table

CUSTOMER_CODE
CUSTOMER_NAME
CUSTOMER_ADDRESS
PHONE
REP
REPCODE

CUSTOMER_CODE
CUSTOMER_NAME
ORDER_ID
ORDER_AMT
REP
REPCODE

To map the source columns to the target columns in this example, as well as to handle
subsequent maps for other tables, the syntax is:

COLMATCH NAMES CUSTOMER_CODE = CUST_CODE
COLMATCH NAMES CUSTOMER_NAME = CUST_NAME
COLMATCH NAMES CUSTOMER_ADDRESS = CUST_ADDR
COLMATCH PREFIX S_
MAP SALES.ACCT, TARGET SALES.ACCOUNT, COLMAP (USEDEFAULTS);
MAP SALE.ORD, TARGET SALES.ORDER, COLMAP (USEDEFAULTS);
COLMATCH RESET
MAP SALES.REG, TARGET SALE.REG;
MAP SALES.PRICE, TARGET SALES.PRICE;

Based on the rules in the example, the following occurs:

• Data is mapped from the CUST_CODE columns in the source ACCT and ORD tables to
the CUSTOMER_CODE columns in the target ACCOUNT and ORDER tables.

• The S_ prefix will be ignored.

• Columns with the same names, such as the PHONE and ORDER_AMT columns, are
automatically mapped by means of USEDEFAULTS without requiring explicit rules. See
Understanding Default Column Mapping for more information.

• The previous global column mapping is turned off for the tables REG and PRICE.
Source and target columns in those tables are automatically mapped because all
of the names are identical.

12.6.4 Understanding Default Column Mapping
If an explicit column mapping does not exist, either by using COLMATCH or COLMAP, Oracle
GoldenGate maps source and target columns by default according to the following
rules.

• If a source column is found whose name and case exactly match those of the
target column, the two are mapped.

• If no case match is found, fallback name mapping is used. Fallback mapping
performs a case-insensitive target table mapping to find a name match. Inexact
column name matching is applied using upper cased names.This behavior is
controlled by the GLOBALS parameter NAMEMATCHIGNORECASE. You can disable fallback
name matching with the NAMEMATCHEXACT parameter, or you can keep it enabled but
with a warning message by using the NAMEMATCHNOWARNING parameter.

Chapter 12
Mapping Columns

12-13

• Target columns that do not correspond to any source column take default values
determined by the database.

If the default mapping cannot be performed, the target column defaults to one of the
values shown in Table 12-5.

Table 12-5 Defaults Values for Target Columns

Column Type Value

Numeric Zero (0)

Character or VARCHAR Spaces

Date or Datetime Current date and time

Columns that can take a NULL value Null

12.6.5 Mapping Data Types from Column to Column
The following explains how Oracle GoldenGate maps data types.

• Numeric Columns

• Character-type Columns

• Datetime Columns

12.6.5.1 Numeric Columns
Numeric columns are converted to match the type and scale of the target column. If
the scale of the target column is smaller than that of the source, the number is
truncated on the right. If the scale of the target column is larger than that of the source,
the number is padded with zeros on the right.

You can specify a substitution value for invalid numeric data encountered when
mapping number columns by using the REPLACEBADNUM parameter. See Reference for
Oracle GoldenGate for Windows and UNIX for more information.

12.6.5.2 Character-type Columns
Character-type columns can accept character-based data types such as VARCHAR,
numeric in string form, date and time in string form, and string literals. If the scale of
the target column is smaller than that of the source, the column is truncated on the
right. If the scale of the target column is larger than that of the source, the column is
padded with spaces on the right.

Literals must be enclosed within single quotes.

You can control the response of the Oracle GoldenGate process when a valid code
point does not exist for either the source or target character set when mapping
character columns by using the REPLACEBADCHAR parameter. See Reference for Oracle
GoldenGate for Windows and UNIX for more information.

12.6.5.3 Datetime Columns
Datetime (DATE, TIME, and TIMESTAMP) columns can accept datetime and character
columns, as well as string literals. Literals must be enclosed within single quotes. To

Chapter 12
Mapping Columns

12-14

map a character column to a datetime column, make certain it conforms to the Oracle
GoldenGate external SQL format of YYYY-MM-DD HH:MI:SS.FFFFFF.

Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to 9999-12-31
23:59:59. If a timestamp is converted from GMT to local time, these limits also apply to
the resulting timestamp. Depending on the timezone, conversion may add or subtract
hours, which can cause the timestamp to exceed the lower or upper supported limit.

Required precision varies according to the data type and target platform. If the scale of
the target column is smaller than that of the source, data is truncated on the right. If
the scale of the target column is larger than that of the source, the column is extended
on the right with the values for the current date and time.

12.7 Selecting and Filtering Rows
To filter out or select rows for extraction or replication, use the FILTER and WHERE
clauses of the TABLE and MAP parameters.

The FILTER clause offers you more functionality than the WHERE clause because you can
employ any of the Oracle GoldenGate column conversion functions, whereas the WHERE
clause accepts basic WHERE operators.

• Selecting Rows with a FILTER Clause

• Selecting Rows with a WHERE Clause

• Considerations for Selecting Rows with FILTER and WHERE

12.7.1 Selecting Rows with a FILTER Clause
Use a FILTER clause to select rows based on a numeric value by using basic operators
or one or more Oracle GoldenGate column-conversion functions.

Note:

To filter a column based on a string, use one of the Oracle GoldenGate string
functions or use a WHERE clause.

The syntax for FILTER in a TABLE statement is as follows:

TABLE source_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter_clause);

The sytax for FILTER in a MAP statement is as follows and includes an error-handling
option.

MAP source_table, TARGET target_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
[, RAISEERROR error_number]
, filter_clause);

Chapter 12
Selecting and Filtering Rows

12-15

Valid FILTER clause elements are the following:

• An Oracle GoldenGate column-conversion function. These functions are built into
Oracle GoldenGate so that you can perform tests, manipulate data, retrieve
values, and so forth. See Testing and Transforming Data for more information
about Oracle GoldenGate conversion functions.

• Numbers

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

– Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR

Use the following FILTER options to specify which SQL operations a filter clause
affects. Any of these options can be combined.

ON INSERT | ON UPDATE | ON DELETE IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE

Use the RAISEERROR option of FILTER in the MAP parameter to generate a user-defined
error when the filter fails. This option is useful when you need to trigger an event in
response to the failure.

You can use the @RANGE function to divide the processing workload among multiple
FILTER clauses, using separate TABLE or MAP statements. For example, the following
splits the replication workload into two ranges (between two Replicat processes or two
threads of a coordinated Replicat) based on the ID column of the source acct table.

Table 12-6 Using Multiple FILTER Statements

Parameter file Description

REPERROR (9999, EXCEPTION)
Raises an exception for the specified
error.

Chapter 12
Selecting and Filtering Rows

12-16

Table 12-6 (Cont.) Using Multiple FILTER Statements

Parameter file Description

MAP OWNER.SRCTAB,
TARGET OWNER.TARGTAB,

Starts the MAP statement.

SQLEXEC (ID CHECK, ON UPDATE,
QUERY ' SELECT COUNT FROM TARGTAB '
'WHERE PKCOL = :P1 ',
PARAMS (P1 = PKCOL)),

Performs a query to retrieve the
present value of the COUNT column
whenever an update is encountered.

FILTER (BALANCE > 15000),
Uses a FILTER clause to select rows
where the balance is greater than
15000.

FILTER (ON UPDATE, @BEFORE (COUNT) =
CHECK.COUNT)

Uses another FILTER clause to ensure
that the value of the source COUNT
column before an update matches the
value in the target column before
applying the target update.

;
The semicolon concludes the MAP
statement.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED');

Designates an exceptions MAP
statement. The REPERROR clause for
error 9999 ensures that the exceptions
map to TARGEXC will be executed.

Example 12-1 Calling the @COMPUTE Function

The following example calls the @COMPUTE function to extract records in which the price
multiplied by the amount exceeds 10,000.

MAP SALES.TCUSTORD, TARGET SALES.TORD,
FILTER (@COMPUTE (PRODUCT_PRICE * PRODUCT_AMOUNT) > 10000);

Example 12-2 Calling the @STREQ Function

The following uses the @STREQ function to extract records where the value of a
character column is 'JOE'.

TABLE ACCT.TCUSTORD, FILTER (@STREQ ("Name", 'joe') > 0);

Example 12-3 Selecting Records

The following selects records in which the AMOUNT column is greater than 50 and
executes the filter on UPDATE and DELETE operations.

TABLE ACT.TCUSTORD, FILTER (ON UPDATE, ON DELETE, AMOUNT > 50);

Example 12-4 Using the @RANGE Function

(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 2, ID));

Chapter 12
Selecting and Filtering Rows

12-17

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 2, ID));

You can combine several FILTER clauses in one MAP or TABLE statement, as shown in
Table 12-6, which shows part of a Replicat parameter file. Oracle GoldenGate
executes the filters in the order listed, until one fails or until all are passed. If one filter
fails, they all fail.

12.7.2 Selecting Rows with a WHERE Clause
Use any of the elements in Table 12-7 in a WHERE clause to select or exclude rows (or
both) based on a conditional statement. Each WHERE clause must be enclosed within
parentheses. Literals must be enclosed within single quotes.

Table 12-7 Permissible WHERE Operators

Element Examples

Column names
PRODUCT_AMT

Numeric values
-123, 5500.123

Literal strings
'AUTO', 'Ca'

Built-in column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in the
row). These tests are built into Oracle GoldenGate. See
Considerations for Selecting Rows with FILTER and WHERE.

Comparison operators =, <>, >, <, >=, <=

Conjunctive operators
AND, OR

Grouping parentheses Use open and close parentheses () for logical grouping of multiple
elements.

Oracle GoldenGate does not support FILTER for columns that have a multi-byte
character set or a character set that is incompatible with the character set of the local
operating system.

Arithmetic operators and floating-point data types are not supported by WHERE. To use
more complex selection conditions, use a FILTER clause or a user exit routine. See
Using User Exits to Extend Oracle GoldenGate Capabilities for more information.

The syntax for WHERE is identical in the TABLE and MAP statements:

TABLE table, WHERE (clause);

MAP source_table, TARGET target_table, WHERE (clause);

12.7.3 Considerations for Selecting Rows with FILTER and WHERE
The following suggestions can help you create a successful selection clause.

Chapter 12
Selecting and Filtering Rows

12-18

Note:

The examples in this section assume a case-insensitive database.

• Ensuring Data Availability for Filters

• Comparing Column Values

• Testing for NULL Values

12.7.3.1 Ensuring Data Availability for Filters
If the database only logs values for changed columns to the transaction log, there can
be errors if any of the unchanged columns are referenced by selection criteria. Oracle
GoldenGate ignores such row operations, outputs them to the discard file, and issues
a warning.

To avoid missing-column errors, create your selection conditions as follows:

• Use only primary-key columns as selection criteria, if possible.

• Make required column values available by enabling supplemental logging for those
columns. Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the
TABLE parameter. These options are valid for all supported databases except
SQL/MX. They query the database to fetch the values if they are not present in the
log. To retrieve the values before the FILTER or WHERE clause is executed, include
the FETCHBEFOREFILTER option in the TABLE statement before the FILTER or WHERE
clause. For example:

TABLE DEMO.PEOPLE, FETCHBEFOREFILTER, FETCHCOLS (age), FILTER (age > 50);

• Test for a column's presence first, then for the column's value. To test for a
column's presence, use the following syntax.

column_name {= | <>} {@PRESENT | @ABSENT}

The following example returns all records when the amount column is over 10,000
and does not cause a record to be discarded when amount is absent.

WHERE (amount = @PRESENT AND amount > 10000)

12.7.3.2 Comparing Column Values
To ensure that elements used in a comparison match, compare appropriate column
types:

• Character columns to literal strings.

• Numeric columns to numeric values, which can include a sign and decimal point.

• Date and time columns to literal strings, using the format in which the column is
retrieved by the application.

12.7.3.3 Testing for NULL Values
To evaluate columns for NULL values, use the following syntax.

column {= | <>} @NULL

Chapter 12
Selecting and Filtering Rows

12-19

The following returns TRUE if the column is NULL, and FALSE for all other cases (including
a column missing from the record).

WHERE (amount = @NULL)

The following returns TRUE only if the column is present in the record and not NULL.

WHERE (amount = @PRESENT AND amount <> @NULL)

12.8 Retrieving Before and After Values
For update operations, it can be advantageous to retrieve the before values of source
columns: the values before the update occurred. These values are stored in the trail
and can be used in filters and column mappings. For example, you can:

• Retrieve the before image of a row as part of a column-mapping specification in an
exceptions MAP statement, and map those values to an exceptions table for use in
testing or troubleshooting conflict resolution routines.

• Perform delta calculations. For example, if a table has a Balance column, you can
calculate the net result of a particular transaction by subtracting the original
balance from the new balance, as in the following example:

MAP "owner"."src", TARGET "owner"."targ",
COLMAP (PK1 = PK1, delta = balance – @BEFORE (balance));

Note:

The previous example indicates a case-sensitive database such as
Oracle. The table names are in quote marks to reflect case-sensitivity.

To Reference the Before Value

1. Use the @BEFORE column conversion function with the name of the column for which
you want a before value, as follows:

@BEFORE (column_name)

2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to capture before
images from the transaction record, or use it in the Replicat parameter file to use
the before image in a column mapping or filter. If using the Conflict Resolution and
Detection (CDR) feature, you can use the GETBEFORECOLS option of TABLE. To use
these parameters, all columns must be present in the transaction log. If the
database only logs the values of columns that changed, using the @BEFORE function
may result in a "column missing" condition and the column map is executed as if
the column were not in the record. See Ensuring Data Availability for Filters to
ensure that column values are available.

Oracle GoldenGate also provides the @AFTER function to retrieve after values when
needed for filtering, for use in conversion functions, or other purposes. For more
information about @BEFORE and @AFTER, see Reference for Oracle GoldenGate for
Windows and UNIX.

Chapter 12
Retrieving Before and After Values

12-20

12.9 Selecting Columns
To control which columns of a source table are extracted by Oracle GoldenGate, use
the COLS and COLSEXCEPT options of the TABLE parameter. Use COLS to select columns
for extraction, and use COLSEXCEPT to select all columns except those designated by
COLSEXCEPT.

Restricting the columns that are extracted can be useful when a target table does not
contain the same columns as the source table, or when the columns contain sensitive
information, such as a personal identification number or other proprietary business
information.

12.10 Selecting and Converting SQL Operations
By default, Oracle GoldenGate captures and applies INSERT, UPDATE, and DELETE
operations. You can use the following parameters in the Extract or Replicat parameter
file to control which kind of operations are processed, such as only inserts or only
inserts and updates.

GETINSERTS | IGNOREINSERTS

GETUPDATES | IGNOREUPDATES

GETDELETES | IGNOREDELETES

You can convert one type of SQL operation to another by using the following
parameters in the Replicat parameter file:

• Use INSERTUPDATES to convert source update operations to inserts into the target
table. This is useful for maintaining a transaction history on that table. The
transaction log record must contain all of the column values of the table, not just
changed values. Some databases do not log full row values to their transaction
log, but only values that changed.

• Use INSERTDELETES to convert all source delete operations to inserts into the target
table. This is useful for retaining a history of all records that were ever in the
source database.

• Use UPDATEDELETES to convert source deletes to updates on the target.

12.11 Using Transaction History
Oracle GoldenGate enables you to retain a history of changes made to a target record
and to map information about the operation that caused each change. This history can
be useful for creating a transaction-based reporting system that contains a separate
record for every operation performed on a table, as opposed to containing only the
most recent version of each record.

For example, the following series of operations made to a target table named CUSTOMER
would leave no trace of the ID of Dave. The last operation deletes the record, so there
is no way to find out Dave's account history or his ending balance.

Chapter 12
Selecting Columns

12-21

Table 12-8 Operation History for Table CUSTOMER

Sequence Operation ID BALANCE

1 Insert Dave 1000

2 Update Dave 900

3 Update Dave 1250

4 Delete Dave 1250

Retaining this history as a series of records can be useful in many ways. For example,
you can generate the net effect of transactions.

To Implement Transaction Reporting

1. To prepare Extract to capture before values, use the GETUPDATEBEFORES parameter
in the Extract parameter file. A before value (or before image) is the existing value
of a column before an update is performed. Before images enable Oracle
GoldenGate to create the transaction record.

2. To prepare Replicat to post all operations as inserts, use the INSERTALLRECORDS
parameter in the Replicat parameter file. Each operation on a table becomes a
new record in that table.

3. To map the transaction history, use the return values of the GGHEADER option of the
@GETENV column conversion function. Include the conversion function as the source
expression in a COLMAP statement in the TABLE or MAP parameter.

Using the sample series of transactions shown in Table 12-8 the following parameter
configurations can be created to generate a more transaction-oriented view of
customers, rather than the latest state of the database.

Process Parameter statements

Extract
GETUPDATEBEFORES
TABLE ACCOUNT.CUSTOMER;

Replicat
INSERTALLRECORDS
MAP SALES.CUSTOMER, TARGET SALES.CUSTHIST,
COLMAP (TS = @GETENV ('GGHEADER', 'COMMITTIMESTAMP'),
BEFORE_AFTER = @GETENV ('GGHEADER', 'BEFOREAFTERINDICATOR'),
OP_TYPE = @GETENV ('GGHEADER', 'OPTYPE'),
ID = ID,
BALANCE = BALANCE);

Note:

This is not representative of a complete parameter file for an Oracle
GoldenGate process. Also note that these examples represent a case-
insensitive database.

Chapter 12
Using Transaction History

12-22

This configuration makes possible queries such as the following, which returns the net
sum of each transaction along with the time of the transaction and the customer ID.

SELECT AFTER.ID, AFTER.TS, AFTER.BALANCE - BEFORE.BALANCE
FROM CUSTHIST AFTER, CUSTHIST BEFORE
WHERE AFTER.ID = BEFORE.ID AND AFTER.TS = BEFORE.TS AND
AFTER.BEFORE_AFTER = 'A' AND BEFORE.BEFORE_AFTER = 'B';

12.12 Testing and Transforming Data
Data testing and transformation can be performed by either Extract or Replicat and is
implemented by using the Oracle GoldenGate built-in column-conversion functions
within a COLMAP clause of a TABLE or MAP statement. With these conversion functions,
you can:

• Transform dates.

• Test for the presence of column values.

• Perform arithmetic operations.

• Manipulate numbers and character strings.

• Handle null, invalid, and missing data.

• Perform tests.

This chapter provides an overview of some of the Oracle GoldenGate functions related
to data manipulation. For the complete reference, see Reference for Oracle
GoldenGate for Windows and UNIX.

If you need to use logic beyond that which is supplied by the Oracle GoldenGate
functions, you can call your own functions by implementing Oracle GoldenGate user
exits. See Using User Exits to Extend Oracle GoldenGate Capabilities for more
information about user exits.

Oracle GoldenGate conversion functions take the following general syntax:

Syntax

@function (argument)

Table 12-9 Conversion Function Syntax

Syntax element Description

@function
The Oracle GoldenGate function name.
Function names have the prefix @, as in
@COMPUTE or @DATE. A space between the
function name and the open-parenthesis
before the input argument is optional.

argument
A function argument.

Chapter 12
Testing and Transforming Data

12-23

Table 12-10 Function Arguments

Argument element Example

A numeric constant
123

A string literal enclosed within single quote
marks

'ABCD'

The name of a source column
PHONE_NO or phone_no, or "Phone_No" or
Phone_no

Depends on whether the database is case-
insensitive, is case-sensitive and requires
quote marks to enforce the case, or is case-
sensitive and does not require quotes.

An arithmetic expression
COL2 * 100

A comparison expression
((COL3 > 100) AND (COL4 > 0))

Other Oracle GoldenGate functions
AMOUNT = @IF (@COLTEST (AMT, MISSING,
INVALID), 0, AMT)

• Handling Column Names and Literals in Functions

• Using the Appropriate Function

• Transforming Dates

• Performing Arithmetic Operations

• Manipulating Numbers and Character Strings

• Handling Null, Invalid, and Missing Data

• Performing Tests

12.12.1 Handling Column Names and Literals in Functions
By default, literal strings must be enclosed in single quotes in a column-conversion
function. Case-sensitive column names must be enclosed within double quotes if
required by the database, or otherwise entered in the case in which they are stored in
the database.

12.12.2 Using the Appropriate Function
Use the appropriate function for the type of column that is being manipulated or
evaluated. For example, numeric functions can be used only to compare numeric
values. To compare character values, use one of the Oracle GoldenGate character-
comparison functions. LOB columns cannot be used in conversion functions.

This statement would fail because it uses @IF, which is a numerical function, to
compare string values.

@IF (SR_AREA = 'Help Desk', 'TRUE', 'FALSE')

Chapter 12
Testing and Transforming Data

12-24

The following statement would succeed because it compares a numeric value.

@IF (SR_AREA = 20, 'TRUE', 'FALSE')

See Manipulating Numbers and Character Strings for more information.

Note:

Errors in argument parsing sometimes are not detected until records are
processed. Verify syntax before starting processes.

12.12.3 Transforming Dates
Use the @DATE, @DATEDIF, and @DATENOW functions to retrieve dates and times, perform
computations on them, and convert them.

This example computes the time that an order is filled

Example 12-5 Computing Time

ORDER_FILLED = @DATE (
 'YYYY-MM-DD HH:MI:SS',
 'JTS',
 @DATE ('JTS',
 'YYMMDDHHMISS',
 ORDER_TAKEN_TIME) +
 ORDER_MINUTES * 60 * 1000000)

12.12.4 Performing Arithmetic Operations
To return the result of an arithmetic expression, use the @COMPUTE function. The value
returned from the function is in the form of a string. Arithmetic expressions can be
combinations of the following elements.

• Numbers

• The names of columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

Chapter 12
Testing and Transforming Data

12-25

– <= (less than or equal)

– = (equal)

– <> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-
zero (indicating TRUE).

• Parentheses (for grouping results in the expression)

• The conjunction operators AND, OR. Oracle GoldenGate only evaluates the
necessary part of a conjunction expression. Once a statement is FALSE, the rest of
the expression is ignored. This can be valuable when evaluating fields that may be
missing or null. For example, if the value of COL1 is 25 and the value of COL2 is 10,
then the following are possible:

@COMPUTE ((COL1 > 0) AND (COL2 < 3)) returns 0.
@COMPUTE ((COL1 < 0) AND (COL2 < 3)) returns 0. COL2 < 3 is never evaluated.
@COMPUTE ((COL1 + COL2)/5) returns 7.

• Omitting @COMPUTE

12.12.4.1 Omitting @COMPUTE
The @COMPUTE keyword is not required when an expression is passed as a function
argument.

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The following expression returns the same result as the previous one:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

12.12.5 Manipulating Numbers and Character Strings
To convert numbers and character strings, Oracle GoldenGate supplies the following
functions:

Table 12-11 Conversion Functions for Numbers and Characters

Purpose Conversion Function

Convert a binary or character string to a number. @NUMBIN

@NUMSTR

Convert a number to a string. @STRNUM

Compare strings. @STRCMP

@STRNCMP

Concatenate strings. @STRCAT

@STRNCAT

Extract from a string. @STREXT

@STRFIND

Return the length of a string. @STRLEN

Substitute one string for another. @STRSUB

Convert a string to upper case. @STRUP

Chapter 12
Testing and Transforming Data

12-26

Table 12-11 (Cont.) Conversion Functions for Numbers and Characters

Purpose Conversion Function

Trim leading or trailing spaces, or both. @STRLTRIM

@STRRTRIM

@STRTRIM

12.12.6 Handling Null, Invalid, and Missing Data
When column data is missing, invalid, or null, an Oracle GoldenGate conversion
function returns a corresponding value.

If BALANCE is 1000, but AMOUNT is NULL, the following expression returns NULL:

NEW_BALANCE = @COMPUTE (BALANCE + AMOUNT)

These exception conditions render the entire calculation invalid. To ensure a
successful conversion, use the @COLSTAT, @COLTEST and @IF functions to test for, and
override, the exception condition.

• Using @COLSTAT

• Using @COLTEST

• Using @IF

12.12.6.1 Using @COLSTAT
Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is
missing, null, or invalid. The indicator can be used as part of a larger manipulation
formula that uses additional conversion functions.

The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

The following @IF calculation uses @COLSTAT to return NULL to the target column if PRICE
and QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF ((PRICE < 0) AND (QUANTITY < 0), @COLSTAT (NULL))

12.12.6.2 Using @COLTEST
Use the @COLTEST function to check for the following conditions:

• PRESENT tests whether a column is present and not null.

• NULL tests whether a column is present and null.

• MISSING tests whether a column is not present.

• INVALID tests whether a column is present but contains invalid data.

The following example checks whether the AMOUNT column is present and NULL and
whether it is present but invalid.

@COLTEST (AMOUNT, NULL, INVALID)

Chapter 12
Testing and Transforming Data

12-27

12.12.6.3 Using @IF
Use the @IF function to return one of two values based on a condition. Use it with the
@COLSTAT and @COLTEST functions to begin a conditional argument that tests for one or
more exception conditions and then directs processing based on the results of the test.

NEW_BALANCE = @IF (@COLTEST (BALANCE, NULL, INVALID) OR
@COLTEST (AMOUNT, NULL, INVALID), @COLSTAT (NULL), BALANCE + AMOUNT)

This conversion returns one of the following:

• NULL when BALANCE or AMOUNT is NULL or INVALID

• MISSING when either column is missing

• The sum of the columns.

12.12.7 Performing Tests
The @CASE, @VALONEOF, and @EVAL functions provide additional methods for performing
tests on data before manipulating or mapping it.

• Using @CASE

• Using @VALONEOF

• Using @EVAL

12.12.7.1 Using @CASE
Use @CASE to select a value depending on a series of value tests.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

This example returns the following:

• A car if PRODUCT_CODE is CAR

• A truck if PRODUCT_CODE is TRUCK

• A FIELD_MISSING indication if PRODUCT_CODE fits neither of the other conditions

12.12.7.2 Using @VALONEOF
Use @VALONEOF to compare a column or string to a list of values.

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

In this example, if STATE is CA or NY, the expression returns COAST, which is the response
returned by @IF when the value is non-zero (meaning TRUE).

12.12.7.3 Using @EVAL
Use @EVAL to select a value based on a series of independent conditional tests.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

This example returns the following:

Chapter 12
Testing and Transforming Data

12-28

• high amount if AMOUNT is greater than 10000

• somewhat high if AMOUNT is greater than 5000, and less than or equal to 10000, (unless
the prior condition was satisfied)

• A FIELD_MISSING indication if neither condition is satisfied.

12.13 Using Tokens
You can capture and store data within the user token area of a trail record header.
Token data can be retrieved and used in many ways to customize the way that Oracle
GoldenGate delivers information. For example, you can use token data in:

• Column maps

• Stored procedures called by a SQLEXEC statement

• User exits

• Macros

• Defining Tokens

• Using Token Data in Target Tables

12.13.1 Defining Tokens
To use tokens, you define the token name and associate it with data. The data can be
any valid character data or values retrieved from Oracle GoldenGate column-
conversion functions.

The token area in the record header permits up to 2,000 bytes of data. Token names,
the length of the data, and the data itself must fit into that space.

To define a token, use the TOKENS option of the TABLE parameter in the Extract
parameter file.

Syntax

TABLE table_spec, TOKENS (token_name = token_data [, ...]);

Where:

• table_spec is the name of the source table. A container or catalog name, if
applicable, and an owner name must precede the table name.

• token_name is a name of your choice for the token. It can be any number of
alphanumeric characters and is not case-sensitive.

• token_data is a character string of up to 2000 bytes. The data can be either a string
that is enclosed within single quotes or the result of an Oracle GoldenGate
column-conversion function. The character set of token data is not converted. The
token must be in the character set of the source database for Extract and in the
character set of the target database for Replicat. In the trail file, user tokens are
stored in UTF-8.

TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = @GETENV('GGENVIRONMENT' , 'HOSTNAME'));

Chapter 12
Using Tokens

12-29

As shown in this example, the Oracle GoldenGate @GETENV function is an effective way
to populate token data. This function provides several options for capturing
environment information that can be mapped to tokens and then used on the target
system for column mapping.

12.13.2 Using Token Data in Target Tables
To map token data to a target table, use the @TOKEN column-conversion function in the
source expression of a COLMAP clause in a Replicat MAP statement. The @TOKEN function
provides the name of the token to map. The COLMAP syntax with @TOKEN is:

Syntax

COLMAP (target_column = @TOKEN ('token_name'))

The following MAP statement maps target columns host, gg_group, and so forth to tokens
tk-host, tk-group, and so forth. Note that the arguments must be enclosed within
single quotes.

User tokens Values

tk-host :sysA

tk-group :extora

tk-osuser :jad

tk-domain :admin

tk-ba_ind :B

tk-commit_ts :2011-01-24 17:08:59.000000

tk-pos :3604496

tk-rba :4058

tk-table :oratest

tk-optype :insert

Example 12-6 MAP Statement

MAP ora.oratest, TARGET ora.rpt,
COLMAP (USEDEFAULTS,
host = @token ('tk-host'),
gg_group = @token ('tk-group'),
osuser= @token ('tk-osuser'),
domain = @token ('tk-domain'),
ba_ind= @token ('tk-ba_ind'),
commit_ts = @token ('tk-commit_ts'),
pos = @token ('tk-pos'),

Chapter 12
Using Tokens

12-30

rba = @token ('tk-rba'),
tablename = @token ('tk-table'),
optype = @token ('tk-optype'));

The tokens in this example will look similar to the following within the record header in
the trail:

Chapter 12
Using Tokens

12-31

13
Associating Replicated Data with Metadata

This chapter describes the uses of metadata and how to associate replicated data with
metadata.
This chapter includes the following sections:

• Overview

• Understanding Data Definition Files

• Using Automatic Trail File Recovery

• Configuring Oracle GoldenGate to Use Self-Describing Trail Files

• Configuring Oracle GoldenGate to Assume Identical Metadata

• Configuring Oracle GoldenGate to Assume Dissimilar Metadata

• Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar
Definitions

• Overview

• Understanding Data Definition Files

• Using Automatic Trail File Recovery

• Configuring Oracle GoldenGate to Use Self-Describing Trail Files

• Configuring Oracle GoldenGate to Assume Identical Metadata

• Configuring Oracle GoldenGate to Assume Dissimilar Metadata

• Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar
Definitions

13.1 Overview
When replicating data from one table to another, an important consideration is whether
the column structures (metadata) of the source and target tables are identical. Oracle
GoldenGate looks up metadata for the following purposes:

• On the source, to supply complete information about captured operations to the
Replicat process.

• On the target, to determine the structures of the target tables, so that the
replicated data is correctly mapped and converted (if needed) by Replicat.

In each of the following scenarios, you must use a different parameter or set of
parameters to describe the metadata properly to the Oracle GoldenGate process that
is processing it:

• You are replicating a source table to a target table that has identical metadata
definitions (homogeneous replication).

• You are replicating a source table to a target table that has different metadata
definitions.

13-1

• You are replicating a source table to two target tables, one with identical
definitions and one that has different definitions.

13.2 Understanding Data Definition Files
Oracle GoldenGate can query the local database to get one set of definitions, but it
must rely on a data-definitions file to get definitions from the remote database. The
data-definitions file contains information about the metadata of the data that is being
replicated. There are two types of definitions files:

• A source-definitions file contains the definitions of source tables.

• A target-definitions file contains the definitions of the target tables.

You can use multiple data-definitions files in a parameter file. For example, each one
can contain the definitions for a distinct application.

• Contents of the Definitions File

• Which Definitions File Type to Use, and Where

• Understanding the Effect of Character Sets on Definitions Files

• Using a Definitions Template

• Configuring Oracle GoldenGate to Capture Data-definitions

• Adding Tables that Satisfy a Definitions Template

• Examples of Using a Definitions File

13.2.1 Contents of the Definitions File
The format of a data-definitions file is for internal use and should not be edited by an
Oracle GoldenGate user unless instructed to do so in documented procedures or by a
support representative. The file begins with a file header that shows the version of
DEFGEN, information about character sets, the database type, the locale, and internal
metadata that indicates other data properties. Following the header are the table-
definition sections. Each table-definition section contains a table name, record length,
number of columns, and one or more column definitions.

13.2.2 Which Definitions File Type to Use, and Where
The type of definitions file to use depends on where column mapping and conversion
will be performed.

• When replicating from any type of Windows or UNIX-based database system to
any other Windows or UNIX-based system, the mapping and conversion can be
performed by Extract, a data-pump Extract, or Replicat, but is usually performed
by Replicat on the target system. However, if Oracle GoldenGate must convert
between different character sets, the mapping and conversion must be performed
by Replicat on the target. See Understanding the Effect of Character Sets on
Definitions Files.

• When replicating from any Windows, UNIX, or Linux-based database system to an
Enscribe target on a NonStop system, the mapping and conversion must be
performed on the Windows, UNIX, or Linux system: Only Extract can convert two-
and three-part SQL names and data types to the three-part file names that are
used on the NonStop platform. In this scenario, Oracle GoldenGate cannot convert

Chapter 13
Understanding Data Definition Files

13-2

between source and target character sets. See Understanding the Effect of
Character Sets on Definitions Files.

Therefore:

• To perform column mapping and conversion on the target, use a source-definitions
file that was generated on the source to supply the source definitions to Replicat.

• To perform column mapping and conversion on the source, use a target-definitions
file that was generated on the target to supply target definitions to the primary
Extract or a data-pump Extract, depending on which process does the conversion.

• To perform column mapping or transformation on an intermediary system, you
may need to use multiple definition file types. See Creating a Reporting
Configuration with a Data Pump on an Intermediary System and Creating a
Cascading Reporting Configuration. Note that if there is not a Replicat on the
intermediary system, conversion between character sets cannot be performed.

13.2.3 Understanding the Effect of Character Sets on Definitions Files
Oracle GoldenGate takes into consideration the character set encoding of the
database when performing data conversion, and it takes into consideration the
character set of the local operating system when creating a definitions file. Take the
following guidelines into account when the source and target data have different
character sets.

• Confining Data Mapping and Conversion to the Replicat Process

• Avoiding File Corruptions Due to Operating System Character Sets

• Changing the Character Set of Existing Definitions Files

• Downloading from a z/OS system to another platform

13.2.3.1 Confining Data Mapping and Conversion to the Replicat Process
Replicat is the only process that converts replicated data between different character
sets. It converts data from the source database character set to the target database
character set (or to the character set of the database on an intermediary system in a
cascading configuration). As a result, data mapping and conversion must be
performed by Replicat if source and target character sets are different. It cannot be
performed on a source system, nor on an intermediary system that only contains a
data pump. A target-definitions file is invalid in these cases.

13.2.3.2 Avoiding File Corruptions Due to Operating System Character Sets
By default, DEFGEN writes the definitions file itself in the character set of the local
operating system. A definitions file can be created on the local system and transferred
to the remote system without any encoding-related problems if the following is true:

• The remote system to which you are transferring the definitions file has the same
or equivalent operating-system character set as the local system

• The operating-system character set of the remote system is a subset of the
operating-system character set of the local system, For example, if the source and
target character sets both are ASCII-compatible or EBCDIC-compatible and all
table and column names use only 7-bit US-ASCII or equivalent characters, you
can move the definition file between those systems.

Chapter 13
Understanding Data Definition Files

13-3

Many operating-system character sets have little or no compatibility between them. To
write the definitions file in a character set that is compatible with, or the same as, the
one used by the remote system, use the CHARSET option of the DEFSFILE parameter
when you configure DEFGEN.

13.2.3.3 Changing the Character Set of Existing Definitions Files
In the case of an existing definitions file that is transferred to an operating system with
an incompatible character set, you can run the DEFGEN utility on that system to
convert the character set of the file to the required one. This procedure takes two input
arguments: the name of the definitions file and the UPDATECS character_set parameter.
For example:

defgen ./dirdef/source.def UPDATECS UTF-8

UPDATECS helps in situations such as when a Japanese table name on Japanese
Windows is written in Windows CP932 to the data-definitions file, and then the
definitions file is transferred to Japanese UNIX. The file cannot be used unless the
UNIX is configured in PCK locale. Thus, you must use UPDATECS to convert the
encoding of the definitions file to the correct format.

13.2.3.4 Downloading from a z/OS system to another platform
Definitions files generated on an IBM z/OS platform must be downloaded in BINARY
mode when transferring them to a non-z/OS platform.

13.2.4 Using a Definitions Template
When you create a definitions file, you can specify a definitions template that reduces
the need to create new definitions files when tables are added to the Oracle
GoldenGate configuration after the initial startup. To use a template, all of the new
tables must have identical structures, such as in a customer database where there are
separate but identical tables for each customer (see Rules for Tables to be
Considered Identical).

If you do not use a template and new tables are added after startup, you must
generate a definitions file for each new table that is added to the Oracle GoldenGate
configuration, then copy their contents to the existing master definitions file, and then
restart the process.

13.2.5 Configuring Oracle GoldenGate to Capture Data-definitions
To configure Oracle GoldenGate to use a data-definitions file and template (if needed),
you will:

• Configure DEFGEN

• Run DEFGEN

• Transfer the Definitions File to the Remote System

• Specify the Definitions File

Chapter 13
Understanding Data Definition Files

13-4

Note:

Do not create a data-definitions file for Oracle sequences. It is not
needed and DEFGEN does not support it.

• Configure DEFGEN

• Run DEFGEN

• Transfer the Definitions File to the Remote System

• Specify the Definitions File

13.2.5.1 Configure DEFGEN
Perform these steps on the system from which you want to obtain metadata
definitions.

1. From the Oracle GoldenGate directory, run GGSCI.

2. In GGSCI, issue the following command to create a DEFGEN parameter file.

EDIT PARAMS DEFGEN

3. Enter the parameters listed in Table 13-1 in the order shown, starting a new line
for each parameter statement.

Table 13-1 DEFGEN Parameters

Parameter Description

CHARSET character_set Use this parameter to specify a character set that
DEFGEN will use to read the parameter file. By default,
the character set of the parameter file is that of the local
operating system. If used, CHARSET must be the first line
of the parameter file.

DEFSFILE file_name [APPEND | PURGE] [CHARSET
character_set] [FORMAT RELEASE major.minor]

• APPEND directs DEFGEN to write new content (from
the current run) at the end of any existing content, if
the specified file already exists.

• PURGE directs DEFGEN to purge the specified file
before writing new content from the current run.
This is the default.

• CHARSET generates the definitions file in the
specified character set instead of the default
character set of the operating system.

• FORMAT RELEASE specifies the Oracle GoldenGate
release version of the definitions file. Use when the
definitions file will be read by a process that is in an
earlier version of Oracle GoldenGate than the
DEFGEN process.

Specifies the relative or fully qualified name of the data-
definitions file that is to be the output of DEFGEN.

See Reference for Oracle GoldenGate for Windows and
UNIX for important information about these parameter
options and their effect on character sets.

See Understanding the Effect of Character Sets on
Definitions Files for more information.

Chapter 13
Understanding Data Definition Files

13-5

Table 13-1 (Cont.) DEFGEN Parameters

Parameter Description

[{SOURCEDB | TARGETDB} datasource]
{USERIDALIAS alias | USERID user, PASSWORD
password [encryption_options]}

• SOURCEDB | TARGETDB specifies a data source
name, if required as part of the connection
information. Not required for Oracle.

• USERID user, PASSWORD password
[encryption_options] specifies a user name and
password, with optional encryption options.

• USERIDALIAS supplies database authentication
through credentials stored in the Oracle
GoldenGate credential store.

Specifies database connection information.

The datasource can be a DSN (Datasource Name), a
SQL/MX catalog, or a container of an Oracle container
database (CDB). If connecting to an Oracle container
database, connect to the root container as the common
user if you need to generate definitions for objects in
more than one container. Otherwise, you can connect to
a specific container to generate definitions only for that
container.

For more information about SOURCEDB, USERID, and
USERIDALIAS, including the databases they support, see
Reference for Oracle GoldenGate for Windows and
UNIX.

NOCATALOG Removes the container name (Oracle) or the catalog
name (SQL/MX) from table names before their
definitions are written to the definitions file. Use this
parameter if the definitions file is to be used for mapping
to a database that only supports two-part names
(owner.object).

TABLE [container. | catalog.]owner.table
[, {DEF | TARGETDEF} template];

Where:

• container is a container in an Oracle container
database.

• catalog is a catalog in a SQL/MX database.
• owner is the name of the schema that contains the

table to be defined.
• table is the table that is to be defined.
• [, {DEF | TARGETDEF} template] additionally

creates a definitions template based on the
metadata of this table. This option is not supported
for initial loads. See Reference for Oracle
GoldenGate for Windows and UNIX for information
about this option.

Specifies the fully qualified name of a table or tables for
which definitions will be defined and optionally uses the
metadata of the table as a basis for a definitions
template. Case-sensitivity of both table name and
template name is preserved for case-sensitive
databases. See Specifying Object Names in Oracle
GoldenGate Input for instructions on wildcarding and
case-sensitivity.

Specify a source table(s) if generating a source-
definitions file or a target table(s) if generating a target-
definitions file.

To exclude tables from a wildcard specification, use the
TABLEEXCLUDE parameter.

Note that DEFGEN does not support UDTs.

4. Save and close the file.

5. Exit GGSCI.

13.2.5.2 Run DEFGEN
1. From the directory where Oracle GoldenGate is installed, run DEFGEN using the

following arguments. This example shows a UNIX file system structure.

defgen paramfile dirprm/defgen.prm [reportfile dirrpt/defgen.rpt]
[NOEXTATTR]

Where:

• defgen is the name of the program.

Chapter 13
Understanding Data Definition Files

13-6

• paramfile is a required keyword. dirprm/defgen.prm is the relative or full path
name of the DEFGEN parameter file. (The typical location is shown in the
example.)

• reportfile is a required keyword. dirrpt/defgen.rpt sends output to the
screen and to the designated report file. (The typical location is shown in the
example.) You can omit the reportfile argument to print to the screen only.

• NOEXTATTR can be used to support backward compatibility with Oracle
GoldenGate versions that are older than Release 11.2.1 and do not support
character sets other than ASCII, nor case-sensitivity or object names that are
quoted with spaces. NOEXTATTR prevents DEFGEN from including the database
locale and character set that support the globalization features that were
introduced in Oracle GoldenGate Release 11.2.1. If the table or column name
has multi-byte or special characters such as white spaces, DEFGEN does not
include the table definition when NOEXTATTR is specified. If APPEND mode is used
in the parameter file, NOEXTATTR is ignored, and the new table definition is
appended in the existing file format, whether with the extra attributes or not.

2. Repeat these steps for any additional definitions files that you want to create.

3. Using ASCII mode, FTP the definitions file (or files) from the local Oracle
GoldenGate dirdef sub-directory to the remote dirdef sub-directory.

13.2.5.3 Transfer the Definitions File to the Remote System
Use BINARY mode to FTP the data definitions file to the remote system if the local and
remote operating systems are different and the definitions file is created for the remote
operating system character set. This avoids unexpected characters to be placed in the
file by the FTP program, such as new-line and line-feed characters. Always use BINARY
mode when transferring definitions files from z/OS to a non-z/OS platform.

13.2.5.4 Specify the Definitions File
Associate a data-definitions file with the correct Oracle GoldenGate process in the
following ways:

• Associate a target-definitions file with an Extract group or data pump by using the
TARGETDEFS parameter in the Extract parameter file.

• Associate a source-definitions file with the Replicat group by using the SOURCEDEFS
parameter in the Replicat parameter file.

• If Oracle GoldenGate is to perform mapping or conversion on an intermediary
system that contains neither the source nor target database, associate a source-
definitions file and a target-definitions file with the data pump Extract by using
SOURCEDEFS and TARGETDEFS in the parameter file. For Oracle databases, the Oracle
libraries also must be present on the intermediary system.

See Examples of Using a Definitions File for the correct way to specify multiple
definitions files.

Do not use SOURCEDEFS and ASSUMETARGETDEFS in the same parameter file. See
Configuring Oracle GoldenGate to Assume Identical Metadata for more information
about ASSUMETARGETDEFS.

Chapter 13
Understanding Data Definition Files

13-7

13.2.6 Adding Tables that Satisfy a Definitions Template
To map a new table in the Oracle GoldenGate configuration to a definitions template,
use the following options of the TABLE and MAP parameters, as appropriate:

• DEF to specify the name of a source-definitions template.

• TARGETDEF to specify the name of a target-definitions template.

Because these options direct the Extract or Replicat process to use the same
definitions as the specified template, you need not create a new definitions file for the
new table, nor restart the process.

13.2.7 Examples of Using a Definitions File
This topic contains some basic use cases that include a definitions file.

Creating a Source-definitions file for Use on a Target System

Creating Target-definitions Files for Use on a Source System

Creating Multiple Source Definition Files for Use on a Target System

• Creating a Source-definitions file for Use on a Target System

• Creating Target-definitions Files for Use on a Source System

• Creating Multiple Source Definition Files for Use on a Target System

13.2.7.1 Creating a Source-definitions file for Use on a Target System
The following configuration uses a DEFGEN parameter file that creates a source-
definitions file as output. This example is for tables from an Oracle database.

DEFSFILE C:\ggs\dirdef\record.def
USERIDALIAS ogg
TABLE acct.cust100, DEF custdef;
TABLE ord.*;
TABLE hr.*;

The results of this DEFGEN configuration are:

• Individual definitions by name are created for all tables in the ord and hr schemas.

• A custdef template is created based on table acct.cust100. In the database, there
are other acct.cust* tables, each with identical definitions to acct.cust100.

The tables are mapped in the Replicat parameter file as follows:

-- This is a simplified parameter file. Your requirements may vary.
REPLICAT acctrep
USERIDALIAS ogg
SOURCEDEFS c:\ggs\dirdef\record.def
MAP acct.cust*, TARGET acct.cust*, DEF custdef;
MAP ord.prod, TARGET ord.prod;
MAP ord.parts, TARGET ord.parts;
MAP hr.emp, TARGET hr.emp;
MAP hr.salary, TARGET hr.salary;

Chapter 13
Understanding Data Definition Files

13-8

Note that definitions for tables that satisfy the wildcard specification acct.cust* are
obtained from the custdef template, as directed by the DEF option of the first MAP
statement.

13.2.7.2 Creating Target-definitions Files for Use on a Source System
If target definitions are required for the same tables, those tables can be mapped for a
primary Extract or a data pump.

• Target definitions are required instead of source definitions if the target is an
Enscribe database.

• Target definitions are required in addition to source definitions if mapping and
conversion are to be done on an intermediary system.

The DEFGEN configuration to make the target-definitions file looks similar to the
following:

DEFSFILE C:\ggs\dirdef\trecord.def
USERIDALIAS ogg
TABLE acct.cust100, DEF tcustdef;
TABLE ord.*;
TABLE hr.*;

Note:

See the previous example for the DEFGEN configuration that makes the
source-definitions file.

The Extract configuration looks similar to the following:

-- This is a simplified parameter file. Your requirements may vary.
EXTRACT acctex
USERIDALIAS ogg
RMTHOSTOPTIONS sysb, MGRPORT 7890, ENCRYPT AES192 KEYNAME mykey1
ENCRYPTTRAIL AES192
RMTTRAIL $data.ggsdat.rt
SOURCEDEFS c:\ggs\dirdef\record.def
TARGETDEFS c:\ggs\dirdef\trecord.def
TABLE acct.cust*, TARGET acct.cust*, DEF custdef, TARGETDEF tcustdef;
TABLE ord.prod, TARGET ord.prod;
TABLE ord.parts, TARGET ord.parts;
TABLE hr.emp, TARGET hr.emp;
TABLE hr.salary, TARGET hr.salary;

In this example, the source template named custdef (from the record.def file) and a
target template named tcustdef (from the trecord.def file) are used for the acc.cust*
tables. Definitions for the tables from the ord and hr schemas are obtained from
explicit definitions based on the table names (but a wildcard specification could have
been used here, instead)

13.2.7.3 Creating Multiple Source Definition Files for Use on a Target System
This is a simple example of how to use multiple definitions files. Your parameter
requirements may vary, based on the Oracle GoldenGate topology and database type.

Chapter 13
Understanding Data Definition Files

13-9

The following is the DEFGEN parameter file that creates the first data-definitions file.

DEFSFILE C:\ggs\dirdef\sales.def
USERIDALIAS ogg
TABLE ord.*;

The following is the DEFGEN parameter file that creates the second data-definitions
file. Note the file name and table specification are different from the first one.

DEFSFILE C:\ggs\dirdef\admin.def
USERIDALIAS ogg
TABLE hr.*;

The tables for the first and second definitions file are mapped in the same Replicat
parameter file as follows:

REPLICAT acctrep
USERIDALIAS ogg
SOURCEDEFS c:\ggs\dirdef\sales.def
MAP ord.*, TARGET ord.*;
SOURCEDEFS c:\ggs\dirdef\admin.def
MAP hr.*, TARGET hr.*;

13.3 Using Automatic Trail File Recovery
The trail recovery process has the ability to, in some cases, automatically rebuild trail
files that are corrupt or missing by Oracle GoldenGate. When an Extract pump
restarts, if the last trail that the pump was writing to is missing, then the Extract pump
attempts to rebuild the missing trail file on the target system. This is done
automatically using the checkpoint information for the process and the last valid trail
file. The Replicat process automatically skips over any duplicate data in the trail files
that have been rebuilt by the new trail recovery feature. This recovery will occur as
long as there is at least 1 target trail from this sequence and that the trail files still exist
on the source where the Extract pump is reading them.

This process can also be used to rebuild corrupt or invalid trail files on the target.
Simply delete the corrupt trail file, and any trail files after that, and then restart the
Extract pump. With this new behavior, Oracle recommends that PURGEOLDEXTRACTS
MINKEEP rules are properly configured to ensure that there are trail files from the source
that can be used to rebuild the target environment. This feature requires that Oracle
GoldenGate release 12.1.2.1.8 or greater is used on both the source and target
servers. Do not attempt to start the Replicat with NOFILTERDUPTRANSACTIONS because it
will override Replicat's default behavior and may cause transactions that have already
been applied to the target database to be applied again.

13.4 Configuring Oracle GoldenGate to Use Self-Describing
Trail Files

The default behavior in this release is to store and forward metadata from the source
to the target and encapsulates it in each of the trail files. In other words, a self-
describing Extract trail or file is created by adding the metadata records in each file.
There are two types of metadata records:

• Database Definition Record (DDR)

Chapter 13
Using Automatic Trail File Recovery

13-10

A DDR provides information about a specific database, such as character set and
time zone. A Database Definition Record is added to the trail to store the database
metadata for each pluggable database being captured. All the row change records
from a pluggable database will have character and timestamp with local time zone
data based on the corresponding DDR for that pluggable database. DDRs are
generated for both consolidated and non-consolidated databases.

• Table Definition Record (TDR)

A TDR provides details about the definition about a table and the columns that it
contains. The content of this record is similar to what is provided in a definitions
file, which is a subset of the information found in the file_def and col_def classes.
Each database can embed its own database specific information to each TDR. A
TDR contains a complete table definition and is used to describe many row
change records for the same table. A new TDR is written when the output trail rolls
over to a new file or the source table definition has changed.

It is important to note that a TDR describes the definition of a table object
represented by the row change records. It will be similar though may not be
identical to the table definition in the source. For example, if a column-conversion
function is applied to a source column, the metadata for that value in the database
will be different from the metadata that shows up in a trail file.

The metadata records in a self-describing trail file format operate as follows:

Using self-described trail files eliminates the need for SOURCEDEFS and ASSUMETARGETDEFS
so parameter files are simpler and it is simpler to configure heterogeneous replication
and provides:

Chapter 13
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

13-11

• A reduction in trail file size due to object name compression.

• The ability to extract data from multiple catalogs with different character sets and
time zones into one trail.

• The ability to configure DDL replication among more than two Oracle databases.
There is no need to use the GETREPLICATS, UPDATEMETADATA, and NOTAG parameters.
You can replicate DDLs when source and target tables are not alike and without
having to synchronize Oracle GoldenGate processes .

• No necessity to create and maintain source definitions files.

Understanding the Self-Describing Trail Behavior

When you are modifying the Source Table Definition the following criteria must be met
to update the new TDR into the Extract's memory, as well as the trail file.

Oracle Database Sources
Integrated Extract (with Oracle Database 11.2.0.4 or higher and compatible = 11.2.0.4
or higher): No manual steps are needed because Integrated Extract seamlessly
generates updated metadata records after a DDL is performed on the source table.
This is true irrespective of whether DDL replication is enabled or not.
Classic Extract: The Extract parameter file should include DDL parameter for Extract
to seamlessly generate updated metadata records after a DDL. Alternatively, as in-
releases earlier than 12.2 , DDL should be performed only after Extract has
completely output all the relevant database changes to the trail and is stopped. After
DDL is executed, you must restart the Extract. Unlike previous releases, there is no
need to stop Replicat and regenerate SOURCEDEFS using DEFGEN.

Heterogeneous Database Sources
As in releases earlier than 12.2, DDL should be performed only after Extract has
completely output all the relevant database changes to the trail and is stopped. After
DDL is executed, you must restart the Extract should be restarted. Unlike previous
releases, there is no need to stop Replicat and regenerate SOURCEDEFS using DEFGEN.

• Support Considerations

• Using Self-Describing Trail Files

• Examples of Parameter Files

13.4.1 Support Considerations
Review the following support information:

• Trail File Formats:

– Must be Oracle GoldenGate release 12c (12.2.0.1) or greater to contain
metadata records.

– Cannot generate a 12c (12.2.0.1) trail format with the older trail format in a
multi-trail configuration.

– FORMATASCII, FORMATSQL and FORMATXML trails will not contain metadata records.

• For existing trail file configurations, you can easily switch between the previous
and self-describing extract trail methods of resolving the table metadata by:

– Use the USE_TRAILDEFS GLOBALS parameter to control all pumps and
Replicats.

Chapter 13
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

13-12

– Use the OVERRIDE option of SOURCEDEFS and ASSUMETARGETDEFS to control an
individual pump or Replicat. Oracle does not recommend this.

• Logdump displays the metadata records similar to DEFGEN output.

• Reverse is not supported in the 12c (12.2.0.1) trail format.

• If a table is mapped, the generated TDR is based on the definition of the mapped
table not the source table.

• Metadata in the trail is supported for all databases except HP NonStop (Guardian).

13.4.2 Using Self-Describing Trail Files
Use the USE_TRAILDEFS GLOBALS parameter to enable or disable all pumps and
Replicats. This command usage in relation to the SOURCDEFS and ASSUMETARGETDEF, and
its source table definitions are described as follows.

Figure 13-1 USE_TRAILDEFS | NOUSE_TRAILDEFS USAGE

You must use the OVERRIDE option with the ASSUMETARGETDEFS and SOURCEDEFS
parameters when using self-describing trail files.

13.4.3 Examples of Parameter Files
The following is an example of an Extract parameter file:

EXTRACT ext1
USERID tkggadmin@inst1, password tkggadmin
DDL include objname hr.*, include objname st_hr.*
RMTTRAIL $data/ggs12.2/a1
TABLE hr.*;
TABLE st_hr.salary, TARGET hr.salary, COLMAP (USEDEFAULTS,
 ts = @GETENV('GGHEADER' , 'COMMITTIMESTAMP'));

Chapter 13
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

13-13

RMTTRAIL $data/ggs12.2/a2, NO_OBJECTDEFS
TABLE orders.*;

The following is an example of an Replicat parameter file:

REPLCAT rep1
USERID tkggadmin@inst2, password tkggadmin
DDLERROR default discard
DDL include all
DISCARDFILE ./dirrpt/rep1.dsc purge
MAP hr.*, TARGET hr.*;

13.5 Configuring Oracle GoldenGate to Assume Identical
Metadata

Note:

This section does not apply to self-describing trail files.

When source and target tables have identical metadata definitions, use the
ASSUMETARGETDEFS parameter in the Replicat parameter file. This parameter directs
Replicat to assume that the target definitions are the same as those of the source, and
to apply those definitions to the replicated data when constructing SQL statements.
The source and target tables must be identical in every way, thus needing no
conversion processing, although their catalogs or containers, owners and/or names
can be different.

• Rules for Tables to be Considered Identical

13.5.1 Rules for Tables to be Considered Identical
For source and target structures to be identical, they must:

• be of the same database type, that is, all Oracle.

• have the same character set and locale, for example american_AMERICA.

• contain the same number of columns.

• have identical column names (including case, white spaces, and quotes if
applicable).

• have identical data types.

• have identical column lengths.

• have the same column length semantics for character columns (bytes versus
characters).

• define all of the columns in the same order.

The following is a simple Replicat parameter file that illustrates the use of
ASSUMETARGETDEFS. For more information, see ASSUMETARGETDEFS in Reference for Oracle
GoldenGate for Windows and UNIX.

Chapter 13
Configuring Oracle GoldenGate to Assume Identical Metadata

13-14

-- Specifies the group name.
REPLICAT acctrep
-- Specifies database login with an alias to a credential in the credential store.
USERIDALIAS ogg
-- Specifies a file for discard output.
DISCARDFILE ./dirrpt/backup/r_prod.dsc, APPEND
-- States that source and target definitions are identical.
ASSUMETARGETDEFS
-- Maps source tables to target tables.
MAP hq.product, TARGET region1.product;
MAP hq.price, TARGET region1.price;

When source and target structures are different, use the SOURCEDEFS parameter. See
Configuring Oracle GoldenGate to Assume Dissimilar Metadata. ASSUMETARGETDEFS and
SOURCEDEFS cannot be used in the same parameter file.

13.6 Configuring Oracle GoldenGate to Assume Dissimilar
Metadata

Source and target metadata definitions are not considered identical if they do not meet
the rules in Rules for Tables to be Considered Identical. When source and target table
definitions are dissimilar, Oracle GoldenGate must perform a conversion from one
format to the other. To perform conversions, both sets of definitions must be known to
Oracle GoldenGate.

13.7 Configuring Oracle GoldenGate to Use a Combination
of Similar and Dissimilar Definitions

Note:

This section does not apply to self-describing trail files.

ASSUMETARGETDEFS and SOURCEDEFS can be used in the same parameter file. This can be
done when column mapping or conversion must be performed between some of the
source-target table pairs, but not for other table pairs that are identical.

The following is an example of how to use SOURCEDEFS and ASSUMETARGETDEFS in the
same parameter file. This example builds on the previous examples where tables in
the acct, ord, and hr schemas require SOURCEDEFS, but it adds a rpt schema with tables
that are dynamically created with the name stock appended with a random numerical
value. For Oracle GoldenGate to replicate the DDL as well as the DML, the target
tables must be identical. In that case, ASSUMETARGETDEFS is required.

REPLICAT acctrep
USERIDALIAS ogg
SOURCEDEFS c:\ggs\dirdef\record.def
MAP acct.cust*, TARGET acct.cust*, DEF custdef;
MAP ord.prod, TARGET ord.prod;
MAP ord.parts, TARGET ord.parts;
MAP hr.emp, TARGET hr.emp;
MAP hr.salary, TARGET hr.salary;

Chapter 13
Configuring Oracle GoldenGate to Assume Dissimilar Metadata

13-15

ASSUMETARGETDEFS
MAP rpt.stock, TARGET rpt.stock;

Chapter 13
Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar Definitions

13-16

14
Configuring Online Change
Synchronization

This chapter describes how to configure online change synchronization.
This chapter includes the following sections:

• Overview of Online Change Synchronization

• Choosing Names for Processes and Files

• Creating a Checkpoint Table

• Creating an Online Extract Group

• Creating a Trail

• Creating a Parameter File for Online Extraction

• Creating an Online Replicat Group

• Creating a Parameter File for Online Replication

• Overview of Online Change Synchronization

• Choosing Names for Processes and Files

• Creating a Checkpoint Table

• Creating an Online Extract Group

• Creating a Trail

• Creating a Parameter File for Online Extraction

• Creating an Online Replicat Group

• Creating a Parameter File for Online Replication

14.1 Overview of Online Change Synchronization
Online change synchronization extracts and replicates data changes continuously to
maintain a near real-time target database. The number of Extract and Replicat
processes and trails that you will need depends on the replication topology that you
want to deploy and the process mode that you will be using.

For detailed information about deploying specific replication topologies, see:

• Using Oracle GoldenGate for Live Reporting

• Using Oracle GoldenGate for Real-time Data Distribution

• Configuring Oracle GoldenGate to Maintain a Live Standby Database

• Configuring Oracle GoldenGate for Active-Active High Availability

You may need to configure multiple Replicat processes if you are replicating between
Oracle multitenant container databases or SQL/MX databases that contain multiple
catalogs. One Replicat process can apply to one, and only one, container or catalog.

14-1

In this case, you must configure a Replicat process for each target container or
catalog. To do so, you specify the appropriate target container or catalog with the
TARGETDB parameter in each Replicat parameter file. See Installing and Configuring
Oracle GoldenGate for Oracle Database and Installing and Configuring Oracle
GoldenGate for NonStop SQL/MX for guidelines when capturing from, and applying to,
these databases.

You may need to configure multiple process groups to achieve a certain performance
level. For example, you may want to keep lag below a certain threshold. Lag is the
difference between when changes are made within your source applications and when
those changes are applied to the target database.

Oracle GoldenGate supports up to 5,000 concurrent Extract and Replicat groups per
instance of Oracle GoldenGate Manager. At the supported level, all groups can be
controlled and viewed in full with GGSCI commands such as the INFO and STATUS
commands. Oracle GoldenGate recommends keeping the number of Extract and
Replicat groups (combined) at the default level of 300 or below in order to manage
your environment effectively.

See Tuning the Performance of Oracle GoldenGate for more information about
configuring Oracle GoldenGate for best performance.

• Initial Synchronization

14.1.1 Initial Synchronization
After you configure your change-synchronization groups and trails following the
directions in this chapter, see Instantiating Oracle GoldenGate with an Initial Load to
prepare the target tables for synchronization. An initial load takes a copy of entire
source tables, transforms the data if necessary, and applies it to the target tables so
that the movement of transaction data begins from a synchronized state. The first time
that you start change synchronization should be during the initial synchronization
process. Change synchronization keeps track of ongoing transactional changes while
the load is being applied.

14.2 Choosing Names for Processes and Files
It is helpful to develop consistent naming conventions for the Oracle GoldenGate
processes and files before you start configuration steps. Choosing meaningful names
helps you differentiate among multiple processes and files in displays, error logs, and
external monitoring programs. In addition, it accommodates the naming of additional
processes and files later, as your environment changes or expands.This section
contains instructions for:

• Naming Conventions for Processes

• Choosing File Names

• Naming Conventions for Processes

• Choosing File Names

14.2.1 Naming Conventions for Processes
When specifying a process or group name, follow these rules.

Chapter 14
Choosing Names for Processes and Files

14-2

• For the following types of processes, you can use up to eight characters, including
non-alphanumeric characters such as the underscore (_):

– Online Extract group

– Initial-load Extract

– Online Replicat group created in classic (non-coordinated) mode

– Online Replicat group created in integrated mode (Oracle only)

• For a coordinated Replicat process group, you can use up to five characters,
including non-alphanumeric characters such as the underscore (_). Internally, a
three-character thread ID is appended to the base name for each thread that is
created based on the MAXTHREADS option of the ADD REPLICAT command. The
resulting names cannot be duplicated for any other Replicat group. For example, if
a coordinated Replicat group named fin is created with a MAXTHREADS of 50
threads, the resulting thread names could span from fin000 through fin050,
assuming those are the IDs specified in the MAP statements. Thus, no other
Replicat group can be named fin000 through fin0050. See the following rule for
more information.

• You can include a number in a group name, but it is not recommended that a
name end in any numerals. Understand that using a numeric value at the end of a
group name (such as fin1) can cause duplicate report file names and errors,
because the writing process appends a number to the end of the group name
when generating a report. In addition, ending a group name with numeric values is
not recommended when running Replicat in coordinated mode. Because numeric
thread IDs are appended to a group name internally, if the base group name also
ends in a number it can make the output of informational commands more
complicated to analyze. Thread names could be confused with the names of other
Replicat groups if the numeric appendages satisfy wildcards. Duplicate report file
names also can occur. It may be more practical to put a numeric value at the
beginning of a group name, such as 1_fin, 1fin, and so forth.

• Any character can be used in the name of a process, so long as the character set
of the local operating system supports it, and the operating system allows that
character to be in a file name. This is because a group is identified by its
associated checkpoint file and parameter file.

• The following characters are not allowed in the name of a process:

{\ / : * ? " < > | }

• On HP UX, Linux, and Solaris, it is possible to create a file name with a colon (:) or
an asterisk (*), although it is not recommended.

• In general, process names and parameter file names are not case-sensitive within
Oracle GoldenGate. For example, finance, Finance, and FINANCE are all considered
to be the same. However, on Linux, the process name (and its parameter file
name if explicitly defined in the ADD command) must be all uppercase or all
lowercase. Mixed-case names specified for processes and parameter files will
result in errors when starting the process.

• Use only one word for a name.

• Do not use the word "port" as the full name for a process or parameter file.
However, the string "port" can be part of a name.

Chapter 14
Choosing Names for Processes and Files

14-3

14.2.2 Choosing File Names
Captured data must be processed into a series of files called a trail, where it is stored
for processing by the next Oracle GoldenGate process downstream. The basic
configuration is:

• A local trail on the source system

• A remote trail on the target system

The actual trail name contains only two characters, such as ./dirdat/tr. Oracle
GoldenGate appends this name with a nine-digit sequence number whenever a new
file is created, such as ./dirdat/aa000000002. It is recommended that you establish
naming conventions for trails, because they are linked to Oracle GoldenGate
processes and may need to be identified for the purposes of troubleshooting.

On Windows systems, if the name of any directory in the trail path name begins with a
number, the path must be specified with forward slashes, not backward slashes, when
listing the trail in a parameter file. For more information, see Specifying Filesystem
Path Names in Parameter Files on Windows Systems.

See Overview of Trails for more information about Oracle GoldenGate trails.

14.3 Creating a Checkpoint Table
Replicat maintains checkpoints that provide a known position in the trail from which to
start after an expected or unexpected shutdown. To store a record of its checkpoints,
Replicat uses a checkpoint table in the target database. This enables the Replicat
checkpoint to be included within the Replicat transaction itself, to ensure that a
transaction will only be applied once, even if there is a failure of the Replicat process
or the database process. The checkpoint table remains small because rows are
deleted when no longer needed, and it does not affect database performance. About
Checkpoints for more information about the checkpoint table.

• Options for Creating the Checkpoint Table

• Adjusting for Coordinated Replicat in Oracle RAC

14.3.1 Options for Creating the Checkpoint Table
The checkpoint table can reside in a schema of your choice. Use one that is dedicated
to Oracle GoldenGate if possible.

More than one instance of Oracle GoldenGate (multiple installations) can use the
same checkpoint table. Oracle GoldenGate keeps track of the checkpoints, even if
Replicat group names are the same in different instances.

More than one checkpoint table can be used as needed. For example, you can use
different ones for different Replicat groups.

You can install your checkpoint table(s) in these ways:

• You can specify a default checkpoint table in the GLOBALS file. New Replicat groups
created with the ADD REPLICAT command will use this table automatically, without
requiring any special instructions. See "To Specify a Default Checkpoint Table in
the GLOBALS File" for instructions.

Chapter 14
Creating a Checkpoint Table

14-4

• You can provide specific checkpoint table instructions when you create any given
Replicat group with the ADD REPLICAT command:

– To use a specific checkpoint table for a group, use the CHECKPOINTTABLE
argument of ADD REPLICAT. This checkpoint table overrides any default
specification in the GLOBALS file. If using only one Replicat group, you can use
this command and skip creating the GLOBALS file altogether.

– To omit using a checkpoint table for a group, use the NODBCHECKPOINT argument
of ADD REPLICAT. Without a checkpoint table, Replicat still maintains
checkpoints in a checkpoint file on disk, but you introduce the risk of data
inconsistency.

However you implement the checkpoint table, you must create it in the target database
prior to using the ADD REPLICAT command.

To Add a Checkpoint Table to the Target Database

The following steps, which create the checkpoint table through GGSCI, can be
bypassed by running the chkpt_db_create.sql script instead, where db is an
abbreviation of the database type. By using the script, you can specify custom storage
or other attributes. Do not change the names or attributes of the columns in this table.

1. From the Oracle GoldenGate directory, run GGSCI and issue the DBLOGIN
command to log into the database. The user issuing this command must have
CREATE TABLE permissions. See Reference for Oracle GoldenGate for Windows and
UNIX for the correct syntax to use for your database.

2. In GGSCI, issue the following command to add the checkpoint table to the
database.

ADD CHECKPOINTTABLE [container | catalog] owner.table

Where:

owner.table is the owner and name of the table, container is the name of a PDB if
installing into an Oracle multitenant container database, and catalog is the name
of the catalog if installing into a SQL/MX database. The owner and name can be
omitted if you are using this table as the default checkpoint table and this table is
specified with CHECKPOINTTABLE in the GLOBALS file. The name of this table must not
exceed the maximum length permitted by the database for object names. The
checkpoint table name cannot contain any special characters, such as quotes,
backslash, pound sign, and so forth.

To Specify a Default Checkpoint Table in the GLOBALS File

This procedure specifies a global name for all checkpoint tables in the Oracle
GoldenGate instance. You can override this name for any given Replicat group by
specifying a different checkpoint table when you create the Replicat group.

1. Create a GLOBALS file (or edit the existing one, if applicable). The file name must be
all capital letters on UNIX or Linux systems, without a file extension, and must
reside in the root Oracle GoldenGate directory. You can use an ASCII text editor
to create the file, making certain to observe the preceding naming conventions, or
you can use GGSCI to create and save it with the correct name and location
automatically. When using GGSCI, use the following command, typing GLOBALS in
upper case.

EDIT PARAMS ./GLOBALS

Chapter 14
Creating a Checkpoint Table

14-5

2. Enter the following parameter:

CHECKPOINTTABLE [container. | catalog.]owner.table

Where:

[catalog. | container.]owner.table is the fully qualified name of the default
checkpoint table, including the name of the container if the database is an Oracle
multitenant container database (CDB) or the name of the catalog if the database is
SQL/MX.

3. Note the name of the table, then save and close the GLOBALS file. Make certain the
file was created in the root Oracle GoldenGate directory. If there is a file extension,
remove it.

14.3.2 Adjusting for Coordinated Replicat in Oracle RAC
If the Replicat for which you are creating a checkpoint table will run in an Oracle RAC
configuration, it is recommended that you increase the PCTFREE attribute of the Replicat
checkpoint table to as high a value as possible, as high as 90 if possible. This
accommodates the more frequent checkpointing that is inherent in coordinated
processing. This change must be made before starting the Replicat group for the first
time. See Creating an Online Replicat Group for more information about coordinated
Replicat.

14.4 Creating an Online Extract Group
To create an online Extract group, run GGSCI on the source system and issue the ADD
EXTRACT command. Separate all command arguments with a comma. There are two
syntax forms:

• Syntax to Create a Regular, Passive, or Data Pump Extract Group

• Syntax to Create an Alias Extract Group

Syntax to Create a Regular, Passive, or Data Pump Extract Group

ADD EXTRACT group
{, datasource}
{, BEGIN start_point} | {position_point}
[, PASSIVE]
[, THREADS n]
[, PARAMS pathname]
[, REPORT pathname]
[, DESC 'description']

Where:

• group is the name of the Extract group. A group name is required. See Naming
Conventions for Processes for group naming conventions.

• datasource is required to specify the source of the data to be extracted. Use one of
the following:

– TRANLOG specifies the transaction log as the data source. Use for all databases
except Teradata. When using this option for Oracle Enterprise Edition, you
must issue the DBLOGIN command as the Extract database user (or a user with
the same privileges) before using ADD EXTRACT (and also before issuing DELETE
EXTRACT to remove an Extract group).

Chapter 14
Creating an Online Extract Group

14-6

Use the bsds option for DB2 running on z/OS to specify the Bootstrap Data Set
file name of the transaction log. See Reference for Oracle GoldenGate for
Windows and UNIX for the correct syntax to use for your database.

– INTEGRATED TRANLOG specifies that this Extract will operate in integrated capture
mode to receive logical change records (LCR) from an Oracle Database
logmining server. This parameter applies only to Oracle Databases. For
additional options and information on using integrated capture, see Installing
and Configuring Oracle GoldenGate for Oracle Database.

– VAM specifies that the Extract API known as the Vendor Access Module (VAM).
For Teradata it will interface with the Teradata Access Module (TAM). Use for
Teradata databases, see Installing and Configuring Oracle GoldenGate for
Teradata.

– VAMTRAILSOURCE VAM trail name to specify a VAM trail. Use for Teradata
extraction in maximum protection mode to create a VAM-sort Extract group.
See Installing and Configuring Oracle GoldenGate for Teradata for more
information.

– EXTTRAILSOURCE trail name to specify the relative or fully qualified name of a
local trail. Use to create a data pump. A data pump can be used with any
Oracle GoldenGate extraction method.

• BEGIN start_point defines an online Extract group by establishing an initial
checkpoint and start point for processing. Transactions started before this point
are discarded. Use one of the following:

– NOW to begin extracting changes that are timestamped at the point when the
ADD EXTRACT command is executed to create the group or, for an Oracle Extract
in integrated mode, from the time the group is registered with the REGISTER
EXTRACT command. Do not use NOW for a data pump Extract unless you want to
bypass any data that was captured to the Oracle GoldenGate trail prior to the
ADD EXTRACT statement.

YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact
timestamp as the begin point. Use a begin point that is later than the time at
which replication or logging was enabled.

Note:

Do not use the BEGIN parameter for a Teradata source.

• position_point specifies a specific position within a specific transaction log file at
which to start processing. For the specific syntax to use for your database, see ADD
EXTRACT in Reference for Oracle GoldenGate for Windows and UNIX.

• PASSIVE indicates that the group is a passive Extract. When using PASSIVE, you
must also use an alias Extract. See Configuring Oracle GoldenGate Security for
more information. This option can appear in any order among other ADD EXTRACT
options.

• THREADS n is required only if Extract is operating in classic capture mode in an
Oracle Real Application Cluster (RAC). It specifies the number of redo log threads
being used by the cluster.

Chapter 14
Creating an Online Extract Group

14-7

• PARAMS pathname is required if the parameter file for this group will be stored in a
location other than the dirprm sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

• REPORT pathname is required if the process report for this group will be stored in a
location other than the dirrpt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

• DESC 'description' specifies a description of the group.

Syntax to Create an Alias Extract Group

ADD EXTRACT group
, RMTHOST {host | IP address}
, {MGRPORT port} | {PORT port}
[, RMTNAME name]
[, DESC 'description']

Where:

• RMTHOST identifies this group as an alias Extract and specifies either the DNS name
of the remote host or its IP address.

• MGRPORT specifies the port on the remote system where Manager is running. Use
this option when using a dynamic Collector.

• PORT specifies a static Collector port. Use instead of MGRPORT only if running a static
Collector.

• RMTNAME specifies the passive Extract name, if different from that of the alias
Extract.

• DESC 'description' specifies a description of the group.

Example 14-1 Adding an Extract Group for Log-based Capture

This example creates an Extract group named finance. Extraction starts with records
generated at the time when the group was created.

ADD EXTRACT finance, TRANLOG, BEGIN NOW

Example 14-2 Adding a Primary Extract Group for Teradata

This example creates an Extract group named finance that performs in either Teradata
maximum performance or Teradata maximum protection mode. No BEGIN point is used
for Teradata sources.

ADD EXTRACT finance, VAM

Example 14-3 Adding a VAM-sort Extract Group for Teradata

This example creates a VAM-sort Extract group named finance. The process reads
from VAM trail /ggs/dirdat/vt.

ADD EXTRACT finance, VAMTRAILSOURCE /ggs/dirdat/vt

Example 14-4 Adding a Data-pump Extract Group

This example creates a data-pump Extract group named finance. It reads from the
Oracle GoldenGate trail c:\ggs\dirdat\lt.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt

Chapter 14
Creating an Online Extract Group

14-8

Example 14-5 Adding a Passive Extract Group

This example creates a passive Extract group named finance. Extraction starts with
records generated at the time when the group was created. Because this group is
marked as passive, an alias Extract on the target will initiate connections to this
Extract.

ADD EXTRACT finance, TRANLOG, BEGIN NOW, PASSIVE

Example 14-6 Adding a Passive Data-pump Extract Group

This example creates a data-pump Extract group named finance. This is a passive
data pump Extract that reads from the Oracle GoldenGate trail c:\ggs\dirdat\lt.
Because this data pump is marked as passive, an alias Extract on the target will
initiate connections to it.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt, PASSIVE

Example 14-7 Adding an Alias Extract Group

This example creates an alias Extract group named alias.

ADD EXTRACT alias, RMTHOST sysA, MGRPORT 7800, RMTNAME finance

Example 14-8 Adding a Primary Extract in Integrated Mode for Oracle

This example creates an Extract in integrated capture mode for an Oracle source
database and sets the start point to the time when the Extract group is registered with
the Oracle database by means of the REGISTER EXTRACT command. Integrated capture
is available only for an Oracle database.

ADD EXTRACT finance INTEGRATED TRANLOG, BEGIN NOW

14.5 Creating a Trail
After data has been extracted, it must be processed into one or more trails, where it is
stored for processing by another Oracle GoldenGate process. A trail is a sequence of
files that are created and aged as needed. Processes that read a trail are:

• VAM-sort Extract: Extracts from a local trail that is created as a VAM trail (for
Teradata source databases). For more information, see Installing and Configuring
Oracle GoldenGate for Teradata

• Data-pump Extract: Extracts data from a local trail for further processing, if
needed, and transfers it to the target system.

• Replicat: Reads a trail to apply change data to the target database.

You can create more than one trail to separate the data of different tables or
applications, or to satisfy the requirements of a specific replication topology, such as a
cascading topology. You link tables specified with a TABLE statement to a trail specified
with an EXTTRAIL or RMTTRAIL parameter statement in the Extract parameter file. See
Overview of Trails for conceptual information about Oracle GoldenGate trails.

• Assigning Storage for Oracle GoldenGate Trails

• Estimating Space for the Trails

• Adding a Trail

Chapter 14
Creating a Trail

14-9

14.5.1 Assigning Storage for Oracle GoldenGate Trails
In a typical configuration, there is at least one trail on the source system and one on
the target system. Allocate enough disk space to allow for the following:

• The primary Extract process captures transactional data from the source database
and writes it to the local trail. A data-pump Extract reads that trail and then
transfers the data over the network to a remote trail on the target. If the network
fails, the data pump fails but the primary Extract continues to process data to the
local trail. There must be enough disk space to contain the data accumulation, or
the primary Extract will abend.

• For a trail at the target location, provide enough disk space to handle data
accumulation according to the purge rules set with the PURGEOLDEXTRACTS
parameter. Even with PURGEOLDEXTRACTS in use, data will always accumulate on the
target because it is transferred across the network faster than it can be applied to
the target database.

To prevent trail activity from interfering with business applications, assign a separate
disk or file system to contain the trail files. Trail files can reside on drives that are local
to the Oracle GoldenGate installation, or they can reside on NAS or SAN devices. In
an Oracle cluster, they can reside on ASM or DBFS storage.

14.5.2 Estimating Space for the Trails
The following are guidelines for estimating the amount of disk space that will be
required to store Oracle GoldenGate trail data.

1. Estimate the longest time that the network could be unavailable. Plan to store
enough data to withstand the longest possible outage, because otherwise you will
need to resynchronize the source and target data if the outage outlasts disk
capacity.

2. Estimate how much transaction log volume your business applications generate in
one hour.

3. Use the following formula to calculate the required disk space.

[log volume in one hour] x [number of hours downtime] x .4 = trail disk
space

This equation uses a multiplier of 40 percent because only about 40 percent of the
data in a transaction log is needed by Oracle GoldenGate.

Note:

This formula is a conservative estimate, and you should run tests once
you have configured Oracle GoldenGate to determine exactly how much
space you need.

Chapter 14
Creating a Trail

14-10

14.5.3 Adding a Trail
When you create, or add, a trail, you do not physically create any files on disk. The
files are created automatically by an Extract process. Rather, you specify the name of
the trail and associate it with the Extract group that writes to it.

To add a trail, issue the following command in GGSCI on the source system.

ADD {RMTTRAIL | EXTTRAIL} pathname, EXTRACT group
[, MEGABYTES n]

Where:

• RMTTRAIL specifies a trail on a remote system.

• EXTTRAIL specifies a trail on the local system.

– EXTTRAIL cannot be used for an Extract in PASSIVE mode.

– EXTTRAIL must be used to specify a local trail that is read by a data pump or to
specify a VAM trail that is linked to a primary Extract which interacts with a
Teradata Access Module (TAM). For more information about the Teradata
configuration, see Installing and Configuring Oracle GoldenGate for Teradata

• pathname is the relative or fully qualified name of the trail, including a two-character
name that can be any two alphanumeric characters, for example c:\ggs\dirdat\rt.
Oracle GoldenGate appends a serial number to each trail file as it is created
during processing. Typically, trails are stored in the dirdat sub-directory of the
Oracle GoldenGate directory.

• EXTRACT group specifies the name of the Extract group that writes to this trail. Only
one Extract group can write to a trail.

• MEGABYTES n is an optional argument with which you can set the size, in megabytes,
of each trail file (default is 100).

Example 14-9 VAM Trail

This example creates a VAM trail named /ggs/dirdat/vt for Extract group extvam.

ADD EXTTRAIL /ggs/dirdat/vt, EXTRACT extvam

Example 14-10 Local Trail

This example creates a local trail named /ggs/dirdat/lt for Extract group ext.

ADD EXTTRAIL /ggs/dirdat/lt, EXTRACT ext

Example 14-11 Creating a Trail

This example creates a trail named c:\ggs\dirdat\rt for Extract group finance, with
each file sized at approximately 50 megabytes.

ADD RMTTRAIL c:\ggs\dirdat\rt, EXTRACT finance, MEGABYTES 200

14.6 Creating a Parameter File for Online Extraction
Follow these instructions to create a parameter file for an online Extract group. A
parameter file is not required for an alias Extract group. See Configuring Oracle
GoldenGate Security for more information about using an alias Extract group.

Chapter 14
Creating a Parameter File for Online Extraction

14-11

1. In GGSCI on the source system, issue the following command.

EDIT PARAMS name

Where:

name is either the name of the Extract group that you created with the ADD EXTRACT
command or the fully qualified name of the parameter file if you defined an
alternate location when you created the group.

2. Enter the parameters in Table 14-1 in the order shown, starting a new line for each
parameter statement. Some parameters apply only for certain configurations.

Table 14-1 Online Change-extraction Parameters

Parameter Description

EXTRACT group

• group is the name of the Extract group that
you created with the ADD EXTRACT command.

Configures Extract as an online process with checkpoints.

[SOURCEDB dsn | container | catalog]
[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source datasource name (DSN) or
SQL/MX catalog. See Reference for Oracle GoldenGate for
Windows and UNIX for more information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security for
more information about security options.

The database connection can be omitted if the group is a data
pump on an intermediary system that does not have a
database. In this case, there can be no column mapping or
conversion performed.

RMTHOSTOPTIONS host,
MGRPORT port,
[, ENCRYPT algorithm KEYNAME key_name]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP. Only
required when sending data over IP to a remote system (if ADD
RMTTRAIL was used to create the trail). Not required if the trail
is on the local system (if ADD EXTTRAIL was used). See
Configuring Oracle GoldenGate Security for more information
about security options.

Not valid for a primary Extract group that interfaces with a
Teradata Access Module and writes to a VAM trail. For more
information, see Installing and Configuring Oracle GoldenGate
for Teradata.

Not valid for a passive Extract group.

ENCRYPTTRAIL algorithm Encrypts all trails that are specified after this entry. See
Configuring Oracle GoldenGate Security for more information
about security options.

DECRYPTTRAIL (For a data pump) Decrypts the data in the input trail. Use only
if the data pump must process the data before writing it to the
output trail. See Configuring Oracle GoldenGate Security for
more information about security options.

Chapter 14
Creating a Parameter File for Online Extraction

14-12

Table 14-1 (Cont.) Online Change-extraction Parameters

Parameter Description

RMTTRAIL pathname |
EXTTRAIL pathname

• Use RMTTRAIL to specify the relative or fully
qualified name of a remote trail created with
the ADD RMTTRAIL command.

• Use EXTTRAIL to specify the relative or fully
qualified name of a local trail created with the
ADD EXTTRAIL command (to be read by a data
pump or VAM-sort Extract).

Specifies a trail. If specifying multiple trails, follow each
designation with the appropriate TABLE statements.

EXTTRAIL is not valid for a passive Extract group.

If trails or files will be of different versions, use the FORMAT
option of RMTTRAIL or EXTTRAIL. For more information, see
Reference for Oracle GoldenGate for Windows and UNIX.

DSOPTIONS {
COMMITTEDTRANLOG, RESTARTAPPEND |
CREATETRANLOG |
SORTTRANLOG
}

Valid only for Teradata extraction.

• Use COMMITTEDTRANLOG, RESTART APPEND to indicate that
Extract is receiving fully committed data in Teradata
maximum performance mode. RESTARTAPPEND appends
data to the end of the Oracle GoldenGate trail rather than
rewriting data from a previous run.

• Use CREATETRANLOG to direct Extract to create and write to
a local VAM trail in Teradata maximum protection mode.
Use for a primary Extract group that interfaces with the
Teradata Access Module.

• Use SORTTRANLOG to cause Extract to read from a local
VAM trail and sort the data in commit order in maximum
protection mode. Use only for a VAM-sort Extract group.

For more information about the Teradata configuration, see
Installing and Configuring Oracle GoldenGate for Teradata.

LOGALLSUPCOLS Use when using integrated Replicat for an Oracle target, or
when using Conflict Detection and Resolution (CDR) support.
Writes the before images of scheduling columns to the trail.
(Scheduling columns are primary key, unique index, and
foreign key columns.) See Installing and Configuring Oracle
GoldenGate for Oracle Database for more information on
configuring integrated Replicat. See Reference for Oracle
GoldenGate for Windows and UNIX for more information about
LOGALLSUPCOLS.

VAM library,
PARAMS ('param'
[, 'param'] [, ...])

Valid only for an Extract group that interfaces with a Teradata
Access Module. Supplies the name of the library and
parameters that must be passed to the Oracle GoldenGate
API, such as the name of the TAM initialization file and the
program that interacts with the library as the callback library.

Example:

VAM vam.dll, PARAMS ('inifile', 'vamerge1.ini',
'callbacklib', 'extract.exe')

See Installing and Configuring Oracle GoldenGate for
Teradata for more information about Teradata VAM and TAM.

Chapter 14
Creating a Parameter File for Online Extraction

14-13

Table 14-1 (Cont.) Online Change-extraction Parameters

Parameter Description

SOURCECATALOG Specifies a default container in an Oracle multitenant container
database or a default SQL/MX catalog for subsequent TABLE
or SEQUENCE statements. Enables the use of two-part names
(schema.object) where three-part names otherwise would be
required for those databases. You can use multiple instances
of this parameter to specify different default containers or
catalogs for different sets of TABLE or SEQUENCE parameters.

SEQUENCE [container.]owner.sequence; Specifies the fully qualified name of an Oracle sequence to
capture. Include the container name if the database is a
multitenant container database (CDB).

TABLE [container. | catalog.]owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If the
database is an Oracle multitenant container database or
SQL/MX, the object name must include the name of the
container or catalog unless SOURCECATALOG is used. See
Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another
to exclude specific objects from a wildcard specification in the
associated TABLE statement. See Reference for Oracle
GoldenGate for Windows and UNIX for details.

3. Enter any appropriate optional Extract parameters listed in the Reference for
Oracle GoldenGate for Windows and UNIX.

4. Save and close the parameter file.

14.7 Creating an Online Replicat Group
Before creating a Replicat group, you should evaluate which of the Replicat modes is
appropriate for your environment: classic mode (also known as nonintegrated mode in
Oracle environments), coordinated mode, and integrated mode.

About Classic Replicat Mode

About Coordinated Replicat Mode

About Integrated Replicat Mode

• About Classic Replicat Mode

• About Coordinated Replicat Mode

• About Integrated Replicat Mode

• Understanding Replicat Processing in Relation to Parameter Changes

• Creating the Replicat Group

14.7.1 About Classic Replicat Mode
In classic mode, Replicat is a single-threaded process that uses standard SQL to
apply data to the target tables. In this mode, Replicat operates as follows:

Chapter 14
Creating an Online Replicat Group

14-14

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL
transactions (in committed order).

• Applies the SQL to the target through the SQL interface that is supported for the
given target database, such as ODBC or the native database interface.

Figure 14-1 Classic Replicat

As shown in Figure 14-1, you can apply transactions in parallel with a classic Replicat,
but only by partitioning the workload across multiple Replicat processes. A parameter
file must be created for each Replicat.

To determine whether to use classic mode for any objects, you must determine
whether the objects in one Replicat group will ever have dependencies on objects in
any other Replicat group, transactional or otherwise. Not all workloads can be
partitioned across multiple Replicat groups and still preserve the original transaction
atomicity. For example, tables for which the workload routinely updates the primary
key cannot easily be partitioned in this manner. DDL replication (if supported for the
database) is not viable in this mode, nor is the use of some SQLEXEC or EVENTACTIONS
features that base their actions on a specific record.

If your tables do not have any foreign- key dependencies or updates to primary keys,
classic mode may be suitable. Classic mode requires less overhead than coordinated
mode.

For more information about using parallel Replicat groups, see Tuning the
Performance of Oracle GoldenGate.

14.7.2 About Coordinated Replicat Mode
In coordinated mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL
transactions (in committed order).

• Applies the SQL to the target through the SQL interface that is supported for the
given target database, such as ODBC or the native database interface.

The difference between classic mode and coordinated mode is that Replicat is multi-
threaded in coordinated mode. Within a single Replicat instance, multiple threads read
the trail independently and apply transactions in parallel. Each thread handles all of
the filtering, mapping, conversion, SQL construction, and error handling for its

Chapter 14
Creating an Online Replicat Group

14-15

assigned workload. A coordinator thread coordinates the transactions across threads
to account for dependencies among the threads.

Coordinated Replicat allows for user-defined partitioning of the workload so as to apply
high volume transactions concurrently. In addition, it automatically coordinates the
execution of transactions that require coordination, such as DDL, and primary key
updates with THREADRANGE partitioning. Such a transaction is executed as one
transaction in the target with full synchronization: it waits until all prior transactions are
applied first, and all transactions after this barrier transaction have to wait until this
barrier transaction is applied.

Only one parameter file is required for a coordinated Replicat, regardless of the
number of threads. You use the THREAD or THREADRANGE option in the MAP statement to
specify which threads process the transactions for those objects, and you specify the
maximum number of threads when you create the Replicat group.

Figure 14-2 Coordinated Replicat

• About Barrier Transactions

• How Barrier Transactions are Processed

• About the Global Watermark

14.7.2.1 About Barrier Transactions
Barrier transactions are managed automatically in a coordinated Replicat
configuration. Barrier transactions are transactions that require coordination across
threads. Examples include DDL statements, transactions that include updates to
primary keys, and certain EVENTACTIONS actions.

Optionally, you can force other transactions to be treated like a barrier transaction
through the use of the COORDINATED keyword in a MAP statement. One use case for this
would be force a SQLEXEC to be executed in a manner similar to a serial execution. This
could be beneficial if the results can become ambiguous unless the state of the target
is consistent across all transactions.

14.7.2.2 How Barrier Transactions are Processed
All threads converge and wait at the start of a barrier transaction. The barrier
transaction is suspended until the other threads reach its start position. If any threads
were already processing part of the barrier transaction, those threads perform a
rollback. Grouped transactions, such as those controlled by the BATCHSQL or
GROUPTRANSOPS parameters, are also rolled back and then reapplied until they reach the
start of the barrier transaction.

All of the threads converge and wait at the start of the next transaction after the barrier
transaction as well. The two synchronization points, before and after the barrier

Chapter 14
Creating an Online Replicat Group

14-16

transaction, ensure that metadata operations and EVENTACTIONS actions all occur in the
proper order relevant to the data operations.

Once the threads are synchronized at the start of the barrier transaction, the barrier
transaction is processed serially by the thread that has the lowest thread ID among all
of the threads specified in the MAP statements, and then parallel processing across
threads is resumed. You can force barrier transactions to be processed through a
specific thread, which is always thread 0, by specifying the
USEDEDICATEDCOORDINATIONTHREAD parameter in the Replicat parameter file.

14.7.2.3 About the Global Watermark
A clean shutdown of a coordinated Replicat ensures that all threads stop at the same
transaction boundary in the trail, known as the global watermark. This is defined as the
synchronized point where all records before this position were either committed or
ignored by all of their respective threads. If a clean shutdown is not possible, you can
use the SYNCHRONIZE REPLICAT command to return all of the threads to the position of
the thread that made the most recent checkpoint. See Synchronizing Threads After an
Unclean Stop for more information about recovering a coordinated Replicat group.

Note:

Coordinated Replicat is an online process only. Do not use it to perform initial
loads.

14.7.3 About Integrated Replicat Mode
In integrated mode, available for Oracle databases of version 11.2.0.4 or later,
Replicat leverages the apply processing functionality that is available within the target
Oracle database. In this mode, Replicat reads the trail, constructs logical change
records that represent source DML or DDL transactions, and transmits these records
to an inbound server in the Oracle target database. The inbound server applies the
data to the target database.

For more information about using integrated Replicat, see Installing and Configuring
Oracle GoldenGate for Oracle Database.

Note:

Integrated Replicat is an online process only. Do not use it to perform initial
loads.

14.7.4 Understanding Replicat Processing in Relation to Parameter
Changes

Changes to the object specifications in the Replicat configuration cannot be made to
affect transactions that are already applied, but only for those not yet applied. This is
an important consideration when using coordinated or integrated Replicat.

Chapter 14
Creating an Online Replicat Group

14-17

For a Replicat in classic mode, the boundary between applied and non-applied
transactions is a clean one, because transactions are applied serially. For a
coordinated or integrated Replicat, however, there is no single point in the trail that
marks applied and unapplied transactions, because transactions are being applied
asynchronously in parallel.

In coordinated or integrated modes, there are a low watermark, below which all
transactions were applied, and a high watermark above which no transactions were
applied. In between those boundaries there may be transactions that may or may not
have been applied, depending on the progress of individual threads. As a result, if
Replicat is forced changes to object specifications in the Replicat configuration may be
reflected unevenly in the target after Replicat is restarted. Examples of parameter
changes for which this applies are changes to MAP mappings, FILTER clauses, and
EXCLUDE parameters.

Changes to the Replicat configuration should not be made after Replicat abends or is
forcibly terminated. Replicat should be allowed to recover to its last checkpoint after
startup. For coordinated Replicat, you can follow the administrative procedures in
Administering a Coordinated Replicat Configuration.. Once the recovery is complete,
Replicat can be shut down gracefully with the STOP REPLICAT command, and then you
can make the changes to the object specifications.

14.7.5 Creating the Replicat Group
To create an online Replicat group, run GGSCI on the target system and issue the ADD
REPLICAT command. Separate all command arguments with a comma.

ADD REPLICAT group, EXTTRAIL path
[, {INTEGRATED | COORDINATED [MAXTHREADS number]}]
[, BEGIN start_point | , EXTSEQNO seqno, EXTRBA rba]
[, CHECKPOINTTABLE owner.table]
[, NODBCHECKPOINT]
[, PARAMS path]
[, REPORT path]

Where:

• group is the name of the Replicat group. A group name is required. See Naming
Conventions for Processes for Oracle GoldenGate naming conventions.

• EXTTRAIL path is the relative or fully qualified name of the trail that you defined with
the ADD RMTTRAIL command.

• INTEGRATED specified that this Replicat group will operate in integrated mode. This
mode is available for Oracle databases. For more information about using Replicat
in integrated mode, see Installing and Configuring Oracle GoldenGate for Oracle
Database.

• COORDINATED specifies that this Replicat group will operate in coordinated mode.
MAXTHREADS specifies the maximum number of threads allowed for this group. Valid
values are from 1 through 500. MAXTHREADS is optional. The default number of
threads without MAXTHREADS is 25.

Chapter 14
Creating an Online Replicat Group

14-18

Note:

Each Replicat thread is considered a Replicat group in the context of the
MAXGROUPS parameter. MAXGROUPS controls the maximum number of
process groups allowed in the Oracle GoldenGate instance. MAXTHREADS
plus the number of other process groups in the Oracle GoldenGate
instance must not exceed the value set with MAXGROUPS (default is 1000).

• BEGIN start_point defines an online Replicat group by establishing an initial
checkpoint and start point for processing. Use one of the following:

– NOW to begin replicating changes timestamped at the point when the ADD
REPLICAT command is executed to create the group.

– YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact
timestamp as the begin point.

• EXTSEQNO seqno, EXTRBA rba specifies the sequence number of the file in a trail in
which to begin reading data and the relative byte address within that file. By
default, processing begins at the beginning of a trail unless this option is used. For
the sequence number, specify the number, but not any zeroes used for padding.
For example, if the trail file is c:\ggs\dirdat\aa000026, specify EXTSEQNO 26. Contact
Oracle Support before using this option.

• CHECKPOINTTABLE owner.table specifies the owner and name of a checkpoint table
other than the default specified in the GLOBALS file. To use this argument, you must
add the checkpoint table to the database with the ADD CHECKPOINTTABLE command
(see Creating a Checkpoint Table).

• NODBCHECKPOINT specifies that this Replicat group will not use a checkpoint table.

• PARAMS path is required if the parameter file for this group will be stored in a
location other than the dirprm sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

• REPORT path is required if the process report for this group will be stored in a
location other than the dirrpt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

Example 14-12 Creating an Online Replicat Group

This example creates an online Replicat group named finance and specifies a trail of
c:\ggs\dirdat\rt. The parameter file is stored in the alternate location of \ggs\params,
and the report file is stored in its default location.

ADD REPLICAT finance, EXTTRAIL c:\ggs\dirdat\rt, PARAMS \ggs\params

14.8 Creating a Parameter File for Online Replication
Follow these instructions to create a parameter file for an online Replicat group.

1. In GGSCI on the target system, issue the following command.

EDIT PARAMS name

Where:

Chapter 14
Creating a Parameter File for Online Replication

14-19

name is either the name of the Replicat group that you created with the ADD
REPLICAT command or the fully qualified name of the parameter file if you defined
an alternate location when you created the group.

2. Enter the parameters listed in Table 14-2 in the order shown, starting a new line
for each parameter statement.

Table 14-2 Online Change-Replication Parameters

Parameter Description

REPLICAT group

• group is the name of the Replicat group that you
created with the ADD REPLICAT command.

Configures Replicat as an online process with
checkpoints.

{SOURCEDEFS path} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables have
different definitions. Specify the source data-
definitions file generated by DEFGEN. See
Associating Replicated Data with Metadata, for
more information.

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

For Oracle databases that use multi-byte character sets,
you must use SOURCEDEFS (with a DEFGEN-generated
definitions file) if the source semantics setting is in bytes
and the target is in characters. This is required even
when the source and target data definitions are
identical. See Associating Replicated Data with
Metadata, for more information.

[DEFERAPPLYINTERVAL n unit]

• n is a numeric value for the amount of time to delay
before applying transactions. Minimum is set by the
EOFDELAY parameter. Maximum is seven days.

• unit can be:

S | SEC | SECS | SECOND | SECONDS | MIN |
MINS | MINUTE | MINUTES | HOUR | HOURS | DAY
| DAYS

Optional. Specifies an amount of time for Replicat to
wait before applying its transactions to the target
system.

[TARGETDB dsn | container | catalog]
[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN)
or SQL/MX catalog. See Reference for Oracle
GoldenGate for Windows and UNIX for more
information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security
for more information about security options.

HANDLECOLLISIONS Specifies collision handling. Use only if you are
performing an initial load concurrently with starting
online processing and the source database will remain
active during the load. HANDLECOLLISIONS resolves the
results of the copy with the ongoing replicated
transactional changes. It resolves insert operations for
which the row already exists and update and delete
operations for which the row does not exist. It can be
used globally for all MAP statements in a parameter file
or within a MAP statement, or both.

Chapter 14
Creating a Parameter File for Online Replication

14-20

Table 14-2 (Cont.) Online Change-Replication Parameters

Parameter Description

SOURCECATALOG Specifies a default container in a source Oracle
multitenant container database or a source SQL/MX
catalog for subsequent MAP statements. Enables the use
of two-part names (schema.object) where three-part
names otherwise would be required for those
databases. You can use multiple instances of this
parameter to specify different default containers or
catalogs for different sets of MAP parameters.

MAP [container. | catalog.]owner.object,
TARGET owner.object[, DEF template]
[THREAD (thread_ID)]
[THREADRANGE (thread_range[, column_list])]
[COORDINATED]
;

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARGET specifies the target object.

For the source object, specify the fully qualified name of
the object or a fully qualified wildcarded specification for
multiple objects. For an Oracle multitenant container
database or a SQL/MX database, the source object
name must include the name of the container or catalog
unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the type of
database. Replicat can only connect to one Oracle
container or SQL/MX catalog. Use a separate Replicat
process for each container or catalog to which you want
to apply data.

SeeSpecifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The THREAD, THREADRANGE, and COORDINATED options are
valid for Replicat when in coordinated mode. They
enable you to partition the workload to one or more
specific Replicat threads. See Reference for Oracle
GoldenGate for Windows and UNIX for syntax and
usage.

The DEF option specifies a definitions template. See
Associating Replicated Data with Metadata for more
information about data definitions. See Reference for
Oracle GoldenGate for Windows and UNIX for more
information and options for the MAP parameter.

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.
See Reference for Oracle GoldenGate for Windows and
UNIX for details.

1. Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate for Windows and UNIX .

2. Save and close the file.

Chapter 14
Creating a Parameter File for Online Replication

14-21

Note:

If using integrated Replicat for Oracle, see Understanding Replicat
Processing in Relation to Parameter Changes for important information
about making configuration changes to Replicat once processing is started.

Chapter 14
Creating a Parameter File for Online Replication

14-22

15
Handling Processing Errors

This chapter describes how to configure the Oracle GoldenGate processes to handle
errors.
Oracle GoldenGate reports processing errors in several ways by means of its
monitoring and reporting tools. For more information about these tools, see Monitoring
Oracle GoldenGate Processing.

This chapter includes the following sections:

• Overview of Oracle GoldenGate Error Handling

• Handling Extract Errors

• Handling Replicat Errors during DML Operations

• Handling Replicat errors during DDL Operations

• Handling TCP/IP Errors

• Maintaining Updated Error Messages

• Resolving Oracle GoldenGate Errors

• Overview of Oracle GoldenGate Error Handling

• Handling Extract Errors

• Handling Replicat Errors during DML Operations

• Handling Replicat errors during DDL Operations

• Handling TCP/IP Errors

• Maintaining Updated Error Messages

• Resolving Oracle GoldenGate Errors

15.1 Overview of Oracle GoldenGate Error Handling
Oracle GoldenGate provides error-handling options for:

• Extract

• Replicat

• TCP/IP

15.2 Handling Extract Errors
There is no specific parameter to handle Extract errors when DML operations are
being extracted, but Extract does provide a number of parameters that can be used to
prevent anticipated problems. These parameters handle anomalies that can occur
during the processing of DML operations, such as what to do when a row to be fetched
cannot be located, or what to do when the transaction log is not available. The
following is a partial list of these parameters.

15-1

• FETCHOPTIONS

• WARNLONGTRANS

• DBOPTIONS

• TRANLOGOPTIONS

To handle extraction errors that relate to DDL operations, use the DDLERROR parameter.

For a complete parameter list, see Reference for Oracle GoldenGate for Windows and
UNIX.

15.3 Handling Replicat Errors during DML Operations
To control the way that Replicat responds to an error during one of its DML
statements, use the REPERROR parameter in the Replicat parameter file. You can use
REPERROR as a global parameter or as part of a MAP statement. You can handle most
errors in a default fashion (for example, to cease processing) with DEFAULT and
DEFAULT2 options, and also handle other errors in a specific manner.

The following comprise the range of REPERROR responses:

• ABEND: roll back the transaction and stop processing.

• DISCARD: log the error to the discard file and continue processing.

• EXCEPTION: send the error for exceptions processing. See Handling Errors as
Exceptions for more information.

• IGNORE: ignore the error and continue processing.

• RETRYOP [MAXRETRIES n]: retry the operation, optionally up to a specific number of
times.

• TRANSABORT [, MAXRETRIES n] [, DELAY[C]SECS n]: abort the transaction and
reposition to the beginning, optionally up to a specific number of times at specific
intervals.

• RESET: remove all previous REPERROR rules and restore the default of ABEND.

• TRANSDISCARD: discard the entire replicated source transaction if any operation
within that transaction, including the commit, causes a Replicat error that is listed
in the error specification. This option is useful when integrity constraint checking is
disabled on the target.

• TRANSEXCEPTION: perform exceptions mapping for every record in the replicated
source transaction, according to its exceptions-mapping statement, if any
operation within that transaction (including the commit) causes a Replicat error
that is listed in the error specification.

Most options operate on the individual record that generated an error, and Replicat
processes the other, successful operations in the transaction. The exceptions are
TRANSDISCARD and TRANSEXCEPTION: These options affect all records in a transaction if
any record in that transaction generates an error. (The ABEND option also applies to the
entire transaction, but does not apply error handling.)

See Reference for Oracle GoldenGate for Windows and UNIX for REPERROR syntax and
usage.

• Handling Errors as Exceptions

Chapter 15
Handling Replicat Errors during DML Operations

15-2

15.3.1 Handling Errors as Exceptions
When the action of REPERROR is EXCEPTION or TRANSEXCEPTION, you can map the values of
operations that generate errors to an exceptions table and, optionally, map other
information about the error that can be used to resolve the error. See About the
Exceptions Table.

To map the exceptions to the exceptions table, use either of the following options of
the MAP parameter:

• MAP with EXCEPTIONSONLY

• MAP with MAPEXCEPTION

• Using EXCEPTIONSONLY

• Using MAPEXCEPTION

• About the Exceptions Table

15.3.1.1 Using EXCEPTIONSONLY
EXCEPTIONSONLY is valid for one pair of source and target tables that are explicitly named
and mapped one-to-one in a MAP statement; that is, there cannot be wildcards. To use
EXCEPTIONSONLY, create two MAP statements for each source table that you want to use
EXCEPTIONSONLY for on the target:

• The first, a standard MAP statement, maps the source table to the actual target
table.

• The second, an exceptions MAP statement, maps the source table to the
exceptions table (instead of to the target table). An exceptions MAP statement
executes immediately after an error on the source table to send the row values to
the exceptions table.

To identify a MAP statement as an exceptions MAP statement, use the
INSERTALLRECORDS and EXCEPTIONSONLY options. The exceptions MAP statement must
immediately follow the regular MAP statement that contains the same source table.
Use a COLMAP clause in the exceptions MAP statement if the source and exceptions-
table columns are not identical, or if you want to map additional information to
extra columns in the exceptions table, such as information that is captured by
means of column-conversion functions or SQLEXEC.

For more information about these parameters, see Reference for Oracle GoldenGate
for Windows and UNIX.

• A regular MAP statement that maps the source table ggs.equip_account to its target
table equip_account2.

• An exceptions MAP statement that maps the same source table to the exceptions
table ggs.equip_account_exception.

In this case, four extra columns were created, in addition to the same columns that the
table itself contains:

DML_DATE
OPTYPE
DBERRNUM
DBERRMSG

Chapter 15
Handling Replicat Errors during DML Operations

15-3

To populate the DML_DATE column, the @DATENOW column-conversion function is used to
get the date and time of the failed operation, and the result is mapped to the column.
To populate the other extra columns, the @GETENV function is used to return the
operation type, database error number, and database error message.

The EXCEPTIONSONLY option of the exceptions MAP statement causes the statement to
execute only after a failed operation on the source table. It prevents every operation
from being logged to the exceptions table.

The INSERTALLRECORDS parameter causes all failed operations for the specified source
table, no matter what the operation type, to be logged to the exceptions table as
inserts.

Note:

There can be no primary key or unique index restrictions on the exception
table. Uniqueness violations are possible in this scenario and would generate
errors.

Example 15-1 EXCEPTIONSONLY

This example shows how to use REPERROR with EXCEPTIONSONLY and an exceptions MAP
statement. This example only shows the parameters that relate to REPERROR; other
parameters not related to error handling are also required for Replicat.

REPERROR (DEFAULT, EXCEPTION)
MAP ggs.equip_account, TARGET ggs.equip_account2,
COLMAP (USEDEFAULTS);
MAP ggs.equip_account, TARGET ggs.equip_account_exception,
EXCEPTIONSONLY,
INSERTALLRECORDS
COLMAP (USEDEFAULTS,
DML_DATE = @DATENOW (),
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERRNUM = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG'));

In this example, the REPERROR parameter is set for DEFAULT error handling, and the
EXCEPTION option causes the Replicat process to treat failed operations as exceptions
and continue processing.

15.3.1.2 Using MAPEXCEPTION
MAPEXCEPTION is valid when the names of the source and target tables in the MAP
statement are wildcarded. Place the MAPEXCEPTION clause in the regular MAP statement,
the same one where you map the source tables to the target tables. Replicat maps all
operations that generate errors from all of the wildcarded tables to the same
exceptions table; therefore, the exceptions table should contain a superset of all of the
columns in all of the wildcarded tables.

Because you cannot individually map columns in a wildcard configuration, use the
COLMAP clause with the USEDEFAULTS option to handle the column mapping for the
wildcarded tables (or use the COLMATCH parameter if appropriate), and use explicit
column mappings to map any additional information, such as that captured with
column-conversion functions or SQLEXEC.

Chapter 15
Handling Replicat Errors during DML Operations

15-4

When using MAPEXCEPTION, include the INSERTALLRECORDS parameter in the MAPEXCEPTION
clause. INSERTALLRECORDS causes all operation types to be applied to the exceptions
table as INSERT operations. This is required to keep an accurate record of the
exceptions and to prevent integrity errors on the exceptions table.

For more information about these parameters, see Reference for Oracle GoldenGate
for Windows and UNIX.

Example 15-2 MAPEXCEPTION

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and
TARGET clauses contain wildcarded source and target table names. Exceptions that
occur when processing any table with a name beginning with TRX are captured to the
fin.trxexceptions table using the designated mapping.

MAP src.trx*, TARGET trg.*,
MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,
COLMAP (USEDEFAULTS,
ACCT_NO = ACCT_NO,
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG')
)
);

15.3.1.3 About the Exceptions Table
Use an exceptions table to capture information about an error that can be used for
such purposes as troubleshooting your applications or configuring them to handle the
error. At minimum, an exceptions table should contain enough columns to receive the
entire row image from the failed operation. You can define extra columns to contain
other information that is captured by means of column-conversion functions, SQLEXEC,
or other external means.

To ensure that the trail record contains values for all of the columns that you map to
the exceptions table, you can use either the LOGALLSUPCOLS parameter or the following
parameters in the Extract parameter file:

• Use the NOCOMPRESSDELETES parameter so that all columns of a row are written to the
trail for DELETE operations.

• Use the GETUPDATEBEFORES parameter so that Extract captures the before image of a
row and writes them to the trail.

For more information about these parameters, see Reference for Oracle GoldenGate
for Windows and UNIX.

15.4 Handling Replicat errors during DDL Operations
To control the way that Replicat responds to an error that occurs for a DDL operation
on the target, use the DDLERROR parameter in the Replicat parameter file. For more
information, see Reference for Oracle GoldenGate for Windows and UNIX.

Chapter 15
Handling Replicat errors during DDL Operations

15-5

15.5 Handling TCP/IP Errors
To provide instructions for responding to TCP/IP errors, use the TCPERRS file. This file is
in the Oracle GoldenGate directory

Table 15-1 TCPERRS Columns

Column Description

Error
Specifies a TCP/IP error for which you are defining a response.

Response
Controls whether or not Oracle GoldenGate tries to connect again after the
defined error. Valid values are either RETRY or ABEND.

Delay
Controls how long Oracle GoldenGate waits before attempting to connect again.

Max Retries
Controls the number of times that Oracle GoldenGate attempts to connect again
before aborting.

If a response is not explicitly defined in the TCPERRS file, Oracle GoldenGate responds
to TCP/IP errors by abending.

Example 15-3 TCPERRS File

TCP/IP error handling parameters
Default error response is abend
#
Error Response Delay(csecs) Max Retries

ECONNABORTED RETRY 1000 10
ECONNREFUSED RETRY 1000 12
ECONNRESET RETRY 500 10
ENETDOWN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPIPE RETRY 500 10
ESHUTDOWN RETRY 1000 10
ETIMEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

The TCPERRS file contains default responses to basic errors. To alter the instructions or
add instructions for new errors, open the file in a text editor and change any of the
values in the columns shown in Table 15-1:

15.6 Maintaining Updated Error Messages
The error, information, and warning messages that Oracle GoldenGate processes
generate are stored in a data file named ggmessage.dat in the Oracle GoldenGate
installation directory. The version of this file is checked upon process startup and must
be identical to that of the process in order for the process to operate.

Chapter 15
Handling TCP/IP Errors

15-6

15.7 Resolving Oracle GoldenGate Errors
To get help with specific troubleshooting issues, go to My Oracle Support at http://
support.oracle.com and search the Knowledge Base.

Chapter 15
Resolving Oracle GoldenGate Errors

15-7

http://support.oracle.com
http://support.oracle.com

16
Instantiating Oracle GoldenGate with an
Initial Load

This chapter describes running an initial data load to instantiate the replication
environment.
This chapter includes the following sections:

• Overview of the Initial-Load Procedure

• Loading Data with a Database Utility

• Loading Data with Oracle Data Pump

• Loading Data from File to Replicat

• Loading Data from File to Database Utility

• Loading Data with an Oracle GoldenGate Direct Load

• Loading Data with a Direct Bulk Load to SQL*Loader

• Loading Data with Teradata Load Utilities

• Overview of the Initial-Load Procedure

• Loading Data with a Database Utility

• Loading Data with Oracle Data Pump

• Loading Data from File to Replicat

• Loading Data from File to Database Utility

• Loading Data with an Oracle GoldenGate Direct Load

• Loading Data with a Direct Bulk Load to SQL*Loader

• Loading Data with Teradata Load Utilities

16.1 Overview of the Initial-Load Procedure
You can use Oracle GoldenGate to:

• Perform a standalone batch load to populate database tables for migration or other
purposes.

• Load data into database tables as part of an initial synchronization run in
preparation for change synchronization with Oracle GoldenGate.

• Improving the Performance of an Initial Load

• Prerequisites for Initial Load

16-1

16.1.1 Improving the Performance of an Initial Load
For all initial load methods except those performed with a database utility, you can
load large databases more quickly by using parallel Oracle GoldenGate processes. To
use parallel processing, take the following steps.

1. Follow the directions in this chapter for creating an initial-load Extract and an
initial-load Replicat for each set of parallel processes that you want to use.

2. With the TABLE and MAP parameters, specify a different set of tables for each pair of
Extract-Replicat processes, or you can use the SQLPREDICATE option of TABLE to
partition the rows of large tables among the different Extract processes.

For all initial load methods, testing has shown that using the TCPBUFSIZE option in the
RMTHOST parameter produced three times faster throughput than loads performed
without it. Do not use this parameter if the target system is NonStop.

16.1.2 Prerequisites for Initial Load
Verify that you meet the prerequisites for executing an initial load that are described in
the following sections.

• Disable DDL Processing

• Prepare the Target Tables

• Configure the Manager Process

• Create Change-synchronization Groups

• Sharing Parameters between Process Groups

16.1.2.1 Disable DDL Processing
Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

16.1.2.2 Prepare the Target Tables
The following are suggestions that can make the load go faster and help you to avoid
errors.

• Data: Make certain that the target tables are empty. Otherwise, there may be
duplicate-row errors or conflicts between existing rows and rows that are being
loaded.

• Constraints: Disable foreign-key constraints and check constraints. Foreign-key
constraints can cause errors, and check constraints can slow down the loading
process. Constraints can be reactivated after the load concludes successfully.

• Indexes: Remove indexes from the target tables. Indexes are not necessary for
inserts. They will slow down the loading process significantly. For each row that is
inserted into a table, the database will update every index on that table. You can
add back the indexes after the load is finished.

Chapter 16
Overview of the Initial-Load Procedure

16-2

Note:

A primary index is required for all applications that access DB2 for z/OS
target tables. You can delete all other indexes from the target tables,
except for the primary index.

• Keys: For Oracle GoldenGate to reconcile the replicated incremental data
changes with the results of the load, each target table must have a primary or
unique key. If you cannot create a key through your application, use the KEYCOLS
option of the TABLE and MAP parameters to specify columns as a substitute key for
Oracle GoldenGate's purposes. A key helps identify which row to process. If you
cannot create keys, the source database must be quiesced for the load.

16.1.2.3 Configure the Manager Process
On the source and target systems, configure and start a Manager process. One
Manager can be used for the initial-load processes and the change-synchronization
processes. See Configuring Manager and Network Communications for more
information.

16.1.2.4 Create Change-synchronization Groups
To prepare for the capture and replication of transactional changes during the initial
load, create online Extract and Replicat groups. You will start these groups during the
load procedure. See Configuring Online Change Synchronization for more information.

Note:

If the load is performed from a quiet source database and will not be followed
by continuous change synchronization, you can omit these groups.

Do not start the Extract or Replicat groups until instructed to do so in the initial-load
instructions. Change synchronization keeps track of transactional changes while the
load is being applied, and then the target tables are reconciled with those changes.

Note:

The first time that Extract starts in a new Oracle GoldenGate configuration,
any open transactions will be skipped. Only transactions that begin after
Extract starts are captured.

16.1.2.5 Sharing Parameters between Process Groups
Some of the parameters that you use in a change-synchronization parameter file also
are required in an initial-load Extract and initial-load Replicat parameter file. You can
copy those parameters from one parameter file to another, or you can store them in a
central file and use the OBEY parameter in each parameter file to retrieve them.

Chapter 16
Overview of the Initial-Load Procedure

16-3

Alternatively, you can create an Oracle GoldenGate macro for the shared parameters
and then call the macro from each parameter file with the MACRO parameter.

See Getting Started with the Oracle GoldenGate Process Interfaces for more
information about using OBEY and using macros.

16.2 Loading Data with a Database Utility
To use a database copy utility to establish the target data, you start a change-
synchronization Extract group to extract ongoing data changes while the database
utility makes and applies a static copy of the data. When the copy is finished, you start
the change-synchronization Replicat group to re-synchronize rows that were changed
while the copy was being applied. From that point forward, both Extract and Replicat
continue running to maintain data synchronization. This method does not involve any
special initial-load Extract or Replicat processes.

Note:

The objects and data types being loaded in this method must be supported
by Oracle GoldenGate for your database and also by the database utility that
is being used. For items that are supported for your database, see the Oracle
GoldenGate installation and configuration documentation for that database.
For items that are supported by the database utility, see the database
vendor's documentation.

1. Make certain that you have addressed the requirements in Prerequisites for Initial
Load.

2. On the source and target systems, run GGSCI and start the Manager process.

START MANAGER

Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

3. On the source system, start change extraction.

START EXTRACT group

Where:

group is the name of the Extract group.

4. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

Chapter 16
Loading Data with a Database Utility

16-4

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

5. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

6. On the source system, start making the copy.

7. Wait until the copy is finished and record the time of completion.

8. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

9. On the target system, start change replication.

START REPLICAT group

Where:

group is the name of the Replicat group.

10. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

11. Continue to issue the INFO REPLICAT command until you have verified that change
replication has posted all of the change data that was generated during the initial
load. Reference the time of completion that you recorded. For example, if the copy
stopped at 12:05, make sure change replication has posted data up to that point.

12. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

13. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being enabled
again the next time Replicat starts.

Chapter 16
Loading Data with a Database Utility

16-5

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

14. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

16.3 Loading Data with Oracle Data Pump
This method uses the Oracle Data Pump utility to establish the target data. After you
apply the copy to the target, you record the SCN at which the copy stopped.
Transactions that were included in the copy are skipped to avoid collisions from
integrity violations. From the process start point, Oracle GoldenGate maintains data
synchronization. No initial-load Oracle GoldenGate processes are required for these
methods.

• Using Automatic Per Table Instantiation

• Using Oracle Data Pump Table Instantiation

16.3.1 Using Automatic Per Table Instantiation
You can automatically instantiate per table CSN filtering for Oracle Database with
Oracle Data Pump, which avoids having all of your the tables at same SCN.

On the Source Database

1. Use ADD TRANDATA and ADD SCHEMATRANDATA to automatically prepare your tables.

2. Use INFO TRANDATA to make sure that your table is prepared for instantiation and at
what point it was done.

3. Stop Replicat on the target database.

4. Start Extract with the correct TABLE statement.

5. EXPORT your tables using Oracle data pump, which automatically generates import
actions to set instantiation SCN at the target upon import.

On the Target Database

1. Import your exported tables using Oracle data pump, which populates system
tables and views with instantiation SCNs, as well as the specified table data.

2. Start Replicat using one of the following:

For Metadata Trail Replicats, set the DBOPTIONS ENABLE_INSTANTIATION_FILTERING
parameter in the Replicat parameter file to enable table-level instantiation filtering.

Chapter 16
Loading Data with Oracle Data Pump

16-6

For all other Replicats, set the DBOPTIONS source_dbase_name global_name parameter
in the Replicat parameter file where global_name is the global name of the Oracle
source database that the trail is coming from.

Note:

When the source has no DOMAIN, do not specify a DOMAIN for the
downstream database.

Replicat queries the instantiation SCN on any new mapping and filter records
accordingly

For more information, see the Reference for Oracle GoldenGate for Windows and
UNIX.

16.3.2 Using Oracle Data Pump Table Instantiation
To perform instantiation with Oracle Data Pump, see My Oracle Support document
1276058.1. To obtain this document, do the following:

1. Go to http://support.oracle.com.

2. Under Sign In, select your language and then log in with your Oracle Single Sign-
On (SSO).

3. On the Dashboard, expand the Knowledge Base heading.

4. Under Enter Search Terms, paste or type the document ID of 1276058.1 and then
click Search.

5. In the search results, select Oracle GoldenGate Best Practices: Instantiation
from an Oracle Source Database [Article ID 1276058.1].

6. Click the link under Attachments to open the article.

16.4 Loading Data from File to Replicat
To use Replicat to establish the target data, you use an initial-load Extract to extract
source records from the source tables and write them to an extract file in canonical
format. From the file, an initial-load Replicat loads the data using the database
interface. During the load, the change-synchronization groups extract and replicate
incremental changes, which are then reconciled with the results of the load.

During the load, the records are applied to the target database one record at a time, so
this method is considerably slower than any of the other initial load methods. This
method permits data transformation to be done on either the source or target system.

Chapter 16
Loading Data from File to Replicat

16-7

To Load Data From File to Replicat

1. Make certain that you have addressed the requirements in Prerequisites for Initial
Load.

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

3. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS initial-load_Extract

4. Enter the parameters listed in Table 16-1 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Extract
parameter file for loading data from file to Replicat.

SOURCEISTABLE
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
ENCRYPTTRAIL AES192
RMTFILE /ggs/dirdat/initld, MEGABYTES 2, PURGE
TABLE hr.*;
TABLE sales.*;

Table 16-1 Initial-load Extract Parameters

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process
extracting records directly from the source tables.

[SOURCEDB dsn | catalog]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source data source name
(DSN) or SQL/MX catalog. See Reference for Oracle
GoldenGate for Windows and UNIX for more
information.

USERID and USERIDALIAS specify database credentials
if required. See Configuring Oracle GoldenGate
Security for more information about security options.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager
is running, and optional encryption of data across
TCP/IP.

ENCRYPTTRAIL algorithm Encrypts the data in the remote file. See Configuring
Oracle GoldenGate Security for more information
about security options.

Chapter 16
Loading Data from File to Replicat

16-8

Table 16-1 (Cont.) Initial-load Extract Parameters

Parameter Description

RMTFILE path,
[MEGABYTES n]

• path is the relative or fully qualified name of the file.
• MEGABYTES designates the size of each file.

Specifies the extract file to which the load data will be
written. Oracle GoldenGate creates this file during the
load. Checkpoints are not maintained with RMTFILE.

Note that the size of an extract file cannot exceed
2GB.

TABLE [container. | catalog.]owner.object; Specifies the fully qualified name of an object or a
fully qualified wildcarded specification for multiple
objects. If the database is an Oracle multitenant
container database or a SQL/MX database, the object
name must include the name of the container or
catalog unless SOURCECATALOG is used.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for Windows and
UNIX for details.

5. Enter any appropriate optional Extract parameters listed in the Reference for
Oracle GoldenGate for Windows and UNIX.

6. Save and close the parameter file.

7. On the target system, issue the following command to create an initial-load
Replicat parameter file.

EDIT PARAMS initial-load_Replicat

8. Enter the parameters listed in Table 16-2 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Replicat
parameter file for loading data from file to Replicat.

SPECIALRUN
END RUNTIME
TARGETDB mydb, USERIDALIAS ogg
EXTFILE /ggs/dirdat/initld
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Table 16-2 Initial-load Replicat parameters

Parameter Description

SPECIALRUN Implements the initial-load Replicat as a one-time run
that does not use checkpoints.

END RUNTIME Directs the initial-load Replicat to terminate when the
load is finished.

Chapter 16
Loading Data from File to Replicat

16-9

Table 16-2 (Cont.) Initial-load Replicat parameters

Parameter Description

[TARGETDB dsn | catalog]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN)
or SQL/MX catalog. See Reference for Oracle
GoldenGate for Windows and UNIX for more
information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security
for more information about security options.

EXTFILE path

• path is the relative or fully qualified name of the file.

Specifies the input extract file specified with the Extract
parameter RMTFILE.

{SOURCEDEFS file} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables have
different definitions. Specify the relative or fully
qualified name of the source-definitions file
generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

For more information about data definitions files, see
Associating Replicated Data with Metadata.

SOURCECATALOG Specifies a default source Oracle container or source
SQL/MX catalog for subsequent MAP statements.
Enables the use of two-part names (schema.object)
where three-part names otherwise would be required
for those databases. You can use multiple instances of
this parameter to specify different default containers or
catalogs for different sets of MAP parameters.

MAP [container. | catalog.]owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARGET specifies the target object.

For the source object, specify the fully qualified name of
the object or a fully qualified wildcarded specification for
multiple objects. For an Oracle multitenant container
database or a SQL/MX database, the source object
name must include the name of the container or catalog
unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database.
Replicat can only connect to one Oracle container or
SQL/MX catalog. Use a separate Replicat process for
each container or catalog to which you want to load
data.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The DEF option specifies a definitions template. For
more information about data definitions, see
Associating Replicated Data with Metadata. See
Reference for Oracle GoldenGate for Windows and
UNIX for more information and options for the MAP
parameter.

Chapter 16
Loading Data from File to Replicat

16-10

Table 16-2 (Cont.) Initial-load Replicat parameters

Parameter Description

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.
See Reference for Oracle GoldenGate for Windows
and UNIX for details.

9. Enter any appropriate optional Replicat parameters listed in the Reference for
Oracle GoldenGate for Windows and UNIX.

10. Save and close the file.

11. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

12. On the source system, start change extraction.

START EXTRACT group

13. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

14. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

15. From the directory where Oracle GoldenGate is installed on the source system,
start the initial-load Extract.

UNIX and Linux:

$ /GGS directory/extract paramfile dirprm/initial-load_Extract.prm reportfile
path

Windows:

C:\> GGS directory\extract paramfile dirprm\initial-load_Extract.prm reportfile
path

Where:

initial-load_Extract is the name of the initial-load Extract that you used when
creating the parameter file, and path is the relative or fully qualified name of the
Extract report file.

16. Verify the progress and results of the initial extraction by viewing the Extract report
file using the operating system's standard method for viewing files.

17. Wait until the initial extraction is finished.

18. On the target system, start the initial-load Replicat.

UNIX and Linux:

$ /GGS directory/replicat paramfile dirprm/initial-load_Replicat.prm reportfile
path

Chapter 16
Loading Data from File to Replicat

16-11

Windows:

C:\> GGS directory\replicat paramfile dirprm\initial-load_Replicat.prm
reportfile path

Where:

initial-load_Replicat is the name of the initial-load Replicat that you used when
creating the parameter file, and path is the relative or fully qualified name of the
Replicat report file.

19. When the initial-load Replicat is finished running, verify the results by viewing the
Replicat report file using the operating system's standard method for viewing files.

20. On the target system, start change replication.

START REPLICAT group

21. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

22. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For
example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

23. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

24. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being enabled
again the next time Replicat starts.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

25. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

16.5 Loading Data from File to Database Utility
To use a database bulk-load utility, you use an initial-load Extract to extract source
records from the source tables and write them to an extract file in external ASCII
format. The file can be read by Oracle's SQL*Loader, Microsoft's BCP, DTS, or SQL
Server Integration Services (SSIS) utility, or IBM's Load Utility (LOADUTIL).

Chapter 16
Loading Data from File to Database Utility

16-12

Note:

The objects and data types being loaded in this method must be supported
by Oracle GoldenGate for your database and also by the database utility that
is being used. For items that are supported for your database, see the Oracle
GoldenGate installation and configuration documentation for that database.
For items that are supported by the database utility, see the database
vendor's documentation.

During the load, the change-synchronization groups extract and replicate incremental
changes, which are then reconciled with the results of the load. As part of the load
procedure, Oracle GoldenGate uses the initial-load Replicat to create run and control
files required by the database utility.

Any data transformation must be performed by the initial-load Extract on the source
system because the control files are generated dynamically and cannot be pre-
configured with transformation rules.

To Load Data From File to Database Utility

1. Make certain to satisfy "Prerequisites for Initial Load".

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

3. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS initial-load_Extract

4. Enter the parameters listed in Table 16-3 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Extract
parameter file for loading data from file to database utility.

SOURCEISTABLE
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
ENCRYPTTRAIL AES192
FORMATASCII, SQLLOADER
RMTFILE /ggs/dirdat/initld, MEGABYTES 2, PURGE
TABLE hr.*;
TABLE sales.*;

Chapter 16
Loading Data from File to Database Utility

16-13

Table 16-3 Initial-load Extract Parameters

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process that extracts
records directly from the source tables.

[SOURCEDB dsn]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source datasource name (DSN).
See Reference for Oracle GoldenGate for Windows and
UNIX for more information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security
for more information about security options.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]
[, PARAMS - E -d defs_file]

• -E converts ASCII to EBCDIC.
• -d defs_file specifies the source definitions file.

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

The PARAMS clause is necessary when loading with IBM's
Load Utility, because Oracle GoldenGate will need to
refer to the source definitions file.

ENCRYPTTRAIL algorithm Encrypts the data in the remote file. See Configuring
Oracle GoldenGate Security for more information about
security options.

FORMATASCII, {BCP | SQLLOADER}

• BCP is used for BCP, DTS, or SSIS.
• SQLLOADER is used for Oracle SQL*Loader or IBM

Load Utility.

Directs output to be formatted as ASCII text rather than
the default canonical format. This parameter must be
listed before RMTFILE. For information about limitations
and options, see Reference for Oracle GoldenGate for
Windows and UNIX.

RMTFILE path,
[MEGABYTES n]

• path is the relative or fully qualified name of the file
• MEGABYTES designates the size of each file, up to

2MB.

Specifies the extract file to which the load data will be
written. Oracle GoldenGate creates this file during the
load. Checkpoints are not maintained with RMTFILE.

TABLE [container.]owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If
the database is an Oracle multitenant container
database, the object name must include the name of the
container unless SOURCECATALOG is used. See Specifying
Object Names in Oracle GoldenGate Input for guidelines
for specifying object names in parameter files.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for Windows and UNIX
for details.

5. Enter any appropriate optional Extract parameters listed in Reference for Oracle
GoldenGate for Windows and UNIX.

6. Save and close the parameter file.

7. On the target system, issue the following command to create an initial-load
Replicat parameter file.

Chapter 16
Loading Data from File to Database Utility

16-14

EDIT PARAMS initial-load_Replicat

8. Enter the parameters listed in Table 16-4 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Replicat
parameter file for loading data from file to database utility.

GENLOADFILES sqlldr.tpl
USERIDALIAS ogg
EXTFILE /ggs/dirdat/initld
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Table 16-4 Initial-load Replicat Parameters

Parameter Description

GENLOADFILES template Generates run and control files for the database utility.
For instructions on using this parameter, see Reference
for Oracle GoldenGate for Windows and UNIX.

[TARGETDB dsn | container]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN) or
Oracle container. See Reference for Oracle GoldenGate
for Windows and UNIX for more information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security
for more information about security options.

EXTFILE path |
EXTTRAIL path

• path is the relative or fully qualified name of the file
• Use EXTTRAIL only if you used the MAXFILES option

of the RMTFILE parameter in the Extract parameter
file.

Specifies the extract file specified with the Extract
parameter RMTFILE.

{SOURCEDEFS path} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables
have different definitions. Specify the relative or
fully qualified name of the source-definitions file
generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions. For more
information about data definitions files, see Associating
Replicated Data with Metadata.

SOURCECATALOG Specifies a default source Oracle container in a
multitenant container database for subsequent MAP
statements. Enables the use of two-part names
(schema.object) where three-part names otherwise
would be required. You can use multiple instances of this
parameter to specify different default containers for
different sets of MAP parameters.

Chapter 16
Loading Data from File to Database Utility

16-15

Table 16-4 (Cont.) Initial-load Replicat Parameters

Parameter Description

MAP [container.]owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARGET specifies the target object.

For the source object, specify the fully qualified name of
the object or a fully qualified wildcarded specification for
multiple objects. For an Oracle multitenant container
database, the source object name must include the name
of the container unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database.
Replicat can only connect to one Oracle container. Use a
separate Replicat process for each container to which
you want to load data.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The DEF option specifies a definitions template. For more
information about data definitions, see Associating
Replicated Data with Metadata.See Reference for Oracle
GoldenGate for Windows and UNIX for more information
and options for the MAP parameter.

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.
See Reference for Oracle GoldenGate for Windows and
UNIX for details.

9. Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate for Windows and UNIX.

10. Save and close the parameter file.

11. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

12. On the source system, start change extraction.

START EXTRACT group

13. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

14. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

15. From the directory where Oracle GoldenGate is installed on the source system,
start the initial-load Extract.

UNIX and Linux:

Chapter 16
Loading Data from File to Database Utility

16-16

$ /GGS directory/extract paramfile dirprm/initial-load_Extract.prm reportfile
path

Windows:

C:\> GGS directory\extract paramfile dirprm\initial-load_Extract.prm reportfile
path

Where:

initial-load_Extract is the name of the initial-load Extract that you used when
creating the parameter file, and path is the relative or fully qualified name of the
Extract report file.

16. Verify the progress and results of the initial extraction by viewing the Extract report
file using the operating system's standard method for viewing files.

17. Wait until the initial extraction is finished.

18. On the target system, start the initial-load Replicat.

UNIX and Linux:

$ /GGS directory/replicat paramfile dirprm/initial-load_Replicat.prm reportfile
path

Windows:

C:\> GGS directory\replicat paramfile dirprm\initial-load_Replicat.prm
reportfile path

Where:

initial-load_Replicat is the name of the initial-load Replicat that you used when
creating the parameter file, and path is the relative or fully qualified name of the
Replicat report file.

19. When the initial-load Replicat is finished running, verify the results by viewing the
Replicat report file using the operating system's standard method for viewing files.

20. Using the ASCII-formatted extract files and the run and control files created by the
initial-load Replicat, load the data with the database utility.

21. Wait until the load into the target tables is complete.

22. On the target system, start change replication.

START REPLICAT group

23. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

24. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For
example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

25. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

Chapter 16
Loading Data from File to Database Utility

16-17

26. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being enabled
again the next time Replicat starts.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

27. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

16.6 Loading Data with an Oracle GoldenGate Direct Load
To use an Oracle GoldenGate direct load, you run an Oracle GoldenGate initial-load
Extract to extract the source records and send them directly to an initial-load Replicat
task. A task is started dynamically by the Manager process and does not require the
use of a Collector process or file. The initial-load Replicat task delivers the load in
large blocks to the target database. Transformation and mapping can be done by
Extract, Replicat, or both. During the load, the change-synchronization groups extract
and replicate incremental changes, which are then reconciled with the results of the
load.

To control which port is used by Replicat, and to speed up the search and bind
process, use the DYNAMICPORTLIST parameter in the Manager parameter file. Manager
passes the list of port numbers that are specified with this parameter to the Replicat
task process. Replicat first searches for a port from this list, and only if no ports are
available from the list does Replicat begin scanning in ascending order from the
default Manager port number until it finds an available port.

This method supports standard character, numeric, and datetime data types, as well
as CLOB, NCLOB, BLOB, LONG, XML, and user-defined datatypes (UDT) embedded with the
following attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW, NUMBER, DATE, FLOAT, TIMESTAMP,
CLOB, BLOB, XML, and UDT. Character sets are converted between source and target
where applicable.

This method supports Oracle internal tables, but does not convert between the source
and target character sets during the load.

Chapter 16
Loading Data with an Oracle GoldenGate Direct Load

16-18

To Load Data with an Oracle GoldenGate Direct Load

1. Make certain to satisfy "Prerequisites for Initial Load".

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

3. On the source, issue the following command to create the initial-load Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight
characters.

• SOURCEISTABLE designates Extract as an initial-load process that reads
complete records directly from the source tables. Do not use any of the other
ADD EXTRACT service options or datasource arguments.

4. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS initial-load_Extract

5. Enter the parameters listed in Table 16-5 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Extract
parameter file for an Oracle GoldenGate direct load.

EXTRACT initext
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
RMTTASK REPLICAT, GROUP initrep
TABLE hr.*;
TABLE sales.*;

Table 16-5 Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter Description

EXTRACT initial-load_Extract Specifies the initial-load Extract.

[SOURCEDB dsn | catalog]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source datasource name (DSN) or
SQL/MX catalog. See Reference for Oracle GoldenGate
for Windows and UNIX for more information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security for
more information about security options.

Chapter 16
Loading Data with an Oracle GoldenGate Direct Load

16-19

Table 16-5 (Cont.) Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter Description

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

RMTTASK replicat,
GROUP initial-load_Replicat

• initial-load_Replicat is the name of the initial-
load Replicat group

Directs Manager on the target system to dynamically start
the initial-load Replicat as a one-time task.

TABLE [container. | catalog.]owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If the
database is an Oracle multitenant database or a SQL/MX
database, the object name must include the name of the
container or catalog unless SOURCECATALOG is used. See
Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for Windows and UNIX
for details.

6. Enter any appropriate optional Extract parameters listed in Reference for Oracle
GoldenGate for Windows and UNIX.

7. Save and close the file.

8. On the target system, issue the following command to create the initial-load
Replicat task.

ADD REPLICAT initial-load_Replicat, SPECIALRUN

Where:

• initial-load_Replicat is the name of the initial-load Replicat task.

• SPECIALRUN identifies the initial-load Replicat as a one-time run, not a
continuous process.

9. On the target system, issue the following command to create an initial-load
Replicat parameter file.

EDIT PARAMS initial-load_Replicat

10. Enter the parameters listed in Table 16-6 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Replicat
parameter file for an Oracle GoldenGate direct load.

REPLICAT initrep
TARGETDB mydb, USERIDALIAS ogg
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Chapter 16
Loading Data with an Oracle GoldenGate Direct Load

16-20

Table 16-6 Initial-load Replicat parameters for Oracle GoldenGate Direct Load

Parameter Description

REPLICAT initial-load_Replicat Specifies the initial-load Replicat task to be started by
Manager. Use the name that you specified when you
created the initial-load Replicat.

[TARGETDB dsn | container | catalog]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN),
Oracle container, or SQL/MX catalog. See Reference for
Oracle GoldenGate for Windows and UNIX for more
information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security
for more information about security options.

{SOURCEDEFS full_pathname} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source-
definitions file generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions. For more
information about data definitions files, see Associating
Replicated Data with Metadata.

SOURCECATALOG Specifies a default source Oracle container or a source
SQL/MX catalog for subsequent MAP statements.
Enables the use of two-part names (schema.object)
where three-part names otherwise would be required for
those databases. You can use multiple instances of this
parameter to specify different default containers or
catalogs for different sets of MAP parameters.

MAP [container. | catalog.]owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARGET specifies the target object.

For the source object, specify the fully qualified name of
the object or a fully qualified wildcarded specification for
multiple objects. For an Oracle multitenant container
database or a SQL/MX database, the source object
name must include the name of the container or catalog
unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database.
Replicat can only connect to one Oracle container or
SQL/MX catalog. Use a separate Replicat process for
each container or catalog to which you want to load
data.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The DEF option specifies a definitions template. For more
information about data definitions, see Associating
Replicated Data with Metadata.See Reference for
Oracle GoldenGate for Windows and UNIX for more
information and options for the MAP parameter.

Chapter 16
Loading Data with an Oracle GoldenGate Direct Load

16-21

Table 16-6 (Cont.) Initial-load Replicat parameters for Oracle GoldenGate Direct Load

Parameter Description

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.
See Reference for Oracle GoldenGate for Windows and
UNIX for details.

11. Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate for Windows and UNIX.

12. Save and close the parameter file.

13. On the source system, start change extraction.

START EXTRACT group

14. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

15. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

16. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

17. On the source system, start the initial-load Extract.

START EXTRACT initial-load_Extract

Note:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

18. On the target system, issue the following command to find out if the load is
finished. Wait until the load is finished before going to the next step.

VIEW REPORT initial-load_Replicat

19. On the target system, start change replication.

START REPLICAT group

20. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

21. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For
example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

Chapter 16
Loading Data with an Oracle GoldenGate Direct Load

16-22

22. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

23. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being enabled
again the next time Replicat starts.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

24. Save and close the parameter file. From this point forward, Oracle GoldenGate
continues to synchronize data changes.

16.7 Loading Data with a Direct Bulk Load to SQL*Loader
To use Oracle's SQL*Loader utility to establish the target data, you run an Oracle
GoldenGate initial-load Extract to extract the source records and send them directly to
an initial-load Replicat task. A task is a process that is started dynamically by the
Manager process and does not require the use of a Collector process or file. The
initial-load Replicat task interfaces with the API of SQL*Loader to load data as a direct-
path bulk load. Data mapping and transformation can be done by either the initial-load
Extract or initial-load Replicat, or both. During the load, the change-synchronization
groups extract and replicate incremental changes, which are then reconciled with the
results of the load.

To control which port is used by Replicat, and to speed up the search and bind
process, use the DYNAMICPORTLIST parameter in the Manager parameter file. Manager
passes the list of port numbers that are specified with this parameter to the Replicat
task process. Replicat first searches for a port from this list, and only if no ports are
available from the list does Replicat begin scanning in ascending order from the
default Manager port number until it finds an available port.

This method supports standard character, numeric, and datetime data types, as well
as CLOB, NCLOB, BLOB, LONG, XML, and user-defined datatypes (UDT) embedded with the
following attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW, NUMBER, DATE, FLOAT, TIMESTAMP,
CLOB, BLOB, XML, and UDT. VARRAYS are not supported. Character sets are converted
between source and target where applicable.

This method supports Oracle internal tables, but does not convert between the source
and target character sets during the load.

Chapter 16
Loading Data with a Direct Bulk Load to SQL*Loader

16-23

To Load Data With a Direct Bulk Load to SQL*Loader

1. Make certain that you have addressed the requirements in "Prerequisites for Initial
Load".

2. Grant LOCK ANY TABLE to the Replicat database user on the target Oracle database.

3. On the source and target systems, run GGSCI and start Manager.

START MANAGER

4. On the source system, issue the following command to create the initial-load
Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight
characters.

• SOURCEISTABLE designates Extract as an initial-load process that reads
complete records directly from the source tables. Do not use any of the other
ADD EXTRACT service options or datasource arguments.

5. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS initial-load_Extract

6. Enter the parameters listed in Table 16-7 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Extract
parameter file for a direct bulk load to SQL*Loader.

EXTRACT initext
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
RMTTASK REPLICAT, GROUP initrep
TABLE hr.*;
TABLE sales.*;

Table 16-7 Initial-load Extract Parameters for a Direct Bulk Load to SQL*Loader

Parameter Description

EXTRACT initial-load_Extract Specifies the initial-load Extract.

[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security
for more information about security options.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

Chapter 16
Loading Data with a Direct Bulk Load to SQL*Loader

16-24

Table 16-7 (Cont.) Initial-load Extract Parameters for a Direct Bulk Load to SQL*Loader

Parameter Description

RMTTASK replicat,
GROUP initial-load_Replicat

• initial-load_Replicat is the name of the initial-
load Replicat group.

Directs Manager on the target system to dynamically
start the initial-load Replicat as a one-time task.

TABLE [container.]owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If
the database is an Oracle multitenant container
database, the object name must include the name of the
container unless SOURCECATALOG is used. See Specifying
Object Names in Oracle GoldenGate Input for guidelines
for specifying object names in parameter files.

CATALOGEXCLUDE

SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for Windows and UNIX
for details.

7. Enter any appropriate optional parameters.

8. Save and close the file.

9. On the target system, issue the following command to create the initial-load
Replicat.

ADD REPLICAT initial-load_Replicat, SPECIALRUN

Where:

• initial-load_Replicat is the name of the initial-load Replicat task.

• SPECIALRUN identifies the initial-load Replicat as a one-time task, not a
continuous process.

10. On the target system, issue the following command to create an initial-load
Replicat parameter file.

EDIT PARAMS initial-load_Replicat

11. Enter the parameters listed in Table 16-8 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Replicat
parameter file for a direct load to SQL*Loader.

REPLICAT initrep
USERIDALIAS ogg
BULKLOAD
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Chapter 16
Loading Data with a Direct Bulk Load to SQL*Loader

16-25

Table 16-8 Initial-load Replicat Parameters for Direct Load to SQL*Loader

Parameter Description

REPLICAT initial-load_Replicat Specifies the initial-load Replicat task to be started by Manager.
Use the name that you specified when you created the initial-
load Replicat.

[TARGETDB container]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target Oracle container. See Reference
for Oracle GoldenGate for Windows and UNIX for more
information.

USERID and USERIDALIAS specify database credentials if
required. See Configuring Oracle GoldenGate Security for more
information about security options.

BULKLOAD Directs Replicat to interface directly with the Oracle SQL*Loader
interface. See Reference for Oracle GoldenGate for Windows
and UNIX for more information.

{SOURCEDEFS full_pathname} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target
tables have different definitions. Specify the
source-definitions file generated by
DEFGEN.

• Use ASSUMETARGETDEFS if the source and
target tables have the same definitions.

Specifies how to interpret data definitions. For more information
about data definitions files, see Associating Replicated Data with
Metadata.

SOURCECATALOG Specifies a default source Oracle container for subsequent MAP
statements. Enables the use of two-part names (schema.object)
where three-part names otherwise would be required. You can
use multiple instances of this parameter to specify different
default containers for different sets of MAP parameters.

MAP [container.]owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or objects and
a target object or objects. MAP specifies the source object, and
TARGET specifies the target object.

For the source object, specify the fully qualified name of the
object or a fully qualified wildcarded specification for multiple
objects. For an Oracle multitenant container database, the
source object name must include the name of the container
unless SOURCECATALOG is used.

For the target object, specify only the owner.object components
of the name, regardless of the database. Replicat can only
connect to one Oracle container. Use a separate Replicat
process for each container to which you want to load data.

See Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

The DEF option specifies a definitions template. For more
information about data definitions, see Associating Replicated
Data with Metadata. See Reference for Oracle GoldenGate for
Windows and UNIX for more information and options for the MAP
parameter.

Chapter 16
Loading Data with a Direct Bulk Load to SQL*Loader

16-26

Table 16-8 (Cont.) Initial-load Replicat Parameters for Direct Load to SQL*Loader

Parameter Description

CATALOGEXCLUDE

SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another to
exclude specific source objects from a wildcard specification in
the associated MAP statement. See Reference for Oracle
GoldenGate for Windows and UNIX for details.

12. Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate for Windows and UNIX.

13. Save and close the parameter file.

14. On the source system, start change extraction.

START EXTRACT group

15. View the Replicat parameter file to make certain that the HANDLECOLLISIONS
parameter is listed. If not, add the parameter to the file.

16. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]

17. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence

18. On the source system, start the initial-load Extract.

START EXTRACT initial-load_Extract

Caution:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

19. On the target system, issue the following command to determine when the load is
finished. Wait until the load is finished before proceeding to the next step.

VIEW REPORT initial-load_Extract

20. On the target system, start change replication.

START REPLICAT group

21. On the target system, issue the following command to verify the status of change
replication.

INFO REPLICAT group

22. Continue to issue the INFO REPLICAT command until you have verified that Replicat
posted all of the change data that was generated during the initial load. For
example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

Chapter 16
Loading Data with a Direct Bulk Load to SQL*Loader

16-27

23. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS

24. On the target system, edit the Replicat parameter file to remove the
HANDLECOLLISIONS parameter. This prevents HANDLECOLLISIONS from being enabled
again the next time Replicat starts.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

25. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

16.8 Loading Data with Teradata Load Utilities
The preferred methods for synchronizing two Teradata databases is to use any of the
Teradata data load utilities. The recommended utility is MultiLoad.

This procedure requires Extract and Replicat change-synchronization groups to be
available and properly configured for Teradata replication. For more information, see
Configuring Online Change Synchronization.

If you are using multiple Extract and Replicat groups, perform each step for all of them
as appropriate.

To Load Data With a Teradata Load Utility

1. Create the scripts that are required by the utility.

2. Start the primary Extract group(s).

START EXTRACT group

3. Start the data pump(s), if used.

START EXTRACT data_pump

4. Open the Replicat parameter file(s) for editing.

Chapter 16
Loading Data with Teradata Load Utilities

16-28

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

5. Add the following parameters to the Replicat parameter file(s):

END RUNTIME
HANDLECOLLISIONS

• END RUNTIME directs Replicat to terminate normally when it reads an Oracle
GoldenGate trail record that has a timestamp that is the same as, or after, the
time that Replicat was started.

• HANDLECOLLISIONS directs Replicat to overwrite duplicate records and ignore
missing ones, as a means of resolving errors that occur from collisions
between transactional changes and the results of the copy.

6. Save and close the Replicat parameter file(s).

7. Start the load utility.

8. When the load completes on the target, start the Replicat process(es).

9. When each Replicat process stops, remove the HANDLECOLLISIONS and END RUNTIME
parameters from the parameter file.

10. Restart the Replicat process(es). The two databases are now synchronized, and
Oracle GoldenGate will keep them current through replication.

Chapter 16
Loading Data with Teradata Load Utilities

16-29

17
Customizing Oracle GoldenGate
Processing

This chapter describes how to customize Oracle GoldenGate processing.
This chapter includes the following sections:

• Executing Commands, Stored Procedures, and Queries with SQLEXEC

• Using Oracle GoldenGate Macros to Simplify and Automate Work

• Using User Exits to Extend Oracle GoldenGate Capabilities

• Using the Oracle GoldenGate Event Marker System to Raise Database Events

• Executing Commands, Stored Procedures, and Queries with SQLEXEC

• Using Oracle GoldenGate Macros to Simplify and Automate Work

• Using User Exits to Extend Oracle GoldenGate Capabilities

• Using the Oracle GoldenGate Event Marker System to Raise Database Events

17.1 Executing Commands, Stored Procedures, and
Queries with SQLEXEC

The SQLEXEC parameter of Oracle GoldenGate enables Extract and Replicat to
communicate with the database to do the following:

• Execute a database command, stored procedure, or SQL query to perform a
database function, return results (SELECT statements) or perform DML (INSERT,
UPDATE, DELETE) operations.

• Retrieve output parameters from a procedure for input to a FILTER or COLMAP clause.

• Performing Processing with SQLEXEC

• Using SQLEXEC

• Executing SQLEXEC within a TABLE or MAP Statement

• Executing SQLEXEC as a Standalone Statement

• Using Input and Output Parameters

• Handling SQLEXEC Errors

• Additional SQLEXEC Guidelines

17.1.1 Performing Processing with SQLEXEC
SQLEXEC extends the functionality of both Oracle GoldenGate and the database by
allowing Oracle GoldenGate to use the native SQL of the database to execute custom
processing instructions.

17-1

• Stored procedures and queries can be used to select or insert data into the
database, to aggregate data, to denormalize or normalize data, or to perform any
other function that requires database operations as input. Oracle GoldenGate
supports stored procedures that accept input and those that produce output.

• Database commands can be issued to perform database functions required to
facilitate Oracle GoldenGate processing, such as disabling triggers on target
tables and then enabling them again.

17.1.2 Using SQLEXEC
The SQLEXEC parameter can be used as follows:

• as a clause of a TABLE or MAP statement

• as a standalone parameter at the root level of the Extract or Replicat parameter
file.

17.1.3 Executing SQLEXEC within a TABLE or MAP Statement
When used within a TABLE or MAP statement, SQLEXEC can pass and accept parameters.
It can be used for procedures and queries, but not for database commands.

Syntax

This syntax executes a procedure within a TABLE or MAP statement.

SQLEXEC (SPNAME sp_name,
[ID logical_name,]
{PARAMS param_spec | NOPARAMS})

Argument Description

SPNAME
Required keyword that begins a clause to execute a stored
procedure.

sp_name
Specifies the name of the stored procedure to execute.

ID logical_name
Defines a logical name for the procedure. Use this option to
execute the procedure multiple times within a TABLE or MAP
statement. Not required when executing a procedure only once.

PARAMS param_spec |
NOPARAMS

Specifies whether or not the procedure accepts parameters. One
of these options must be used (see Using Input and Output
Parameters).

Syntax

This syntax executes a query within a TABLE or MAP statement.

SQLEXEC (ID logical_name, QUERY ' query ',
{PARAMS param_spec | NOPARAMS})

Chapter 17
Executing Commands, Stored Procedures, and Queries with SQLEXEC

17-2

Argument Description

ID logical_name
Defines a logical name for the query. A logical name is required
in order to extract values from the query results. ID
logical_name references the column values returned by the
query.

QUERY ' sql_query '
Specifies the SQL query syntax to execute against the database.
It can either return results with a SELECT statement or change the
database with an INSERT, UPDATE, or DELETE statement. The
query must be within single quotes and must be contained all on
one line. Specify case-sensitive object names the way they are
stored in the database, such as within quotes for Oracle case-
sensitive names.

SQLEXEC 'SELECT "col1" from "schema"."table"'

PARAMS param_spec |
NOPARAMS

Defines whether or not the query accepts parameters. One of
these options must be used (see Using Input and Output
Parameters).

If you want to execute a query on a table residing on a different database than the
current database, then the different database name has to be specified with the table.
The delimiter between the database name and the tablename should be a colon (:).
The following are some example use cases:

select col1 from db1:tab1
select col2 from db2:schema2.tab2
select col3 from tab3
select col3 from schema4.tab4

17.1.4 Executing SQLEXEC as a Standalone Statement
When used as a standalone parameter statement in the Extract or Replicat parameter
file, SQLEXEC can execute a stored procedure, query, or database command. As such, it
need not be tied to any specific table and can be used to perform general SQL
operations. For example, if the Oracle GoldenGate database user account is
configured to time-out when idle, you could use SQLEXEC to execute a query at a
defined interval, so that Oracle GoldenGate does not appear idle. As another example,
you could use SQLEXEC to issue an essential database command, such as to disable
target triggers. A standalone SQLEXEC statement cannot accept input parameters or
return output parameters.

Parameter syntax Purpose

SQLEXEC 'call procedure_name()'
Execute a stored procedure

SQLEXEC 'sql_query'
Execute a query

SQLEXEC 'database_command'
Execute a database command

Chapter 17
Executing Commands, Stored Procedures, and Queries with SQLEXEC

17-3

Argument Description

'call
procedure_name ()'

Specifies the name of a stored procedure to execute. The statement
must be enclosed within single quotes.

Example:

SQLEXEC 'call prc_job_count ()'

'sql_query'
Specifies the name of a query to execute. The query must be
contained all on one line and enclosed within single quotes.

Specify case-sensitive object names the way they are stored in the
database, such as within double quotes for Oracle object names that
are case-sensitive.

SQLEXEC 'SELECT "col1" from "schema"."table"'

'database_command'
Specifies a database command to execute. Must be a valid
command for the database.

SQLEXEC provides options to control processing behavior, memory usage, and error
handling. For more information, see Reference for Oracle GoldenGate for Windows
and UNIX.

17.1.5 Using Input and Output Parameters
Oracle GoldenGate provides options for passing input and output values to and from a
procedure or query that is executed with SQLEXEC within a TABLE or MAP statement.

• Passing Values to Input Parameters

• Passing Values to Output Parameters

• SQLEXEC Examples Using Parameters

17.1.5.1 Passing Values to Input Parameters
To pass data values to input parameters within a stored procedure or query, use the
PARAMS option of SQLEXEC.

Syntax

PARAMS ([OPTIONAL | REQUIRED] param = {source_column | function}
[, ...])

Where:

• OPTIONAL indicates that a parameter value is not required for the SQL to execute. If
a required source column is missing from the database operation, or if a column-
conversion function cannot complete successfully because a source column is
missing, the SQL executes anyway.

• REQUIRED indicates that a parameter value must be present. If the parameter value
is not present, the SQL will not be executed.

• param is one of the following:

– For a stored procedure, it is the name of any parameter in the procedure that
can accept input, such as a column in a lookup table.

Chapter 17
Executing Commands, Stored Procedures, and Queries with SQLEXEC

17-4

– For an Oracle query, it is the name of any input parameter in the query
excluding the leading colon. For example, :param1 would be specified as
param1 in the PARAMS clause.

– For a non-Oracle query, it is pn, where n is the number of the parameter within
the statement, starting from 1. For example, in a query with two parameters,
the param entries are p1 and p2.

• {source_column | function} is the column or Oracle GoldenGate conversion function
that provides input to the procedure.

17.1.5.2 Passing Values to Output Parameters
To pass values from a stored procedure or query as input to a FILTER or COLMAP clause,
use the following syntax:

Syntax

{procedure_name | logical_name}.parameter

Where:

• procedure_name is the actual name of the stored procedure. Use this argument only
if executing a procedure one time during the life of the current Oracle GoldenGate
process.

• logical_name is the logical name specified with the ID option of SQLEXEC. Use this
argument if executing a query or a stored procedure that will be executed multiple
times.

• parameter is either the name of the parameter or RETURN_VALUE, if extracting
returned values.

17.1.5.3 SQLEXEC Examples Using Parameters
These examples use stored procedures and queries with input and output parameters.

Note:

Additional SQLEXEC options are available for use when a procedure or query
includes parametes. See the full SQLEXEC documentation in Reference for
Oracle GoldenGate for Windows and UNIX.

Example 17-1 SQLEXEC with a Stored Procedure

This example uses SQLEXEC to run a stored procedure named LOOKUP that performs a
query to return a description based on a code. It then maps the results to a target
column named NEWACCT_VAL.

CREATE OR REPLACE PROCEDURE LOOKUP
(CODE_PARAM IN VARCHAR2, DESC_PARAM OUT VARCHAR2)
BEGIN
 SELECT DESC_COL
 INTO DESC_PARAM
 FROM LOOKUP_TABLE

Chapter 17
Executing Commands, Stored Procedures, and Queries with SQLEXEC

17-5

 WHERE CODE_COL = CODE_PARAM
END;

Contents of MAP statement:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (SPNAME lookup, PARAMS (code_param = account_code)), &
 COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

SQLEXEC executes the LOOKUP stored procedure. Within the SQLEXEC clause, the PARAMS
(code_param = account_code) statement identifies code_param as the procedure
parameter to accept input from the account_code column in the account table.

Replicat executes the LOOKUP stored procedure prior to executing the column map, so
that the COLMAP clause can extract and map the results to the newacct_val column.

Example 17-2 SQLEXEC with a Query

This example implements the same logic as used in the previous example, but it
executes a SQL query instead of a stored procedure and uses the @GETVAL function in
the column map.

A query must be on one line. To split an Oracle GoldenGate parameter statement into
multiple lines, an ampersand (&) line terminator is required.

Query for an Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col = :code_param', &
PARAMS (code_param = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Query for a non-Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col = ?', &
PARAMS (p1 = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

17.1.6 Handling SQLEXEC Errors
There are two types of error conditions to consider when implementing SQLEXEC:

• The column map requires a column that is missing from the source database
operation. This can occur for an update operation if the database only logs the
values of columns that changed, rather than all of the column values. By default,
when a required column is missing, or when an Oracle GoldenGate column-
conversion function results in a "column missing" condition, the stored procedure
does not execute. Subsequent attempts to extract an output parameter from the
stored procedure results in a "column missing condition" in the COLMAP or FILTER
clause.

• The database generates an error.

• Handling Missing Column Values

Chapter 17
Executing Commands, Stored Procedures, and Queries with SQLEXEC

17-6

• Handling Database Errors

17.1.6.1 Handling Missing Column Values
Use the @COLTEST function to test the results of the parameter that was passed, and
then map an alternative value for the column to compensate for missing values, if
desired. Otherwise, to ensure that column values are available, you can use the
FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE parameter to fetch the values from the
database if they are not present in the log. As an alternative to fetching columns, you
can enable supplemental logging for those columns.

17.1.6.2 Handling Database Errors
Use the ERROR option in the SQLEXEC clause to direct Oracle GoldenGate to respond in
one of the following ways:

Table 17-1 ERROR Options

Action Description

IGNORE
Causes Oracle GoldenGate to ignore all errors associated with the stored
procedure or query and continue processing. Any resulting parameter
extraction results in a "column missing" condition. This is the default.

REPORT
Ensures that all errors associated with the stored procedure or query are
reported to the discard file. The report is useful for tracing the cause of the
error. It includes both an error description and the value of the parameters
passed to and from the procedure or query. Oracle GoldenGate continues
processing after reporting the error.

RAISE
Handles errors according to rules set by a REPERROR parameter specified in the
Replicat parameter file. Oracle GoldenGate continues processing other stored
procedures or queries associated with the current TABLE or MAP statement
before processing the error.

FINAL
Performs in a similar way to RAISE except that when an error associated with a
procedure or query is encountered, any remaining stored procedures and
queries are bypassed. Error processing is called immediately after the error.

FATAL
Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

17.1.7 Additional SQLEXEC Guidelines
Observe the following SQLEXEC guidelines:

• Up to 20 stored procedures or queries can be executed per TABLE or MAP entry.
They execute in the order listed in the parameter statement.

• A database login by the Oracle GoldenGate user must precede the SQLEXEC clause.
Use the SOURCEDB and/or USERID or USERIDALIAS parameter in the Extract parameter
file or the TARGETDB and/or USERID or USERIDALIAS parameter in the Replicat
parameter file, as needed for the database type and configured authentication
method.

• The SQL is executed by the Oracle GoldenGate user. This user must have the
privilege to execute stored procedures and call RDBM-supplied procedures.

Chapter 17
Executing Commands, Stored Procedures, and Queries with SQLEXEC

17-7

• Database operations within a stored procedure or query are committed in same
context as the original transaction.

• Do not use SQLEXEC to update the value of a primary key column. If SQLEXEC is used
to update the value of a key column, then the Replicat process will not be able to
perform a subsequent update or delete operation, because the original key value
will be unavailable. If a key value must be changed, you can map the original key
value to another column and then specify that column with the KEYCOLS option of
the TABLE or MAP parameter.

• For DB2, Oracle GoldenGate uses the ODBC SQLExecDirect function to execute a
SQL statement dynamically. This means that the connected database server must
be able to prepare the statement dynamically. ODBC prepares the SQL statement
every time it is executed (at the requested interval). Typically, this does not
present a problem to Oracle GoldenGate users. See the IBM DB2 documentation
for more information.

• Do not use SQLEXEC for objects being processing by a data-pump Extract in pass-
through mode.

• All object names in a SQLEXEC statement must be fully qualified with their two-part
or three-part names, as appropriate for the database.

• All objects that are affected by a SQLEXEC stored procedure or query must exist with
the correct structures prior to the execution of the SQL. Consequently, DDL on
these objects that affects structure (such as CREATE or ALTER) must happen before
the SQLEXEC executes.

• All objects affected by a standalone SQLEXEC statement must exist before the
Oracle GoldenGate processes start. Because of this, DDL support must be
disabled for those objects; otherwise, DDL operations could change the structure
or delete the object before the SQLEXEC procedure or query executes on it.

17.2 Using Oracle GoldenGate Macros to Simplify and
Automate Work

You can use Oracle GoldenGate macros in parameter files to configure and reuse
parameters, commands, and conversion functions. reducing the amount of text you
must enter to do common tasks. A macro is a built-in automation tool that enables you
to call a stored set of processing steps from within the Oracle GoldenGate parameter
file. A macro can consist of a simple set of frequently used parameter statements to a
complex series of parameter substitutions, calculations, or conversions. You can call
other macros from a macro. You can store commonly used macros in a library, and
then call the library rather than call the macros individually.

Oracle GoldenGate macros work with the following parameter files:

• DEFGEN

• Extract

• Replicat

Do not use macros to manipulate data for tables that are being processed by a data-
pump Extract in pass-through mode.

There are two steps to using macros:

Defining a Macro

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-8

Calling a Macro

• Defining a Macro

• Calling a Macro

• Calling Other Macros from a Macro

• Creating Macro Libraries

• Tracing Macro Expansion

17.2.1 Defining a Macro
To define an Oracle GoldenGate macro, use the MACRO parameter in the parameter file.
MACRO defines any input parameters that are needed and it defines the work that the
macro performs.

Syntax

MACRO #macro_name
PARAMS (#p1, #p2 [, ...])
BEGIN
macro_body
END;

Table 17-2 Macro Definition Arguments

Argument Description

MACRO
Required. Indicates the start of an Oracle GoldenGate macro
definition.

#macro_name
The name of the macro. Macro and parameter names must
begin with a macro character. The default macro character is the
pound (#) character, as in #macro1 and #param1.

A macro or parameter name can be one word consisting of
letters and numbers, or both. Special characters, such as the
underscore character (_) or hyphen (-), can be used. Some
examples of macro names are: #mymacro, #macro1, #macro_1,
#macro-1, #macro$. Some examples of parameter names are
#sourcecol, #s, #col1, and #col_1.

To avoid parsing errors, the macro character cannot be used as
the first character of a macro name. For example, ##macro is
invalid. If needed, you can change the macro character by using
the MACROCHAR parameter. See Reference for Oracle GoldenGate
for Windows and UNIX.

Macro and parameter names are not case-sensitive. Macro or
parameter names within quotation marks are ignored.

PARAMS (#p1, #p2)
Optional definition of input parameters. Specify a comma-
separated list of parameter names and enclose it within
parentheses. Each parameter must be referenced in the macro
body where you want input values to be substituted. You can list
each parameter on a separate line to improve readability
(making certain to use the open and close parentheses to
enclose the parameter list). See Calling a Macro that Contains
Parameters for more information.

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-9

Table 17-2 (Cont.) Macro Definition Arguments

Argument Description

BEGIN
Begins the macro body. Must be specified before the macro
body.

macro_body
The macro body. The body is a syntax statement that defines the
function that is to be performed by the macro. A macro body can
include any of the following types of statements.

• Simple parameter statements, as in:

COL1 = COL2

• Complex parameter statements with parameter substitution
as in:

MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP
(USEDEFAULTS);

• Invocations of other macros, as in:

#colmap (COL1, #sourcecol)

END;
Ends the macro definition. The semicolon is required to complete
the definition.

The following is an example of a macro definition that includes parameters. In this
case, the macro simplifies the task of object and column mapping by supplying the
base syntax of the MAP statement with input parameters that resolve to the names of
the owners, the tables, and the KEYCOLS columns.

MACRO #macro1
PARAMS (#o, #t, #k)
BEGIN
MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP (USEDEFAULTS);
END;

The following is an example of a macro that does not define parameters. It executes a
frequently used set of parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

17.2.2 Calling a Macro
This section shows you how to call a macro. (To define a macro, see Defining a
Macro).

To call a macro, use the following syntax where you want the macro to run within the
parameter file.

Syntax

[target =] macro_name (val[, ...])

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-10

[target =] macro_name (val | {val, val, ...}[, ...])

Table 17-3 Syntax Elements for Calling a Macro

Argument Description

target = Optional. Specifies the target to which the results of the macro
are assigned or mapped. For example, target can be used to
specify a target column in a COLMAP statement. In the following
call to the #make_date macro, the column DATECOL1 is the target
and will be mapped to the macro results.

DATECOL1 = #make_date (YR1, MO1, DAY1)

Without a target, the syntax to call #make_date is:

#make_date (YR1, MO1, DAY1)

macro_name The name of the macro that is being called, for example:
#make_date.

(val[, ...]) The parameter input values. This component is required whether
or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values, in
the order that corresponds to the parameter definitions in the
MACRO parameter, and enclose the list within parentheses. If the
macro does not define parameters, specify the open and close
parentheses with nothing between them (). For more information
about this syntax, see the following:

Calling a Macro that Contains Parameters.

Calling a Macro without Input Parameters.

(val | {val,
val, ...})[, ...]

The parameter input values. This component is required whether
or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values, in
the order that corresponds to the parameter definitions in the
MACRO parameter, and enclose the list within parentheses. To
pass multiple values to one parameter, separate them with
commas and enclose the list within curly brackets. If the macro
does not define parameters, specify the open and close
parentheses with nothing between them (). For more information
about this syntax, see the following:

Calling a Macro that Contains Parameters.

Calling a Macro without Input Parameters.

• Calling a Macro that Contains Parameters

• Calling a Macro without Input Parameters

17.2.2.1 Calling a Macro that Contains Parameters
To call a macro that contains parameters, the call statement must supply the input
values that are to be substituted for those parameters when the macro runs. See the
syntax in Table 17-3.

Valid input for a macro parameter is any of the following, preceded by the macro
character (default is #):

• A single value in plain or quoted text, such as: #macro (#name, #address, #phone)
or #macro (#"name", #"address", #"phone").

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-11

• A comma-separated list of values enclosed within curly brackets, such as: #macro1
(SCOTT, DEPT, {DEPTNO1, DEPTNO2, DEPTNO3}). The ability to substitute a block of
values for any given parameter add flexibility to the macro definition and its
usability in the Oracle GoldenGate configuration.

• Calls to other macros, such as: #macro (#mycalc (col2, 100), #total). In this
example, the #mycalc macro is called with the input values of col2 and 100.

Oracle GoldenGate substitutes parameter values within the macro body according to
the following rules.

1. The macro processor reads through the macro body looking for instances of
parameter names specified in the PARAMS statement.

2. For each occurrence of the parameter name, the corresponding parameter value
specified during the call is substituted.

3. If a parameter name does not appear in the PARAMS statement, the macro
processor evaluates whether or not the item is, instead, a call to another macro.
(See Calling Other Macros from a Macro.) If the call succeeds, the nested macro
is executed. If it fails, the whole macro fails.

Example 17-3 Using Parameters to Populate a MAP Statement

The following macro definition specifies three parameter that must be resolved. The
parameters substitute for the names of the table owner (parameter #o), the table
(parameter #t), and the KEYCOLS columns (parameter #k) in a MAP statement.

MACRO #macro1 PARAMS (#o, #t, #k) BEGIN MAP #o.#t, TARGET #o.#t, KEYCOLS (#k),
COLMAP (USEDEFAULTS); END;

Assuming a table in the MAP statement requires only one KEYCOLS column, the following
syntax can be used to call #macro1. In this syntax, the #k parameter can be resolved
with only one value.

#macro1 (SCOTT, DEPT, DEPTNO1)

To call the macro for a table that requires two KEYCOLS columns, the curly brackets are
used as follows to enclose both of the required values for the column names:

#macro1 (SCOTT, DEPT, {DEPTNO1, DEPTNO2})

The DEPTNO1 and DEPTNO2 values are passed as one argument to resolve the #t
parameter. Tables with three or more KEYCOLS can also be handled in this manner,
using additional values inside the curly brackets.

Example 17-4 Using a Macro to Perform Conversion

In this example, a macro defines the parameters #year, #month, and #day to convert a
proprietary date format.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month,
'DD', #day)
END;

The macro is called in the COLMAP clause:

MAP sales.acct_tab, TARGET sales.account,
COLMAP

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-12

(
targcol1 = sourcecol1,
datecol1 = #make_date(YR1, MO1, DAY1),
datecol2 = #make_date(YR2, MO2, DAY2)
);

The macro expands as follows:

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR1 < 50, 20, 19),'YY', YR1, 'MM', MO1,
'DD', DAY1),
datecol2 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR2 < 50, 20, 19),'YY', YR2, 'MM', MO2,
'DD', DAY2)
);

17.2.2.2 Calling a Macro without Input Parameters
To call a macro without input parameters, the call statement must supply the open and
close parentheses, but without any input values: #macro ().

The following macro is defined without input parameters. The body contains frequently
used parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

This macro is called as follows:

#option_defaults ()
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

#option_defaults ()
MAP owner.srctab2, TARGET owner.targtab2;

The macro expands as follows:

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
MAP owner.srctab2, TARGET owner.targtab2;

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-13

17.2.3 Calling Other Macros from a Macro
To call other macros from a macro, create a macro definition similar to the following. In
this example, the #make_date macro is nested within the #assign_date macro, and it is
called when #assign_date runs.

The nested macro must define all, or a subset of, the same parameters that are
defined in the base macro. In other words, the input values when the base macro is
called must resolve to the parameters in both macros.

The following defines #assign_date:

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

The following defines #make_date. This macro creates a date format that includes a
four-digit year, after first determining whether the two-digit input date should be
prefixed with a century value of 19 or 20. Notice that the PARAMS statement of
#make_date contains a subset of the parameters in the #assign_date macro.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month,
'DD', #day)
END;

The following syntax calls #assign_date:

#assign_date (COL1, YEAR, MONTH, DAY)

The macro expands to the following given the preceding input values and the
embedded #make_date macro:

COL1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YEAR < 50, 20, 19),'YY', YEAR, 'MM', MONTH,
'DD', DAY)

17.2.4 Creating Macro Libraries
You can create a macro library that contains one or more macros. By using a macro
library, you can define a macro once and then use it within many parameter files.

To Create a Macro Library

1. Open a new file in a text editor.

2. Use commented lines to describe the library, if needed.

3. Using the syntax described in Defining a Macro, enter the syntax for each macro.

4. Save the file in the dirprm sub-directory of the Oracle GoldenGate directory as:

filename.mac

Where:

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-14

filename is the name of the file. The .mac extension defines the file as a macro
library.

The following sample library named datelib contains two macros, #make_date and
#assign_date.

-- datelib macro library
--
MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month,
'DD', #day)
END;

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

To use a macro library, use the INCLUDE parameter at the beginning of a parameter file,
as shown in the following sample Replicat parameter file.

INCLUDE /ggs/dirprm/datelib.mac
REPLICAT rep
ASSUMETARGETDEFS
USERIDALIAS ogg
MAP fin.acct_tab, TARGET fin.account;

When including a long macro library in a parameter file, you can use the NOLIST
parameter to suppress the listing of each macro in the Extract or Replicat report file.
Listing can be turned on and off by placing the LIST and NOLIST parameters anywhere
within the parameter file or within the macro library file. In the following example,
NOLIST suppresses the listing of each macro in the hugelib macro library. Specifying
LIST after the INCLUDE statement restores normal listing to the report file.

NOLIST
INCLUDE /ggs/dirprm/hugelib.mac
LIST
INCLUDE /ggs/dirprm/mdatelib.mac
REPLICAT REP

17.2.5 Tracing Macro Expansion
You can trace macro expansion with the CMDTRACE parameter. With CMDTRACE enabled,
macro expansion steps are shown in the Extract or Replicat report file.

Syntax

CMDTRACE [ON | OFF | DETAIL]

Where:

• ON enables tracing.

• OFF disables tracing.

• DETAIL produces a verbose display of macro expansion.

Chapter 17
Using Oracle GoldenGate Macros to Simplify and Automate Work

17-15

In the following example, tracing is enabled before #testmac is called, then disabled
after the macro's execution.

REPLICAT REP
MACRO #testmac
BEGIN
COL1 = COL2,
COL3 = COL4,
END;
...
CMDTRACE ON
MAP test.table1, TARGET test.table2,
COLMAP (#testmac);
CMDTRACE OFF

17.3 Using User Exits to Extend Oracle GoldenGate
Capabilities

User exits are custom routines that you write in C programming code and call during
Extract or Replicat processing. User exits extend and customize the functionality of the
Extract and Replicat processes with minimal complexity and risk. With user exits, you
can respond to database events when they occur, without altering production
programs.

• When to Implement User Exits

• Making Oracle GoldenGate Record Information Available to the Routine

• Creating User Exits

• Supporting Character-set Conversion in User Exits

• Using Macros to Check Name Metadata

• Describing the Character Format

• Upgrading User Exits

• Viewing Examples of How to Use the User Exit Functions

17.3.1 When to Implement User Exits
You can employ user exits as an alternative to, or in conjunction with, the column-
conversion functions that are available within Oracle GoldenGate. User exits can be a
better alternative to the built-in functions because a user exit processes data only once
(when the data is extracted) rather than twice (once when the data is extracted and
once to perform the transformation).

The following are some ways in which you can implement user exits:

• Perform arithmetic operations, date conversions, or table lookups while mapping
from one table to another.

• Implement record archival functions offline.

• Respond to unusual database events in custom ways, for example by sending an
e-mail message or a page based on an output value.

• Accumulate totals and gather statistics.

• Manipulate a record.

Chapter 17
Using User Exits to Extend Oracle GoldenGate Capabilities

17-16

• Repair invalid data.

• Calculate the net difference in a record before and after an update.

• Accept or reject records for extraction or replication based on complex criteria.

• Normalize a database during conversion.

17.3.2 Making Oracle GoldenGate Record Information Available to the
Routine

The basis for most user exit processing is the EXIT_CALL_PROCESS_RECORD function. For
Extract, this function is called just before a record buffer is output to the trail. For
Replicat, it is called just before a record is applied to the target. If source-target
mapping is specified in the parameter file, the EXIT_CALL_PROCESS_RECORD event takes
place after the mapping is performed.

When EXIT_CALL_PROCESS_RECORD is called, the record buffer and other record
information are available to it through callback routines. The user exit can map,
transform, clean, or perform any other operation with the data record. When it is
finished, the user exit can return a status indicating whether the record should be
processed or ignored by Extract or Replicat.

17.3.3 Creating User Exits
The following instructions help you to create user exits on Windows and UNIX
systems. For more information about the parameters and functions that are described
in these instructions, see Reference for Oracle GoldenGate for Windows and UNIX.

Note:

User exits are case-sensitive for database object names. Names are
returned exactly as they are defined in the hosting database. Object names
must be fully qualified.

To Create User Exits

1. In C code, create either a shared object (UNIX systems) or a DLL (Windows) and
create or export a routine to be called from Extract or Replicat. This routine is the
communication point between Oracle GoldenGate and your routines. Name the
routine whatever you want. The routine must accept the following Oracle
GoldenGate user exit parameters:

• EXIT_CALL_TYPE: Indicates when, during processing, the routine is called.

• EXIT_CALL_RESULT: Provides a response to the routine.

• EXIT_PARAMS: Supplies information to the routine. This function enables you to
use the EXITPARAM option of the TABLE or MAP statement to pass a parameter that
is a literal string to the user exit. This is only valid during the exit call to
process a specific record. This function also enables you to pass parameters
specified with the PARAMS option of the CUSEREXIT parameter at the exit call
startup.

Chapter 17
Using User Exits to Extend Oracle GoldenGate Capabilities

17-17

2. In the source code, include the usrdecs.h file. The usrdecs.h file is the include file
for the user exit API. It contains type definitions, return status values, callback
function codes, and a number of other definitions. The usrdecs.h file is installed
within the Oracle GoldenGate directory. Do not modify this file.

3. Include Oracle GoldenGate callback routines in the user exit when applicable.
Callback routines retrieve record and application context information, and they
modify the contents of data records. To implement a callback routine, use the
ERCALLBACK function in the shared object. The user callback routine behaves
differently based on the function code that is passed to the callback routine.

ERCALLBACK (function_code, buffer, result_code);

Where:

• function_code is the function to be executed by the callback routine.

• buffer is a void pointer to a buffer containing a predefined structure associated
with the specified function code.

• result_code is the status of the function that is executed by the callback
routine. The result code that is returned by the callback routine indicates
whether or not the callback function was successful.

• On Windows systems, Extract and Replicat export the ERCALLBACK function that
is to be called from the user exit routine. The user exit must explicitly load the
callback function at run-time using the appropriate Windows API calls.

4. Include the CUSEREXIT parameter in your Extract or Replicat parameter file. This
parameter accepts the name of the shared object or DLL and the name of the
exported routine that is to be called from Extract or Replicat. You can specify the
full path of the shared object or DLL or let the operating system's standard search
strategy locate the shared object.

CUSEREXIT {DLL | shared_object} routine
[, INCLUDEUPDATEBEFORES]
[, PARAMS 'startup_string']

Where:

• DLL is a Windows DLL and shared_object is a UNIX shared object that contains
the user exit function.

• INCLUDEUPDATEBEFORES gets before images for UPDATE operations.

• PARAMS 'startup_string' supplies a startup string, such as a startup
parameter.

Example 17-5 Example of Base Syntax, UNIX

CUSEREXIT eruserexit.so MyUserExit

Example 17-6 Example Base Syntax, Windows

CUSEREXIT eruserexit.dll MyUserExit

17.3.4 Supporting Character-set Conversion in User Exits
To maintain data integrity, a user exit needs to understand the character set of the
character-type data that it exchanges with an Oracle GoldenGate process. Oracle
GoldenGate user exit logic provides globalization support for:

Chapter 17
Using User Exits to Extend Oracle GoldenGate Capabilities

17-18

• character-based database metadata, such as the names of catalogs, schemas,
tables, and columns

• the values of character-type columns, such as CHAR, VARCHAR2, CLOB, NCHAR,
NVARCHAR2, and NCLOB, as well as string-based numbers, date-time, and intervals.

Properly converting between character sets allows column data to be compared,
manipulated, converted, and mapped properly from one type of database and
character set to another. Most of this processing is performed when the
EXIT_CALL_PROCESS_RECORD call type is called and the record buffer and other record
information is made available through callback routines.

The user exit has its own session character set. This is defined by the
GET_SESSION_CHARSET and SET_SESSION_CHARSET callback functions. The caller process
provides conversion between character sets if the character set of the user exit is
different from the hosting context of the process.

To enable this support in user exits, there is the GET_DATABASE_METADATA callback
function code. This function enables the user exit to get database metadata, such as
the locale and the character set of the character-type data that it exchanges with the
process that calls it (Extract, data pump, Replicat). It also returns how the database
treats the case-sensitivity of object names, how it treats quoted and unquoted names,
and how it stores object names.

For more information about these components, see Reference for Oracle GoldenGate
for Windows and UNIX.

17.3.5 Using Macros to Check Name Metadata
The object name that is passed by the user exit API is the exact name that is encoded
in the user-exit session character set, and exactly the same name that is retrieved
from the database. If the user exit compares the object name with a literal string, the
user exit must retrieve the database locale and then normalize the string so that it is
compared with the object name in the same encoding.

Oracle GoldenGate provides the following macros that can be called by the user exit to
check the metadata of database object names. For example, a macro can be used to
check whether a quoted table name is case-sensitive and whether it is stored as
mixed-case in the database server. These macros are defined in the usrdecs.h file.

Table 17-4 Macros for metadata checking

Macro What it verifies

supportsMixedCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats a mixed-case
unquoted name of a specified data type as
case-sensitive and stores the name in mixed
case.

supportsMixedCaseQuotedIdentifiers(name
Meta, DBObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
sensitive and stores the name in mixed case.

storesLowerCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in lower
case.

Chapter 17
Using User Exits to Extend Oracle GoldenGate Capabilities

17-19

Table 17-4 (Cont.) Macros for metadata checking

Macro What it verifies

storesLowerCaseQuotedIdentifiers(nameMe
ta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in lower case.

storesMixedCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in mixed
case.

storesMixedCaseQuotedIdentifiers(nameMe
ta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in mixed case.

storesUpperCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in upper
case.

storesUpperCaseQuotedIdentifiers(nameMe
ta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in upper case.

17.3.6 Describing the Character Format
The input parameter column_value_mode describes the character format of the data that
is being processed and is used in several of the function codes. The following table
describes the meaning of the EXIT_FN_RAW_FORMAT, EXIT_FN_CHAR_FORMAT, and
EXIT_FN_CNVTED_SESS_FORMAT format codes, per data type.

Table 17-5 column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_
FORMAT

CHAR

"abc"

2-byte null indicator +

2-byte length info

+ column value

0000 0004 61 62 63 20

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

Tailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are trimmed
by default unless the
GLOBALS parameter
NOTRIMSPACES is specified.

NCHAR

0061 0062 0063 0020

2-byte null indicator +

2-byte length info +

column value.

0000 0008 00 61 0062 0063
0020

"abc" (encoded in UTF8) or
truncated at the first byte,
depending on whether NCHAR
is treated as UTF-8.

NULL terminated.

Trailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are trimmed
by default unless the
GLOBALS parameter
NOTRIMSPACES is specified.

VARCHAR2

"abc"

2-byte null indicator +

2-byte length info +

column value

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

No trimming.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

Chapter 17
Using User Exits to Extend Oracle GoldenGate Capabilities

17-20

Table 17-5 (Cont.) column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_
FORMAT

NVARCHAR2

0061 0062 0063 0020

2-byte null indicator +

2-byte length info +

column value

"abc" (encoded in UTF8) or
truncated at the first byte,
depending on whether
NVARCHAR2 is treated as
UTF-8.

NULL terminated.

No trimming.

"abc"encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

CLOB 2-byte null indicator +

2-byte length info +

column value

Similar to VARCHAR2, but only
output up to 4K bytes.

NULL Terminated.

No trimming.

Similar to VARCHAR2, but only
output data requested in
user exit session character
set.

NOT NULL terminated.

No trimming.

NCLOB 2-byte null indicator +

2-byte length info +

column value

Similar to NVARCHAR2, but
only output up to 4K bytes.

NULL terminated.

No trimming.

Similar to NVARCHAR2, but
only output data requested in
user exit session character
set.

NOT NULL terminated.

No trimming.

NUMBER

123.89

2-byte null indicator +

2-byte length info +

column value

"123.89" encoded in ASCII or
EBCDIC.

NULL terminated.

"123.89" encoded in user exit
session character set.

NOT NULL terminated.

DATE

31-May-11

2-byte null indicator +

2-byte length info +

column value

"2011-05-31" encoded in
ASCII or EBCDIC.

NULL terminated.

"2011-05-31" encoded in
user exit session character
set.

NOT NULL terminated.

TIMESTAMP

31-May-11 12.00.00
AM

2-byte null indicator +

2-byte length info +

column value

"2011-05-31 12.00.00 AM"
encoded in ASCII or EBCDIC.

NULL terminated.

"2011-05-31 12.00.00 AM"
encoded in user exit session
character set.

NOT NULL terminated.

Interval Year to
Month or Interval
Day to Second

2-byte null indicator +

2-byte length info +

column value

NA NA

RAW 2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

17.3.7 Upgrading User Exits
The usrdecs.h file is versioned to allow backward compatibility with existing user exits
when enhancements or upgrades, such as new functions or structural changes, are
added to a new Oracle GoldenGate release. The version of the usrdecs.h file is printed
in the report file at the startup of Replicat or Extract.

Chapter 17
Using User Exits to Extend Oracle GoldenGate Capabilities

17-21

To use new user exit functionality, you must recompile your routines to include the
new usrdecs file. Routines that do not use new features do not need to be recompiled.

17.3.8 Viewing Examples of How to Use the User Exit Functions
Oracle GoldenGate installs the following sample user exit files into the
UserExitExamples directory of the Oracle GoldenGate installation directory:

• exitdemo.c shows how to initialize the user exit, issue callbacks at given exit
points, and modify data. It also demonstrates how to retrieve the fully qualified
table name or a specific metadata part, such as the name of the catalog or
container, or the schema, or just the unqualified table name. In addition, this demo
shows how to process DDL data. The demo is not specific to any database type.

• exitdemo_utf16.c shows how to use UTF16-encoded data (both metadata and
column data) in the callback structures for information exchanged between the
user exit and the caller process.

• exitdemo_more_recs.c shows an example of how to use the same input record
multiple times to generate several target records.

• exitdemo_lob.c shows an example of how to get read access to LOB data.

• exitdemo_pk_befores.c shows how to access the before and after image portions of
a primary key update record, as well as the before images of regular updates
(non-key updates). It also shows how to get target row values with SQLEXEC in the
Replicat parameter file as a means for conflict detection. The resulting fetched
values from the target are mapped as the target record when it enters the user
exit.

Each directory contains the *.c files as well as makefiles and a readme.txt file.

17.4 Using the Oracle GoldenGate Event Marker System to
Raise Database Events

Oracle GoldenGate provides an event marker system, also known as the event marker
infrastructure (EMI), which enables the Oracle GoldenGate processes to take a
defined action based on an event record in the transaction log or in the trail
(depending on the data source of the process). The event record is a record that
satisfies a specific filter criterion for which you want an action to occur. You can use
this system to customize Oracle GoldenGate processing based on database events.

For example, you can use the event marker system to start, suspend, or stop a
process, to perform a transformation, or to report statistics. The event marker system
can be put to use for purposes such as:

• To establish a synchronization point at which SQLEXEC or user exit functions can be
performed

• To execute a shell command that executes a data validation script or sends an
email

• To activate tracing when a specific account number is detected

• To capture lag history

• To stop or suspend a process to run reports or batch processes at the end of the
day

Chapter 17
Using the Oracle GoldenGate Event Marker System to Raise Database Events

17-22

The event marker feature is supported for the replication of data changes, but not for
initial loads.

The system requires the following input components:

1. The event record that triggers the action can be specified with FILTER, WHERE, or
SQLEXEC in a TABLE or MAP statement. Alternatively, a special TABLE statement in a
Replicat parameter file enables you to perform EVENTACTIONS actions without
mapping a source table to a target table.

2. In the TABLE or MAP statement where you specify the event record, include the
EVENTACTIONS parameter with the appropriate option to specify the action that is to
be taken by the process.

You can combine EVENTACTIONS options, as shown in the following examples.

The following causes the process to issue a checkpoint, log an informational message,
and ignore the entire transaction (without processing any of it), plus generate a report.

EVENTACTIONS (CP BEFORE, REPORT, LOG, IGNORE TRANSACTION)

The following writes the event record to the discard file and ignores the entire
transaction.

EVENTACTIONS (DISCARD, IGNORE TRANS)

The following logs an informational message and gracefully stop the process.

EVENTACTIONS (LOG INFO, STOP)

The following rolls over the trail file and does not write the event record to the new file.

EVENTACTIONS (ROLLOVER, IGNORE)

For syntax details and additional usage instructions, see Reference for Oracle
GoldenGate for Windows and UNIX.

• Case Studies in the Usage of the Event Marker System

17.4.1 Case Studies in the Usage of the Event Marker System
These examples highlight some use cases for the event marker system. For syntax
details and additional usage instructions, see Reference for Oracle GoldenGate for
Windows and UNIX.

• Trigger End-of-day Processing

• Simplify Transition from Initial Load to Change Synchronization

• Stop Processing When Data Anomalies are Encountered

• Trace a Specific Order Number

• Execute a Batch Process

• Propagate Only a SQL Statement without the Resultant Operations

• Committing Other Transactions Before Starting a Long-running Transaction

• Execute a Shell Script to Validate Data

Chapter 17
Using the Oracle GoldenGate Event Marker System to Raise Database Events

17-23

17.4.1.1 Trigger End-of-day Processing
This example specifies the capture of operations that are performed on a special table
named event_table in the source database. This table exists solely for the purpose of
receiving inserts at a predetermined time, for example at 5:00 P.M. every day. When
Replicat receives the transaction record for this operation, it stops gracefully to allow
operators to start end-of-day processing jobs. By using the insert on the event_table
table every day, the operators know that Replicat has applied all committed
transactions up to 5:00. IGNORE causes Replicat to ignore the event record itself,
because it has no purpose in the target database. LOG INFO causes Replicat to log an
informational message about the operation.

TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

17.4.1.2 Simplify Transition from Initial Load to Change Synchronization
Event actions and event tables can be used to help with the transition from an initial
load to ongoing change replication. For example, suppose an existing, populated
source table must be added to the Oracle GoldenGate configuration. This table must
be created on the target, and then the two must be synchronized by using an export/
import. This example assumes that an event table named source.event_table exists in
the source database and is specified in a Replicat TABLE statement.

TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

To allow users to continue working with the new source table, it is added to the Extract
parameter file, but not to the Replicat parameter file. Extract begins capturing data
from this table to the trail, where it is stored.

At the point where the source and target are read-consistent after the export, an event
record is inserted into the event table on the source, which propagates to the target.
When Replicat receives the event record (marking the read-consistent point), the
process stops as directed by EVENTACTIONS STOP. This allows the new table to be added
to the Replicat MAP statement. Replicat can be positioned to start replication from the
timestamp of the event record, eliminating the need to use the HANDLECOLLISIONS
parameter. Operations in the trail from before the event record can be ignored
because it is known that they were applied in the export.

The event record itself is ignored by Replicat, but an informational message is logged.

17.4.1.3 Stop Processing When Data Anomalies are Encountered
This example uses ABORT to stop Replicat immediately with a fatal error if an anomaly is
detected in a bank record, where the customer withdraws more money than the
account contains. In this case, the source table is mapped to a target table in a
Replicat MAP statement for actual replication to the target. A TABLE statement is also
used for the source table, so that the ABORT action stops Replicat before it applies the
anomaly to the target database. ABORT takes precedence over processing the record.

MAP source.account, TARGET target.account;
TABLE source.account, FILTER (withdrawal > balance), EVENTACTIONS (ABORT);

Chapter 17
Using the Oracle GoldenGate Event Marker System to Raise Database Events

17-24

17.4.1.4 Trace a Specific Order Number
The following example enables Replicat tracing only for an order transaction that
contains an insert operation for a specific order number (order_no = 1). The trace
information is written to the order_1.trc trace file. The MAP parameter specifies the
mapping of the source table to the target table.

MAP sales.order, TARGET rpt.order;
TABLE source.order,
FILTER (@GETENV ('GGHEADER', 'OPTYPE') = 'INSERT' AND order_no = 1), &
EVENTACTIONS (TRACE order_1.trc TRANSACTION);

17.4.1.5 Execute a Batch Process
In this example, a batch process executes once a month to clear the source database
of accumulated data. At the beginning of the transaction, typically a batch transaction,
a record is written to a special job table to indicate that the batch job is starting.
TRANSACTION is used with IGNORE to specify that the entire transaction must be ignored
by Extract, because the target system does not need to reflect the deleted records. By
ignoring the work on the Extract side, unnecessary trail and network overhead is
eliminated.

TABLE source.job, FILTER (@streq (job_type = 'HOUSEKEEPING')=1), &
EVENTACTIONS (IGNORE TRANSACTION);

Note:

If a logical batch delete were to be composed of multiple smaller batches,
each smaller batch would require an insert into the job table as the first
record in the transaction.

17.4.1.6 Propagate Only a SQL Statement without the Resultant Operations
This example shows how different EVENTACTIONS clauses can be used in combination
on the source and target to replicate just a SQL statement rather than the operations
that result from that statement. In this case, it is an INSERT INTO...SELECT transaction.
Such a transaction could generate millions of rows that would need to be propagated,
but with this method, all that is propagated is the initial SQL statement to reduce trail
and network overhead. The SELECTs are all performed on the target. This configuration
requires perfectly synchronized source and target tables in order to maintain data
integrity.

Extract:

TABLE source.statement, EVENTACTIONS (IGNORE TRANS INCLUDEEVENT);

Replicat:

TABLE source.statement, SQLEXEC (execute SQL statement), &
EVENTACTIONS (INFO, IGNORE);

To use this configuration, a statement table is populated with the first operation in the
transaction, that being the INSERT INTO...SELECT, which becomes the event record.

Chapter 17
Using the Oracle GoldenGate Event Marker System to Raise Database Events

17-25

Note:

For large SQL statements, the statement can be written to multiple columns
in the table. For example, eight VARCHAR (4000) columns could be used to
store SQL statements up to 32 KB in length.

Because of the IGNORE TRANS INCLUDEEVENT, Extract ignores all of the subsequent
inserts that are associated with the SELECT portion of the statement, but writes the
event record that contains the SQL text to the trail. Using a TABLE statement, Replicat
passes the event record to a SQLEXEC statement that concatenates the SQL text
columns, if necessary, and executes the INSERT INTO...SELECT statement using the
target tables as the input for the SELECT sub-query.

17.4.1.7 Committing Other Transactions Before Starting a Long-running
Transaction

This use of EVENTACTIONS ensures that all open transactions that are being processed
by Replicat get committed to the target before the start of a long running transaction. It
forces Replicat to write a checkpoint before beginning work on the large transaction.
Forcing a checkpoint constrains any potential recovery to just the long running
transaction. Because a Replicat checkpoint implies a commit to the database, it frees
any outstanding locks and makes the pending changes visible to other sessions.

TABLE source.batch_table, EVENTACTIONS (CHECKPOINT BEFORE);

17.4.1.8 Execute a Shell Script to Validate Data
This example executes a shell script that runs another script that validates data after
Replicat applies the last transaction in a test run. On the source, an event record is
written to an event table named source.event. The record inserts the value COMPARE into
the event_type column of the event table, and this record gets replicated at the end of
the other test data. In the TABLE statement in the Replicat parameter file, the FILTER
clause qualifies the record and then triggers the shell script compare_db.sh to run as
specified by SHELL in the EVENTACTIONS clause. After that, Replicat stops immediately as
specified by FORCESTOP.

Extract:

TABLE src.*;
TABLE test.event;

Replicat:

MAP src.*, TARGET targ.*;
MAP test.event, TARGET test.event, FILTER (@streq (event_type, 'COMPARE')=1), &
EVENTACTIONS (SHELL 'compare_db.sh', FORCESTOP);

Chapter 17
Using the Oracle GoldenGate Event Marker System to Raise Database Events

17-26

18
Monitoring Oracle GoldenGate Processing

This chapter describes the monitoring of Oracle GoldenGate processing.
Topics:

• Using the Information Commands in GGSCI

• Monitoring an Extract Recovery

• Monitoring Lag

• Using Automatic Heartbeat Tables to Monitor

• Monitoring Processing Volume

• Using the Error Log

• Using the Process Report

• Using the Discard File

• Maintaining the Discard and Report Files

• Using the System Logs

• Reconciling Time Differences

• Sending Event Messages to a NonStop System

• Getting Help with Performance Tuning

18.1 Using the Information Commands in GGSCI
The primary way to view processing information is through GGSCI. For more
information about these commands, see Reference for Oracle GoldenGate for
Windows and UNIX.

Table 18-1 Commands to View Process Information

Command What it shows

INFO {EXTRACT | REPLICAT} group [DETAIL] Run status, checkpoints, approximate lag, and
environmental information.

INFO MANAGER Run status and port number

INFO ALL INFO output for all Oracle GoldenGate
processes on the system

STATS {EXTRACT | REPLICAT} group Statistics on processing volume, such as
number of operations performed.

STATUS {EXTRACT | REPLICAT} group Run status (starting, running, stopped,
abended)

STATUS MANAGER Run status

LAG {EXTRACT | REPLICAT} group Latency between last record processed and
timestamp in the data source

18-1

Table 18-1 (Cont.) Commands to View Process Information

Command What it shows

INFO {EXTTRAIL | RMTTRAIL} trail Name of associated process, position of last
data processed, maximum file size

SEND MANAGER Run status, information about child processes,
port information, trail purge settings

SEND {EXTRACT | REPLICAT} group Depending on the process and selected
options, returns information about memory
pool, lag, TCP statistics, long-running
transactions, process status, recovery
progress, and more.

VIEW REPORT group Contents of the discard file or process report

VIEW GGSEVT Contents of the Oracle GoldenGate error log

COMMAND ER wildcard Information dependent on the COMMAND type:

INFO

LAG

SEND

STATS

STATUS

wildcard is a wildcard specification for the
process groups to be affected, for example:

INFO ER ext*
STATS ER *

INFO PARAM Queries for and displays static information.

GETPARAMINFO Displays currently-running parameter values.

18.2 Monitoring an Extract Recovery
If Extract abends when a long-running transaction is open, it can seem to take a long
time to recover when it is started again. To recover its processing state, Extract must
search back through the online and archived logs (if necessary) to find the first log
record for that long-running transaction. The farther back in time that the transaction
started, the longer the recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with the
STATUS option. One of the following status notations appears, and you can follow the
progress as Extract changes its log read position over the course of the recovery.

• In recovery[1] – Extract is recovering to its checkpoint in the transaction log.
Meaning that it is reading from either:

a) reading from BR checkpoint files and then archived/online logs,

or

b) reading from Recovery Checkpoint in archived/online log.

• In recovery[2] – Extract is recovering from its checkpoint to the end of the trail.
Meaning that a recovery marker is appended to the output trail when the last
transaction was not completely written then rewriting the transaction.

Chapter 18
Monitoring an Extract Recovery

18-2

• Recovery complete – The recovery is finished, and normal processing will resume.

18.3 Monitoring Lag
Lag statistics show you how well the Oracle GoldenGate processes are keeping pace
with the amount of data that is being generated by the business applications. With this
information, you can diagnose suspected problems and tune the performance of the
Oracle GoldenGate processes to minimize the latency between the source and target
databases. See Tuning the Performance of Oracle GoldenGate for help with tuning
Oracle GoldenGate to minimize lag.

• About Lag

• Controlling How Lag is Reported

18.3.1 About Lag
For Extract, lag is the difference, in seconds, between the time that a record was
processed by Extract (based on the system clock) and the timestamp of that record in
the data source.

For Replicat, lag is the difference, in seconds, between the time that the last record
was processed by Replicat (based on the system clock) and the timestamp of the
record in the trail.

To view lag statistics, use either the LAG or SEND command in GGSCI. For more
information, see Reference for Oracle GoldenGate for Windows and UNIX.

Note:

The INFO command also returns a lag statistic, but this statistic is taken from
the last record that was checkpointed, not the current record that is being
processed. It is less accurate than LAG or INFO.

18.3.2 Controlling How Lag is Reported
Use the LAGREPORTMINUTES or LAGREPORTHOURS parameter to specify the interval at which
Manager checks for Extract and Replicat lag. See Reference for Oracle GoldenGate
for Windows and UNIX.

Use the LAGCRITICALSECONDS, LAGCRITICALMINUTES, or LAGCRITICALHOURS parameter to
specify a lag threshold that is considered critical, and to force a warning message to
the error log when the threshold is reached. This parameter affects Extract and
Replicat processes on the local system. See Reference for Oracle GoldenGate for
Windows and UNIX.

Use the LAGINFOSECONDS, LAGINFOMINUTES, or LAGINFOHOURS parameter to specify a lag
threshold; if lag exceeds the specified value, Oracle GoldenGate reports lag
information to the error log. If the lag exceeds the value specified with the LAGCRITICAL
parameter, Manager reports the lag as critical; otherwise, it reports the lag as an
informational message. A value of zero (0) forces a message at the frequency
specified with the LAGREPORTMINUTES or LAGREPORTHOURS parameter. See Reference for
Oracle GoldenGate for Windows and UNIX.

Chapter 18
Monitoring Lag

18-3

18.4 Using Automatic Heartbeat Tables to Monitor
You can use the default automatic heartbeat table functionality to monitor end-to-end
replication lag. Automatic heartbeats are sent from each source database into the
replication streams, by updating the records in a heartbeat seed table and a heartbeat
table, and constructing a heartbeat history table. Each of the replication processes in
the replication path process these heartbeat records and update the information in
them. These heartbeat records are inserted or updated into the heartbeat table at the
target databases.

The heartbeat tables contain the following information:

• Source database

• Destination database

• Information about the outgoing replication streams:

– Names of the extract, pump/distribution server, and or replicat processes in
the path

– Timestamps when heartbeat records were processed by the replication
processes.

• Information about the incoming replication streams:

– Names of the extract, pump/distribution server, and or replicat processes in
the path

– Timestamps when heartbeat records were processed by the replication
processes.

Using the information in the heartbeat table and the heartbeat history table, the current
and historical lags in each of the replication can be computed.

In a bidirectional GoldenGate configuration, the heartbeat table has as many entries
as the number of replication paths to neighbors that the database has and in a
unidirectional setup, the table at the source is empty. The outgoing columns have the
timestamps and the outgoing path, the local Extract and the downstream GoldenGate
processes. The incoming columns have the timestamps and path of the upstream
GoldenGate processes and local replicat.

In a unidirectional configuration, the target database will populate only the incoming
columns in the heartbeat table.

Note:

The Automatic Heartbeat functionality is not supported on MySQL version
5.5.

• Understanding Heartbeat Table End-To-End Replication Flow

• Updating Heartbeat Tables

• Purging the Heartbeat History Tables

• Best Practice

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-4

• Using the Automatic Heartbeat Commands

18.4.1 Understanding Heartbeat Table End-To-End Replication Flow
The flow for end-to-end replication as it relates to heartbeat tables relies on the use of
Oracle GoldenGate 12.2.0.1 trail format is as follows:

Ensure that Self-Describing Trail Files functionality is enabled, see Using Self-
Describing Trail Files.

Enable the heartbeat functionality with the ENABLE_HEARTBEAT_TABLE parameter. This is
the default.

Add a heartbeat table to each of your databases with the ADD HEARTBEATTABLE
command. Add the heartbeat table to all source and target instances and then restart
existing Oracle GoldenGate processes (not necessary for processes running against
HP-OSS for MX) to enable heartbeat functionality. Depending on your specific
database system, you may or may not be required to create or enable a job to
populate heartbeat table data.

(Optional) For Oracle Databases, you must ensure that the Oracle DBMS_SCHEDULER is
operating correctly as the heartbeat update relies on it. You can query the
DBMS_SCHEDULER by issuing:

select START_DATE, LAST_START_DATE, NEXT_RUN_DATE
from dba_scheduler_jobs

Where job_name ='GG_UPDATE_HEARTBEATS';
Then look for valid entries for NEXT_RUN_DATE, which is the next time the scheduler will
run. If this is a timestamp in the past, then no job will run and you must correct it.
A common reason for the scheduler not working is when the parameter
job_queue_processes is set too low (typically zero). Increase the number of
job_queue_processes configured in the database with the ALTER SYSTEM SET
JOB_QUEUE_PROCESSES = ##; command where ## is the number of job queue processes.

Run an Extract, which on receiving the logical change records (LCR) checks the value
in the OUTGOING_EXTRACT column.

• If the Extract name matches this value, the OUTGOING_EXTRACT_TS column is
updated and the record is entered in the trail.

• If the Extract name does not match then the LCR is discarded.

• If the OUTGOING_EXTRACT value is NULL, it is populated along with
OUTGOING_EXTRACT_TS and the record is entered in the trail.

The Pump or Distribution server on reading the record, checks the value in the
OUTGOING_ROUTING_PATH column. This column has a list of distribution paths.
If the value is NULL, the column is updated with the current group name (and path if
this is a Distribution server),"*", update the OUTGOING_ROUTING_TS column, and the
record is written into its target trail file.
If the value has a "*" in the list, then replace it with group name[:pathname],"*"',
update the OUTGOING_ROUTING_TS column, and the record is written into its target trail
file. When the value does not have a asterisk (*) in the list and the pump name is in
the list, then the record is sent to the path specified in the relevant group

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-5

name[:pathname],"*"' pair in the list. If the pump name is not in the list, the record is
discarded.
Run a Replicat, which on receiving the record checks the value in the
OUTGOING_REPLICAT column.

• If the Replicat name matches the value, the row in the heartbeat table is updated
and the record is inserted into the history table.

• If the Replicat name does not match, the record is discarded.

• If the value is NULL, the row in the heartbeat and heartbeat history tables are
updated with an implicit invocation of the Replicat column mapping.

Automatic Replicat Column Mapping:

REMOTE_DATABASE = LOCAL_DATABASE
INCOMING_EXTRACT = OUTGOING_EXTRACT
INCOMING_ROUTING_PATH = OUTGOING_ROUTING_PATH with "*" removed
INCOMING_REPLICAT = @GETENV ("GGENVIRONMENT", "GROUPNAME")
INCOMING_HEARTBEAT_TS = HEARTBEAT_TIMESTAMP
INCOMING_EXTRACT_TS = OUTGOING_EXTRACT_TS
INCOMING_ROUTING_TS = OUTGOING_ROUTING_TS
INCOMING_REPLICAT_TS = @DATE ('UYYYY-MM-DD
HH:MI:SS.FFFFFF','JTSLCT',@GETENV ('JULIANTIMESTAMP'))
LOCAL_DATABASE = REMOTE_DATABASE
OUTGOING_EXTRACT = INCOMING_EXTRACT
OUTGOING_ROUTING_PATH = INCOMING_ROUTING_PATH
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS
OUTGOING_REPLICAT = INCOMING_REPLICAT
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS

There is just one column for OUTGOING_ROUTING_TS. If a record passes through multiple
pump before being applied by a Replicat, each pump will overwrite the
OUTGOING_ROUTING_TS column so that the pumps lag that is calculated is not specific to
a single pump and refers to the lag across all the pumps specified in PUMP_PATH.

Additional Considerations:

Computing lags as the heartbeat flows through the system relies on the clocks of the
source and target systems to be set up correctly. It is possible that the lag can be
negative if the target system is ahead of the source system. The lag is shown as a
negative number so that you are aware of their clock discrepancy and can take actions
to fix it.

The timestamp that flows through the system is in UTC. There is no time zone
associated with the timestamp so when viewing the heartbeat tables, the lag can be
viewed quickly even if different components are in different time zones. You can write
any view you want on top of the underlying tables; UTC is recommended.

All the heartbeat entries are written to the trail in UTF-8.

The outgoing and incoming paths together uniquely determine a row. Meaning that if
you have two rows with same outgoing path and a different incoming path, then it is
considered two unique entries.

Heartbeat Table Details

The GG_HEARTBEAT table displays timestamp information of the end-to-end replication
time and the timing information at the different components primary and secondary
Extract and Replicat.

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-6

In a unidirectional environment, only the target database contains information about
the replication lag. That is the time when a record is generated at the source database
and becomes visible to clients at the target database.

Note:

The automatic heartbeat tables don’t populate the OUTGOING_% columns
with data, when both the source and remote databases have the same
name. To change the database name, use the utility DBNEWID. For details, see
the DBNEWID Utility.

Table 18-2 GG_HEARTBEAT Table

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
replication time from the
remote database is measured.

HEARTBEAT_TIMESTAMP TIMESTAMP(6) The point in time when a
timestamp is generated at the
remote database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract
(capture) at the remote
database

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary
Extract (pump) at the remote
database

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the
local database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT table at the
local database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
primary Extract at the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
secondary Extract at the
remote database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by
Replicat at the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way
replication: Name of the
primary Extract on the local
database.

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-7

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-dbnewid-utility.html#GUID-D138A757-6A2A-41A2-B722-A98708C5F5AD

Table 18-2 (Cont.) GG_HEARTBEAT Table

Column Data Type Description

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way
replication: Name of the
secondary Extract on the local
database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way
replication: Name of the
Replicat on the remote
database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way
replication: Final timestamp
when the information is
inserted into the table at the
remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way
replication: Timestamp of the
generated timestamp is
processed by the primary
Extract on the local database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way
replication: Timestamp of the
generated timestamp is
processed by the secondary
Extract on the local database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way
replication: Timestamp of the
generated timestamp is
processed by Replicat on the
remote database.

The GG_HEARTBEAT_HISTORY table displays historical timestamp information of the end-to-
end replication time and the timing information at the different components primary
and secondary Extract and Replicat.

In a unidirectional environment, only the destination database contains information
about the replication lag.

Timestamps are managed in UTC time zone. That is the time when a record is
generated at the source database and becomes visible to clients at the target
database.

Table 18-3 GG_HEARTBEAT_HISTORY Table

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end lag is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a
timestamp from the remote
database receives at the local
database.

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-8

Table 18-3 (Cont.) GG_HEARTBEAT_HISTORY Table

Column Data Type Description

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract
on the remote database.

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary
Extract of the remote
database.

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the
local database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT_HISTORY table
on the local database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp when the
generated timestamp is
processed by the primary
Extract on the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp when the
generated timestamp is
processed by the secondary
Extract on the remote
database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp when the
generated timestamp is
processed by Replicat on the
local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way
replication: Name of the
primary Extract from the local
database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way
replication: Name of the
secondary Extract from the
local database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way
replication: Name of the
Replicat on the remote
database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way
replication: Final timestamp
when the information is
persistently inserted into the
table of the remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way
replication: Timestamp when
the generated timestamp is
processed by the primary
Extract on the local database.

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-9

Table 18-3 (Cont.) GG_HEARTBEAT_HISTORY Table

Column Data Type Description

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way
replication: Timestamp when
the generated timestamp is
processed by the secondary
Extract on the local database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way
replication: Timestamp when
the generated timestamp is
processed by Replicat on the
remote database.

The GG_LAG view displays information about the replication lag between the local and
remote databases.

In a unidirectional environment, only the destination database contains information
about the replication lag. The lag is measured in seconds.

Table 18-4 GG_LAG View

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end replication lag from
the remote database is
measured.

CURRENT_LOCAL_TS TIMESTAMP(6) Current timestamp of the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat received from the
remote database.

INCOMING_PATH VARCHAR2 Replication path from the
remote database to the local
database with Extract and
Replicat components.

INCOMING_LAG NUMBER Replication lag from the
remote database to the local
database. This is the time
where the heartbeat where
generated at the remote
database minus the time
where the information was
persistently inserted into the
table at the local database.

OUTGOING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat from the local
database to the remote
database.

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-10

Table 18-4 (Cont.) GG_LAG View

Column Data Type Description

OUTGOING_PATH VARCHAR2 Replication Path from Local
database to the remote
database with Extract and
Replicat components

OUTGOING_LAG NUMBER Replication Lag from the local
database to the remote
database. This is the time
where the heartbeat where
generated at the local
database minus the time
where the information was
persistently inserted into the
table at the remote database.

The GG_LAG_HISTORY view displays the history information about the replication lag
history between the local and remote databases.

In a unidirectional environment, only the destination database contains information
about the replication lag.

The unit of the lag units is in seconds.

Table 18-5 GG_LAG_HISTORY View

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end replication lag from
the remote database is
measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a
timestamp from the remote
database receives on the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_HEARTBEAT_AGE NUMBER

INCOMING_PATH VARCHAR2 Replication path from the
remote database to local
database with Extract and
Replicat components.

INCOMING_LAG NUMBER Replication lag from the
remote database to the local
database. This is the time
where the heartbeat was
generated at the remote
database minus the time
where the information was
persistently inserted into the
table on the local database.

OUTGOING_HEARTBEAT_AGE NUMBER

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-11

Table 18-5 (Cont.) GG_LAG_HISTORY View

Column Data Type Description

OUTGOING_PATH VARCHAR2 Replication path from local
database to the remote
database with Extract and
Replicat components.

OUTGOING_LAG NUMBER Replication lag from the local
database to the remote
database. This is the time
where the heartbeat was
generated at the local
database minus the time
where the information was
persistently inserted into the
table on the remote database.

18.4.2 Updating Heartbeat Tables
The HEARTBEAT_TIMESTAMP column in the heartbeat seed table must be updated
periodically by a database job. The default heartbeat interval is 1 minute and this
interval can be specified or overridden using a GGSCI or administration server
command. For Oracle Database, the database job is created automatically; for all
other supported databases, you must create background jobs to update the heartbeat
timestamp using the database specific scheduler functionality.

18.4.3 Purging the Heartbeat History Tables
The heartbeat history table is purged periodically using a job. The default interval is 30
days and this interval can be specified or overridden using a GGSCI or administration
server command. For Oracle Database, the database job is created automatically; for
all other supported databases, you must create background jobs to purge the
heartbeat history table using the database specific scheduler functionality.

18.4.4 Best Practice
Oracle recommends that you:

• Use the same heartbeat frequency on all the databases to makes diagnosis
easier.

• Adjust the retention period if space is an issue.

• Retain the default heartbeat table frequency; the frequency set to be 30 to 60
seconds gives the best results for most workloads.

• Use lag history statistics to collect lag and age information.

18.4.5 Using the Automatic Heartbeat Commands
You can use the heartbeat table commands to control the Oracle GoldenGate
automatic heartbeat functionality as follows.

Chapter 18
Using Automatic Heartbeat Tables to Monitor

18-12

Table 18-6 Heartbeat Table Commands

Command Description

ADD HEARTBEATTABLE Creates the objects required for automatic heartbeat
functionality.

ALTER HEARTBEATTABLE Alters existing heartbeat objects.

DELETE HEARTBEATTABLE Deletes existing heartbeat objects.

DELETE HEARTBEATENTRY Deletes entries in the heartbeat table.

INFO HEARTBEATTABLE Displays heartbeat table information.

For more information, see the Reference for Oracle GoldenGate for Windows and
UNIX.

18.5 Monitoring Processing Volume
The STATS commands in GGSCI show you the amount of data that is being processed
by an Oracle GoldenGate process, and how fast it is being moved through the Oracle
GoldenGate system. With this information, you can diagnose suspected problems and
tune the performance of the Oracle GoldenGate processes. These commands provide
a variety of options to select and filter the output.

The STATS commands are: STATS EXTRACT, STATS REPLICAT, or STATS ER command.

You can send interim statistics to the report file at any time with the SEND EXTRACT or
SEND REPLICAT command with the REPORT option.

18.6 Using the Error Log
Use the Oracle GoldenGate error log to view:

• a history of GGSCI commands

• Oracle GoldenGate processes that started and stopped

• processing that was performed

• errors that occurred

• informational and warning messages

Because the error log shows events as they occurred in sequence, it is a good tool for
detecting the cause (or causes) of an error. For example, you might discover that:

• someone stopped a process

• a process failed to make a TCP/IP or database connection

• a process could not open a file

To view the error log, use any of the following:

• Standard shell command to view the ggserr.log file within the root Oracle
GoldenGate directory

• Oracle GoldenGate Director or Oracle GoldenGate Monitor

• VIEW GGSEVT command in GGSCI.

Chapter 18
Monitoring Processing Volume

18-13

18.7 Using the Process Report
Use the process report to view (depending on the process):

• parameters in use

• table and column mapping

• database information

• runtime messages and errors

• runtime statistics for the number of operations processed

Every Extract, Replicat, and Manager process generates a report file. The report can
help you diagnose problems that occurred during the run, such as invalid mapping
syntax, SQL errors, and connection errors.

To view a process report, use any of the following:

• standard shell command for viewing a text file

• Oracle GoldenGate Oracle GoldenGate Monitor

• VIEW REPORT command in GGSCI.

• To view information if a process abends without generating a report, use the
following command to run the process from the command shell of the operating
system (not GGSCI) to send the information to the terminal.

process paramfile path.prm

Where:

– The value for process is either extract or replicat.

– The value for path.prm is the fully qualified name of the parameter file, for
example:

replicat paramfile /ogg/dirdat/repora.prm

By default, reports have a file extension of .rpt, for example EXTORA.rpt. The default
location is the dirrpt sub-directory of the Oracle GoldenGate directory. However,
these properties can be changed when the group is created. Once created, a report
file must remain in its original location for Oracle GoldenGate to operate properly after
processing has started.

To determine the name and location of a process report, use the INFO EXTRACT, INFO
REPLICAT, or INFO MANAGER command in GGSCI.

• Scheduling Runtime Statistics in the Process Report

• Viewing Record Counts in the Process Report

• Preventing SQL Errors from Filling the Replicat Report File

18.7.1 Scheduling Runtime Statistics in the Process Report
By default, runtime statistics are written to the report once, at the end of each run. For
long or continuous runs, you can use optional parameters to view these statistics on a
regular basis, without waiting for the end of the run.

Chapter 18
Using the Process Report

18-14

To set a schedule for reporting runtime statistics, use the REPORT parameter in the
Extract or Replicat parameter file to specify a day and time to generate runtime
statistics in the report. See REPORT.

To send runtime statistics to the report on demand, use the SEND EXTRACT or SEND
REPLICAT command with the REPORT option to view current runtime statistics when
needed.

18.7.2 Viewing Record Counts in the Process Report
Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical
database operation that was performed within a transaction that was captured by
Oracle GoldenGate. The record count is printed to the report file and to the screen. For
more information, see Reference for Oracle GoldenGate for Windows and UNIX.

18.7.3 Preventing SQL Errors from Filling the Replicat Report File
Use the WARNRATE parameter to set a threshold for the number of SQL errors that can
be tolerated on any target table before being reported to the process report and to the
error log. The errors are reported as a warning. If your environment can tolerate a
large number of these errors, increasing WARNRATE helps to minimize the size of those
files. For more information, see Reference for Oracle GoldenGate for Windows and
UNIX.

18.8 Using the Discard File
By default, a discard file is generated whenever a process is started with the START
command through GGSCI. The discard file captures information about Oracle
GoldenGate operations that failed. This information can help you resolve data errors,
such as those that involve invalid column mapping.

The discard file reports such information as:

• The database error message

• The sequence number of the data source or trail file

• The relative byte address of the record in the data source or trail file

• The details of the discarded operation, such as column values of a DML statement
or the text of a DDL statement.

To view the discard file, use a text editor or use the VIEW REPORT command in GGSCI.
See Reference for Oracle GoldenGate for Windows and UNIX.

The default discard file has the following properties:

• The file is named after the process that creates it, with a default extension of .dsc.
Example: finance.dsc.

• The file is created in the dirrpt sub-directory of the Oracle GoldenGate installation
directory.

• The maximum file size is 50 megabytes.

• At startup, if a discard file exists, it is purged before new data is written.

Chapter 18
Using the Discard File

18-15

You can change these properties by using the DISCARDFILE parameter. You can disable
the use of a discard file by using the NODISCARDFILE parameter. See Reference for
Oracle GoldenGate for Windows and UNIX.

If a proces is started from the command line of the operating system, it does not
generate a discard file by default. You can use the DISCARDFILE parameter to specify
the use of a discard file and its properties.

Once created, a discard file must remain in its original location for Oracle GoldenGate
to operate properly after processing has started.

18.9 Maintaining the Discard and Report Files
By default, discard files and report files are aged the same way. A new discard or
report file is created at the start of a new process run. Old files are aged by appending
a sequence number from 0 (the most recent) to 9 (the oldest) to their names.

If the active report or discard file reaches its maximum file size before the end of a run
(or over a continuous run), the process abends unless there is an aging schedule in
effect. Use the DISCARDROLLOVER and REPORTROLLOVER parameters to set aging schedules
for the discard and report files respectively. These parameters set instructions for
rolling over the files at regular intervals, in addition to when the process starts. Not
only does this control the size of the files and prevent process outages, but it also
provides a predictable set of archives that can be included in your archiving routine.
For more information, see the following documentation:

• DISCARDROLLOVER

• REPORTROLLOVER

No process ever has more than ten aged reports or discard files and one active report
or discard file. After the tenth aged file, the oldest is deleted when a new report is
created. It is recommended that you establish an archiving schedule for aged reports
and discard files in case they are needed to resolve a service request.

Table 18-7 Current Extract and Manager Reports Plus Aged Reports

Permissions X Date Report

-rw-rw-rw-
1 ggs ggs 1193 Oct 11 14:59 MGR.rpt

-rw-rw-rw-
1 ggs ggs 3996 Oct 5 14:02 MGR0.rpt

-rw-rw-rw- 1 ggs ggs 4384 Oct 5 14:02 TCUST.rpt

-rw-rw-rw- 1 ggs ggs 1011 Sep 27 14:10 TCUST0.rpt

-rw-rw-rw- 1 ggs ggs 3184 Sep 27 14:10 TCUST1.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:06 TCUST2.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:04 TCUST3.rpt

Chapter 18
Maintaining the Discard and Report Files

18-16

Table 18-7 (Cont.) Current Extract and Manager Reports Plus Aged Reports

Permissions X Date Report

-rw-rw-rw- 1 ggs ggs 2744 Sep 27 13:56 TCUST4.rpt

-rw-rw-rw- 1 ggs ggs 3571 Aug 29 14:27 TCUST5.rpt

18.10 Using the System Logs
Oracle GoldenGate writes errors that are generated at the level of the operating
system to the Event Viewer on Windows or to the syslog on UNIX and Linux. Oracle
GoldenGate events are basically the same format in the UNIX, Linux, and Windows
system logs. Oracle GoldenGate errors that appear in the system logs also appear in
the Oracle GoldenGate error log.

On UNIX and Linux, Oracle GoldenGate messaging to the syslog is enabled by
default. On Windows, Oracle GoldenGate messaging to the Event Viewer must be
installed by registering the Oracle GoldenGate message DLL during the installation
process. You can add this functionality at any time by running the install program
with the addevents option. This program is stored in the root of the Oracle GoldenGate
directory.

Use the SYSLOG parameter to control the types of messages that Oracle GoldenGate
sends to the system logs on a Windows or UNIX system. You can:

• include all Oracle GoldenGate messages

• suppress all Oracle GoldenGate messages

• filter to include information, warning, or error messages, or any combination of
those types

You can use SYSLOG as a GLOBALS or Manager parameter, or both. For more information,
see Reference for Oracle GoldenGate for Windows and UNIX.

18.11 Reconciling Time Differences
To account for time differences between source and target systems, use the
TCPSOURCETIMER parameter in the Extract parameter file. This parameter adjusts the
timestamps of replicated records for reporting purposes, making it easier to interpret
synchronization lag. For more information, see Reference for Oracle GoldenGate for
Windows and UNIX.

18.12 Sending Event Messages to a NonStop System
Event messages created by Collector and Replicat processes on a Windows or UNIX
system can be captured and sent to EMS on NonStop systems. This feature enables
centralized viewing of Oracle GoldenGate messages across platforms. To use this
feature, there are two procedures:

• Run the EMS client on the Windows or UNIX system

Chapter 18
Using the System Logs

18-17

• Start a Collector process on the NonStop system

• Running EMSCLNT on a Windows or UNIX System

• Running the Collector on NonStop

18.12.1 Running EMSCLNT on a Windows or UNIX System
The EMSCLNT utility captures Oracle GoldenGate event messages that originate on a
Windows or UNIX system and sends them to a TCP/IP Collector process on the
NonStop system. EMSCLNT reads a designated error log and runs indefinitely, waiting for
more messages to send.

Run emsclnt from the Oracle GoldenGate directory on the Windows or UNIX system,
using the following syntax:

emsclnt -h host_name | IP_address
-p port_number
-f file_name
-c Collector

Where:

• -h host_name | IP_address is either the name or IP address of the NonStop server
to which EMS messages will be sent.

• -p port_number is the port number of the NonStop Collector process.

• -f file_name is the name of the local file from which to distribute error messages.
Use the full path name if the file resides somewhere other than the Oracle
GoldenGate directory.

• -c Collector is the EMS Collector for this client.

The following Windows example, executed from the DOS prompt, reads the file D:\ogg
\ggserr.log for error messages. Error messages are sent to the Collector on NonStop
host myhost.us.example.com listening on port 9876. The Collector process on NonStop
writes formatted messages to EMS Collector $0.

The following UNIX example reads the file ggserr.log for error messages. Error
messages are sent to the Collector on the NonStop server at IP address 10.0.0.0
listening on port 7850. The Collector on NonStop writes formatted messages to ems
Collector $0.

Note:

Because the dollar sign on UNIX denotes a variable, the $0 must be within
single quotes.

Example 18-1 Reading the Log File for Error Messages (WIndows)

> emsclnt –h myhost.us.example.com –p 9876 –f d:\ogg\ggserr.log –c $0

Example 18-2 Reading the Log File for Error Messages (UNIX)

emsclnt –h 10.0.0.0 –p 7850 –f ggserr.log –c '$0'

Chapter 18
Sending Event Messages to a NonStop System

18-18

18.12.2 Running the Collector on NonStop
The Collector on the NonStop system (called Server-Collector on that platform)
collects and distributes the ems messages. To start the Collector, run the server
program. For each EMSCLNT process that you will be running on a Windows or UNIX
system, start one server process on the NonStop system.

For example, the following runs server and outputs messages
to $DATA1.GGSERRS.SERVLOG.

> ASSIGN STDERR, $DATA1.GGSERRS.SERVLOG
> RUN SERVER /NOWAIT/ –p 7880

See Administering Oracle GoldenGate for HP NonStop (Guardian) for more
information about running Collector on NonStop.

18.13 Getting Help with Performance Tuning
See Tuning the Performance of Oracle GoldenGate for help with tuning the
performance of Oracle GoldenGate.

Chapter 18
Getting Help with Performance Tuning

18-19

19
Tuning the Performance of Oracle
GoldenGate

This chapter contains suggestions for improving the performance of Oracle
GoldenGate components.
This chapter includes the following sections:

• Using Multiple Process Groups

• Splitting Large Tables Into Row Ranges Across Process Groups

• Configuring Oracle GoldenGate to Use the Network Efficiently

• Eliminating Disk I/O Bottlenecks

• Managing Virtual Memory and Paging

• Optimizing Data Filtering and Conversion

• Tuning Replicat Transactions

• Using Multiple Process Groups

• Splitting Large Tables Into Row Ranges Across Process Groups

• Configuring Oracle GoldenGate to Use the Network Efficiently

• Eliminating Disk I/O Bottlenecks

• Managing Virtual Memory and Paging

• Optimizing Data Filtering and Conversion

• Tuning Replicat Transactions

19.1 Using Multiple Process Groups
Typically, only one Extract group is required to efficiently capture from a database.
However, depending on the redo (transactional) values, or the data and operation
types, you may find that you are required to add one or more Extract group to the
configuration.

Similarly, only one Replicat group is typically needed to apply data to a target
database if using Replicat in coordinated mode. (See About Coordinated Replicat
Mode for more information.) However, even in some cases when using Replicat in
coordinated mode, you may be required to use multiple Replicat groups. If you are
using Replicat in classic mode and your applications generate a high transaction
volume, you probably will need to use parallel Replicat groups.

Because each Oracle GoldenGate component — Extract, data pump, trail, Replicat —
is an independent module, you can combine them in ways that suit your needs. You
can use multiple trails and parallel Extract and Replicat processes (with or without data
pumps) to handle large transaction volume, improve performance, eliminate
bottlenecks, reduce latency, or isolate the processing of specific data.

19-1

Figure 19-1 shows some of the ways that you can configure Oracle GoldenGate to
improve throughput speed and overcome network bandwidth issues.

Figure 19-1 Load-balancing configurations that improve performance

• Considerations for Using Multiple Process Groups

• Using Parallel Replicat Groups on a Target System

• Using Multiple Extract Groups with Multiple Replicat Groups

19.1.1 Considerations for Using Multiple Process Groups
Before configuring multiple processing groups, review the following considerations to
ensure that your configuration produces the desired results and maintains data
integrity.

• Maintaining Data Integrity

• Number of Groups

• Memory

• Isolating Processing-Intensive Tables

19.1.1.1 Maintaining Data Integrity
Not all workloads can be partitioned across multiple groups and still preserve the
original transaction atomicity. You must determine whether the objects in one group
will ever have dependencies on objects in any other group, transactional or otherwise.
For example, tables for which the workload routinely updates the primary key cannot
easily be partitioned in this manner. DDL replication (if supported for the database) is
not viable in this mode, nor is the use of some SQLEXEC or EVENTACTIONS features that
base their actions on a specific record.

If your tables do not have any foreign- key dependencies or updates to primary keys,
you may be able to use multiple processes. Keep related DML together in the same
process stream to ensure data integrity.

19.1.1.2 Number of Groups
The number of concurrent Extract and Replicat process groups that can run on a
system depends on how much system memory is available. Each Extract and Replicat
process needs approximately 25-55 MB of memory, or more depending on the size of
the transactions and the number of concurrent transactions.

Chapter 19
Using Multiple Process Groups

19-2

The Oracle GoldenGate GGSCI command interface fully supports up to 5,000
concurrent Extract and Replicat groups per instance of Oracle GoldenGate Manager.
At the supported level, all groups can be controlled and viewed in full with GGSCI
commands such as the INFO and STATUS commands. Beyond the supported level, group
information is not displayed and errors can occur. Oracle GoldenGate recommends
keeping the number of Extract and Replicat groups (combined) at the default level of
300 or below in order to manage your environment effectively. The number of groups
is controlled by the MAXGROUPS parameter.

Note:

When creating the groups, keep tables that have relational constraints to
each other in the same group.

19.1.1.3 Memory
The system must have sufficient swap space for each Oracle GoldenGate Extract and
Replicat process that will be running. To determine the required swap space:

1. Start up one Extract or Replicat.

2. Run GGSCI.

3. View the report file and find the line PROCESS VM AVAIL FROM OS (min).

4. Round up the value to the next full gigabyte if needed. For example, round up
1.76GB to 2 GB.

5. Multiply that value by the number of Extract and Replicat processes that will be
running. The result is the maximum amount of swap space that could be required

See the CACHEMGR parameter in Reference for Oracle GoldenGate for Windows and
UNIX for more information about how memory is managed.

19.1.1.4 Isolating Processing-Intensive Tables
You can use multiple process groups to support certain kinds of tables that tend to
interfere with normal processing and cause latency to build on the target. For example:

• Extract may need to perform a fetch from the database because of the data type of
the column, because of parameter specifications, or to perform SQL procedures.
When data must be fetched from the database, it affects the performance of
Extract. You can get fetch statistics from the STATS EXTRACT command if you
include the STATOPTIONS REPORTFETCH parameter in the Extract parameter file. You
can then isolate those tables into their own Extract groups, assuming that
transactional integrity can be maintained.

• In its classic mode, Replicat process can be a source of performance bottlenecks
because it is a single-threaded process that applies operations one at a time by
using regular SQL. Even with BATCHSQL enabled (see Reference for Oracle
GoldenGate for Windows and UNIX) Replicat may take longer to process tables
that have large or long-running transactions, heavy volume, a very large number of
columns that change, and LOB data. You can then isolate those tables into their
own Replicat groups, assuming that transactional integrity can be maintained.

Chapter 19
Using Multiple Process Groups

19-3

19.1.2 Using Parallel Replicat Groups on a Target System
This section contains instructions for creating a configuration that pairs one Extract
group with multiple Replicat groups. Although it is possible for multiple Replicat
processes to read a single trail (no more than three of them to avoid disk contention) it
is recommended that you pair each Replicat with its own trail and corresponding
Extract process.

• Refer to Reference for Oracle GoldenGate for Windows and UNIX for command
and parameter syntax.

• For detailed instructions on configuring change synchronization, see Configuring
Online Change Synchronization.

• To Create the Extract Group

• To Create the Replicat Groups

19.1.2.1 To Create the Extract Group

Note:

This configuration includes Extract data-pumps.

1. On the source, use the ADD EXTRACT command to create a primary Extract group.

2. On the source, use the ADD EXTTRAIL command to specify as many local trails as
the number of Replicat groups that you will be creating. All trails must be
associated with the primary Extract group.

3. On the source create a data-pump Extract group.

4. On the source, use the ADD RMTTRAIL command to specify as many remote trails as
the number of Replicat groups that you will be creating. All trails must be
associated with the data-pump Extract group.

5. On the source, use the EDIT PARAMS command to create Extract parameter files,
one for the primary Extract and one for the data pump, that contain the parameters
required for your database environment. When configuring Extract, do the
following:

• Divide the source tables among different TABLE parameters.

• Link each TABLE statement to a different trail. This is done by placing the TABLE
statements after the EXTTRAIL or RMTTRAIL parameter that specifies the trail you
want those statements to be associated with.

19.1.2.2 To Create the Replicat Groups
1. On the target, create a Replicat checkpoint table. For instructions, see Creating a

Checkpoint Table. All Replicat groups can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each
trail that you created. Use the EXTTRAIL argument of ADD REPLICAT to link the
Replicat group to the appropriate trail.

Chapter 19
Using Multiple Process Groups

19-4

3. On the target, use the EDIT PARAMS command to create a Replicat parameter file for
each Replicat group that contains the parameters required for your database
environment. All MAP statements for a given Replicat group must specify the same
objects that are contained in the trail that is linked to that group.

4. In the Manager parameter file on the target system, use the PURGEOLDEXTRACTS
parameter to control the purging of files from the trails.

19.1.3 Using Multiple Extract Groups with Multiple Replicat Groups
Multiple Extract groups write to their own trails. Each trail is read by a dedicated
Replicat group.

• Refer to Reference for Oracle GoldenGate for Windows and UNIX for command
and parameter syntax.

• For detailed instructions on configuring change synchronization, see Configuring
Online Change Synchronization.

• To Create the Extract Groups

• To Create the Replicat Groups

19.1.3.1 To Create the Extract Groups

Note:

This configuration includes data pumps.

1. On the source, use the ADD EXTRACT command to create the primary Extract
groups.

2. On the source, use the ADD EXTTRAIL command to specify a local trail for each of
the Extract groups that you created.

3. On the source create a data-pump Extract group to read each local trail that you
created.

4. On the source, use the ADD RMTTRAIL command to specify a remote trail for each of
the data-pumps that you created.

5. On the source, use the EDIT PARAMS command to create an Extract parameter file
for each primary Extract group and each data-pump Extract group.

19.1.3.2 To Create the Replicat Groups
1. On the target, create a Replicat checkpoint table. For instructions, see Creating a

Checkpoint Table. All Replicat groups can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each
trail. Use the EXTTRAIL argument of ADD REPLICAT to link the group to the trail.

3. On the target, use the EDIT PARAMS command to create a Replicat parameter file for
each Replicat group. All MAP statements for a given Replicat group must specify the
same objects that are contained in the trail that is linked to the group.

Chapter 19
Using Multiple Process Groups

19-5

4. In the Manager parameter files on the source system and the target system, use
the PURGEOLDEXTRACTS parameter to control the purging of files from the trails.

19.2 Splitting Large Tables Into Row Ranges Across
Process Groups

You can use the @RANGE function to divide the rows of any table across two or more
Oracle GoldenGate processes. It can be used to increase the throughput of large and
heavily accessed tables and also can be used to divide data into sets for distribution to
different destinations. Specify each range in a FILTER clause in a TABLE or MAP
statement.

@RANGE is safe and scalable. It preserves data integrity by guaranteeing that the same
row will always be processed by the same process group.

It might be more efficient to use the primary Extract or a data pump to calculate the
ranges than to use Replicat. To calculate ranges, Replicat must filter through the entire
trail to find data that meets the range specification. However, your business case
should determine where this filtering is performed.

Figure 19-2 Dividing rows of a table between two Extract groups

Figure 19-3 Dividing rows of a table between two Replicat groups

19.3 Configuring Oracle GoldenGate to Use the Network
Efficiently

Inefficiencies in the transfer of data across the network can cause lag in the Extract
process and latency on the target. If not corrected, it can eventually cause process
failures.

When you first start a new Oracle GoldenGate configuration:

1. Establish benchmarks for what you consider to be acceptable lag and throughput
volume for Extract and for Replicat. Keep in mind that Extract will normally be
faster than Replicat because of the kind of tasks that each one performs. Over

Chapter 19
Splitting Large Tables Into Row Ranges Across Process Groups

19-6

time you will know whether the difference is normal or one that requires tuning or
troubleshooting.

2. Set a regular schedule to monitor those processes for lag and volume, as
compared to the benchmarks. Look for lag that remains constant or is growing, as
opposed to occasional spikes. Continuous, excess lag indicates a bottleneck
somewhere in the Oracle GoldenGate configuration. It is a critical first indicator
that Oracle GoldenGate needs tuning or that there is an error condition.

To view volume statistics, use the STATS EXTRACT or STATS REPLICAT command. To view
lag statistics, use the LAG EXTRACT or LAG REPLICAT command. See Reference for Oracle
GoldenGate for Windows and UNIX for more information.

• Detecting a Network Bottleneck that is Affecting Oracle GoldenGate

• Working Around Bandwidth Limitations by Using Data Pumps

• Reducing the Bandwidth Requirements of Oracle GoldenGate

• Increasing the TCP/IP Packet Size

19.3.1 Detecting a Network Bottleneck that is Affecting Oracle
GoldenGate

To detect a network bottleneck that is affecting the throughput of Oracle GoldenGate,
follow these steps.

1. Issue the following command to view the ten most recent Extract checkpoints. If
you are using a data-pump Extract on the source system, issue the command for
the primary Extract and also for the data pump.

INFO EXTRACT group, SHOWCH 10

2. Look for the Write Checkpoint statistic. This is the place where Extract is writing to
the trail.

Write Checkpoint #1

GGS Log Trail
Current Checkpoint (current write position):
 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-09 14:16:50.567638
 Extract Trail: ./dirdat/eh

3. For both the primary Extract and data pump:

• Determine whether there are more than one or two checkpoints. There can be
up to ten.

• Find the Write Checkpoint n heading that has the highest increment number
(for example, Write Checkpoint #8) and make a note of the Sequence, RBA, and
Timestamp values. This is the most recent checkpoint.

4. Refer to the information that you noted, and make the following validation:

• Is the primary Extract generating a series of checkpoints, or just the initial
checkpoint?

• If a data pump is in use, is it generating a series of checkpoints, or just one?

5. Issue INFO EXTRACT for the primary and data pump Extract processes again.

Chapter 19
Configuring Oracle GoldenGate to Use the Network Efficiently

19-7

• Has the most recent write checkpoint increased? Look at the most recent
Sequence, RBA, and Timestamp values to see if their values were incremented
forward since the previous INFO EXTRACT command.

6. Issue the following command to view the status of the Replicat process.

SEND REPLICAT group, STATUS

• The status indicates whether Replicat is delaying (waiting for data to process),
processing data, or at the end of the trail (EOF).

There is a network bottleneck if the status of Replicat is either in delay mode or at the
end of the trail file and either of the following is true:

• You are only using a primary Extract and its write checkpoint is not increasing or is
increasing too slowly. Because this Extract process is responsible for sending data
across the network, it will eventually run out of memory to contain the backlog of
extracted data and abend.

• You are using a data pump, and its write checkpoint is not increasing, but the write
checkpoint of the primary Extract is increasing. In this case, the primary Extract
can write to its local trail, but the data pump cannot write to the remote trail. The
data pump will abend when it runs out of memory to contain the backlog of
extracted data. The primary Extract will run until it reaches the last file in the trail
sequence and will abend because it cannot make a checkpoint.

Note:

Even when there is a network outage, Replicat will process in a normal
manner until it applies all of the remaining data from the trail to the target.
Eventually, it will report that it reached the end of the trail file.

19.3.2 Working Around Bandwidth Limitations by Using Data Pumps
Using parallel data pumps may enable you to work around bandwidth limitations that
are imposed on a per-process basis in the network configuration. You can use parallel
data pumps to send data to the same target system or to different target systems.
Data pumps also remove TCP/IP responsibilities from the primary Extract, and their
local trails provide fault tolerance.

19.3.3 Reducing the Bandwidth Requirements of Oracle GoldenGate
Use the compression options of the RMTHOST parameter to compress data before it is
sent across the network. Weigh the benefits of compression against the CPU
resources that are required to perform the compression. See Reference for Oracle
GoldenGate for Windows and UNIX for more information.

19.3.4 Increasing the TCP/IP Packet Size
Use the TCPBUFSIZE option of the RMTHOST parameter to control the size of the TCP
socket buffer that Extract maintains. By increasing the size of the buffer, you can send
larger packets to the target system. See Reference for Oracle GoldenGate for
Windows and UNIX for more information.

Chapter 19
Configuring Oracle GoldenGate to Use the Network Efficiently

19-8

Use the following steps as a guideline to determine the optimum buffer size for your
network.

1. Use the ping command from the command shell obtain the average round trip time
(RTT), shown in the following example:

C:\home\ggs>ping ggsoftware.com
Pinging ggsoftware.com [192.168.116.171] with 32 bytes of data:
Reply from 192.168.116.171: bytes=32 time=31ms TTL=56
Reply from 192.168.116.171: bytes=32 time=61ms TTL=56
Reply from 192.168.116.171: bytes=32 time=32ms TTL=56
Reply from 192.168.116.171: bytes=32 time=34ms TTL=56
Ping statistics for 192.168.116.171:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 31ms, Maximum = 61ms, Average = 39ms

2. Multiply that value by the network bandwidth. For example, if average RTT is .08
seconds, and the bandwidth is 100 megabits per second, then the optimum buffer
size is:

0.08 second * 100 megabits per second = 8 megabits

3. Divide the result by 8 to determine the number of bytes (8 bits to a byte). For
example:

8 megabits / 8 = 1 megabyte per second

The required unit for TCPBUFSIZE is bytes, so you would set it to a value of
1000000.

The maximum socket buffer size for non-Windows systems is usually limited by
default. Ask your system administrator to increase the default value on the source and
target systems so that Oracle GoldenGate can increase the buffer size configured with
TCPBUFSIZE.

19.4 Eliminating Disk I/O Bottlenecks
I/O activity can cause bottlenecks for both Extract and Replicat.

• A regular Extract generates disk writes to a trail and disk reads from a data
source.

• A data pump and Replicat generate disk reads from a local trail.

• Each process writes a recovery checkpoint to its checkpoint file on a regular
schedule.

• Improving I/O performance Within the System Configuration

• Improving I/O Performance Within the Oracle GoldenGate Configuration

19.4.1 Improving I/O performance Within the System Configuration
If there are I/O waits on the disk subsystems that contain the trail files, put the trails on
the fastest disk controller possible.

Check the RAID configuration. Because Oracle GoldenGate writes data sequentially,
RAID 0+1 (striping and mirroring) is a better choice than RAID 5, which uses
checksums that slow down I/O and are not necessary for these types of files.

Chapter 19
Eliminating Disk I/O Bottlenecks

19-9

19.4.2 Improving I/O Performance Within the Oracle GoldenGate
Configuration

You can improve I/O performance by making configurations changes within Oracle
GoldenGate. Try increasing the values of the following parameters.

• Use the CHECKPOINTSECS parameter to control how often Extract and Replicat make
their routine checkpoints.

Note:

CHECKPOINTSECS is not valid for an integrated Replicat on an Oracle
database system.

• Use the GROUPTRANSOPS parameter to control the number of SQL operations that are
contained in a Replicat transaction when operating in its normal mode. Increasing
the number of operations in a Replicat transaction improves the performance of
Oracle GoldenGate by reducing the number of transactions executed by Replicat,
and by reducing I/O activity to the checkpoint file and the checkpoint table, if used.
Replicat issues a checkpoint whenever it applies a transaction to the target, in
addition to its scheduled checkpoints.

Note:

GROUPTRANSOPS is not valid for an integrated Replicat on an Oracle
database system, unless the inbound server parameter parallelism is
set to 1.

• Use the EOFDELAY or EOFDELAYCSECS parameter to control how often Extract, a data
pump, or Replicat checks for new data after it has reached the end of the current
data in its data source. You can reduce the system I/O overhead of these reads by
increasing the value of this parameter.

Note:

Increasing the values of these parameters improves performance, but it also
increases the amount of data that must be reprocessed if the process fails.
This has an effect on overall latency between source and target. Some
testing will help you determine the optimal balance between recovery and
performance.

19.5 Managing Virtual Memory and Paging
Because Oracle GoldenGate replicates only committed transactions, it stores the
operations of each transaction in a managed virtual-memory pool known as a cache
until it receives either a commit or a rollback for that transaction. One global cache

Chapter 19
Managing Virtual Memory and Paging

19-10

operates as a shared resource of an Extract or Replicat process. The Oracle
GoldenGate cache manager takes advantage of the memory management functions of
the operating system to ensure that Oracle GoldenGate processes work in a sustained
and efficient manner. The CACHEMGR parameter controls the amount of virtual memory
and temporary disk space that is available for caching uncommitted transaction data
that is being processed by Oracle GoldenGate.

When a process starts, the cache manager checks the availability of resources for
virtual memory, as shown in the following example:

CACHEMGR virtual memory values (may have been adjusted)CACHESIZE:
32GCACHEPAGEOUTSIZE (normal): 8M PROCESS VM AVAIL FROM OS (min): 63.97GCACHESIZEMAX
(strict force to disk): 48G

If the current resources are not sufficient, a message like the following may be
returned:

2013-11-11 14:16:22 WARNING OGG-01842 CACHESIZE PER DYNAMIC DETERMINATION (32G) LESS
THAN RECOMMENDED: 64G (64bit system)vm found: 63.97GCheck swap space. Recommended
swap/extract: 128G (64bit system).

If the system exhibits excessive paging and the performance of critical processes is
affected, you can reduce the CACHESIZE option of the CACHEMGR. parameter. You can also
control the maximum amount of disk space that can be allocated to the swap directory
with the CACHEDIRECTORY option. For more information about CACHEMGR, see Reference for
Oracle GoldenGate for Windows and UNIX.

19.6 Optimizing Data Filtering and Conversion
Heavy amounts of data filtering or data conversion add processing overhead. The
following are suggestions for minimizing the impact of this overhead on the other
processes on the system.

• Avoid using the primary Extract to filter and convert data. Keep it dedicated to data
capture. It will perform better and is less vulnerable to any process failures that
result from those activities. The objective is to make certain the primary Extract
process is running and keeping pace with the transaction volume.

• Use Replicat or a data-pump to perform filtering and conversion. Consider any of
the following configurations:

– Use a data pump on the source if the system can tolerate the overhead. This
configuration works well when there is a high volume of data to be filtered,
because it uses less network bandwidth. Only filtered data gets sent to the
target, which also can help with security considerations.

– Use a data pump on an intermediate system. This configuration keeps the
source and target systems free of the overhead, but uses more network
bandwidth because unfiltered data is sent from the source to the intermediate
system.

– Use a data pump or Replicat on the target if the system can tolerate the
overhead, and if there is adequate network bandwidth for sending large
amounts of unfiltered data.

• If you have limited system resources, a least-best option is to divide the filtering
and conversion work between Extract and Replicat.

Chapter 19
Optimizing Data Filtering and Conversion

19-11

19.7 Tuning Replicat Transactions
Replicat uses regular SQL, so its performance depends on the performance of the
target database and the type of SQL that is being applied (inserts, versus updates or
deletes). However, you can take certain steps to maximize Replicat efficiency.

• Tuning Coordination Performance Against Barrier Transactions

• Applying Similar SQL Statements in Arrays

• Preventing Full Table Scans in the Absence of Keys

• Splitting Large Transactions

• Adjusting Open Cursors

• Improving Update Speed

• Set a Replicat Transaction Timeout

19.7.1 Tuning Coordination Performance Against Barrier Transactions
In a coordinated Replicat configuration, barrier transactions such as updates to the
primary key cause an increased number of commits to the database, and they
interrupt the benefit of the GROUPTRANSOPS feature of Replicat. When there is a high
number of barrier transactions in the overall workload of the coordinated Replicat,
using a high number of threads can actually degrade Replicat performance.

To maintain high performance when large numbers of barrier transactions are
expected, you can do the following:

• Reduce the number of active threads in the group. This reduces the overall
number of commits that Replicat performs.

• Move the tables that account for the majority of the barrier transactions, and any
tables with which they have dependencies, to a separate coordinated Replicat
group that has a small number of threads. Keep the tables that have minimal
barrier transactions in the original Replicat group with the higher number of
threads, so that parallel performance is maintained without interruption by barrier
transactions.

• (Oracle RAC) In a new Replicat configuration, you can increase the PCTFREE
attribute of the Replicat checkpoint table. However, this must be done before
Replicat is started for the first time. The recommended value of PCTFREE is 90.

19.7.2 Applying Similar SQL Statements in Arrays
Use the BATCHSQL parameter to increase the performance of Replicat. BATCHSQL causes
Replicat to organize similar SQL statements into arrays and apply them at an
accelerated rate. In its normal mode, Replicat applies one SQL statement at a time.

When Replicat is in BATCHSQL mode, smaller row changes will show a higher gain in
performance than larger row changes. At 100 bytes of data per row change, BATCHSQL
has been known to improve the performance of Replicat by up to 300 percent, but
actual performance benefits will vary, depending on the mix of operations. At around
5,000 bytes of data per row change, the benefits of using BATCHSQL diminish.

Chapter 19
Tuning Replicat Transactions

19-12

The gathering of SQL statements into batches improves efficiency but also consumes
memory. To maintain optimum performance, use the following BATCHSQL options:

BATCHESPERQUEUE
BYTESPERQUEUE
OPSPERBATCH
OPSPERQUEUE

As a benchmark for setting values, assume that a batch of 1,000 SQL statements at
500 bytes each would require less than 10 megabytes of memory.

You can use BATCHSQL with the BATCHTRANSOPS option to tune array sizing. BATCHTRANSOPS
controls the maximum number of batch operations that can be grouped into a
transaction before requiring a commit. The default for non-integrated Replicat is 1000.
The default for integrated Replicat is 50. If there are many wait dependencies when
using integrated Replicat, try reducing the value of BATCHTRANSOPS. To determine the
number of wait dependencies, view the TOTAL_WAIT_DEPS column of the
V$GG_APPLY_COORDINATOR database view in the Oracle database.

See Reference for Oracle GoldenGate for Windows and UNIX for additional usage
considerations and syntax.

19.7.3 Preventing Full Table Scans in the Absence of Keys
If a target table does not have a primary key, a unique key, or a unique index, Replicat
uses all of the columns to build its WHERE clause. This is, essentially, a full table scan.

To make row selection more efficient, use a KEYCOLS clause in the TABLE and MAP
statements to identify one or more columns as unique. Replicat will use the specified
columns as a key. The following example shows a KEYCOLS clause in a TABLE statement:

TABLE hr.emp, KEYCOLS (FIRST_NAME, LAST_NAME, DOB, ID_NO);

For usage guidelines and syntax, see the TABLE and MAP parameters in Reference for
Oracle GoldenGate for Windows and UNIX.

19.7.4 Splitting Large Transactions
If the target database cannot handle large transactions from the source database, you
can split them into a series of smaller ones by using the Replicat parameter
MAXTRANSOPS. See Reference for Oracle GoldenGate for Windows and UNIX for more
information.

Note:

MAXTRANSOPS is not valid for an integrated Replicat on an Oracle database
system.

19.7.5 Adjusting Open Cursors
The Replicat process maintains cursors for cached SQL statements and for SQLEXEC
operations. Without enough cursors, Replicat must age more statements. By default,
Replicat maintains as many cursors as allowed by the MAXSQLSTATEMENTS parameter.

Chapter 19
Tuning Replicat Transactions

19-13

You might find that the value of this parameter needs to be increased. If so, you might
also need to adjust the maximum number of open cursors that are permitted by the
database. See Reference for Oracle GoldenGate for Windows and UNIX for more
information.

19.7.6 Improving Update Speed
Excessive block fragmentation causes Replicat to apply SQL statements at a slower
than normal speed. Reorganize heavily fragmented tables, and then stop and start
Replicat to register the new object ID.

19.7.7 Set a Replicat Transaction Timeout
Use the TRANSACTIONTIMEOUT parameter to prevent an uncommitted Replicat target
transaction from holding locks on the target database and consuming its resources
unnecessarily. You can change the value of this parameter so that Replicat can work
within existing application timeouts and other database requirements on the target.

TRANSACTIONTIMEOUT limits the amount of time that Replicat can hold a target transaction
open if it has not received the end-of-transaction record for the last source transaction
in that transaction. By default, Replicat groups multiple source transactions into one
target transaction to improve performance, but it will not commit a partial source
transaction and will wait indefinitely for that last record. The Replicat parameter
GROUPTRANSOPS controls the minimum size of a grouped target transaction.

The following events could last long enough to trigger TRANSACTIONTIMEOUT:

• Network problems prevent trail data from being delivered to the target system.

• Running out of disk space on any system, preventing trail data from being written.

• Collector abends (a rare event).

• Extract abends or is terminated in the middle of writing records for a transaction.

• An Extract data pump abends or is terminated.

• There is a source system failure, such as a power outage or system crash.

See Reference for Oracle GoldenGate for Windows and UNIX for more information.

Chapter 19
Tuning Replicat Transactions

19-14

20
Performing Administrative Operations

This chapter contains instructions for making changes to applications, systems, and
Oracle GoldenGate while the replication environment is active and processing data
changes.
This chapter includes the following sections:

• Performing Application Patches

• Initializing the Transaction Logs

• Shutting Down the System

• Changing Database Attributes

• Adding Process Groups to an Active Configuration

• Changing the Size of Trail Files

• Switching Extract from Classic Mode to Integrated Mode

• Switching Extract from Integrated Mode to Classic Mode

• Switching Replicat from Nonintegrated Mode to Integrated Mode

• Switching Replicat from Integrated Mode to Nonintegrated Mode

• Switching Replicat to Coordinated Mode

• Administering a Coordinated Replicat Configuration

• Restarting a Primary Extract after System Failure or Corruption

• Performing Application Patches

• Initializing the Transaction Logs

• Shutting Down the System

• Changing Database Attributes

• Adding Process Groups to an Active Configuration

• Changing the Size of Trail Files

• Switching Extract from Classic Mode to Integrated Mode

• Switching Extract from Integrated Mode to Classic Mode

• Switching Replicat from Nonintegrated Mode to Integrated Mode

• Switching Replicat from Integrated Mode to Nonintegrated Mode

• Switching Replicat to Coordinated Mode

• Administering a Coordinated Replicat Configuration

• Restarting a Primary Extract after System Failure or Corruption

20-1

20.1 Performing Application Patches
Application patches and application upgrades typically perform DDL such as adding
new objects or changing existing objects. To apply applications patches or upgrades in
an Oracle GoldenGate environment, you can do one of the following:

• If Oracle GoldenGate supports DDL replication for your database type, you can
use it to replicate the DDL without stopping replication processes. To use this
method, the source and target table structures must be identical.

• You can apply the patch or upgrade manually on both source and target after
taking the appropriate steps to ensure replication continuity.

To Use Oracle GoldenGate to Replicate Patch DDL

1. If you have not already done so, dedicate some time to learn, install, and configure
the Oracle GoldenGate DDL support. See the instructions for your database in this
documentation. Once the DDL environment is in place, future patches and
upgrades will be easier to apply.

2. If the application patch or upgrade adds new objects that you want to include in
data replication, make certain that you include them in the DDL parameter
statement. To add new objects to your TABLE and MAP statements, see the
procedure on Adding Tables to the Oracle GoldenGate Configuration.

3. If the application patch or upgrade installs triggers or cascade constraints, disable
those objects on the target to prevent collisions between DML that they execute on
the target and the same DDL that is replicated from the source trigger or cascaded
operation.

To Apply a Patch Manually on the Source and Target

1. Stop access to the source database.

2. Allow Extract to finish capturing the transaction data that remains in the
transaction log. To determine when Extract is finished, issue the following
command in GGSCI until it returns At EOF.

SEND EXTRACT group GETLAG

3. Stop Extract.

STOP EXTRACT group

4. Start applying the patch on the source.

5. Wait until the data pump (if used) and Replicat are finished processing the data in
their respective trails. To determine when they are finished, use the following
commands until they return At EOF.

SEND EXTRACT group GETLAG
SEND REPLICAT group GETLAG

6. Stop the data pump and Replicat.

STOP EXTRACT group
STOP REPLICAT group

At this point, the data in the source and target should be identical, because all of
the replicated transactional changes from the source have been applied to the
target.

Chapter 20
Performing Application Patches

20-2

7. Apply the patch on the target.

8. If the patches changed table definitions, run DEFGEN for the source tables to
generate updated source definitions, and then replace the old definitions with the
new ones in the existing source definitions file on the target system.

9. Start the Oracle GoldenGate processes whenever you are ready to begin
capturing user activity again.

20.2 Initializing the Transaction Logs
When you initialize a transaction log, you must ensure that all of the data is processed
by Oracle GoldenGate first, and then you must delete and re-add the Extract group
and its associated trail.

1. Stop the application from accessing the database. This stops more transaction
data from being logged.

2. Run GGSCI and issue the SEND EXTRACT command with the LOGEND option for the
primary Extract group. This command queries Extract to determine whether or not
Extract is finished processing the records that remain in the transaction log.

SEND EXTRACT group LOGEND

3. Continue issuing the command until it returns a YES status, indicating that there are
no more records to process.

4. On the target system, run GGSCI and issue the SEND REPLICAT command with the
STATUS option. This command queries Replicat to determine whether or not it is
finished processing the data that remains in the trail.

SEND REPLICAT group STATUS

5. Continue issuing the command until it shows 0 records in the current transaction,
for example:

Sending STATUS request to REPLICAT REPSTAB...
Current status:
 Seqno 0, Rba 9035
 0 records in current transaction.

6. Stop the primary Extract group, the data pump (if used), and the Replicat group.

STOP EXTRACT group
STOP EXTRACT pump_group
STOP REPLICAT group

7. Delete the Extract, data pump, and Replicat groups.

DELETE EXTRACT group
DELETE EXTRACT pump_group
DELETE REPLICAT group

8. Using standard operating system commands, delete the trail files.

9. Stop the database.

10. Initialize and restart the database.

11. Recreate the primary Extract group.

ADD EXTRACT group TRANLOG, BEGIN NOW

12. Recreate the local trail (if used).

Chapter 20
Initializing the Transaction Logs

20-3

ADD EXTTRAIL trail, EXTRACT group

13. Recreate the data pump (if used).

ADD EXTRACT pump_group, EXTTRAILSOURCE trail

14. Recreate the remote trail.

ADD RMTTRAIL trail, EXTRACT pump_group

15. Recreate the Replicat group.

ADD REPLICAT group, EXTTRAIL trail

16. Start Extract, the data pump (if used), and Replicat.

START EXTRACT group
START EXTRACT pump_group
START REPLICAT group

20.3 Shutting Down the System
When shutting down a system for maintenance and other procedures that affect
Oracle GoldenGate, follow these steps to make certain that Extract has processed all
of the transaction log records. Otherwise, you might lose synchronization data.

1. Stop all application and database activity that generates transactions that are
processed by Oracle GoldenGate.

2. Run GGSCI.

3. In GGSCI, issue the SEND EXTRACT command with the LOGEND option. This command
queries the Extract process to determine whether or not it is finished processing
the records in the data source.

SEND EXTRACT group LOGEND

4. Continue issuing the command until it returns a YES status. At that point, all
transaction log data has been processed, and you can safely shut down Oracle
GoldenGate and the system.

20.4 Changing Database Attributes
This section addresses administrative operations that are performed on database
tables and structures.

Changing Database Metadata

Adding Tables to the Oracle GoldenGate Configuration

Coordinating Table Attributes between Source and Target

Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables

Dropping and Recreating a Source Table

Changing the Number of Oracle RAC Threads when Using Classic Capture

Changing the ORACLE_SID

Purging Archive Logs

Reorganizing a DB2 Table (z/OS Platform)

Chapter 20
Shutting Down the System

20-4

• Changing Database Metadata

• Adding Tables to the Oracle GoldenGate Configuration

• Coordinating Table Attributes between Source and Target

• Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables

• Dropping and Recreating a Source Table

• Changing the Number of Oracle RAC Threads when Using Classic Capture

• Changing the ORACLE_SID

• Purging Archive Logs

• Reorganizing a DB2 Table (z/OS Platform)

20.4.1 Changing Database Metadata
This procedure is required to prevent Replicat errors when changing the following
metadata of the source database:

• Database character set

• National character set

• Locale

• Timezone

• Object name case-sensitivity

If these changes are made without performing this procedure, the following error
occurs:

2013-05-26 20:10:09 ERROR OGG-05500 Detected database metadata mismatch between
current trail file ./dirdat/_p/v1000003 and the previous sequence. *DBTIMEZONE:
[GMT]/[UTC].

This procedure stops Extract, and then creates a new trail file. The new database
metadata is included in this new file with the transactions that started after the change.

1. Stop transaction activity on the source database. Do not make the metadata
change to the database yet.

2. In GGSCI on the source system, issue the SEND EXTRACT command with the LOGEND
option until it shows there is no more redo data to capture.

SEND EXTRACT group LOGEND

3. Stop Extract.

STOP EXTRACT group

4. On each target system, issue the SEND REPLICAT command with the STATUS option
until it shows a status of "At EOF" to indicate that it finished processing all of the
data in the trail. This must be done on all target systems until all Replicat
processes return "At EOF."

SEND REPLICAT group STATUS

5. Stop the data pumps and Replicat.

STOP EXTRACT group
STOP REPLICAT group

Chapter 20
Changing Database Attributes

20-5

6. Change the database metadata.

7. In in GGSCI on the source system, issue the ALTER EXTRACT command with the
ETROLLOVER option for the primary Extract to roll over the local trail to the start of a
new file.

ALTER EXTRACT group, ETROLLOVER

8. Issue the ALTER EXTRACT command with the ETROLLOVER option for the data pumps to
roll over the remote trail to the start of a new file.

ALTER EXTRACT pump, ETROLLOVER

9. Start Extract.

START EXTRACT group

10. In GGSCI, reposition the data pumps and Replicat processes to start at the new
trail sequence number.

ALTER EXTRACT pump, EXTSEQNO seqno, EXTRBA RBA
ALTER REPLICAT group, EXTSEQNO seqno, EXTRBA RBA

11. Start the data pumps.

START EXTRACT group

12. Start the Replicat processes.

START REPLICAT group

20.4.2 Adding Tables to the Oracle GoldenGate Configuration
This procedure assumes that the Oracle GoldenGate DDL support feature is not in
use, or is not supported for, your database.

Note:

For Oracle and Teradata databases, you can enable the DDL support feature
of Oracle GoldenGate to automatically capture and apply the DDL that adds
new tables, instead of using this procedure. See the appropriate instructions
for your database in this documentation.

Review these steps before starting. The process varies slightly, depending on whether
or not the new tables satisfy wildcards in the TABLE parameter, and whether or not
names or data definitions must be mapped on the target.

Prerequisites for Adding Tables to the Oracle GoldenGate Configuration

• This procedure assumes that the source and target tables are either empty or
contain identical (already synchronized) data.

• You may be using the DBLOGIN and ADD TRANDATA commands. Before starting this
procedure, see Reference for Oracle GoldenGate for Windows and UNIX for the
proper usage of these commands for your database.

To Add a Table to the Oracle GoldenGate Configuration

1. Stop user access to the new tables.

Chapter 20
Changing Database Attributes

20-6

2. (If new tables do not satisfy a wildcard) If you are adding numerous tables that do
not satisfy a wildcard, make a copy of the Extract and Replicat parameter files,
and then add the new tables with TABLE and MAP statements. If you do not want to
work with a copy, then edit the original parameter files after you are prompted to
stop each process.

3. (If new tables satisfy wildcards) In the Extract and Replicat parameter files, make
certain the WILDCARDRESOLVE parameter is not being used, unless it is set to the
default of DYNAMIC.

4. (If new tables do not satisfy a wildcard) If the new tables do not satisfy a wildcard
definition, stop Extract.

STOP EXTRACT group

5. Add the new tables to the source and target databases.

6. If required for the source database, issue the ADD TRANDATA command in GGSCI for
the new tables. Before using ADD TRANDATA, issue the DBLOGIN command.

7. Depending on whether the source and target definitins are identical or different,
use either ASSUMETARGETDEFS or SOURCEDEFS in the Replicat parameter file. If
SOURCEDEFS is needed, you can do either of the following:

• Run DEFGEN, then copy the new definitions to the source definitions file on
the target.

• If the new tables match a definitions template, specify the template with the
DEF option of the MAP parameter. (DEFGEN not needed.)

8. To register the new source definitions or new MAP statements, stop and then start
Replicat.

STOP REPLICAT group
START REPLICAT group

9. Start Extract, if applicable.

START EXTRACT group

10. Permit user access to the new tables.

20.4.3 Coordinating Table Attributes between Source and Target
Follow this procedure if you are changing an attribute of a source table that is in the
Oracle GoldenGate configuration, such as adding or changing columns or partitions, or
changing supplemental logging details (Oracle). It directs you how to make the same
change to the target table without incurring replication latency.

Note:

See also Performing an ALTER TABLE to Add a Column on DB2 z/OS
Tables.

Chapter 20
Changing Database Attributes

20-7

Note:

This procedure assumes that the Oracle GoldenGate DDL support feature is
not in use, or is not supported for your database. For Oracle and Teradata
databases, you can enable the DDL support feature of Oracle GoldenGate to
propagate the DDL changes to the target, instead of using this procedure.

1. On the source and target systems, create a table, to be known as the marker
table, that can be used for the purpose of generating a marker that denotes a
stopping point in the transaction log. Just create two simple columns: one as a
primary key and the other as a regular column. For example:

CREATE TABLE marker
(
id int NOT NULL,
column varchar(25) NOT NULL,
PRIMARY KEY (id)
);

2. Insert a row into the marker table on both the source and target systems.

INSERT INTO marker VALUES (1, 1);
COMMIT;

3. On the source system, run GGSCI.

4. Open the Extract parameter file for editing.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

5. Add the marker table to the Extract parameter file in a TABLE statement.

TABLE marker;

6. Save and close the parameter file.

7. Add the marker table to the TABLE statement of the data pump, if one is being used.

8. Stop the Extract and data pump processes, and then restart them immediately to
prevent capture lag.

STOP EXTRACT group
START EXTRACT group
STOP EXTRACT pump_group
START EXTRACT pump_group

9. On the target system, run GGSCI.

10. Open the Replicat parameter file for editing.

Chapter 20
Changing Database Attributes

20-8

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

11. Add the marker table to the Replicat parameter file in a MAP statement, and use the
EVENTACTIONS parameter as shown to stop Replicat and ignore operations on the
marker table.

MAP marker, TARGET marker, EVENTACTIONS (STOP, IGNORE);

12. Save and close the parameter file.

13. Stop, and then immediately restart, the Replicat process.

STOP REPLICAT group
START REPLICAT group

14. When you are ready to change the table attributes for both source and target
tables, stop all user activity on them.

15. On the source system, perform an UPDATE operation to the marker table as the only
operation in the transaction.

UPDATE marker
SET column=2,
WHERE id=1;
COMMIT;

16. On the target system, issue the following command until it shows that Replicat is
stopped as a result of the EVENTACTIONS rule.

STATUS REPLICAT group

17. Perform the DDL on the source and target tables, but do not yet allow user activity.

18. Start Replicat.

START REPLICAT group

19. Allow user activity on the source and target tables.

20.4.4 Performing an ALTER TABLE to Add a Column on DB2 z/OS
Tables

To add a fixed length column to a table that is in reordered row format and contains
one or more variable length columns, one of the following will be required, depending
on whether the table can be quiesced or not.

If the Table can be Quiesced

1. Allow Extract to finish capturing transactions that happened prior to the quiesce.

2. Alter the table to add the column.

3. Reorganize the tablespace.

Chapter 20
Changing Database Attributes

20-9

4. Restart Extract.

5. Allow table activity to resume.

If the Table cannot be Quiesced

1. Stop Extract.

2. Remove the table from the TABLE statement in the parameter file.

3. Restart Extract.

4. Alter the table to add the column.

5. Reorganize the tablespace.

6. Stop Extract.

7. Add the table back to the TABLE statement.

8. Resynchronize the source and target tables.

9. Start Extract.

10. Allow table activity to resume.

20.4.5 Dropping and Recreating a Source Table
Dropping and recreating a source table requires caution when performed while Oracle
GoldenGate is running.

1. Stop access to the table.

2. Allow Extract to process any remaining changes to that table from the transaction
logs. To determine when Extract is finished, use the INFO EXTRACT command in
GGSCI.

INFO EXTRACT group

3. Stop Extract.

STOP EXTRACT group

4. Drop and recreate the table.

5. If supported for this database, run the ADD TRANDATA command in GGSCI for the
table.

6. If the recreate action changed the source table's definitions so that they are
different from those of the target, run the DEFGEN utility for the source table to
generate source definitions, and then replace the old definitions with the new
definitions in the existing source definitions file on the target system.

7. Permit user access to the table.

20.4.6 Changing the Number of Oracle RAC Threads when Using
Classic Capture

Valid for Extract in classic capture mode for Oracle. When Extract operates in classic
capture mode, the Extract group must be dropped and re-added any time the number
of redo threads in an Oracle RAC cluster changes. To drop and add an Extract group,
perform the following steps:

Chapter 20
Changing Database Attributes

20-10

1. On the source and target systems, run GGSCI.

2. Stop Extract and Replicat.

STOP EXTRACT group
STOP REPLICAT group

3. On the source system, issue the following command to delete the primary Extract
group and the data pump.

DELETE EXTRACT group
DELETE EXTRACT pump_group

4. On the target system, issue the following command to delete the Replicat groups.

DELETE REPLICAT group

5. Using standard operating system commands, remove the local and remote trail
files.

6. Add the primary Extract group again with the same name as before, specifying the
new number of RAC threads.

ADD EXTRACT group TRANLOG, THREADS n, BEGIN NOW

7. Add the local trail again with the same name as before.

ADD EXTTRAIL trail, EXTRACT group

8. Add the data pump Extract again, with the same name as before.

ADD EXTRACT group EXTTRAILSOURCE trail, BEGIN NOW

9. Add the remote trail again with the same name as before.

ADD RMTTRAIL trail, EXTRACT group

10. Add the Replicat group with the same name as before. Leave off any BEGIN options
so that processing begins at the start of the trail.

ADD REPLICAT group EXTTRAIL trail

11. Start all processes, using wildcards as appropriate. If the re-created processes are
the only ones in the source and target Oracle GoldenGate instances, you can use
START ER * instead of the following commands.

START EXTRACT group
START REPLICAT group

20.4.7 Changing the ORACLE_SID
You can change the ORACLE_SID and ORACLE_HOME without having to change environment
variables at the operating-system level. Depending on whether the change is for the
source or target database, set the following parameters in the Extract or Replicat
parameter files. Then, stop and restart Extract or Replicat for the parameters to take
effect.

SETENV (ORACLE_HOME=location)
SETENV (ORACLE_SID='SID')

20.4.8 Purging Archive Logs
An Oracle archive log can be purged safely once Extract's read and write checkpoints
are past the end of that log. Extract does not write a transaction to a trail until it has

Chapter 20
Changing Database Attributes

20-11

been committed, so Extract must keep track of all open transactions. To do so, Extract
requires access to the archive log where each open transaction started and all archive
logs thereafter.

Extract reads the current archive log (the read checkpoint) for new transactions and
also has a checkpoint (the recovery checkpoint) in the oldest archive log for which
there is an uncommitted transaction.

Use the following command in GGSCI to determine Extract's checkpoint positions.

INFO EXTRACT group, SHOWCH

• The Input Checkpoint field shows where Extract began processing when it was
started.

• The Recovery Checkpoint field shows the location of the oldest uncommitted
transaction.

• The Next Checkpoint field shows the position in the redo log that Extract is reading.

• The Output Checkpoint field shows the position where Extract is writing.

You can write a shell script that purges all archive logs no longer needed by Extract by
capturing the sequence number listed under the Recovery Checkpoint field. All archive
logs prior to that one can be safely deleted.

20.4.9 Reorganizing a DB2 Table (z/OS Platform)
When using IBM's REORG utility to reorganize a DB2 table that has compressed
tablespaces, specify the KEEPDICTIONARY option if the table is being processed by
Oracle GoldenGate. This prevents the REORG utility from recreating the compression
dictionary, which would cause log data that was written prior to the change not to be
decompressed and cause Extract to terminate abnormally. As an alternative, ensure
that all of the changes for the table have been extracted by Oracle GoldenGate before
doing the reorganization, or else truncate the table.

20.5 Adding Process Groups to an Active Configuration
This section describes how to add process groups.

• Before You Start

• Adding Another Extract Group to an Active Configuration

• Adding Another Data Pump to an Active Configuration

• Adding Another Replicat Group to an Active Configuration

20.5.1 Before You Start
These instructions are for adding process groups to a configuration that is already
active. The procedures should be performed by someone who has experience with
Oracle GoldenGate. They involve stopping processes for a short period of time and
reconfiguring parameter files. The person performing them must:

• Know the basic components of an Oracle GoldenGate configuration

• Understand Oracle GoldenGate parameters and commands

• Have access to GGSCI to create groups and parameter files

Chapter 20
Adding Process Groups to an Active Configuration

20-12

• Know which parameters to use in specific situations

Instructions are provided for:

• Adding Another Extract Group to an Active Configuration

• Adding Another Data Pump to an Active Configuration

• Adding Another Replicat Group to an Active Configuration

20.5.2 Adding Another Extract Group to an Active Configuration
This procedure splits the workload of an existing Extract group into multiple Extract
groups. It also provides instructions for including a data pump group (if applicable) and
a Replicat group to propagate data that is captured by the new Extract group.

Steps are performed on the source and target systems.

1. Make certain the archived transaction logs are available in case the online logs
recycle before you complete this procedure.

2. Choose a name for the new Extract group.

3. Decide whether or not to use a data pump.

4. On the source system, run GGSCI.

5. Create a parameter file for the new Extract group.

EDIT PARAMS group

Note:

You can copy the original parameter file to use for this group, but make
certain to change the Extract group name and any other relevant
parameters that apply to this new group.

6. In the parameter file, include:

• EXTRACT parameter that specifies the new group.

• Appropriate database login parameters.

• Other appropriate Extract parameters for your configuration.

• EXTTRAIL parameter that points to a local trail (if you will be adding a data
pump) or a RMTTRAIL parameter (if you are not adding a data pump).

• RMTHOST parameter if this Extract will write directly to a remote trail.

• TABLE statement(s) (and TABLEEXCLUDE, if appropriate) for the tables that are to
be processed by the new group.

7. Save and close the file.

8. Edit the original Extract parameter file(s) to remove the TABLE statements for the
tables that are being moved to the new group or, if using wildcards, add the
TABLEEXCLUDE parameter to exclude them from the wildcard specification.

9. (Oracle) If you are using Extract in integrated mode, register the new Extract group
with the source database.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])]

Chapter 20
Adding Process Groups to an Active Configuration

20-13

10. Lock the tables that were moved to the new group, and record the timestamp for
the point when the locks were applied. For Oracle tables, you can run the following
script, which also releases the lock after it is finished.

-- temp_lock.sql
-- use this script to temporary lock a table in order to
-- get a timestamp

lock table &schema . &table_name in EXCLUSIVE mode;
SELECT TO_CHAR(sysdate,'MM/DD/YYYY HH24:MI:SS') "Date" FROM dual;
commit;

11. Unlock the table(s) if you did not use the script in the previous step.

12. Stop the old Extract group(s) and any existing data pumps.

STOP EXTRACT group

13. Add the new Extract group and configure it to start at the timestamp that you
recorded.

ADD EXTRACT group, TRANLOG, BEGIN YYYY/MM/DD HH:MI:SS:CCCCCC

14. Add a trail for the new Extract group.

ADD {EXTTRAIL | RMTTRAIL} trail, EXTRACT group

Where:

• EXTTRAIL creates a local trail. Use this option if you will be creating a data
pump for use with the new Extract group. Specify the trail that is specified with
EXTTRAIL in the parameter file. After creating the trail, go To Link a Local Data
Pump to the New Extract Group .

• RMTTRAIL creates a remote trail. Use this option if a data pump will not be used.
Specify the trail that is specified with RMTTRAIL in the parameter file. After
creating the trail, go To Link a Remote Replicat to the New Data Pump

You can specify a relative or full path name. Examples:

ADD RMTTRAIL dirdat/rt, EXTRACT primary
ADD EXTTRAIL c:\ogg\dirdat\lt, EXTRACT primary

To Link a Local Data Pump to the New Extract Group

1. On the source system, add the data-pump Extract group using the EXTTRAIL trail as
the data source.

ADD EXTRACT pump, EXTTRAILSOURCE trail

For example:

ADD EXTRACT pump2, EXTTRAILSOURCE dirdat\lt

2. Create a parameter file for the data pump.

EDIT PARAMS pump

3. In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

• RMTHOST parameter to point to the target system.

• RMTTRAIL parameter to point to a new remote trail (to be specified later).

• TABLE parameter(s) for the tables that are to be processed by this data pump.

Chapter 20
Adding Process Groups to an Active Configuration

20-14

4. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that you specified with RMTTRAIL in the parameter file.

ADD RMTTRAIL trail, EXTRACT pump

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump2

5. Follow the steps in To Link a Remote Replicat to the New Data Pump.

To Link a Remote Replicat to the New Data Pump

1. In GGSCI on the target system, add a Replicat group to read the remote trail. For
EXTTRAIL, specify the same trail as in the RMTTRAIL Extract parameter and the ADD
RMTTRAIL command.

ADD REPLICAT group, EXTTRAIL trail

For example:

ADD REPLICAT rep2, EXTTRAIL /home/ggs/dirdat/rt

2. Create a parameter file for this Replicat group. Use MAP statement(s) to specify the
same tables that you specified for the new primary Extract and the data pump (if
used).

3. On the source system, start the Extract groups and data pumps.

START EXTRACT group
START EXTRACT pump

4. On the target system, start the new Replicat group.

START REPLICAT group

20.5.3 Adding Another Data Pump to an Active Configuration
This procedure adds a data-pump Extract group to an active primary Extract group on
the source system. It makes these changes:

• The primary Extract will write to a local trail.

• The data pump will write to a new remote trail after the data in the old trail is
applied to the target.

• The old Replicat group will be replaced by a new one.

Steps are performed on the source and target systems.

1. On the source system, run GGSCI.

2. Add a local trail, using the name of the primary Extract group for group.

ADD EXTTRAIL trail, EXTRACT group

For example:

ADD EXTTRAIL dirdat\lt, EXTRACT primary

3. Open the parameter file of the primary Extract group, and replace the RMTTRAIL
parameter with an EXTTRAIL parameter that points to the local trail that you created.

Chapter 20
Adding Process Groups to an Active Configuration

20-15

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

Example EXTTRAIL parameter:

EXTTRAIL dirdat\lt

4. Remove the RMTHOST parameter.

5. Save and close the file.

6. Add a new data-pump Extract group, using the trail that you specified in step 2 as
the data source.

ADD EXTRACT group, EXTTRAILSOURCE trail

For example:

ADD EXTRACT pump, EXTTRAILSOURCE dirdat\lt

7. Create a parameter file for the new data pump.

EDIT PARAMS group

8. In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

• TABLE parameter(s) for the tables that are to be processed by this data pump.

• RMTHOST parameter to point to the target system.

• RMTTRAIL parameter to point to a new remote trail (to be created later).

9. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that is specified with RMTTRAIL in the data pump's parameter file, and specify
the group name of the data pump for EXTRACT.

ADD RMTTRAIL trail, EXTRACT group

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump

Note:

This command binds a trail name to an Extract group but does not
actually create the trail. A trail file is created when processing starts.

10. On the target system, run GGSCI.

11. Add a new Replicat group and link it with the remote trail.

ADD REPLICAT group, EXTTRAIL trail

Chapter 20
Adding Process Groups to an Active Configuration

20-16

For example:

ADD REPLICAT rep, EXTTRAIL dirdat/rt

12. Create a parameter file for this Replicat group. You can copy the parameter file
from the original Replicat group, but make certain to change the REPLICAT
parameter to the new group name.

13. On the source system, stop the primary Extract group, then start it again so that
the parameter changes you made take effect.

STOP EXTRACT group
START EXTRACT group

14. On the source system, start the data pump.

START EXTRACT group

15. On the target system, issue the LAG REPLICAT command for the old Replicat, and
continue issuing it until it reports At EOF, no more records to process.

LAG REPLICAT group

16. Stop the old Replicat group.

STOP REPLICAT group

17. If using a checkpoint table for the old Replicat group, log into the database from
GGSCI.

DBLOGIN [SOURCEDB datasource] [{, USERIDALIAS alias | USERID user [,options]]

18. Delete the old Replicat group.

DELETE REPLICAT group

19. Start the new Replicat group.

START REPLICAT group

Note:

Do not delete the old remote trail, just in case it is needed later on for a
support case or some other reason. You can move it to another location,
if desired.

20.5.4 Adding Another Replicat Group to an Active Configuration
This procedure adds a new Replicat group to an existing Replicat group. The new
Replicat reads from the same trail as the original Replicat.

Multiple Replicat groups may be required when Replicat is configured in classic mode,
for the purpose of isolating transactions on certain tables or improving performance.
Multiple Replicat groups usually are not required if using coordinated Replicat,
because you can divide the workload among multiple processing threads within the
same Replicat group. See Creating an Online Replicat Group for more information
about Replicat modes.

Steps are performed on the source and target systems.

1. Choose a name for the new group.

Chapter 20
Adding Process Groups to an Active Configuration

20-17

2. On the target system, run GGSCI.

3. Create a parameter file for the new Replicat group.

EDIT PARAMS group

Note:

You can copy the original parameter file to use for this group, but make
certain to change the Replicat group name and any other relevant
parameters that apply to this new group.

4. Add MAP statements (or edit copied ones) to specify the tables that you are adding
or moving to this group. If this group will be a coordinated Replicat group, include
the appropriate thread specifications.

5. Save and close the parameter file.

6. On the source system, run GGSCI.

7. Stop the Extract group.

STOP EXTRACT group

8. Issue the INFO REPLICAT command for the old Replicat group, and continue issuing
it until it reports At EOF, no more records to process.

INFO REPLICAT group

9. On the target system, edit the old Replicat parameter file to remove MAP statements
that specified the tables that you moved to the new Replicat group. Keep only the
MAP statements that this Replicat will continue to process.

10. Save and close the file.

11. Issue the INFO REPLICAT command for the old Replicat group, and continue issuing
it until it reports At EOF, no more records to process.

INFO REPLICAT group

12. Obtain the current Replicat checkpoint.

INFO REPLICAT group

13. Stop the old Replicat group. If you are stopping a coordinated Replicat, make
certain the stop is clean so that all threads stop at the same trail record.

STOP REPLICAT group

14. Alter the new Replicat to position at the same trail sequence number and RBA as
the old replicat group

ALTER REPLICAT group, EXTSEQNO seqno, EXTRBA rba

The seqno is the trail sequence number from the old group checkpoint obtained in
step 11 and the rba is the trail record RBA number from the old group checkpoint.

15. Add the new Replicat group. For EXTTRAIL, specify the trail that this Replicat group
is to read.

ADD REPLICAT group, EXTTRAIL trail

For example:

Chapter 20
Adding Process Groups to an Active Configuration

20-18

ADD REPLICAT rep, EXTTRAIL dirdat/rt

16. Issue the INFORM COMMAND to alter the Replicat to the trail file sequence number and
RBA displayed.

INFORM COMMAND

17. On the source system, start the Extract group.

START EXTRACT group

18. On the target system, start the old Replicat group.

START REPLICAT group

19. Start the new Replicat group.

START REPLICAT group

20.6 Changing the Size of Trail Files
You can change the size of trail files with the MEGABYTES option of either the ALTER
EXTTRAIL or ALTER RMTTRAIL command, depending on whether the trail is local or
remote. To change the file size, follow this procedure.

1. Issue one of the following commands, depending on the location of the trail, to
view the path name of the trail you want to alter and the name of the associated
Extract group. Use a wildcard to view all trails.

(Remote trail)

INFO RMTTRAIL *

(Local trail)

INFO EXTTRAIL *

2. Issue one of the following commands, depending on the location of the trail, to
change the file size.

(Remote trail)

ALTER RMTTRAIL trail, EXTRACT group, MEGABYTES n

(Local trail)

ALTER EXTTRAIL trail, EXTRACT group, MEGABYTES n

3. Issue the following command to cause Extract to switch to the next file in the trail.

SEND EXTRACT group, ROLLOVER

20.7 Switching Extract from Classic Mode to Integrated
Mode

Valid for Oracle only.

This procedure switches an existing Extract group from classic mode to integrated
mode. For more information about Extract modes for an Oracle database, see
Installing and Configuring Oracle GoldenGate for Oracle Database.

Chapter 20
Changing the Size of Trail Files

20-19

To support the transition to integrated mode, the transaction log that contains the start
of the oldest open transaction must be available on the source or downstream mining
system, depending on where Extract will be running.

To determine the oldest open transaction, issue the SEND EXTRACT command with the
SHOWTRANS option. You can use the FORCETRANS or SKIPTRANS options of this command to
manage specific open transactions, with the understanding that skipping a transaction
may cause data loss and forcing a transaction to commit to the trail may add unwanted
data if the transaction is rolled back by the user applications. Review these options in
Reference for Oracle GoldenGate for Windows and UNIX before using them.

GGSCI> SEND EXTRACT group, SHOWTRANS�
GGSCI> SEND EXTRACT group, { SKIPTRANS ID [THREAD n] [FORCE] |�
FORCETRANS ID [THREAD n] [FORCE] }�

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Extract
parameter file to a new name.

3. Grant the appropriate privileges to the Extract user and perform the required
configuration steps to support your business applications in integrated capture
mode. See Installing and Configuring Oracle GoldenGate for Oracle Database for
information about configuring and running Extract in integrated mode.

4. Log into the mining database with one of the following commands, depending on
where the mining database is located.

DBLOGIN USERIDALIAS alias

MININGDBLOGIN USERIDALIAS alias

Where: alias specifies the alias of a user in the credential store who has the
privileges granted through the Oracle dbms_goldengate_auth.grant_admin_privilege
procedure.

5. Register the Extract group with the mining database. Among other things, this
creates the logmining server.

REGISTER EXTRACT group DATABASE

6. Issue the following command to determine whether the upgrade command can be
issued. Transactions that started before the registration command must be written
to the trail before you can proceed with the upgrade. You may have to issue this
command more than once until it returns a message stating that Extract can be
upgraded.

INFO EXTRACT group UPGRADE

7. Stop the Extract group.

STOP EXTRACT group

8. Switch the Extract group to integrated mode. See Oracle RAC options for this
command in Reference for Oracle GoldenGate for Windows and UNIX, if
applicable.

ALTER EXTRACT group UPGRADE INTEGRATED TRANLOG

9. Replace the old parameter file with the new one, keeping the same name.

Chapter 20
Switching Extract from Classic Mode to Integrated Mode

20-20

10. Start the Extract group.

START EXTRACT group

20.8 Switching Extract from Integrated Mode to Classic
Mode

Valid for Oracle only.

This procedure switches an existing Extract group from integrated mode to classic
mode. For more information about Extract modes for an Oracle database, see
Installing and Configuring Oracle GoldenGate for Oracle Database.

To support the transition to classic mode, the transaction log that contains the start of
the oldest open transaction must be available on the source or downstream mining
system. To determine the oldest open transaction, issue the SEND EXTRACT command
with the SHOWTRANS option. You can use the FORCETRANS or SKIPTRANS options of this
command to manage specific open transactions, with the understanding that skipping
a transaction may cause data loss and forcing a transaction to commit to the trail may
add unwanted data if the transaction is rolled back by the user applications. Review
these options in Reference for Oracle GoldenGate for Windows and UNIX before
using them.

GGSCI> SEND EXTRACT group, SHOWTRANS�
GGSCI> SEND EXTRACT group, { SKIPTRANS ID [THREAD n] [FORCE] |�
FORCETRANS ID [THREAD n] [FORCE] }�

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Extract
parameter file to a new name.

3. Grant the appropriate privileges to the Extract user and perform the required
configuration steps to support your business applications in classic capture mode.
See Installing and Configuring Oracle GoldenGate for Oracle Database for
information about configuring and running Extract in classic mode.

4. Issue the following command to determine whether the downgrade command can
be issued. Transactions that started before the downgrade command is issued
must be written to the trail before you can proceed. You may have to issue this
command more than once until it returns a message stating that Extract can be
downgraded.

INFO EXTRACT group DOWNGRADE

5. Stop the Extract group.

STOP EXTRACT group

6. Log into the mining database with one of the following commands, depending on
where the mining database is located.

DBLOGIN USERIDALIAS alias

MININGDBLOGIN USERIDALIAS alias

Chapter 20
Switching Extract from Integrated Mode to Classic Mode

20-21

Where: alias is the alias of a user in the credential store who has the privileges
granted through the Oracle dbms_goldengate_auth.grant_admin_privilege
procedure.

7. Switch the Extract group to classic mode.

ALTER EXTRACT group DOWNGRADE INTEGRATED TRANLOG

If on a RAC system, then the THREADS option has to be used with the downgrade
command to specify the number of RAC threads.

8. Unregister the Extract group from the mining database. Among other things, this
removes the logmining server.

UNREGISTER EXTRACT group DATABASE

9. Replace the old parameter file with the new one, keeping the same name.

10. Start the Extract group.

START EXTRACT group

20.9 Switching Replicat from Nonintegrated Mode to
Integrated Mode

Valid for Oracle only. For more information about Replicat modes for an Oracle
database, see Installing and Configuring Oracle GoldenGate for Oracle Database.

This procedure switches an existing Replicat group from nonintegrated to integrated
mode.

Note:

Do not configure the switch between Replicat modes to occur immediately
after Extract recovers from a failure or is repositioned to a different location in
the transaction log.

1. Back up the Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Replicat
parameter file to a new name.

3. Grant the appropriate privileges to the Replicat user and perform the required
configuration steps to support your business applications in integrated Replicat
mode. See Installing and Configuring Oracle GoldenGate for Oracle Database for
information about configuring and running Replicat in integrated mode.

4. Run GGSCI.

5. Stop Replicat.

STOP REPLICAT group

6. Log into the target database from GGSCI.

DBLOGIN USERIDALIAS alias

Chapter 20
Switching Replicat from Nonintegrated Mode to Integrated Mode

20-22

Where: alias is the alias of a user in the credential store who has the privileges
granted through the Oracle dbms_goldengate_auth.grant_admin_privilege
procedure.

7. Alter Replicat to integrated mode.

ALTER REPLICAT group, INTEGRATED

8. Replace the old parameter file with the new one, keeping the same name.

9. Start Replicat.

START REPLICAT group

10. Verify that Replicat is in integrated mode.

INFO REPLICAT group

When you start Replicat in integrated mode for the first time, the START command
registers the Replicat group with the database and starts an inbound server to which
Replicat attaches. When you convert a Replicat group to integrated mode, the use of
the Oracle GoldenGate checkpoint table is discontinued and recovery information is
maintained internally by the inbound server and by the checkpoint file going forward.
You can retain the checkpoint table in the event that you decide to switch back to
nonintegrated mode.

20.10 Switching Replicat from Integrated Mode to
Nonintegrated Mode

Valid for Oracle only. For more information about Replicat modes for an Oracle
database, see Installing and Configuring Oracle GoldenGate for Oracle Database.

You can, at any time, switch Replicat from integrated mode to nonintegrated mode.
This switch automatically unregisters the Replicat group from the target database,
which removes the inbound server.

Note:

Do not configure the switch between Replicat modes to occur immediately
after Extract recovers from a failure or is repositioned to a different location in
the transaction log.

Bug 17079228

1. Back up the Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Replicat
parameter file to a new name.

3. Grant the appropriate privileges to the Replicat user and perform the required
configuration steps to support your business applications in nonintegrated Replicat
mode. See Installing and Configuring Oracle GoldenGate for Oracle Database for
information about configuring and running Replicat in integrated mode.

4. Run GGSCI.

Chapter 20
Switching Replicat from Integrated Mode to Nonintegrated Mode

20-23

5. Log into the target database from GGSCI.

DBLOGIN USERIDALIAS alias

Where: alias is the alias of a user in the credential store who has the privileges
granted through the Oracle dbms_goldengate_auth.grant_admin_privilege
procedure.

6. Create a checkpoint table in the target database for the nonintegrated Replicat to
use to store its recovery checkpoints. If a checkpoint table was previously
associated with this Replicat group and still exists, you can omit this step. See
Creating a Checkpoint Table for more information about options for using a
checkpoint table.

ADD CHECKPOINTTABLE [container.]table

7. Stop Replicat.

STOP REPLICAT group

8. Alter Replicat to nonintegrated mode. For the CHECKPOINTTABLE argument, specify
the checkpoint table that you created for this Replicat group.

ALTER REPLICAT group, NONINTEGRATED, CHECKPOINTTABLE [container.]table

9. Replace the old parameter file with the new one, keeping the same name.

10. Start Replicat.

START REPLICAT group

After issuing this command, wait until there is some activity on the source
database so that the switchover can be completed. (Replicat waits until its internal
high-water mark is exceeded before removing the status of "switching from
integrated mode.")

11. Verify that Replicat switched to nonintegrated mode.

INFO REPLICAT group

20.11 Switching Replicat to Coordinated Mode
Valid for all database types supported by Oracle GoldenGate.

This procedure upgrades a regular Replicat configuration (non-coordinated) to a
coordinated configuration. This procedure assumes you are replacing a configuration
that partitions data across multiple Extract and Replicat processes with a configuration
that uses one Extract and one coordinated Replicat. The coordinated Replicat
replaces the need for using multiple Replicat processes. A coordinated Replicat
requires only one trail, so there is no need for multiple Extract processes or data
pumps.

See Configuring Online Change Synchronization for more information about
coordinated Replicat.

• Procedure Overview

• Performing the Switch to Coordinated Replicat

Chapter 20
Switching Replicat to Coordinated Mode

20-24

20.11.1 Procedure Overview
This procedure makes use of the EVENTACTIONS parameter with a STOP action, which
enables all of the Replicat processes to stop at the same point in the trail. The
EVENTACTIONS action is triggered by a transaction that contains an INSERT to a dummy
table. The INSERT causes each process to finish processing everything up to, and
including, the event transaction and then stop cleanly. An additional event action of
IGNORE is specified for Replicat to prevent the multiple Replicat processes from
attempting to insert the same record to the target. The result of this procedure is that
all processes stop at the same point in the data stream: after completing the INSERT
transaction to the dummy table.

After the processes stop, you move all of the TABLE statements to one primary Extract
group. You move the same TABLE statements to the data pump that reads the trail of
the Extract group that you retained. You move all of the MAP statements to a new
coordinated Replicat group that reads the remote trail that is associated with the
retained data pump. Once all of the MAP statements are in one parameter file, you edit
them to add the thread specifications to support a coordinated Replicat. (This can be
done ahead of time.) Then you drop the Replicat group and add it back in coordinated
mode with the same name.

20.11.2 Performing the Switch to Coordinated Replicat

Note:

Do not create the Replicat group until prompted by these instructions.

1. Back up the current parameter files of all of the Extract groups, data pumps, and
Replicat groups. You will be editing them.

2. Create a working directory outside the Oracle GoldenGate directory. You will use
this directory to create and stage new versions of the parameter files. If needed,
you can create a working directory on the source and target systems.

3. In the working directory, create a parameter file for a coordinated Replicat. Copy
the MAP parameters from the active parameter files of all of the Replicat groups to
this parameter file, and then add the thread specifications and any other
parameters that support your required coordinated Replicat configuration

4. If using multiple primary Extract groups, select one to keep, and then save a copy
of its current parameter file to the working directory.

5. Copy all of the TABLE statements from the other Extract groups to the new
parameter file of the primary Extract that you are keeping.

6. In the working directory, save a copy of the parameter file of the data pump that is
linked to the primary Extract that you are keeping.

7. Copy all of the TABLE statements from the other data pumps to the copied
parameter file of the kept data pump.

8. In the source database, create a simple dummy table on which a simple INSERT
statement can be performed. For this procedure, the name schema.event is used.

Chapter 20
Switching Replicat to Coordinated Mode

20-25

9. Create the same table on the target system, to avoid the need for additional
configuration parameters.

10. Edit the active parameter files (not the copies) of all primary and data-pump
Extract groups to add the following EVENTACTIONS parameter to each one.

TABLE schema.event, EVENTACTIONS(STOP);

11. Edit the active parameter files (not the copies) of all of the Replicat groups to add
the following EVENTACTIONS parameter to each one.

MAP schema.event, TARGET schema.event, EVENTACTIONS(IGNORE, STOP);

12. Stop the Oracle GoldenGate processes gracefully in the following order:

• Stop all Replicat processes.

• Stop all data pumps.

• Stop all Extract processes.

13. Restart the Oracle GoldenGate processes in the following order so that the
EVENTACTIONS parameters take effect:

• Start all Extract processes.

• Start all data pumps.

• Start all Replicat processes.

14. On the source system, issue a transaction on the schema.event table that contains
one INSERT statement. Make certain to commit the transaction.

15. In GGSCI, issue the STATUS command for all of the primary Extract and data pump
processes on the source system, and issue the same command for all of the
Replicat processes on the target system, until the commands show that all of the
processes are STOPPED.

STATUS EXTRACT *
STATUS REPLICAT *

16. Replace the active parameter files of the primary Extract and data pump that you
kept with the new parameter files from the working directory.

17. Delete the unneeded Extract and data pump groups and their parameter files.

18. Log into the target database by using the DBLOGIN command.

19. Delete all of the Replicat groups and their active parameter files.

20. Copy or move the new coordinated Replicat parameter file from the working
directory to the Oracle GoldenGate directory.

21. In GGSCI, issue the INFO EXTRACT command for the data pump and make note of
its write checkpoint position in the output (remote) trail.

INFO EXTRACT pump, DETAIL

22. Add a new coordinated Replicat group with the following parameters.

ADD REPLICAT group, EXTTRAIL trail, EXTSEQNO sequence_number, EXTRBA rba,
COORDINATED MAXTHREADS number

Where:

• group is the name of the coordinated Replicat group. The name must match
that of the new parameter file created for this group.

Chapter 20
Switching Replicat to Coordinated Mode

20-26

• EXTTRAIL trail is the name of the trail that the data pump writes to.

• EXTSEQNO sequence_number is the sequence number of the trail as shown in the
write checkpoint returned by the INFO EXTRACT that you issued for the data
pump.

• EXTRBA rba is the relative byte address in the trail as shown in the write
checkpoint returned by INFO EXTRACT. Together, these position Replicat to
resume processing at the correct point in the trial.

• MAXTHREADS number specifies the maximum number of threads allowed for this
group. This value should be appropriate for the number of threads that are
specified in the parameter file.

23. Start the primary Extract group.

24. Start the data pump group.

25. Start the coordinated Replicat group.

20.12 Administering a Coordinated Replicat Configuration
This section contains instructions for coordinating threads and re-partitioning the
workload among new or different threads. A coordinated Replicat should be stopped
cleanly with the STOP REPLICAT command before making modifications to the partition
specifications in THREAD or THREADRANGE clauses of the MAP statements. A clean stop
ensures that all of the threads, which may be at different locations in the trail at any
given point, all finish their work and arrive at a common trail location.

At startup, Replicat issues an error and abends if it detects that the last shutdown was
not clean and the partitioning in the MAP statements was changed to contain a different
number of threads (threads were added or removed). However, if the same threads
are kept in the parameter file but simply rearranged among different MAP statements,
Replicat issues a warning but does not abend. This can result in missing or duplicate
records, because there is no way to ensure continuity of the thread-to-workload
allocations from the previous run.

The following is an example of this condition.

Following is the original partitioning scheme:

MAP source, target, THREADRANGE(1-5);
MAP source1, target1, THREADRANGE(6-10);

The following re-partitioning of the original scheme produces only a warning:

MAP source, target, THREADRANGE(1-4);
MAP source1, target1, THREADRANGE(5-10);

This section provides instructions for cleanly shutting down Replicat before performing
a re-partitioning, as well as instructions for attempting to recover Replicat continuity
when a re-partitioning is performed after an unclean shutdown.

The following tasks can be performed for a Replicat group in coordinated mode.

Performing a Planned Re-partitioning of the Workload

Recovering Replicat After an Unplanned Re-partitioning

Synchronizing Threads After an Unclean Stop

Chapter 20
Administering a Coordinated Replicat Configuration

20-27

• Performing a Planned Re-partitioning of the Workload

• Recovering Replicat After an Unplanned Re-partitioning

• Synchronizing Threads After an Unclean Stop

20.12.1 Performing a Planned Re-partitioning of the Workload
A planned re-partitioning is when Replicat is allowed to shut down cleanly before it is
started again with a new parameter file that contains updated thread partitioning. A
clean shutdown enables all of the threads to arrive at a common checkpoint position in
the trail. At that point, the new partitioning scheme can be applied in the next run. If
Replicat does not shut down cleanly in this procedure, for example if there is an apply
error, use the procedure in Synchronizing Threads After an Unclean Stop to re-
synchronize the threads before you re-partition them.

1. Run GGSCI.

2. Stop Replicat.

STOP REPLICAT group

3. Open the parameter file for editing.

EDIT PARAMS group

4. Make the required changes to the THREAD or THREADRANGE specifications in the MAP
statements.

5. Save and close the parameter file.

6. Start Replicat.

START REPLICAT group

20.12.2 Recovering Replicat After an Unplanned Re-partitioning
An unplanned re-partitioning is when Replicat is not allowed to shut down cleanly
before it is started again with a new parameter file that contains updated thread
partitioning. In this scenario, some or all of the old threads were not able to finish their
work and arrive at a common checkpoint. Upon restart, the coordinator thread
attempts to apply the old partitioning scheme, and Replicat abends with an error. You
can recover the coordinated Replicat group from this condition in one of the following
ways:

• Use the auto-saved copy of the parameter file

• Reprocess from the low watermark with HANDLECOLLISIONS

• Reprocessing From the Low Watermark with HANDLECOLLISIONS

• Using the Auto-Saved Parameter File

20.12.2.1 Reprocessing From the Low Watermark with HANDLECOLLISIONS
In this procedure, you reposition all of the threads to the low watermark position. This
is the earliest checkpoint position performed among all of the threads. To state it
another way, the low watermark position is the last record processed by the slowest
thread before the unclean stop. When you start Replicat, the threads reprocess the
operations that they were processing before Replicat stopped, and the
HANDLECOLLISIONS parameter handles any duplicate-record and missing-record errors

Chapter 20
Administering a Coordinated Replicat Configuration

20-28

that occur as the faster threads reprocess operations that they applied before the
unclean stop.

1. Add the HANDLECOLLISIONS parameter to the Replicat parameter file. It is not
necessary to use any THREADS options.

2. Issue the INFO REPLICAT command for the Replicat group as a whole (the
coordinator thread). Make a record of the RBA of the checkpoint. This is the low
watermark value. This output also shows you the active thread IDs under the Group
Name column. Make a record of these, as well.

INFO REPLICAT group

GGSCI (slc03jgo) 3> info ra detailREPLICAT RA Last Started 2013-05-01
14:15 Status ABENDEDCOORDINATED Coordinator
MAXTHREADS 15Checkpoint Lag 00:00:00 (updated 00:00:07 ago)Process
ID 11445Log Read Checkpoint File ./dirdat/withMaxTransOp/
bg000001 2013-05-02 07:49:45.975662 RBA 44704Lowest Log BSN
value: (requires database login)Active Threads: ID Group Name PID Status
Lag at Chkpt Time Since Chkpt1 RA001 11454 ABENDED 00:00:00
00:00:01 2 RA002 11455 ABENDED 00:00:00 00:00:04 3 RA003
11456 ABENDED 00:00:00 00:00:01 5 RA005 11457 ABENDED
00:00:00 00:00:02 6 RA006 11458 ABENDED 00:00:00 00:00:04
7 RA007 11459 ABENDED 00:00:00 00:00:04

3. Issue the INFO REPLICAT command for each processing thread ID and record the
RBA position of each thread. Make a note of the highest RBA. This is the high
watermark of the Replicat group.

INFO REPLICAT threadID

 info ra002
REPLICAT RA002 Last Started 2013-05-01 14:15 Status
ABENDEDCOORDINATED Replicat Thread Thread 2Checkpoint
Lag 00:00:00 (updated 00:00:06 ago)Process ID 11455
Log Read Checkpoint File ./dirdat/withMaxTransOp/bg000001
2013-05-02 07:49:15.837271 RBA 45603

4. Issue the ALTER REPLICAT command for the coordinator thread (Replicat as a whole,
without any thread ID) and position to the low watermark RBA that you recorded.

ALTER REPLICAT group EXTRBA low_watermark_rba

5. Start Replicat.

START REPLICAT group

6. Issue the basic INFO REPLICAT command until it shows an RBA that is higher than
the high watermark that you recorded. HANDLECOLLISIONS handles any collisions that
occur due to previously applied transactions.

INFO REPLICAT group

7. Stop Replicat.

STOP REPLICAT group

8. Remove or comment out the HANDLECOLLISIONS parameter.

9. Start Replicat.

START REPLICAT group

Chapter 20
Administering a Coordinated Replicat Configuration

20-29

20.12.2.2 Using the Auto-Saved Parameter File
A copy of the original parameter file is saved whenever the parameter file is edited
before shutting down Replicat cleanly. You can revert to this parameter file and then
resynchronize the threads so that they all catch up to the thread that had the most
recent checkpoint position. Once the threads are synchronized, you can switch to the
new parameter file and then start Replicat.

1. Save the new parameter file to a different name, and then rename the saved
original parameter file to the correct name (same as the group name). The saved
parameter file has a .backup suffix and is stored in the dirprm subdirectory of the
Oracle GoldenGate installation directory.

2. Issue the following command to synchronize the Replicat threads to the maximum
checkpoint position. This command automatically starts Replicat and executes the
threads until they reach the maximum checkpoint position.

SYNCHRONIZE REPLICAT group

3. Issue the STATUS REPLICAT command until it shows that Replicat stopped cleanly.

STATUS REPLICAT group

4. Save the original parameter file to a different name, and then rename the new
parameter file to the group name.

5. Start Replicat.

START REPLICAT group

20.12.3 Synchronizing Threads After an Unclean Stop
When a Replicat group stops in an unclean manner, not all of the threads will reach a
common checkpoint position in the trail. Unclean stops can be caused by issuing STOP
REPLICAT with the ! option, issuing the KILL REPLICAT command, or by transient errors
related to Replicat, the database, or other local processes. You can restore the
threads to the same position in the trail after an unclean stop and then start Replicat
again from the correct checkpoint position.

In this procedure, the restore position is the high watermark. This is the most recent
checkpoint position performed among all of the threads (the last record processed by
the fastest thread before the unclean stop). Before starting Replicat, you can make
changes to the parameter file, such as to repartition the workload among different or
new threads. The repartitioning takes effect in a seamless manner after you start
Replicat, because the threads can start from a synchronized state.

1. Run GGSCI.

2. Synchronize the Replicat threads to the maximum checkpoint position. Replicat
performs the synchronization and then stops.

SYNCHRONIZE REPLICAT group

3. (Optional) To re-partition the workload among different or new threads, open the
parameter file for editing and then make the required changes to the THREAD or
THREADRANGE specifications in the MAP statements.

EDIT PARAMS group

4. Save and close the parameter file.

Chapter 20
Administering a Coordinated Replicat Configuration

20-30

5. Start Replicat.

START REPLICAT group

20.13 Restarting a Primary Extract after System Failure or
Corruption

This procedure enables Oracle GoldenGate to recover from certain conditions, such
as a file system corruption or a system failure, that corrupt the Extract checkpoint file,
trail, or both, and which prevent Extract from being able to start. It enables you to
establish a safe starting point in the transaction log for the primary Extract after the
system has been restored. It also shows you how to reposition downstream data
pumps and Replicat to read from the correct Extract write position in the trails, and to
filter out any transactions that Replicat already applied to the target.

• Details of This Procedure

• Performing the Recovery

20.13.1 Details of This Procedure
Extract passes a log begin sequence number, or LOGBSN, to the trail files. The BSN
is the native database sequence number that identifies the oldest uncommitted
transaction that is held in Extract memory. For example, the BSN in an Oracle
installation would be the Oracle system change number (SCN). Each trail file contains
the lowest LOGBSN value for all of the transactions in that trail file. Once you know the
LOGBSN value, you can reposition Extract at the correct read position to ensure that the
appropriate transactions are re-generated to the trail and propagated to Replicat.

Note:

In an Oracle RAC environment, the lowest SCN of all of the threads is
transmitted to Replicat. Transactions that may already have been committed
by Replicat are handled as duplicates at startup. However, any thread that
has been idle past a certain threshold will not be considered for the BSN
value, to avoid Extract having to read too far back in the log stream when
restarted.

The bounded recovery checkpoint is not taken into account when calculating the
LOGBSN. The failure that affected the Extract checkpoint file may also involve a loss of
the persisted bounded recovery data files and bounded recovery checkpoint
information.

20.13.2 Performing the Recovery
Follow these steps in the order shown to recover the Oracle GoldenGate processes.

1. In GGSCI on the target system, issue the DBLOGIN command.

DBLOGIN {USERID Replicat_user | USERIDALIAS alias_of_Replicat_user}

Chapter 20
Restarting a Primary Extract after System Failure or Corruption

20-31

2. On the target, obtain the LOGBSN value by issuing the INFO REPLICAT command with
the DETAIL option.

INFO REPLICAT group, DETAIL

The BSN is included in the output as a line similar to the following:

Current Log BSN value: 1151679

3. (Classic capture mode only. Skip if using integrated capture mode.) Query the
source database to find the sequence number of the transaction log file that
contains the value of the LOGBSN that you identified in the previous step. This
example assumes 1855798 is the LOGBSN value and shows that the sequence
number of the transaction log that contains that LOGBSN value is 163.

SQL> select name, thread#, sequence# from v$archived_log
where 1855798 between first_change# and next_change#;

NAME THREAD# SEQUENCE#
------------------------------------- ---------- ----------/oracle/dbs/
arch1_163_800262442.dbf 1 163

4. Issue the following commands in GGSCI to reposition the primary Extract to the
LOGBSN start position.

• (Classic capture mode)

ALTER EXTRACT group EXTSEQNO 163
ALTER EXTRACT group EXTRBA 0
ALTER EXTRACT group ETROLLOVER

• (Integrated capture mode)

ALTER EXTRACT group SCN 1151679
ALTER EXTRACT group ETROLLOVER

Note:

There is a limit on how far back Extract can go in the transaction stream,
when in integrated mode. If the required SCN is no longer available, the
ALTER EXTRACT command fails.

5. Issue the following command in GGSCI to the primary Extract to view the new
sequence number of the Extract Write Checkpoint. This command shows the trail
and RBA where Extract will begin to write new data. Because a rollover was
issued, the start point is at the beginning (RBA 0) of the new trail file, in this
example file number 7.

INFO EXTRACT group SHOWCH
Sequence #: 7
RBA: 0

6. Issue the following command in GGSCI to reposition the downstream data pump
and start a new output trail file.

ALTER EXTRACT pump EXTSEQNO 7
ALTER EXTRACT pump EXTRBA 0
ALTER EXTRACT pump ETROLLOVER

Chapter 20
Restarting a Primary Extract after System Failure or Corruption

20-32

7. Issue the following command in GGSCI to the data pump Extract to view the new
sequence number of the data pump Write Checkpoint, in this example trail number
9.

INFO EXTRACT pump SHOWCH
Sequence #: 9
RBA: 0

8. Reposition Replicat to start reading the trail at the new Write Checkpoint of the
data pump.

ALTER REPLICAT group EXTSEQNO 9
ALTER REPLICAT group EXTRBA 0

9. Start the primary Extract and the data pump.

START EXTRACT group
START REPLICAT group

10. Issue the following command in GGSCI to start Replicat. If Replicat is operating in
integrated mode (Oracle targets only), you do not need the FILTERDUPTRANSACTIONS
option. Integrated Replicat handles duplicate transactions transparently.

START REPLICAT group[, FILTERDUPTRANSACTIONS]

Note:

The LOGBSN gives you the information needed to set Extract back in time to
reprocess transactions. Some filtering by Replicat is necessary because
Extract will likely re-generate a small amount of data that was already
applied by Replicat. FILTERDUPTRANSACTIONS directs Replicat to find and filter
duplicates at the beginning of the run.

Chapter 20
Restarting a Primary Extract after System Failure or Corruption

20-33

21
Undoing Data Changes with the Reverse
Utility

This chapter describes how to undo data changes with the reverse utility.
This chapter includes the following sections:

• Overview of the Reverse Utility

• Reverse Utility Restrictions

• Configuring the Reverse Utility

• Creating Process Groups and Trails for Reverse Processing

• Running the Reverse Utility

• Undoing the Changes Made by the Reverse Utility

• Overview of the Reverse Utility

• Reverse Utility Restrictions

• Configuring the Reverse Utility

• Creating Process Groups and Trails for Reverse Processing

• Running the Reverse Utility

• Undoing the Changes Made by the Reverse Utility

21.1 Overview of the Reverse Utility
The Reverse utility uses before images to undo database changes for specified tables,
records, and time periods. It enables you to perform a selective backout, unlike other
methods which require restoring the entire database.

You can use the Reverse utility for the following purposes:

• To restore a test database to its original state before the test run. Because the
Reverse utility only backs out changes, a test database can be restored in a
matter of minutes, much more efficiently than a complete database restore, which
can take hours.

• To reverse errors caused by corrupt data or accidental deletions. For example, if
an UPDATE or DELETE command is issued without a WHERE clause, the Reverse utility
reverses the operation.

To use the Reverse utility, you do the following:

• Run Extract to extract the before data.

• Run the Reverse utility to perform the reversal of the transactions.

• Run Replicat to apply the restored data to the target database.

The Reverse utility reverses the forward operations by:

21-1

• Reversing the ordering of database operations in an extract file, a series of extract
files, or a trail so that they can be processed in reverse order, guaranteeing that
records with the same key are properly applied.

• Changing delete operations to inserts.

• Changing inserts to deletes.

• Changing update before images to update after images.

• Reversing the begin and end transaction indicators.

Figure 21-1 Reverse Utility Architecture

21.2 Reverse Utility Restrictions
Observe the following restrictions on the reverse utility:

• Commit timestamps are not changed during the reverse procedure, which causes
the time sequencing in the trail to be backwards. Because of this, you cannot
position Replicat based on a timestamp.

• Oracle GoldenGate does not store the before images of the following data types,
so these types are not supported by the Reverse utility. A before image is required
to reverse update and delete operations

Table 21-1 Data types Not Supported by the Reverse Utility

DB2
(all supported OS)

Oracle SQL Server Sybase Teradata

BLOB
CLOB
DBCLOB

CLOB
BLOB
NCLOB
LONG
LONG RAW
XMLType
UDT
Nested Tables
VARRAY

TEXT
IMAGE
NTEXT
VARCHAR (MAX)

VARBINARY
BINARY
TEXT
IMAGE

None supported. This
is because only the
after images of a row
are captured by the
Teradata vendor
access module.

21.3 Configuring the Reverse Utility
The reversal process is performed with online Extract and Replicat processes that are
created and started through GGSCI. These processes write to standard local or
remote trails. Oracle GoldenGate automatically reverses the file order during reverse
processing so that transaction sequencing is maintained.

To configure the Reverse utility, create Extract and Replicat parameter files with the
parameters shown in Table 21-2 and Table 21-3. In addition to these parameters,

Chapter 21
Reverse Utility Restrictions

21-2

include any other optional parameters or special MAP statements that are required for
your synchronization configuration.

Table 21-2 Extract Parameter File for the Reverse Utility

Parameter Description

EXTRACT group
EXTRACT group specifies the Extract process. You will create
this process in GGSCI.

END {time | RUNTIME}
time causes Extract to terminate when it reaches a record in
the data source whose timestamp exceeds the one that is
specified with this parameter. The valid format is as follows,
based on a 24-hour clock:

yyyy-mm-dd[hh:mi[:ss[.cccccc]]

RUNTIME causes Extract to terminate when it reaches a record
in the data source whose timestamp exceeds the current date
and clock time. All unprocessed records with timestamps up
to this point in time are processed. One advantage of using
RUNTIME is that you do not have to alter the parameter file to
change dates and times from run to run. Instead, you can
control the process start time within your batch programming.

[SOURCEDB datasource,]
[USERIDALIAS alias | USERID user [, options]]

• SOURCEDB specifies a data source name, if
required in the connection information.

• USERID and USERIDALIAS specify
authentication information.

Specifies database connection information. See Configuring
Oracle GoldenGate Security for more information.

NOCOMPRESSDELETES
Causes Extract to send all column data to the output, instead
of only the primary key. Enables deletes to be converted back
to inserts.

GETUPDATEBEFORES
Directs Oracle GoldenGate to extract before images so that
updates can be rolled back.

RMTHOST hostname
The name or IP address of the target system.

{EXTTRAIL input trail |
RMTTRAIL input trail}

• Use EXTTRAIL to specify an extract trail on the local
system.

• Use RMTTRAIL to specify a remote trail on a remote
system.

Specify the relative or full path name of a trail, including the
two-character trail name, for example:

EXTTRAIL /home/ggs/dirdat/rt

TABLE [container.]owner.table;
The table or tables that are to be processed, specified with
either multiple TABLE statements or a wildcard. Include any
special selection and mapping criteria.

This example Extract parameter file uses a remote trail.

Chapter 21
Configuring the Reverse Utility

21-3

Table 21-3 Replicat Parameter File for the Reverse Utility

Parameter Description

REPLICAT group
REPLICAT group specifies the Replicat process to be
created in GGSCI.

END {time | RUNTIME}
time causes Extract to terminate when it reaches a record
in the data source whose timestamp exceeds the one that
is specified with this parameter. The valid format is as
follows, based on a 24-hour clock:

yyyy-mm-dd[hh:mi[:ss[.cccccc]]

RUNTIME causes Replicat to terminate when it reaches a
record in the data source whose timestamp exceeds the
current date and clock time. All unprocessed records with
timestamps up to this point in time are processed. One
advantage of using RUNTIME is that you do not have to alter
the parameter file to change dates and times from run to
run. Instead, you can control the process start time within
your batch programming.

[TARGETDB datasource,]
[USERIDALIAS alias | USERID user [, options]]

• TARGETDB specifies a data source name, if
required in the connection information.

• USERID and USERIDALIAS specify authentication
information.

Specifies database connection information. See
Configuring Oracle GoldenGate Security for more
information about security options.

{SOURCEDEFS full_pathname} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source-
definitions file generated by DEFGEN. for more
information about DEFGEN, see Associating
Replicated Data with Metadata..

• Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

MAP [container.]owner.table],
TARGET owner.table;

The table or tables (specified with either multiple MAP
statements or a wildcard) to which to post the reversed
data. When reversing data from the source database, the
source and target TABLE entries are the same. When
reversing replicated data from a target database, the
source and target of each MAP statement are different.

The following is an example Replicat parameter file.

Example 21-1 Extracting a Parameter File Using a Remote Trail

EXTRACT ext_1
END 2011-01-09 14:12:20
USERIDALIAS ogg
GETUPDATEBEFORES
NOCOMPRESSDELETES
RMTHOST sysb, MGRPORT 8040
RMTTRAIL /home/ggs/dirdat/in

Chapter 21
Configuring the Reverse Utility

21-4

TABLE tcustmer;
TABLE tcustord;

Example 21-2 Replicat Parameter File

REPLICAT rep_1
END RUNTIME
USERIDALIAS ogg
ASSUMETARGETDEFS
MAP tcustmer, TARGET tcustmer;

21.4 Creating Process Groups and Trails for Reverse
Processing

To create process groups to perform the backout procedure, you create the following:

• An online Extract group.

• A local or remote trail that is linked to the Extract group. Extract captures the data
from the database, and writes it to this trail, which serves as the input trail for the
Reverse utility.

• An online Replicat group.

• Another local or remote trail that is linked to the Replicat group. This is the output
trail that is written by the Reverse utility. Replicat reads this trail to apply the
reversed data.

To Create an Extract Group for Reverse Processing

ADD EXTRACT group, TRANLOG, BEGIN {NOW | YYYY-MM-DD HH:MM[:SS[.CCCCCC]]}

Where:

• group is the name of the Extract group. A group name can contain up to eight
characters, and is not case-sensitive.

• TRANLOG specifies the transaction log as the data source.

• BEGIN specifies a starting timestamp at which to begin processing. Use one of the
following:

– NOW to begin extracting changes that are timestamped at the point when the
ADD EXTRACT command is executed to create the group.

– YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact
timestamp as the begin point.

To Create an input Trail That is Linked to the Extract Group

ADD {EXTTRAIL | RMTTRAIL} pathname, EXTRACT group[, MEGABYTES n]

Where:

• EXTTRAIL specifies a trail on the local system. RMTTRAIL specifies a trail on a remote
system.

• pathname is the relative or fully qualified name of the input trail, including a two-
character name that can be any two alphanumeric characters, for example c:\ggs

Chapter 21
Creating Process Groups and Trails for Reverse Processing

21-5

\dirdat\rt. It must be the same name that you specified in the Extract parameter
file.

• EXTRACT group specifies the name of the Extract group.

• MEGABYTES n is an optional argument with which you can set the size, in megabytes,
of each trail file (default is 100).

To Create a Replicat Group for Reverse Processing

ADD REPLICAT group, EXTTRAIL pathname
[, BEGIN {NOW | YYYY-MM-DD HH:MM[:SS[.CCCCCC]]} | , EXTSEQNO seqno, EXTRBA rba]
[, CHECKPOINTTABLE]
[, NODBCHECKPOINT]

Where:

• group is the name of the Replicat group. A group name can contain up to eight
characters, and is not case-sensitive.

• EXTTRAIL pathname is the relative or fully qualified name of an output trail that you
will be creating for this Replicat with the ADD RMTTRAIL command.

• BEGIN {NOW | YYYY-MM-DD HH:MM[:SS[.CCCCCC]]} defines an online Replicat group
by establishing an initial checkpoint and start point for processing. Use one of the
following:

– Use NOW to begin replicating records that are timestamped at the point when
the ADD REPLICAT command is executed to create the group.

– Use YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact
timestamp as the begin point.

• EXTSEQNO seqno specifies the sequence number of a file in the trail in which to start
processing. EXTRBA rba specifies a relative byte address as the start point within
that file. By default, processing begins at the beginning of a trail unless this option
is used. For the sequence number, specify the number, but not any zeroes used
for padding. For example, if a trail file is c:\ggs\dirdat\aa000026, you would specify
EXTSEQNO 26. Contact Oracle Support before using this option. For more
information, go to http://support.oracle.com.

• CHECKPOINTTABLE specifies the owner and name of a checkpoint table other than the
default specified in the GLOBALS file. To use this option, you must add the
checkpoint table to the database with the ADD CHECKPOINTTABLE command.

• NODBCHECKPOINT specifies that this Replicat group will not use a checkpoint table.

To Create an Output Trail That is Linked to the Replicat Group

ADD {EXTTRAIL | RMTTRAIL} pathname, REPLICAT group
[, MEGABYTES n]

Where:

• EXTTRAIL specifies a trail on the local system. RMTTRAIL specifies a trail on a remote
system.

• pathname is the relative or fully qualified name of the output trail, including a two-
character name that can be any two alphanumeric characters, for example c:\ggs
\dirdat\rt. This must be the trail that was specified with EXTTRAIL in the ADD
REPLICAT command.

Chapter 21
Creating Process Groups and Trails for Reverse Processing

21-6

http://support.oracle.com

• REPLICAT group specifies the name of the Replicat group.

• MEGABYTES n is an optional argument with which you can set the size, in megabytes,
of each trail file (default is 100).

21.5 Running the Reverse Utility
1. From GGSCI, run Extract.

START EXTRACT group

2. Issue the following command until at EOF is returned, indicating that Extract is
finished capturing the specified records.

SEND EXTRACT group, STATUS

3. Run the Reverse utility by using the fully qualified path name or by changing
directories to the Oracle GoldenGate directory and running reverse from there.

Note:

Using a full path name or a path relative to the Oracle GoldenGate
directory is especially important on UNIX systems, to prevent confusion
with the UNIX reverse command.

/GoldenGate_directory/reverse input_file, output_file

Where:

• input_file is the input file specified with EXTTRAIL or RMTTRAIL in the Extract
parameter file.

• output_file is the output file specified with EXTTRAIL in the ADD REPLICAT
command.

\home\ggs\reverse input.c:\ggs\dirdat\et, output.c:\ggs\dirdat\rt

4. When reverse is finished running, run Replicat to apply the reversed-out data to
the database.

START REPLICAT group

21.6 Undoing the Changes Made by the Reverse Utility
If the reverse processing produces unexpected or undesired results, you can reapply
the original changes to the database. To do so, edit the Replicat parameter file and
specify the input file in place of the output file, then run Replicat again.

Chapter 21
Running the Reverse Utility

21-7

A
Supported Character Sets

This appendix lists the character sets that Oracle GoldenGate supports when
converting data from source to target.
The identifiers that are shown should be used for Oracle GoldenGate parameters or
commands when a character set must be specified, instead of the actual character set
name. Currently Oracle GoldenGate does not provide a facility to specify the
database-specific character set.

This appendix includes the following sections:

• Supported Character Sets - Oracle

• Supported Character Sets - Non-Oracle

• Supported Character Sets - Oracle

• Supported Character Sets - Non-Oracle

A.1 Supported Character Sets - Oracle
Table A-1 Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ar8ados710t Arabic MS-DOS 710 8-bit Latin/Arabic

ar8ados710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic

ar8ados720t Arabic MS-DOS 720 8-bit Latin/Arabic

ar8ados720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic

ar8aptec715t APTEC 715 8-bit Latin/Arabic

ar8aptec715 APTEC 715 Server 8-bit Latin/Arabic

ar8arabicmacs Mac Server 8-bit Latin/Arabic

ar8arabicmact Mac 8-bit Latin/Arabic

ar8arabicmac Mac Client 8-bit Latin/Arabic

ar8asmo708plus ASMO 708 Plus 8-bit Latin/Arabic

ar8asmo8x ASMO Extended 708 8-bit Latin/Arabic

ar8ebcdic420s EBCDIC Code Page 420 Server 8-bit Latin/Arabic

ar8ebcdicx EBCDIC XBASIC Server 8-bit Latin/Arabic

ar8hparabic8t HP 8-bit Latin/Arabic

ar8iso8859p6 ISO 8859-6 Latin/Arabic

ar8mswin1256 MS Windows Code Page 1256 8-Bit Latin/Arabic

ar8mussad768t Mussa'd Alarabi/2 768 8-bit Latin/Arabic

A-1

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ar8mussad768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic

ar8nafitha711t Nafitha International 711 Server 8-bit Latin/Arabic

ar8nafitha711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic

ar8nafitha721t Nafitha International 721 8-bit Latin/Arabic

ar8nafitha721 Nafitha International 721 Server 8-bit Latin/Arabic

ar8sakhr706 SAKHR 706 Server 8-bit Latin/Arabic

ar8sakhr707t SAKHR 707 8-bit Latin/Arabic

ar8sakhr707 SAKHR 707 Server 8-bit Latin/Arabic

ar8xbasic XBASIC 8-bit Latin/Arabic

az8iso8859p9e ISO 8859-9 Azerbaijani

bg8mswin MS Windows 8-bit Bulgarian Cyrillic

bg8pc437s IBM-PC Code Page 437 8-bit (Bulgarian Modification)

blt8cp921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic

blt8ebcdic1112s EBCDIC Code Page 1112 8-bit Server Baltic Multilingual

blt8ebcdic1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual

blt8iso8859p13 ISO 8859-13 Baltic

blt8mswin1257 MS Windows Code Page 1257 8-bit Baltic

blt8pc775 IBM-PC Code Page 775 8-bit Baltic

bn8bscii Bangladesh National Code 8-bit BSCII

cdn8pc863 IBM-PC Code Page 863 8-bit Canadian French

ce8bs2000 Siemens EBCDIC.DF.04-2 8-bit Central European

cel8iso8859p14 ISO 8859-13 Celtic

ch7dec DEC VT100 7-bit Swiss (German/French)

cl8bs2000 Siemens EBCDIC.EHC.LC 8-bit Latin/Cyrillic-1

cl8ebcdic1025c EBCDIC Code Page 1025 Client 8-bit Cyrillic

cl8ebcdic1025r EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025s EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025 EBCDIC Code Page 1025 8-bit Cyrillic

cl8ebcdic1025x EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic

cl8ebcdic1158r EBCDIC Code Page 1158 Server 8-bit Cyrillic

cl8ebcdic1158 EBCDIC Code Page 1158 8-bit Cyrillic

cl8iso8859p5 ISO 8859-5 Latin/Cyrillic

cl8isoir111 SOIR111 Cyrillic

cl8koi8r RELCOM Internet Standard 8-bit Latin/Cyrillic

cl8koi8u KOI8 Ukrainian Cyrillic

Appendix A
Supported Character Sets - Oracle

A-2

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

cl8maccyrillics Mac Server 8-bit Latin/Cyrillic

cl8maccyrillic Mac Client 8-bit Latin/Cyrillic

cl8mswin1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic

d7dec DEC VT100 7-bit German

d7siemens9780x Siemens 97801/97808 7-bit German

d8bs2000 Siemens 9750-62 EBCDIC 8-bit German

d8ebcdic1141 EBCDIC Code Page 1141 8-bit Austrian German

d8ebcdic273 EBCDIC Code Page 273/1 8-bit Austrian German

dk7siemens9780x Siemens 97801/97808 7-bit Danish

dk8bs2000 Siemens 9750-62 EBCDIC 8-bit Danish

dk8ebcdic1142 EBCDIC Code Page 1142 8-bit Danish

dk8ebcdic277 EBCDIC Code Page 277/1 8-bit Danish

e7dec DEC VT100 7-bit Spanish

e7siemens9780x Siemens 97801/97808 7-bit Spanish

e8bs2000 Siemens 9750-62 EBCDIC 8-bit Spanish

ee8bs2000 Siemens EBCDIC.EHC.L2 8-bit East European

ee8ebcdic870c EBCDIC Code Page 870 Client 8-bit East European

ee8ebcdic870s EBCDIC Code Page 870 Server 8-bit East European

ee8ebcdic870 EBCDIC Code Page 870 8-bit East European

ee8iso8859p2 ISO 8859-2 East European

ee8macces Mac Server 8-bit Central European

ee8macce Mac Client 8-bit Central European

ee8maccroatians Mac Server 8-bit Croatian

ee8maccroatian Mac Client 8-bit Croatian

ee8mswin1250 MS Windows Code Page 1250 8-bit East European

ee8pc852 IBM-PC Code Page 852 8-bit East European

eec8euroasci EEC Targon 35 ASCI West European/Greek

eec8europa3 EEC EUROPA3 8-bit West European/Greek

el8dec DEC 8-bit Latin/Greek

el8ebcdic423r IBM EBCDIC Code Page 423 for RDBMS server-side

el8ebcdic875r EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875s EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875 EBCDIC Code Page 875 8-bit Greek

el8gcos7 Bull EBCDIC GCOS7 8-bit Greek

el8iso8859p7 ISO 8859-7 Latin/Greek

Appendix A
Supported Character Sets - Oracle

A-3

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

el8macgreeks Mac Server 8-bit Greek

el8macgreek Mac Client 8-bit Greek

el8mswin1253 MS Windows Code Page 1253 8-bit Latin/Greek

el8pc437s IBM-PC Code Page 437 8-bit (Greek modification)

el8pc737 IBM-PC Code Page 737 8-bit Greek/Latin

el8pc851 IBM-PC Code Page 851 8-bit Greek/Latin

el8pc869 IBM-PC Code Page 869 8-bit Greek/Latin

et8mswin923 MS Windows Code Page 923 8-bit Estonian

f7dec DEC VT100 7-bit French

f7siemens9780x Siemens 97801/97808 7-bit French

f8bs2000 Siemens 9750-62 EBCDIC 8-bit French

f8ebcdic1147 EBCDIC Code Page 1147 8-bit French

f8ebcdic297 EBCDIC Code Page 297 8-bit French

hu8abmod Hungarian 8-bit Special AB Mod

hu8cwi2 Hungarian 8-bit CWI-2

i7dec DEC VT100 7-bit Italian

i7siemens9780x Siemens 97801/97808 7-bit Italian

i8ebcdic1144 EBCDIC Code Page 1144 8-bit Italian

i8ebcdic280 EBCDIC Code Page 280/1 8-bit Italian

in8iscii Multiple-Script Indian Standard 8-bit Latin/Indian

is8macicelandics Mac Server 8-bit Icelandic

is8macicelandic Mac Client 8-bit Icelandic

is8pc861 IBM-PC Code Page 861 8-bit Icelandic

iw7is960 Israeli Standard 960 7-bit Latin/Hebrew

iw8ebcdic1086 EBCDIC Code Page 1086 8-bit Hebrew

iw8ebcdic424s EBCDIC Code Page 424 Server 8-bit Latin/Hebrew

iw8ebcdic424 EBCDIC Code Page 424 8-bit Latin/Hebrew

iw8iso8859p8 ISO 8859-8 Latin/Hebrew

iw8machebrews Mac Server 8-bit Hebrew

iw8machebrew Mac Client 8-bit Hebrew

iw8mswin1255 MS Windows Code Page 1255 8-bit Latin/Hebrew

iw8pc1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew

ja16dbcs IBM EBCDIC 16-bit Japanese

ja16ebcdic930 IBM DBCS Code Page 290 16-bit Japanese

Appendix A
Supported Character Sets - Oracle

A-4

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ja16euctilde Same as ja16euc except for the way that the wave dash and the tilde
are mapped to and from Unicode

ja16euc EUC 24-bit Japanese

ja16eucyen EUC 24-bit Japanese with '\' mapped to the Japanese yen character

ja16macsjis Mac client Shift-JIS 16-bit Japanese

ja16sjistilde Same as ja16sjis except for the way that the wave dash and the tilde
are mapped to and from Unicode.

ja16sjis Shift-JIS 16-bit Japanese

ja16sjisyen Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen character

ja16vms JVMS 16-bit Japanese

ko16dbcs IBM EBCDIC 16-bit Korean

ko16ksc5601 KSC5601 16-bit Korean

ko16ksccs KSCCS 16-bit Korean

ko16mswin949 MS Windows Code Page 949 Korean

la8iso6937 ISO 6937 8-bit Coded Character Set for Text Communication

la8passport German Government Printer 8-bit All-European Latin

lt8mswin921 MS Windows Code Page 921 8-bit Lithuanian

lt8pc772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic)

lt8pc774 IBM-PC Code Page 774 8-bit Lithuanian (Latin)

lv8pc1117 IBM-PC Code Page 1117 8-bit Latvian

lv8pc8lr Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic

lv8rst104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic)

n7siemens9780x Siemens 97801/97808 7-bit Norwegian

n8pc865 IBM-PC Code Page 865 8-bit Norwegian

ndk7dec DEC VT100 7-bit Norwegian/Danish

ne8iso8859p10 ISO 8859-10 North European

nee8iso8859p4 ISO 8859-4 North and North-East European

nl7dec DEC VT100 7-bit Dutch

ru8besta BESTA 8-bit Latin/Cyrillic

ru8pc855 IBM-PC Code Page 855 8-bit Latin/Cyrillic

ru8pc866 IBM-PC Code Page 866 8-bit Latin/Cyrillic

s7dec DEC VT100 7-bit Swedish

s7siemens9780x Siemens 97801/97808 7-bit Swedish

s8bs2000 Siemens 9750-62 EBCDIC 8-bit Swedish

s8ebcdic1143 EBCDIC Code Page 1143 8-bit Swedish

Appendix A
Supported Character Sets - Oracle

A-5

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

s8ebcdic278 EBCDIC Code Page 278/1 8-bit Swedish

se8iso8859p3 ISO 8859-3 South European

sf7ascii ASCII 7-bit Finnish

sf7dec DEC VT100 7-bit Finnish

th8macthais Mac Server 8-bit Latin/Thai

th8macthai Mac Client 8-bit Latin/Thai

th8tisascii Thai Industrial Standard 620-2533 - ASCII 8-bit

th8tisebcdics Thai Industrial Standard 620-2533 - EBCDIC Server 8-bit

th8tisebcdic Thai Industrial Standard 620-2533 - EBCDIC 8-bit

timesten8 TimesTen Legacy

tr7dec DEC VT100 7-bit Turkish

tr8dec DEC 8-bit Turkish

tr8ebcdic1026s EBCDIC Code Page 1026 Server 8-bit Turkish

tr8ebcdic1026 EBCDIC Code Page 1026 8-bit Turkish

tr8macturkishs Mac Server 8-bit Turkish

tr8macturkish Mac Client 8-bit Turkish

tr8mswin1254 MS Windows Code Page 1254 8-bit Turkish

tr8pc857 IBM-PC Code Page 857 8-bit Turkish

us7ascii ASCII 7-bit American

us8bs2000 Siemens 9750-62 EBCDIC 8-bit American

us8icl ICL EBCDIC 8-bit American

us8pc437 IBM-PC Code Page 437 8-bit American

vn8mswin1258 MS Windows Code Page 1258 8-bit Vietnamese

vn8vn3 VN3 8-bit Vietnamese

we8bs2000e Siemens EBCDIC.DF.04-F 8-bit West European with Euro symbol

we8bs2000l5 Siemens EBCDIC.DF.04-9 8-bit WE & Turkish

we8bs2000 Siemens EBCDIC.DF.04-1 8-bit West European

we8dec DEC 8-bit West European

we8dg DG 8-bit West European

we8ebcdic1047e Latin 1/Open Systems 1047

we8ebcdic1047 EBCDIC Code Page 1047 8-bit West European

we8ebcdic1140c EBCDIC Code Page 1140 Client 8-bit West European

we8ebcdic1140 EBCDIC Code Page 1140 8-bit West European

we8ebcdic1145 EBCDIC Code Page 1145 8-bit West European

we8ebcdic1146 EBCDIC Code Page 1146 8-bit West European

Appendix A
Supported Character Sets - Oracle

A-6

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

we8ebcdic1148c EBCDIC Code Page 1148 Client 8-bit West European

we8ebcdic1148 EBCDIC Code Page 1148 8-bit West European

we8ebcdic284 EBCDIC Code Page 284 8-bit Latin American/Spanish

we8ebcdic285 EBCDIC Code Page 285 8-bit West European

we8ebcdic37c EBCDIC Code Page 37 8-bit Oracle/c

we8ebcdic37 EBCDIC Code Page 37 8-bit West European

we8ebcdic500c EBCDIC Code Page 500 8-bit Oracle/c

we8ebcdic500 EBCDIC Code Page 500 8-bit West European

we8ebcdic871 EBCDIC Code Page 871 8-bit Icelandic

we8ebcdic924 Latin 9 EBCDIC 924

we8gcos7 Bull EBCDIC GCOS7 8-bit West European

we8hp HP LaserJet 8-bit West European

we8icl ICL EBCDIC 8-bit West European

we8iso8859p15 ISO 8859-15 West European

we8iso8859p1 ISO 8859-1 West European

we8iso8859p9 ISO 8859-9 West European & Turkish

we8isoicluk ICL special version ISO8859-1

we8macroman8s Mac Server 8-bit Extended Roman8 West European

we8macroman8 Mac Client 8-bit Extended Roman8 West European

we8mswin1252 MS Windows Code Page 1252 8-bit West European

we8ncr4970 NCR 4970 8-bit West European

we8nextstep NeXTSTEP PostScript 8-bit West European

we8pc850 IBM-PC Code Page 850 8-bit West European

we8pc858 IBM-PC Code Page 858 8-bit West European

we8pc860 IBM-PC Code Page 860 8-bit West European

we8roman8 HP Roman8 8-bit West European

yug7ascii ASCII 7-bit Yugoslavian

zhs16cgb231280 CGB2312-80 16-bit Simplified Chinese

zhs16dbcs IBM EBCDIC 16-bit Simplified Chinese

zhs16gbk GBK 16-bit Simplified Chinese

zhs16maccgb231280 Mac client CGB2312-80 16-bit Simplified Chinese

zht16big5 BIG5 16-bit Traditional Chinese

zht16ccdc HP CCDC 16-bit Traditional Chinese

zht16dbcs IBM EBCDIC 16-bit Traditional Chinese

zht16dbt Taiwan Taxation 16-bit Traditional Chinese

Appendix A
Supported Character Sets - Oracle

A-7

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

zht16hkscs31 MS Windows Code Page 950 with Hong Kong Supplementary Character
Set HKSCS-2001 (character set conversion to and from Unicode is
based on Unicode 3.1)

zht16hkscs MS Windows Code Page 950 with Hong Kong Supplementary Character
Set HKSCS-2001 (character set conversion to and from Unicode is
based on Unicode 3.0)

zht16mswin950 MS Windows Code Page 950 Traditional Chinese

zht32euc EUC 32-bit Traditional Chinese

zht32sops SOPS 32-bit Traditional Chinese

zht32tris TRIS 32-bit Traditional Chinese

A.2 Supported Character Sets - Non-Oracle

Identifier to use in
parameter files
and commands

Character set

UTF-8
ISO-10646 UTF-8, surrogate pairs are 4 bytes per character

UTF-16
ISO-10646 UTF-16

UTF-16BE
UTF-16 Big Endian

UTF-16LE
UTF-16 Little Endian

UTF-32
ISO-10646 UTF-32

UTF-32BE
UTF-32 Big Endian

UTF-32LE
UTF-32 Little Endian

CESU-8
Similar to UTF-8, correspond to UCS-2 and surrogate pairs are 6 bytes
per character

US-ASCII
US-ASCII, ANSI X34-1986

windows-1250
Windows Central Europe

windows-1251
Windows Cyrillic

windows-1252
Windows Latin-1

Appendix A
Supported Character Sets - Non-Oracle

A-8

Identifier to use in
parameter files
and commands

Character set

windows-1253
Windows Greek

windows-1254
Windows Turkish

windows-1255
Windows Hebrew

windows-1256
Windows Arabic

windows-1257
Windows Baltic

windows-1258
Windows Vietnam

windows-874
Windows Thai

cp437
DOS Latin-1

ibm-720
DOS Arabic

cp737
DOS Greek

cp775
DOS Baltic

cp850
DOS multilingual

cp851
DOS Greek-1

cp852
DOS Latin-2

cp855
DOS Cyrillic

cp856
DOS Cyrillic / IBM

cp857
DOS Turkish

cp858
DOS Multilingual with Euro

cp860
DOS Portuguese

cp861
DOS Icelandic

cp862
DOS Hebrew

Appendix A
Supported Character Sets - Non-Oracle

A-9

Identifier to use in
parameter files
and commands

Character set

cp863
DOS French

cp864
DOS Arabic

cp865
DOS Nordic

cp866
DOS Cyrillic / GOST 19768-87

ibm-867
DOS Hebrew / IBM

cp868
DOS Urdu

cp869
DOS Greek-2

ISO-8859-1
ISO-8859-1 Latin-1/Western Europe

ISO-8859-2
ISO-8859-2 Latin-2/Eastern Europe

ISO-8859-3
ISO-8859-3 Latin-3/South Europe

ISO-8859-4
ISO-8859-4 Latin-4/North Europe

ISO-8859-5
ISO-8859-5 Latin/Cyrillic

ISO-8859-6
ISO-8859-6 Latin/Arabic

ISO-8859-7
ISO-8859-7 Latin/Greek

ISO-8859-8
ISO-8859-8 Latin/Hebrew

ISO-8859-9
ISO-8859-9 Latin-5/Turkish

ISO-8859-10
ISO-8859-10 Latin-6/Nordic

ISO-8859-11
ISO-8859-11 Latin/Thai

ISO-8859-13
ISO-8859-13 Latin-7/Baltic Rim

ISO-8859-14
ISO-8859-14 Latin-8/Celtic

ISO-8859-15
ISO-8859-15 Latin-9/Western Europe

Appendix A
Supported Character Sets - Non-Oracle

A-10

Identifier to use in
parameter files
and commands

Character set

IBM037
IBM 037-1/697-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,
and 037/1175 Traditional Chinese

IBM01140
IBM 1140-1/695-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,
and 1140/1175 Traditional Chinese

IBM273
IBM 273-1/697-1 EBCDIC, Austria, Germany

IBM01141
IBM 1141-1/695-1 EBCDIC, Austria, Germany

IBM277
IBM 277-1/697-1 EBCDIC, Denmark, Norway

IBM01142
IBM 1142-1/695-1 EBCIDC, Denmark, Norway

IBM278
IBM 278-1/697-1 EBCDIC, Finland, Sweden

IBM01143
IBM 1143-1/695-1 EBCDIC, Finland, Sweden

IBM280
IBM 280-1/697-1 EBCDIC, Italy

IBM01144
IBM 1144-1/695-1 EBCDIC, Italy

IBM284
IBM 284-1/697-1 EBCDIC, Latin America, Spain

IBM01145
IBM 1145-1/695-1 EBCDIC, Latin America, Spain

IBM285
IBM 285-1/697-1 EBCDIC, United Kingdom

IBM01146
IBM 1146-1/695-1 EBCDIC, United Kingdom

IBM290
IBM 290 EBCDIC, Japan (Katakana) Extended

IBM297
IBM 297-1/697-1 EBCDIC, France

IBM01147
IBM 1147-1/695-1 EBCDIC, France

IBM420
IBM 420 EBCDIC, Arabic Bilingual

IBM424
IBM 424/941 EBCDIC, Israel (Hebrew - Bulletin Code)

IBM500
IBM 500-1/697-1 EBCDIC, International

IBM01148
IBM 1148-1/695-1 EBCDIC International

Appendix A
Supported Character Sets - Non-Oracle

A-11

Identifier to use in
parameter files
and commands

Character set

IBM870
IBM 870/959 EBCDIC, Latin-2 Multilingual

IBM871
IBM 871-1/697-1 EBCDIC Iceland

IBM918
IBM EBCDIC code page 918, Arabic 2

IBM1149
IBM 1149-1/695-1, EBCDIC Iceland

IBM1047
IBM 1047/103 EBCDIC, Latin-1 (Open Systems)

ibm-803
IBM 803 EBCDIC, Israel (Hebrew - Old Code)

IBM875
IBM 875 EBCDIC, Greece

ibm-924
IBM 924-1/1353-1 EBCDIC International

ibm-1153
IBM 1153/1375 EBCDIC, Latin-2 Multilingual

ibm-1122
IBM 1122/1037 EBCDIC, Estonia

ibm-1157
IBM 1157/1391 EBCDIC, Estonia

ibm-1112
IBM 1112/1035 EBCDIC, Latvia, Lithuania

ibm-1156
IBM 1156/1393 EBCDIC, Latvia, Lithuania

ibm-4899
IBM EBCDIC code page 4899, Hebrew with Euro

ibm-12712
IBM 12712 EBCDIC, Hebrew (max set including Euro)

ibm-1097
IBM 1097 EBCDIC, Farsi

ibm-1018
IBM 1018 EBCDIC, Finland Sweden (ISO-7)

ibm-1132
IBM 1132 EBCDIC, Laos

ibm-1137
IBM EBCDIC code page 1137, Devanagari

ibm-1025
IBM 1025/1150 EBCDIC, Cyrillic

ibm-1154
IBM EBCDIC code page 1154, Cyrillic with Euro

Appendix A
Supported Character Sets - Non-Oracle

A-12

Identifier to use in
parameter files
and commands

Character set

IBM1026
IBM 1026/1152 EBCDIC, Latin-5 Turkey

ibm-1155
IBM EBCDIC code page 1155, Turkish with Euro

ibm-1123
IBM 1123 EBCDIC, Ukraine

ibm-1158
IBM EBCDIC code page 1158, Ukranian with Euro

IBM838
IBM 838/1173 EBCDIC, Thai

ibm-1160
IBM EBCDIC code page 1160, Thai with Euro

ibm-1130
IBM 1130 EBCDIC, Vietnam

ibm-1164
IBM EBCDIC code page 1164, Vietnamese with Euro

ibm-4517
IBM EBCDIC code page 4517, Arabic French

ibm-4971
IBM EBCDIC code page 4971, Greek

ibm-9067
IBM EBCDIC code page 9067, Greek 2005

ibm-16804
IBM EBCDIC code page 16804, Arabic

KOI8-R
Russian and Cyrillic (KOI8-R)

KOI8-U
Ukranian (KOI8-U)

eucTH
EUC Thai

ibm-1162
Windows Thai with Euro

DEC-MCS
DEC Multilingual

hp-roman8
HP Latin-1 Roman8

ibm-901
IBM Baltic ISO-8 CCSID 901

ibm-902
IBM Estonia ISO-8 with Euro CCSID 902

ibm-916
IBM ISO8859-8 CCSID

Appendix A
Supported Character Sets - Non-Oracle

A-13

Identifier to use in
parameter files
and commands

Character set

ibm-922
IBM Estonia ISO-8 CCSID 922

ibm-1006
IBM Urdu ISO-8 CCSID 1006

ibm-1098
IBM Farsi PC CCSID 1098

ibm-1124
Ukranian ISO-8 CCSID 1124

ibm-1125
Ukranian without Euro CCSID 1125

ibm-1129
IBM Vietnamese without Euro CCSID 1129

ibm-1131
IBM Belarusi CCSID 1131

ibm-1133
IBM Lao CCSID 1133

ibm-4909
IBM Greek Latin ASCII CCSID 4909

JIS_X201
JIS X201 Japanese

windows-932
Windows Japanese

windows-936
Windows Simplified Chinese

ibm-942
IBM Windows Japanese

windows-949
Windows Korean

windows-950
Windows Traditional Chinese

eucjis
EUC Japanese

EUC-JP
IBM/MS EUC Japanese

EUC-CN
EUC Simplified Chinese, GBK

EUC-KR
EUC Korean

EUC-TW
EUC Traditional Chinese

ibm-930
IBM 930/5026 Japanese

Appendix A
Supported Character Sets - Non-Oracle

A-14

Identifier to use in
parameter files
and commands

Character set

ibm-933
IBM 933 Korean

ibm-935
IBM 935 Simplified Chinese

ibm-937
IBM 937 Traditional Chinese

ibm-939
IBM 939/5035 Japanese

ibm-1364
IBM 1364 Korean

ibm-1371
IBM 1371 Traditional Chinese

ibm-1388
IBM 1388 Simplified Chinese

ibm-1390
IBM 1390 Japanese

ibm-1399
IBM 1399 Japanese

ibm-5123
IBM CCSID 5123 Japanese

ibm-8482
IBM CCSID 8482 Japanese

ibm-13218
IBM CCSID 13218 Japanese

ibm-16684
IBM CCSID 16684 Japanese

shiftjis
Japanese Shift JIS, Tilde 0x8160 mapped to U+301C

gb18030
GB-18030

GB2312
GB-2312-1980

GBK
GBK

HZ
HZ GB2312

Ibm-1381
IBM CCSID 1381 Simplified Chinese

Big5
Big5, Traditional Chinese

Big5-HKSCS
Big5, HongKong ext.

Appendix A
Supported Character Sets - Non-Oracle

A-15

Identifier to use in
parameter files
and commands

Character set

Big5-HKSCS2001
Big5, HongKong ext. HKSCS-2001

ibm-950
IBM Big5, CCSID 950

ibm-949
CCSID 949 Korean

ibm-949C
IBM CCSID 949 Korean, has backslash

ibm-971
IBM CCSID 971 Korean EUC, KSC5601 1989

x-IBM1363
IBM CCSID 1363, Korean

Appendix A
Supported Character Sets - Non-Oracle

A-16

B
Supported Locales

This appendix lists the locales that are supported by Oracle GoldenGate. The locale is
used when comparing case-insensitive object names.

af

af_NA

af_ZA

am

am_ET

ar

ar_AE

ar_BH

ar_DZ

ar_EG

ar_IQ

ar_JO

ar_KW

ar_LB

ar_LY

ar_MA

ar_OM

ar_QA

ar_SA

ar_SD

ar_SY

ar_TN

ar_YE

as

as_IN

az

az_Cyrl

az_Cyrl_AZ

az_Latn

az_Latn_AZ

be

be_BY

bg

bg_BG

bn

bn_BD

bn_IN

ca

ca_ES

cs

B-1

cs_CZ

cy

cy_GB

da

da_DK

de

de_AT

de_BE

de_CH

de_DE

de_LI

de_LU

el

el_CY

el_GR

en

en_AU

en_BE

en_BW

en_BZ

en_CA

en_GB

en_HK

en_IE

en_IN

en_JM

en_MH

en_MT

en_NA

en_NZ

en_PH

en_PK

en_SG

en_TT

en_US

en_US_POSIX

en_VI

en_ZA

en_ZW

eo

es

es_AR

es_BO

es_CL

es_CO

es_CR

es_DO

es_EC

Appendix B

B-2

es_ES

es_GT

es_HN

es_MX

es_NI

es_PA

es_PE

es_PR

es_PY

es_SV

es_US

es_UY

es_VE

et

et_EE

eu

eu_ES

fa

fa_AF

fa_IR

fi

fi_FI

fo

fo_FO

fr

fr_BE

fr_CA

fr_CH

fr_FR

fr_LU

fr_MC

ga

ga_IE

gl

gl_ES

gu

gu_IN

gv

gv_GB

haw

haw_US

he

he_IL

hi

hi_IN

hr

hr_HR

hu

Appendix B

B-3

hu_HU

hy

hy_AM

hy_AM_REVISED

id

id_ID

is

is_IS

it

it_CH

it_IT

ja

ja_JP

ka

ka_GE

kk

kk_KZ

kl

kl_GL

km

km_KH

kn

kn_IN

ko

ko_KR

kok

kok_IN

kw

kw_GB

lt

lt_LT

lv

lv_LV

mk

mk_MK

ml

ml_IN

mr

mr_IN

ms

ms_BN

ms_MY

mt

mt_MT

nb

nb_NO

nl

nl_BE

Appendix B

B-4

nl_NL

nn

nn_NO

om

om_ET

om_KE

or

or_IN

pa

pa_Guru

pa_Guru_IN

pl

pl_PL

ps

ps_AF

pt

pt_BR

pt_PT

ro

ro_RO

ru

ru_RU

ru_UA

sk

sk_SK

sl

sl_SI

so

so_DJ

so_ET

so_KE

so_SO

sq

sq_AL

sr

sr_Cyrl

sr_Cyrl_BA

sr_Cyrl_ME

sr_Cyrl_RS

sr_Latn

sr_Latn_BA

sr_Latn_ME

sr_Latn_RS

sv

sv_FI

sv_SE

sw

sw_KE

Appendix B

B-5

sw_TZ

ta

ta_IN

te

te_IN

th

th_TH

ti

ti_ER

ti_ET

tr

tr_TR

uk

uk_UA

ur

ur_IN

ur_PK

uz

uz_Arab

uz_Arab_AF

uz_Cyrl

uz_Cyrl_UZ

uz_Latn

uz_Latn_UZ

vi

vi_VN

zh

zh_Hans

zh_Hans_CN

zh_Hans_SG

zh_Hant

zh_Hant_HK

zh_Hant_MO

zh_Hant_TW

Appendix B

B-6

C
About the Oracle GoldenGate Trail

This appendix contains information about the Oracle GoldenGate trail that you may
need to know for troubleshooting, for a support case, or for other purposes. To view
the Oracle GoldenGate trail records, use the Logdump utility.
This appendix includes the following sections:

• Trail Recovery Mode

• Trail File Header Record

• Trail Record Format

• Example of an Oracle GoldenGate Record

• Record Header Area

• Record Data Area

• Tokens Area

• Oracle GoldenGate Operation Types

• Oracle GoldenGate Trail Header Record

• Trail Recovery Mode

• Trail File Header Record

• Trail Record Format

• Example of an Oracle GoldenGate Record

• Record Header Area

• Record Data Area

• Tokens Area

• Oracle GoldenGate Operation Types

• Oracle GoldenGate Trail Header Record

C.1 Trail Recovery Mode
By default, Extract operates in append mode, where if there is a process failure, a
recovery marker is written to the trail and Extract appends recovery data to the file so
that a history of all prior data is retained for recovery purposes.

In append mode, the Extract initialization determines the identity of the last complete
transaction that was written to the trail at startup time. With that information, Extract
ends recovery when the commit record for that transaction is encountered in the data
source; then it begins new data capture with the next committed transaction that
qualifies for extraction and begins appending the new data to the trail. A data pump or
Replicat starts reading again from that recovery point.

Overwrite mode is another version of Extract recovery that was used in versions of
Oracle GoldenGate prior to version 10.0. In these versions, Extract overwrites the

C-1

existing transaction data in the trail after the last write-checkpoint position, instead of
appending the new data. The first transaction that is written is the first one that
qualifies for extraction after the last read checkpoint position in the data source.

If the version of Oracle GoldenGate on the target is older than version 10, Extract will
automatically revert to overwrite mode to support backward compatibility. This
behavior can be controlled manually with the RECOVERYOPTIONS parameter.

C.2 Trail File Header Record
As of Oracle GoldenGate version 10.0, each file of a trail contains a file header record
that is stored at the beginning of the file. The file header contains information about the
trail file itself. Previous versions of Oracle GoldenGate do not contain this header.

Because all of the Oracle GoldenGate processes are decoupled and thus can be of
different Oracle GoldenGate versions, the file header of each trail file contains a
version indicator. By default, the version of a trail file is the current version of the
process that created the file. If you need to set the version of a trail, use the FORMAT
option of the EXTTRAIL, EXTFILE, RMTTRAIL, or RMTFILE parameter.

To ensure forward and backward compatibility of files among different Oracle
GoldenGate process versions, the file header fields are written in a standardized token
format. New tokens that are created by new versions of a process can be ignored by
older versions, so that backward compatibility is maintained. Likewise, newer Oracle
GoldenGate versions support older tokens. Additionally, if a token is deprecated by a
new process version, a default value is assigned to the token so that older versions
can still function properly. The token that specifies the file version is COMPATIBILITY and
can be viewed in the Logdump utility and also by retrieving it with the GGFILEHEADER
option of the @GETENV function.

A trail or extract file must have a version that is equal to, or lower than, that of the
process that reads it. Otherwise the process will abend. Additionally, Oracle
GoldenGate forces the output trail or file of a data pump to be the same version as that
of its input trail or file. Upon restart, Extract rolls a trail to a new file to ensure that each
file is of only one version (unless the file is empty).

C.3 Trail Record Format
Each change record written by Oracle GoldenGate to a trail or extract file includes a
header area, a data area, and possibly a user token area. The record header contains
information about the transaction environment, and the data area contains the actual
data values that were extracted. The token area contains information that is specified
by Oracle GoldenGate users for use in column mapping and conversion.

Oracle GoldenGate trail files are unstructured. You can view Oracle GoldenGate
records with the Logdump utility provided with the Oracle GoldenGate software. For
more information, see Logdump Reference for Oracle GoldenGate.

Note:

As enhancements are made to the Oracle GoldenGate software, the trail
record format is subject to changes that may not be reflected in this
documentation. To view the current structure, use the Logdump utility.

Appendix C
Trail File Header Record

C-2

C.4 Example of an Oracle GoldenGate Record
The following illustrates an Oracle GoldenGate record as viewed with Logdump. The
first portion (the list of fields) is the header and the second portion is the data area.
The record looks similar to this on all platforms supported by Oracle GoldenGate.

Figure C-1 Sample Trail Record as Viewed with the Logdump Utility

C.5 Record Header Area
The Oracle GoldenGate record header provides metadata of the data that is contained
in the record and includes the following information.

• The operation type, such as an insert, update, or delete

• The before or after indicator for updates

• Transaction information, such as the transaction group and commit timestamp

• Description of Header Fields

• Using Header Data

C.5.1 Description of Header Fields
The following describes the fields of the Oracle GoldenGate record header. Some
fields apply only to certain platforms.

Table C-1 Oracle GoldenGate record header fields

Field Description

Hdr-Ind Should always be a value of E, indicating that the record was created
by the Extract process. Any other value indicates invalid data.

Appendix C
Example of an Oracle GoldenGate Record

C-3

Table C-1 (Cont.) Oracle GoldenGate record header fields

Field Description

UndoFlag (NonStop) Conditionally set if Oracle GoldenGate is extracting
aborted transactions from the TMF audit trail. Normally, UndoFlag is
set to zero, but if the record is the backout of a previously successful
operation, then UndoFlag will be set to 1. An undo that is performed
by the disc process because of a constraint violation is not marked as
an undo.

RecLength The length, in bytes, of the record buffer.

IOType The type of operation represented by the record. See Table C-2 for a
list of operation types.

TransInD The place of the record within the current transaction. Values are:

0 — first record in transaction

1 — neither first nor last record in transaction

2 — last record in the transaction

3 — only record in the transaction

SyskeyLen (NonStop) The length of the system key (4 or 8 bytes) if the source is
a NonStop file and has a system key. If a system key exists, the first
Syskeylen bytes of the record are the system key. Otherwise,
SyskeyLen is 0.

AuditRBA Identifies the transaction log identifier, such as the Oracle redo log
sequence number.

Continued (Windows and UNIX) Identifies whether or not the record is a segment
of a larger piece of data that is too large to fit within one record. LOBs,
CLOBS, and some VARCHARs are stored in segments. Unified records
that contain both before and after images in a single record (due to
the UPDATERECORDFORMAT parameter) may exceed the maximum
length of a record and may also generate segments.

Y — the record is a segment; indicates to Oracle GoldenGate that this
data continues to another record.

N — there is no continuation of data to another segment; could be the
last in a series or a record that is not a segment of larger data.

Partition This field is for Oracle GoldenGate internal use and may not be
meaningful for any particular database.

For Windows and UNIX records, this field will always be a value of 4
(FieldComp compressed record in internal format). For these
platforms, the term Partition does not indicate that the data
represents any particular logical or physical partition within the
database structure.

For NonStop records, the value of this field depends on the record
type:

• In the case of BulkIO operations, Partition indicates the
number of the source partition on which the bulk operation was
performed. It tells Oracle GoldenGate which source partition the
data was originally written to. Replicat uses the Partition field to
determine the name of the target partition. The file name in the
record header will always be the name of the primary partition.
Valid values for BulkIO records are 0 through 15.

• For other non-bulk NonStop operations, the value can be either 0
or 4. A value of 4 indicates that the data is in FieldComp record
format.

Appendix C
Record Header Area

C-4

Table C-1 (Cont.) Oracle GoldenGate record header fields

Field Description

BeforeAfter Identifies whether the record is a before (B) or after (A) image of an
update operation. Records that combine both before and after images
as the result of the UPDATERECORDFORMAT parameter are marked as
after images. Inserts are always after images, deletes are always
before images.

IO Time The time when the operation occurred, in local time of the source
system, in GMT format. This time may be the same or different for
every operation in a transaction depending on when the operation
occurred.

OrigNode (NonStop) The node number of the system where the data was
extracted. Each system in a NonStop cluster has a unique node
number. Node numbers can range from 0 through 255.

For records other than NonStop in origin, OrigNode is 0.

FormatType Identifies whether the data was read from the transaction log or
fetched from the database.

F — fetched from database

R — readable in transaction log

Incomplete This field is obsolete.

AuditPos Identifies the position in the transaction log of the data.

RecCount (Windows and UNIX) Used for LOB data when it must be split into
chunks to be written to the Oracle GoldenGate file. RecCount is used
to reassemble the chunks.

C.5.2 Using Header Data
Some of the data available in the Oracle GoldenGate record header can be used for
mapping by using the GGHEADER option of the @GETENV function or by using any of the
following transaction elements as the source expression in a COLMAP statement in the
TABLE or MAP parameter.

• GGS_TRANS_TIMESTAMP

• GGS_TRANS_RBA

• GGS_OP_TYPE

• GGS_BEFORE_AFTER_IND

C.6 Record Data Area
The data area of the Oracle GoldenGate trail record contains the following:

• The time that the change was written to the Oracle GoldenGate file

• The type of database operation

• The length of the record

• The relative byte address within the trail file

• The table name

Appendix C
Record Data Area

C-5

• The data changes in hex format

The following explains the differences in record image formats used by Oracle
GoldenGate on Windows, UNIX, Linux, and NonStop systems.

• Full Record Image Format (NonStop Sources)

• Compressed Record Image Format (Windows, UNIX, Linux Sources)

C.6.1 Full Record Image Format (NonStop Sources)
A full record image contains the values of all of the columns of a processed row. Full
record image format is generated in the trail when the source system is HP NonStop,
and only when the IOType specified in the record header is one of the following:

3 — Delete
5 — Insert
10 — Update

Each full record image has the same format as if retrieved from a program reading the
original file or table directly. For SQL tables, datetime fields, nulls, and other data is
written exactly as a program would select it into an application buffer. Although
datetime fields are represented internally as an eight-byte timestamp, their external
form can be up to 26 bytes expressed as a string. Enscribe records are retrieved as
they exist in the original file.

When the operation type is Insert or Update, the image contains the contents of the
record after the operation (the after image). When the operation type is Delete, the
image contains the contents of the record before the operation (the before image).

For records generated from an Enscribe database, full record images are output
unless the original file has the AUDITCOMPRESS attribute set to ON. When AUDITCOMPRESS is
ON, compressed update records are generated whenever the original file receives an
update operation. (A full image can be retrieved by the Extract process by using the
FETCHCOMPS parameter.)

C.6.2 Compressed Record Image Format (Windows, UNIX, Linux
Sources)

A compressed record image contains only the key (primary, unique, KEYCOLS) and the
columns that changed in the processed row. By default, trail records written by
processes on Windows and UNIX systems are always compressed. The format of a
compressed record is as follows:

column_index column_length column_data[...]

Where:

• column_index is the ordinal index of the column within the source table (2 bytes).

• colum_length is the length of the data (2 bytes).

• column_data is the data, including NULL or VARCHAR length indicators.

Enscribe records written from the NonStop platform may be compressed. The format
of a compressed Enscribe record is as follows:

field_offset field_length field_value[...]

Appendix C
Record Data Area

C-6

Where:

• field_offset is the offset within the original record of the changed value (2 bytes).

• field_length is the length of the data (2 bytes).

• field_value is the data, including NULL or VARCHAR length indicators.

The first field in a compressed Enscribe record is the primary or system key.

C.7 Tokens Area
The trail record also can contain two areas for tokens. One is for internal use and is
not documented here, and the other is the user tokens area. User tokens are
environment values that are captured and stored in the trail record for replication to
target columns or other purposes. If used, these tokens follow the data portion of the
record and appear similar to the following when viewed with Logdump:

Parameter Value

TKN-HOST
TKN-GROUP
TKN-BA_IND
TKN-COMMIT_TS
TKN-POS
TKN-RBA
TKN-TABLE
TKN-OPTYPE
TKN-LENGTH
TKN-TRAN_IND

: syshq
: EXTORA
: AFTER
: 2011-01-24 17:08:59.000000
: 3604496
: 4058
: SOURCE.CUSTOMER
: INSERT
: 57
: BEGIN

C.8 Oracle GoldenGate Operation Types
The following are some of the Oracle GoldenGate operation types. Types may be
added as new functionality is added to Oracle GoldenGate. For a more updated list,
use the SHOW RECTYPE command in the Logdump utility.

Table C-2 Oracle GoldenGate Operation Types

Type Description Platform

1-Abort A transaction aborted. NSK TMF

2-Commit A transaction committed. NSK TMF

3-Delete A record/row was deleted. A Delete record usually
contains a full record image. However, if the
COMPRESSDELETES parameter was used, then only key
columns will be present.

All

4-EndRollback A database rollback ended NSK TMF

5-Insert A record/row was inserted. An Insert record contains
a full record image.

All

6-Prepared A networked transaction has been prepared to
commit.

NSK TMF

7-TMF-Shutdown A TMF shutdown occurred. NSK TMF

Appendix C
Tokens Area

C-7

Table C-2 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

8-TransBegin No longer used. NSK TMF

9-TransRelease No longer used. NSK TMF

10-Update A record/row was updated. An Update record contains
a full record image. Note: If the partition indicator in
the record header is 4, then the record is in FieldComp
format (see below) and the update is compressed.

All

11-UpdateComp A record/row in TMF AuditComp format was updated. In
this format, only the changed bytes are present. A 4-
byte descriptor in the format of 2-byte_offset2-
byte_length precedes each data fragment. The byte
offset is the ordinal index of the column within the
source table. The length is the length of the data.

NSK TMF

12-FileAlter An attribute of a database file was altered. NSK

13-FileCreate A database file was created. NSK

14-FilePurge A database file was deleted. NSK

15-FieldComp A row in a SQL table was updated. In this format, only
the changed bytes are present. Before images of
unchanged columns are not logged by the database.
A 4-byte descriptor in the format of 2-byte_offset2-
byte_length precedes each data fragment. The byte
offset is the ordinal index of the column within the
source table. The length is the length of the data. A
partition indicator of 4 in the record header indicates
FieldComp format.

All

16-FileRename A file was renamed. NSK

17-AuxPointer Contains information about which AUX trails have new
data and the location at which to read.

NSK TMF

18-NetworkCommit A networked transaction committed. NSK TMF

19-NetworkAbort A networked transaction was aborted. NSK TMF

90-(GGS)SQLCol A column or columns in a SQL table were added, or
an attribute changed.

NSK

100-
(GGS)Purgedata

All data was removed from the file (PURGEDATA). NSK

101-
(GGS)Purge(File)

A file was purged. NSK non-TMF

102-
(GGS)Create(File)

A file was created. The Oracle GoldenGate record
contains the file attributes.

NSK non-TMF

103-(GGS)Alter(File) A file was altered. The Oracle GoldenGate record
contains the altered file attributes.

NSK non-TMF

104-
(GGS)Rename(File)

A file was renamed. The Oracle GoldenGate record
contains the original and new names.

NSK non-TMF

105-(GGS)Setmode A SETMODE operation was performed. The Oracle
GoldenGate record contains the SETMODE information.

NSK non-TMF

Appendix C
Oracle GoldenGate Operation Types

C-8

Table C-2 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

106-
GGSChangeLabel

A CHANGELABEL operation was performed. The Oracle
GoldenGate record contains the CHANGELABEL
information.

NSK non-TMF

107-(GGS)Control A CONTROL operation was performed. The Oracle
GoldenGate record contains the CONTROL information.

NSK non-TMF

115 and 117

(GGS)KeyFieldCom
p(32)

A primary key was updated. The Oracle GoldenGate
record contains the before image of the key and the
after image of the key and the row. The data is in
FieldComp format (compressed), meaning that before
images of unchanged columns are not logged by the
database.

Windows and
UNIX

116-LargeObject

116-LOB

Identifies a RAW, BLOB, CLOB, or LOB column. Data of
this type is stored across multiple records.

Windows and
UNIX

132-(GGS)
SequenceOp

Identifies an operation on a sequence. Windows and
UNIX

134-UNIFIED
UPDATE

135-UNIFIED
PKUPDATE

Identifies a unified trail record that contains both
before and after values in the same record. The before
image in a UNIFIED UPDATE contains all of the columns
that are available in the transaction record for both the
before and after images. The before image in a
UNIFIED PKUPDATE contains all of the columns that are
available in the transaction record, but the after image
is limited to the primary key columns and the columns
that were modified in the UPDATE.

Windows and
UNIX

160 - DDL_Op Identifies a DDL operation Windows and
UNIX

161-

RecordFragment

Identifies part of a large row that must be stored
across multiple records (more than just the base
record).

Windows and
UNIX

200-
GGSUnstructured
Block

200-BulkIO

A BULKIO operation was performed. The Oracle
GoldenGate record contains the RAW DP2 block.

NSK non-TMF

201 through 204 These are different types of NonStop trace records.
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.

• ARTYPE_FILECLOSE_GGS 201 — the source
application closed a file that was open for
unstructured I/O. Used by Replicat

• ARTYPE_LOGGERTS_GGS 202 — Logger heartbeat
record

• ARTYPE_EXTRACTERTS_GGS 203 — unused
• ARTYPE_COLLECTORTS_GGS 204 — unused

NSK non-TMF

205-GGSComment Indicates a comment record created by the Logdump
utility. Comment records are created by Logdump at
the beginning and end of data that is saved to a file
with Logdump's SAVE command.

All

Appendix C
Oracle GoldenGate Operation Types

C-9

Table C-2 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

249 through 254 These are different types of NonStop trace records.
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.

• ARTYPE_LOGGER_ADDED_STATS 249 — a stats
record created by Logger when the source
application closes its open on Logger (if
SENDERSTATS is enabled and stats are written to
the logtrail)

• ARTYPE_LIBRARY_OPEN 250 — written by BASELIB
to show that the application opened a file

• ARTYPE_LIBRARY_CLOSE 251 — written by
BASELIB to show that the application closed a file.

• ARTYPE_LOGGER_ADDED_OPEN 252 — unused
• ARTYPE_LOGGER_ADDED_CLOSE 253 — unused
• ARTYPE_LOGGER_ADDED_INFO 254 — written by

Logger and contains information about the source
application that performed the I/O in the
subsequent record (if SENDERSTATS is enabled and
stats are written to the logtrail). The file name in
the trace record is the object file of the
application. The trace data has the application
process name and the name of the library (if any)
that it was running with.

NSK non-TMF

C.9 Oracle GoldenGate Trail Header Record
In addition to the transaction-related records that are in the Oracle GoldenGate trail,
each trail file contains a file header.

The file header is stored as a record at the beginning of a trail file preceding the data
records. The information that is stored in the trail header provides enough information
about the records to enable an Oracle GoldenGate process to determine whether the
records are in a format that the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same
across all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does not
support any given token, that token is ignored. Depracated tokens are assigned a
default value to preserve compatibility with previous versions of Oracle GoldenGate.

You can view the trail header with the FILEHEADER command in the Logdump utility. For
more information about the tokens in the file header, see Logdump Reference for
Oracle GoldenGate.

Appendix C
Oracle GoldenGate Trail Header Record

C-10

D
About the Commit Sequence Number

This appendix contains information about the Oracle GoldenGate Commit Sequence
Number (CSN).
When working with Oracle GoldenGate, you might need to refer to a Commit
Sequence Number, or CSN. The CSN can be required to position Extract in the
transaction stream, to reposition Replicat in the trail, or for other purposes. It is
returned by some conversion functions and is included in reports and certain GGSCI
output.

A CSN is a monotonically increasing identifier generated by Oracle GoldenGate that
uniquely identifies a point in time when a transaction commits to the database. It
purpose is to ensure transactional consistency and data integrity as transactions are
replicated from source to target.

Each kind of database management system generates some kind of unique serial
number of its own at the completion of each transaction, which uniquely identifies the
commit of that transaction. For example, the Oracle RDBMS generates a System
Change Number, which is a monotonically increasing sequence number assigned to
every event by Oracle RDBMS. The CSN captures this same identifying information
and represents it internally as a series of bytes, but the CSN is processed in a
platform-independent manner. A comparison of any two CSN numbers, each of which
is bound to a transaction-commit record in the same log stream, reliably indicates the
order in which the two transactions completed.

The CSN is cross-checked with the transaction ID (displayed as XID in Oracle
GoldenGate informational output). The XID-CSN combination uniquely identifies a
transaction even in cases where there are multiple transactions that commit at the
same time, and thus have the same CSN. For example, this can happen in an Oracle
RAC environment, where there is parallelism and high transaction concurrency.

The CSN value is stored as a token in any trail record that identifies the commit of a
transaction. This value can be retrieved with the @GETENV column conversion function
and viewed with the Logdump utility.

All database platforms except Oracle, DB2 LUW, and DB2 z/OS have fixed-length
CSNs, which are padded with leading zeroes as required to fill the fixed length. CSNs
that contain multiple fields can be padded within each field, such as the Sybase CSN.

MySQL does not create a transaction ID as part of its event data, so Oracle
GoldenGate considers a unique transaction identifier to be a combination of the
following:

• the log file number of the log file that contains the START TRANSACTION record for the
transaction that is being identified

• the record offset of that record

D-1

Table D-1 Oracle GoldenGate CSN Values Per Database

Database CSN Value

DB2 for i sequence_number

Where:

• sequence_number is the fixed-length, 20 digit, decimal-based DB2
for i system sequence number.

Example:

12345678901234567890

DB2 LUW LSN or LRI

Where:

• For version 9.7 and earlier, LSN is the variable-length, decimal-based
DB2 log sequence number.

Example:

1234567890

• For version 10.1 and later, LRI is a period-separated pair of numbers
for the DB2 log record identifier.

Example:

123455.34645

DB2 z/OS
RBA

where:

• RBA is the 6-byte relative byte address of the commit record within the
transaction log.

Example:

1274565892

MySQL
LogNum:LogPosition

Where:
• LogNum is the the name of the log file that contains the START

TRANSACTION record for the transaction that is being identified.
• LogPosition is the event offset value of that record. Event offset

values are stored in the record header section of a log record.
For example, if the log number is 12 and the log position is 121, the CSN
is:

000012:000000000000121

Oracle
system_change_number

Where:
• system_change number is the Oracle SCN value.
Example:

6488359

Appendix D

D-2

Table D-1 (Cont.) Oracle GoldenGate CSN Values Per Database

Database CSN Value

SQL/MX
sequence_number|RBA

Where:
• sequence_number is the 6-digit decimal NonStop TMF audit trail

sequence number padded with leading zeroes.
• RBA is the 10-digit decimal relative byte address within that file,

padded with leading zeroes.
Together these specify the location in the TMF Master Audit Trail (MAT).

Example:

000042|0000068242

SQL Server Can be any of these, depending on how the database returns it:

• Colon separated hex string (8:8:4) padded with leading zeroes and
0X prefix

• Colon separated decimal string (10:10:5) padded with leading zeroes
• Colon separated hex string with 0X prefix and without leading zeroes
• Colon separated decimal string without leading zeroes
• Decimal string
Where:
• The first value is the virtual log file number, the second is the

segment number within the virtual log, and the third is the entry
number.

Examples:

0X00000d7e:0000036b:01bd
0000003454:0000000875:00445
0Xd7e:36b:1bd
3454:875:445
3454000000087500445

Sybase
time_high.time_low.page.row

Where:
• time_high and time_low represent an instance ID for the log page. It

is stored in the header of each database log page. time_high is 2-
bytes and time_lowis 4-bytes, each padded with leading zeroes.

• page is the database logical page number, padded with zeroes.
• row is the row number, padded with zeroes.
Taken together, these components represent a unique location in the log
stream. The valid range of a 2-byte integer for a timestamp-high is 0 -
65535. For a 4-byte integer for a timestamp-low, it is: 0 - 4294967295.

Example:

00001.0000067330.0000013478.00026

Appendix D

D-3

Table D-1 (Cont.) Oracle GoldenGate CSN Values Per Database

Database CSN Value

Teradata
sequence_ID

Where:
• sequence_ID is a generic fixed-length printable sequence ID.
Example:

0x0800000000000000D700000021

TimesTen There is no CSN for TimesTen, because extraction (capture) is not
supported by Oracle GoldenGate for this database.

Appendix D

D-4

E
About Checkpoints

This appendix provides information about checkpoints. When working with Oracle
GoldenGate, you might need to refer to the checkpoints that are made by a
process. Checkpoints save the state of the process for recovery purposes. Extract and
Replicat use checkpoints.

This appendix includes the following sections:

• Extract Checkpoints

• Replicat Checkpoints

• Internal Checkpoint Information

• Oracle GoldenGate Checkpoint Tables

• Extract Checkpoints

• Replicat Checkpoints

• Internal Checkpoint Information

• Oracle GoldenGate Checkpoint Tables

E.1 Extract Checkpoints
Extract checkpoint positions are composed of read checkpoints in the data source and
write checkpoints in the trail. The following is a sampling of checkpoint information
displayed with the INFO EXTRACT command with the SHOWCH option. In this case, the data
source is an Oracle RAC database cluster, so there is thread information included in
the output. You can view past checkpoints by specifying the number of them that you
want to view after the SHOWCH argument.

Example E-1 INFO EXTRACT with SHOWCH

EXTRACT JC108XT Last Started 2011-01-01 14:15 Status ABENDED
Checkpoint Lag 00:00:00 (updated 00:00:01 ago)
Log Read Checkpoint File /orarac/oradata/racq/redo01.log
 2011-01-01 14:16:45 Thread 1, Seqno 47, RBA 68748800
Log Read Checkpoint File /orarac/oradata/racq/redo04.log
 2011-01-01 14:16:19 Thread 2, Seqno 24, RBA 65657408

Current Checkpoint Detail:

Read Checkpoint #1

 Oracle RAC Redo Log
 Startup Checkpoint (starting position in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68548112
 Timestamp: 2011-01-01 13:37:51.000000
 SCN: 0.8439720
 Redo File: /orarac/oradata/racq/redo01.log

E-1

Recovery Checkpoint (position of oldest unprocessed transaction in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748304
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
 Redo File: /orarac/oradata/racq/redo01.log

 Current Checkpoint (position of last record read in the data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748800
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
 Redo File: /orarac/oradata/racq/redo01.log

Read Checkpoint #2

 Oracle RAC Redo Log

 Startup Checkpoint(starting position in data source):
 Sequence #: 24
 RBA: 60607504
 Timestamp: 2011-01-01 13:37:50.000000
 SCN: 0.8439719
 Redo File: /orarac/oradata/racq/redo04.log

Recovery Checkpoint (position of oldest unprocessed transaction in data source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log

 Current Checkpoint (position of last record read in the data source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log

Write Checkpoint #1

 GGS Log Trail

 Current Checkpoint (current write position):

 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-01 14:16:50.567638
 Extract Trail: ./dirdat/eh

 Header:
 Version = 2
 Record Source = A
 Type = 6
 # Input Checkpoints = 2
 # Output Checkpoints = 1

Appendix E
Extract Checkpoints

E-2

 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0

 Configuration:
 Data Source = 3
 Transaction Integrity = 1
 Task Type = 0

 Status:
 Start Time = 2011-01-01 14:15:14
 Last Update Time = 2011-01-01 14:16:50
 Stop Status = A
 Last Result = 400

See Internal Checkpoint Informationfor information about the internal information that
starts with the Header entry in the SHOWCH output.

• About Extract read checkpoints

• About Extract Write Checkpoints

E.1.1 About Extract read checkpoints
Extract places read checkpoints in the data source.

• Startup Checkpoint

• Recovery Checkpoint

• Current Checkpoint

E.1.1.1 Startup Checkpoint
The startup checkpoint is the first checkpoint that is made in the data source when the
process starts. This statistic is composed of the following:

• Thread #: The number of the Extract thread that made the checkpoint, if Oracle
GoldenGate is running in an Oracle RAC environment. Otherwise, this statistic is
not displayed.

• Sequence #: The sequence number of the transaction log where the checkpoint was
made.

• RBA: The relative byte address of the record at which the checkpoint was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• SCN: The system change number of the record at which the checkpoint was made.

• Redo File: The path name of the transaction log containing the record where the
checkpoint was made.

E.1.1.2 Recovery Checkpoint
The recovery checkpoint is the position in the data source of the record containing the
oldest transaction not yet processed by Extract. The fields for this statistic are the
same as those of the other read checkpoint types.

Appendix E
Extract Checkpoints

E-3

E.1.1.3 Current Checkpoint
The current checkpoint is the position of the last record read by Extract in the data
source. This should match the Log Read Checkpoint statistic shown in the summary and
in the basic INFO EXTRACT command without options. The fields for this statistic are the
same as those of the other read checkpoint types.

E.1.2 About Extract Write Checkpoints
Extract places a write checkpoint, known as the current checkpoint, in the trail. The
current checkpoint is the position in the trail where Extract is currently writing. This
statistic is composed of the following:

• Sequence #: The sequence number of the trail file where the checkpoint was
written.

• RBA: The relative byte address of the record in the trail file at which the checkpoint
was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• Extract trail: The relative path name of the trail.

• Trail Type: Identifies the trail type. EXTTRAIL identifies the trail as a local trail, which
means that it is directly accessible by Oracle GoldenGate processes through the
host filesystem. RMTTRAIL identifies the trail as a remote trail, which means it is not
directly accessible by Oracle GoldenGate processes through the host filesystem.
A trail stored on a shared network device and accessible through NFS-like
services are considered local because they are accessible transparently through
the host filesystem.

E.2 Replicat Checkpoints
Replicat makes checkpoints in the trail file to mark its last read position. To view
process checkpoints, use the INFO REPLICAT command with the SHOWCH option. The
basic command shows current checkpoints. To view a specific number of previous
checkpoints, type the value after the SHOWCH argument.

Example E-2 INFO REPLICAT, SHOWCH

REPLICAT JC108RP Last Started 2011-01-12 13:10 Status RUNNING
Checkpoint Lag 00:00:00 (updated 111:46:54 ago)
Log Read Checkpoint File ./dirdat/eh000000
 First Record RBA 3702915
Current Checkpoint Detail:
 Read Checkpoint #1
 GGS Log Trail
 Startup Checkpoint(starting position in data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Current Checkpoint (position of last record read in the data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh

Appendix E
Replicat Checkpoints

E-4

 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints = 0
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:
 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

See Internal Checkpoint Information for information about the internal information that
starts with the Header entry in the SHOWCH output.

• About Replicat Checkpoints

E.2.1 About Replicat Checkpoints
The following describes the detail of the Replicat checkpoints in the trail.

• Startup Checkpoint

• Current Checkpoint

E.2.1.1 Startup Checkpoint
The startup checkpoint is the first checkpoint made in the trail when the process
starts. Comprising this statistic are:

• Sequence #: The sequence number of the trail file where the checkpoint was
written.

• RBA: The relative byte address of the record at which the checkpoint was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• Extract Trail: The relative path name of the trail.

E.2.1.2 Current Checkpoint
The current checkpoint is the position of the last record read by Replicat in the trail.
This should match the Log Read Checkpoint statistic shown in the summary and in the
basic INFO REPLICAT command without options. The fields for this statistic are the same
as those of the Startup Checkpoint.

Appendix E
Replicat Checkpoints

E-5

E.3 Internal Checkpoint Information
The INFO command with the SHOWCH option not only displays current checkpoint entries,
but it also displays metadata information about the record itself. This information is not
documented and is for use by the Oracle GoldenGate processes and by support
personnel when resolving a support case. The metadata is contained in the following
entries in the SHOWCH output.

 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints = 0
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:
 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

E.4 Oracle GoldenGate Checkpoint Tables
When database checkpoints are being used, Oracle GoldenGate creates a checkpoint
table with a user-defined name in the database upon execution of the ADD
CHECKPOINTTABLE command, or a user can create the table by using the
chkpt_db_create.sql script (where db is an abbreviation of the type of database that the
script supports).

There are two tables: the main checkpoint table and an auxiliary checkpoint table that
is created automatically. The auxiliary table, known as the transaction table, bears the
name of the primary checkpoint table appended with _lox. Each Replicat, or each
thread of a coordinated Replicat, uses one row in the checkpoint table to store its
progress information.

At checkpoint time, there typically are some number of transactions (among the total n
transactions) that were applied, and the rest are still in process. For example, if
Replicat is processing a group of n transactions ranging from CSN1 to CSN3. CSN1 is
the high watermark and CSN3 is the low watermark. Any transaction with a CSN
higher than the high watermark has not been processed, and any transaction with a
CSN lower than the low watermark has already been processed. Completed
transactions are stored in the LOG_CMPLT_XID column of the checkpoint table. Any
overflow of these transactions is stored in the transaction table (auxiliary checkpoint
table) in the LOG_CMPLT_XID column of that table.

Currently, Replicat (or each Replicat thread of a coordinated Replicat) applies
transactions serially (not in parallel); therefore, the high watermark (the LOG_CSN value
in the table) is always the same as the low watermark (the LOG_CMPLT_CSN value in the

Appendix E
Internal Checkpoint Information

E-6

table), and there typically is only one transaction ID in the LOG_CMPLT_XID column. The
only exception is when there are multiple transactions sharing the same CSN.

Do not change the names or attributes of the columns in these tables. You can change
table storage attributes as needed.

Table E-1 Checkpoint table definition

Column Description

GROUP_NAME (primary key) The name of a Replicat group using this table for checkpoints.
There can be multiple Replicat groups using the same table.
This column is part of the primary key.

GROUP_KEY (primary key) A unique identifier that, together with GROUPNAME, uniquely
identifies a checkpoint regardless of how many Replicat groups
are writing to the same table. This column is part of the primary
key.

SEQNO The sequence number of the input trail that Replicat was reading
at the time of the checkpoint.

RBA The relative byte address that Replicat reached in the trail
identified by SEQNO. RBA + SEQNO provide an absolute position in
the trail that identifies the progress of Replicat at the time of
checkpoint.

AUDIT_TS The timestamp of the commit of the source transaction.

CREATE_TS The date and time when the checkpoint table was created.

LAST_UPDATE_TS The date and time when the checkpoint table was last updated.

CURRENT_DIR The current Oracle GoldenGate home directory or folder.

LOG_CSN Stores the high watermark, or the upper boundary, of the CSNs.
Any transaction with a CSN higher than this value has not been
processed.

LOG_XID Not used. Retained for backward compatibility.

LOG_CMPLT_CSN Stores the low watermark, or the lower boundary, of the CSNs.
Any transaction with a lower CSN than this value has already
been processed.

LOG_CMPLT_XIDS Stores the transactions between the high and low watermarks
that are already applied.

VERSION The version of the checkpoint table format. Enables future
enhancements to be identified as version numbers of the table.

Table E-2 Transaction table definition

Column Description

GROUP_NAME The name of a Replicat group using this table for checkpoints.
There can be multiple Replicat groups using the same table.
This column is part of the primary key of the transaction table.

GROUP_KEY A unique identifier that, together with GROUPNAME, uniquely
identifies a checkpoint regardless of how many Replicat groups
are writing to the same table. This column is part of the primary
key of the transaction table.

LOG_CMPLT_CSN The foreign key that references the checkpoint table. This
column is part of the primary key of the transaction table.

Appendix E
Oracle GoldenGate Checkpoint Tables

E-7

Table E-2 (Cont.) Transaction table definition

Column Description

LOG_CMPLT_XIDS_SEQ Creates unique rows in the event there are so many overflow
transactions that multiple rows are required to store them all.
This column is part of the primary key of the transaction table.

LOG_CMPLT_XIDS Stores the overflow of transactions between the high and low
watermarks that are already applied.

Appendix E
Oracle GoldenGate Checkpoint Tables

E-8

F
About Using NFS Mount Options

If IO buffering is not turned OFF, then NFS mounts must not be used to run any Oracle
GoldenGate processes. There is a danger when one process registers the end of a
trail file or transaction log and moves on to the next in sequence and after this event,
data in the NFS IO buffer gets flushed to disk. This causes data loss, which cannot be
replenished with Oracle GoldenGate parameter EOFDELAY.

When using NFS mounted file system with Oracle GoldenGate files, the setting for file
system caching or buffered IO must be disabled on both NFS client and server. To
check the mount settings, run the following command:

cat /etc/fstab

This appendix provides the file system mount options to use when configuring Oracle
GoldenGate to run with NFS mounted file systems.

The mount options for NFS clients are divided into two parts:

• Mount Options for Oracle GoldenGate Binaries

• Mount Options for Oracle GoldenGate Datafiles

Mount Options for Oracle GoldenGate Binaries

The following table lists the mount options for Oracle GoldenGate binaries:

Operating
System

NFS Client Mount Options for Oracle GoldenGate Binaries

Sun
Solaris

rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac, vers=3,suid

AIX (5L) rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac,vers=3,timeo=600

HP UX 11i rw,bg,vers=3,proto=tcp,noac,hard,nointr,timeo=600,rsize=32768,wsize=32768,suid

Linux
(x86-32/
x86-64/
Itanium)

rw,bg,hard,nointr,rsize=32768,wsize=32768,tcp,actimeo=0,vers=3,timeo=600

Mount Options for Oracle GoldenGate Datafiles

The following table lists the mount options for Oracle GoldenGate datafiles:

Operating Systems NFS Client Mount Options for Oracle GoldenGate
Datafiles

Sun Solaris rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tc

p,noac,forcedirectio, vers=3,suid

F-1

AIX (5L) cio,rw,bg,hard,nointr,rsize=32768,wsize=32768,prot

o=tcp,noac,vers=3,timeo=600

HP UX 11i rw,bg,vers=3,proto=tcp,noac,forcedirectio,hard,noi

ntr,timeo=600,rsize=32768,wsize=32768,suid

Linux (x86-32/x86-64/Itanium) rw,bg,hard,nointr,rsize=32768,wsize=32768,tcp,acti

meo=0,noac,vers=3,timeo=600

Although data caching or buffered IO is set to OFF on the NFS client system,
sometimes for other specialized file systems such as Veritas File System (VxFS), or
NAS device or server, which supports additional caching features, this doesn’t work
unless you explicitly disable this function on the server side. For Sun Solaris operating
system, if an Extract hangs, consider adding timeo=600, llockmount options on top of
the ones required for Oracle GoldenGate datafile.

Additional Mount Options on NFS Server Local Disk

The following table lists the options that are in addition to the regular local file system
mount options. These options are used to mount the local disk used by the NFS client,
where Oracle GoldenGate datafiles are used. This setting forces the IO behavior
setting on the file system to be synchronous "sync". Asynchronous IO behavior setting
on the file system is not recommended for these datafiles and must be turned off at all
times.

Note:

For ZFS, turn on the noac, sync, and actimeo = 0 on the client side.

Operating System Additional Mount Options

Sun Solaris forcedirectio

AIX (5L) cio

HPUX 11i no_fs_async

Linux (x86–32/x86–64/Itanium) sync

NetApp (Data OnTap) FlexCache System must be disabled

Appendix F

F-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Introduction to Oracle GoldenGate
	1.1 Oracle GoldenGate Supported Processing Methods and Databases
	1.2 Overview of the Oracle GoldenGate Architecture
	1.2.1 Overview of Extract
	1.2.2 Overview of Data Pumps
	1.2.3 Overview of Replicat
	1.2.4 Overview of Trails
	1.2.4.1 Processes that Write to, and Read a Trail
	1.2.4.2 Trail Creation and Maintenance
	1.2.4.3 Converting Existing Trails to 9 Digit Sequence Numbers

	1.2.5 Overview of Extract Files
	1.2.6 Overview of Checkpoints
	1.2.7 Overview of Manager
	1.2.8 Overview of Collector

	1.3 Overview of Process Types
	1.4 Overview of Groups
	1.5 Overview of the Commit Sequence Number (CSN)

	2 Oracle GoldenGate Globalization Support
	2.1 Preserving the Character Set
	2.1.1 Character Set of Database Structural Metadata
	2.1.2 Character Set of Character-type Data
	2.1.3 Character Set of Database Connection
	2.1.4 Character Set of Text Input and Output

	2.2 Using Unicode and Native Characters

	3 Configuring Manager and Network Communications
	3.1 Overview of the Manager Process
	3.2 Assigning Manager a Port for Local Communication
	3.3 Maintaining Ports for Remote Connections through Firewalls
	3.4 Choosing an Internet Protocol
	3.5 Using the Recommended Manager Parameters
	3.6 Creating the Manager Parameter File
	3.7 Starting Manager
	3.7.1 Starting Manager from the Command Shell of the Operating System
	3.7.2 Starting Manager from GGSCI

	3.8 Stopping Manager
	3.8.1 Stopping Manager on UNIX and Linux
	3.8.2 Stopping Manager on Windows

	4 Getting Started with the Oracle GoldenGate Process Interfaces
	4.1 Using the GGSCI Command-line Interface
	4.1.1 Using Wildcards in Command Arguments
	4.1.2 Globalization Support for the Command Interface
	4.1.3 Using Command History
	4.1.4 Storing and Calling Frequently Used Command Sequences

	4.2 Controlling Oracle GoldenGate Processes
	4.2.1 Controlling Manager
	4.2.2 Controlling Extract and Replicat
	4.2.3 Deleting Extract and Replicat

	4.3 Automating Commands
	4.3.1 Issuing Commands Through the IBM i CLI

	4.4 Using Oracle GoldenGate Parameter Files
	4.4.1 Globalization Support for Parameter Files
	4.4.2 Working with the GLOBALS File
	4.4.3 Working with Runtime Parameters
	4.4.4 Creating a Parameter File
	4.4.4.1 Creating a Parameter File in GGSCI
	4.4.4.2 Creating a Parameter File with a Text Editor

	4.4.5 Validating a Parameter File
	4.4.6 Viewing a Parameter File
	4.4.7 Changing a Parameter File
	4.4.8 Simplifying the Creation of Parameter Files
	4.4.8.1 Using Wildcards
	4.4.8.2 Using OBEY
	4.4.8.3 Using Macros
	4.4.8.4 Using Parameter Substitution

	4.4.9 Getting Information about Oracle GoldenGate Parameters

	4.5 Specifying Object Names in Oracle GoldenGate Input
	4.5.1 Specifying Filesystem Path Names in Parameter Files on Windows Systems
	4.5.2 Supported Database Object Names
	4.5.2.1 Supported Special Characters
	4.5.2.2 Non-supported Special Characters

	4.5.3 Specifying Names that Contain Slashes
	4.5.4 Qualifying Database Object Names
	4.5.4.1 Two-part Names
	4.5.4.2 Three-part Names
	4.5.4.3 Applying Data from Multiple Containers or Catalogs
	4.5.4.4 Specifying a Default Container or Catalog

	4.5.5 Specifying Case-Sensitive Database Object Names
	4.5.6 Using Wildcards in Database Object Names
	4.5.6.1 Rules for Using Wildcards for Source Objects
	4.5.6.2 Rules for Using Wildcards for Target Objects
	4.5.6.3 Fallback Name Mapping
	4.5.6.4 Wildcard Mapping from Pre-11.2.1 Trail Version
	4.5.6.5 Asterisks or Question Marks as Literals in Object Names
	4.5.6.6 How Wildcards are Resolved
	4.5.6.7 Excluding Objects from a Wildcard Specification

	4.5.7 Differentiating Case-Sensitive Column Names from Literals

	5 Using Oracle GoldenGate for Live Reporting
	5.1 Overview of the Reporting Configuration
	5.1.1 Filtering and Conversion
	5.1.2 Read-only vs. High Availability
	5.1.3 Additional Information

	5.2 Creating a Standard Reporting Configuration
	5.2.1 Source System
	5.2.2 Target System

	5.3 Creating a Reporting Configuration with a Data Pump on the Source System
	5.3.1 Source System
	5.3.2 Target System

	5.4 Creating a Reporting Configuration with a Data Pump on an Intermediary System
	5.4.1 Source System
	5.4.2 Intermediary System
	5.4.3 Target System

	5.5 Creating a Cascading Reporting Configuration
	5.5.1 Source System
	5.5.2 Second System in the Cascade
	5.5.3 Third System in the Cascade

	6 Using Oracle GoldenGate for Real-time Data Distribution
	6.1 Overview of the Data-distribution Configuration
	6.2 Considerations for a Data-distribution Configuration
	6.2.1 Fault Tolerance
	6.2.2 Filtering and Conversion
	6.2.3 Read-only vs. High Availability
	6.2.4 Additional Information

	6.3 Creating a Data Distribution Configuration
	6.3.1 Source System
	6.3.2 Target Systems

	7 Configuring Oracle GoldenGate for Real-time Data Warehousing
	7.1 Overview of the Data Warehousing Configuration
	7.2 Considerations for a Data Warehousing Configuration
	7.2.1 Isolation of Data Records
	7.2.2 Data Storage
	7.2.3 Filtering and Conversion
	7.2.4 Additional Information

	7.3 Creating a Data Warehousing Configuration
	7.3.1 Source Systems
	7.3.2 Target System

	8 Configuring Oracle GoldenGate to Maintain a Live Standby Database
	8.1 Overview of a Live Standby Configuration
	8.2 Considerations for a Live Standby Configuration
	8.2.1 Trusted Source
	8.2.2 Duplicate Standby
	8.2.3 DML on the Standby System
	8.2.4 Oracle GoldenGate Processes
	8.2.5 Backup Files
	8.2.6 Failover Preparedness
	8.2.7 Sequential Values that are Generated by the Database
	8.2.8 Additional Information

	8.3 Creating a Live Standby Configuration
	8.3.1 Prerequisites on Both Systems
	8.3.2 Configuration from Active Source to Standby

	8.4 Configuration from Standby to Active Source
	8.5 Moving User Activity in a Planned Switchover
	8.5.1 Moving User Activity to the Live Standby
	8.5.2 Moving User Activity Back to the Primary System

	8.6 Moving User Activity in an Unplanned Failover
	8.6.1 Moving User Activity to the Live Standby
	8.6.2 Moving User Activity Back to the Primary System

	9 Configuring Oracle GoldenGate for Active-Active High Availability
	9.1 Overview of an Active-active Configuration
	9.2 Considerations for an Active-Active Configuration
	9.2.1 TRUNCATES
	9.2.2 Application Design
	9.2.3 Keys
	9.2.4 Triggers and Cascaded Deletes
	9.2.5 Database-Generated Values
	9.2.6 Database Configuration

	9.3 Preventing Data Looping
	9.3.1 Preventing the Capture of Replicat Operations
	9.3.1.1 Preventing the Capture of Replicat Transactions (Oracle)
	9.3.1.2 Preventing Capture of Replicat Transactions (Teradata)
	9.3.1.3 Preventing Capture of Replicat Transactions (Other Databases)

	9.3.2 Identifying Replicat Transactions
	9.3.2.1 DB2 z/OS, DB2 LUW, DB2 for i, and Informix
	9.3.2.2 MySQL and NonStop SQL/MX
	9.3.2.3 Oracle
	9.3.2.4 SQL Server
	9.3.2.5 Sybase
	9.3.2.6 Teradata

	9.3.3 Replicating DDL in a Bi-directional Configuration

	9.4 Managing Conflicts
	9.5 Additional Information
	9.6 Creating an Active-Active Configuration
	9.6.1 Prerequisites on Both Systems
	9.6.2 Configuration from Primary System to Secondary System
	9.6.3 Configuration from Secondary System to Primary System

	10 Configuring Conflict Detection and Resolution
	10.1 Overview of the Oracle GoldenGate CDR Feature
	10.2 Configuring Oracle GoldenGate CDR
	10.2.1 Making the Required Column Values Available to Extract
	10.2.2 Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
	10.2.3 Configuring the Oracle GoldenGate Parameter Files for Error Handling
	10.2.3.1 Tools for Mapping Extra Data to the Exceptions Table
	10.2.3.2 Sample Exceptions Mapping with Source and Target Columns Only
	10.2.3.3 Sample Exceptions Mapping with Additional Columns in the Exceptions Table

	10.2.4 Viewing CDR Statistics
	10.2.4.1 Report File
	10.2.4.2 GGSCI
	10.2.4.3 Column-conversion Functions

	10.3 CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
	10.3.1 Table Used in this Example
	10.3.2 MAP Statement with Conflict Resolution Specifications
	10.3.3 Description of MAP Statement
	10.3.4 Error Handling
	10.3.5 INSERTROWEXISTS with the USEMAX Resolution
	10.3.6 UPDATEROWEXISTS with the USEMAX Resolution
	10.3.7 UPDATEROWMISSING with OVERWRITE Resolution
	10.3.8 DELETEROWMISSING with DISCARD Resolution
	10.3.9 DELETEROWEXISTS with OVERWRITE Resolution

	10.4 CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
	10.4.1 Table Used in this Example
	10.4.2 MAP Statement
	10.4.3 Description of MAP Statement
	10.4.4 Error Handling

	10.5 CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
	10.5.1 Table Used in this Example
	10.5.2 MAP Statement
	10.5.3 Description of MAP Statement
	10.5.4 Error Handling

	11 Configuring Oracle GoldenGate Security
	11.1 Overview of Oracle GoldenGate Security Options
	11.2 Encrypting Data with the Master Key and Wallet Method
	11.2.1 Creating the Wallet and Adding a Master Key
	11.2.2 Specifying Encryption Parameters in the Parameter File
	11.2.3 Renewing the Master Key
	11.2.4 Deleting Stale Master Keys

	11.3 Encrypting Data with the ENCKEYS Method
	11.3.1 Encrypting the Data with the ENCKEYS Method
	11.3.2 Decrypting the Data with the ENCKEYS Method
	11.3.3 Examples of Data Encryption using the ENCKEYS Method

	11.4 Managing Identities in a Credential Store
	11.4.1 Creating and Populating the Credential Store
	11.4.2 Specifying the Alias in a Parameter File or Command

	11.5 Encrypting a Password in a Command or Parameter File
	11.5.1 Encrypting the Password
	11.5.2 Specifying the Encrypted Password in a Parameter File or Command

	11.6 Populating an ENCKEYS File with Encryption Keys
	11.6.1 Defining Your Own Key
	11.6.2 Using KEYGEN to Generate a Key
	11.6.3 Creating and Populating the ENCKEYS Lookup File

	11.7 Configuring GGSCI Command Security
	11.7.1 Setting Up Command Security
	11.7.2 Securing the CMDSEC File

	11.8 Using Target System Connection Initiation
	11.8.1 Configuring the Passive Extract Group
	11.8.2 Configuring the Alias Extract Group
	11.8.3 Starting and Stopping the Passive and Alias Processes
	11.8.4 Managing Extraction Activities
	11.8.5 Other Considerations when using Passive-Alias Extract

	11.9 Securing Manager

	12 Mapping and Manipulating Data
	12.1 Limitations of Support
	12.2 Parameters that Control Mapping and Data Integration
	12.3 Mapping between Dissimilar Databases
	12.4 Deciding Where Data Mapping and Conversion Will Take Place
	12.4.1 Mapping and Conversion on Windows and UNIX Systems
	12.4.2 Mapping and Conversion on NonStop Systems

	12.5 Globalization Considerations when Mapping Data
	12.5.1 Conversion between Character Sets
	12.5.1.1 Database Object Names
	12.5.1.2 Column Data

	12.5.2 Preservation of Locale
	12.5.3 Support for Escape Sequences

	12.6 Mapping Columns
	12.6.1 Supporting Case and Special Characters in Column Names
	12.6.2 Configuring Table-level Column Mapping with COLMAP
	12.6.2.1 Specifying the Columns to be Mapped in the COLMAP Clause
	12.6.2.2 Using USEDEFAULTS to Enable Default Column Mapping
	12.6.2.3 Determining Whether COLMAP Requires a Data-definitions File

	12.6.3 Configuring Global Column Mapping with COLMATCH
	12.6.4 Understanding Default Column Mapping
	12.6.5 Mapping Data Types from Column to Column
	12.6.5.1 Numeric Columns
	12.6.5.2 Character-type Columns
	12.6.5.3 Datetime Columns

	12.7 Selecting and Filtering Rows
	12.7.1 Selecting Rows with a FILTER Clause
	12.7.2 Selecting Rows with a WHERE Clause
	12.7.3 Considerations for Selecting Rows with FILTER and WHERE
	12.7.3.1 Ensuring Data Availability for Filters
	12.7.3.2 Comparing Column Values
	12.7.3.3 Testing for NULL Values

	12.8 Retrieving Before and After Values
	12.9 Selecting Columns
	12.10 Selecting and Converting SQL Operations
	12.11 Using Transaction History
	12.12 Testing and Transforming Data
	12.12.1 Handling Column Names and Literals in Functions
	12.12.2 Using the Appropriate Function
	12.12.3 Transforming Dates
	12.12.4 Performing Arithmetic Operations
	12.12.4.1 Omitting @COMPUTE

	12.12.5 Manipulating Numbers and Character Strings
	12.12.6 Handling Null, Invalid, and Missing Data
	12.12.6.1 Using @COLSTAT
	12.12.6.2 Using @COLTEST
	12.12.6.3 Using @IF

	12.12.7 Performing Tests
	12.12.7.1 Using @CASE
	12.12.7.2 Using @VALONEOF
	12.12.7.3 Using @EVAL

	12.13 Using Tokens
	12.13.1 Defining Tokens
	12.13.2 Using Token Data in Target Tables

	13 Associating Replicated Data with Metadata
	13.1 Overview
	13.2 Understanding Data Definition Files
	13.2.1 Contents of the Definitions File
	13.2.2 Which Definitions File Type to Use, and Where
	13.2.3 Understanding the Effect of Character Sets on Definitions Files
	13.2.3.1 Confining Data Mapping and Conversion to the Replicat Process
	13.2.3.2 Avoiding File Corruptions Due to Operating System Character Sets
	13.2.3.3 Changing the Character Set of Existing Definitions Files
	13.2.3.4 Downloading from a z/OS system to another platform

	13.2.4 Using a Definitions Template
	13.2.5 Configuring Oracle GoldenGate to Capture Data-definitions
	13.2.5.1 Configure DEFGEN
	13.2.5.2 Run DEFGEN
	13.2.5.3 Transfer the Definitions File to the Remote System
	13.2.5.4 Specify the Definitions File

	13.2.6 Adding Tables that Satisfy a Definitions Template
	13.2.7 Examples of Using a Definitions File
	13.2.7.1 Creating a Source-definitions file for Use on a Target System
	13.2.7.2 Creating Target-definitions Files for Use on a Source System
	13.2.7.3 Creating Multiple Source Definition Files for Use on a Target System

	13.3 Using Automatic Trail File Recovery
	13.4 Configuring Oracle GoldenGate to Use Self-Describing Trail Files
	13.4.1 Support Considerations
	13.4.2 Using Self-Describing Trail Files
	13.4.3 Examples of Parameter Files

	13.5 Configuring Oracle GoldenGate to Assume Identical Metadata
	13.5.1 Rules for Tables to be Considered Identical

	13.6 Configuring Oracle GoldenGate to Assume Dissimilar Metadata
	13.7 Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar Definitions

	14 Configuring Online Change Synchronization
	14.1 Overview of Online Change Synchronization
	14.1.1 Initial Synchronization

	14.2 Choosing Names for Processes and Files
	14.2.1 Naming Conventions for Processes
	14.2.2 Choosing File Names

	14.3 Creating a Checkpoint Table
	14.3.1 Options for Creating the Checkpoint Table
	14.3.2 Adjusting for Coordinated Replicat in Oracle RAC

	14.4 Creating an Online Extract Group
	14.5 Creating a Trail
	14.5.1 Assigning Storage for Oracle GoldenGate Trails
	14.5.2 Estimating Space for the Trails
	14.5.3 Adding a Trail

	14.6 Creating a Parameter File for Online Extraction
	14.7 Creating an Online Replicat Group
	14.7.1 About Classic Replicat Mode
	14.7.2 About Coordinated Replicat Mode
	14.7.2.1 About Barrier Transactions
	14.7.2.2 How Barrier Transactions are Processed
	14.7.2.3 About the Global Watermark

	14.7.3 About Integrated Replicat Mode
	14.7.4 Understanding Replicat Processing in Relation to Parameter Changes
	14.7.5 Creating the Replicat Group

	14.8 Creating a Parameter File for Online Replication

	15 Handling Processing Errors
	15.1 Overview of Oracle GoldenGate Error Handling
	15.2 Handling Extract Errors
	15.3 Handling Replicat Errors during DML Operations
	15.3.1 Handling Errors as Exceptions
	15.3.1.1 Using EXCEPTIONSONLY
	15.3.1.2 Using MAPEXCEPTION
	15.3.1.3 About the Exceptions Table

	15.4 Handling Replicat errors during DDL Operations
	15.5 Handling TCP/IP Errors
	15.6 Maintaining Updated Error Messages
	15.7 Resolving Oracle GoldenGate Errors

	16 Instantiating Oracle GoldenGate with an Initial Load
	16.1 Overview of the Initial-Load Procedure
	16.1.1 Improving the Performance of an Initial Load
	16.1.2 Prerequisites for Initial Load
	16.1.2.1 Disable DDL Processing
	16.1.2.2 Prepare the Target Tables
	16.1.2.3 Configure the Manager Process
	16.1.2.4 Create Change-synchronization Groups
	16.1.2.5 Sharing Parameters between Process Groups

	16.2 Loading Data with a Database Utility
	16.3 Loading Data with Oracle Data Pump
	16.3.1 Using Automatic Per Table Instantiation
	16.3.2 Using Oracle Data Pump Table Instantiation

	16.4 Loading Data from File to Replicat
	16.5 Loading Data from File to Database Utility
	16.6 Loading Data with an Oracle GoldenGate Direct Load
	16.7 Loading Data with a Direct Bulk Load to SQL*Loader
	16.8 Loading Data with Teradata Load Utilities

	17 Customizing Oracle GoldenGate Processing
	17.1 Executing Commands, Stored Procedures, and Queries with SQLEXEC
	17.1.1 Performing Processing with SQLEXEC
	17.1.2 Using SQLEXEC
	17.1.3 Executing SQLEXEC within a TABLE or MAP Statement
	17.1.4 Executing SQLEXEC as a Standalone Statement
	17.1.5 Using Input and Output Parameters
	17.1.5.1 Passing Values to Input Parameters
	17.1.5.2 Passing Values to Output Parameters
	17.1.5.3 SQLEXEC Examples Using Parameters

	17.1.6 Handling SQLEXEC Errors
	17.1.6.1 Handling Missing Column Values
	17.1.6.2 Handling Database Errors

	17.1.7 Additional SQLEXEC Guidelines

	17.2 Using Oracle GoldenGate Macros to Simplify and Automate Work
	17.2.1 Defining a Macro
	17.2.2 Calling a Macro
	17.2.2.1 Calling a Macro that Contains Parameters
	17.2.2.2 Calling a Macro without Input Parameters

	17.2.3 Calling Other Macros from a Macro
	17.2.4 Creating Macro Libraries
	17.2.5 Tracing Macro Expansion

	17.3 Using User Exits to Extend Oracle GoldenGate Capabilities
	17.3.1 When to Implement User Exits
	17.3.2 Making Oracle GoldenGate Record Information Available to the Routine
	17.3.3 Creating User Exits
	17.3.4 Supporting Character-set Conversion in User Exits
	17.3.5 Using Macros to Check Name Metadata
	17.3.6 Describing the Character Format
	17.3.7 Upgrading User Exits
	17.3.8 Viewing Examples of How to Use the User Exit Functions

	17.4 Using the Oracle GoldenGate Event Marker System to Raise Database Events
	17.4.1 Case Studies in the Usage of the Event Marker System
	17.4.1.1 Trigger End-of-day Processing
	17.4.1.2 Simplify Transition from Initial Load to Change Synchronization
	17.4.1.3 Stop Processing When Data Anomalies are Encountered
	17.4.1.4 Trace a Specific Order Number
	17.4.1.5 Execute a Batch Process
	17.4.1.6 Propagate Only a SQL Statement without the Resultant Operations
	17.4.1.7 Committing Other Transactions Before Starting a Long-running Transaction
	17.4.1.8 Execute a Shell Script to Validate Data

	18 Monitoring Oracle GoldenGate Processing
	18.1 Using the Information Commands in GGSCI
	18.2 Monitoring an Extract Recovery
	18.3 Monitoring Lag
	18.3.1 About Lag
	18.3.2 Controlling How Lag is Reported

	18.4 Using Automatic Heartbeat Tables to Monitor
	18.4.1 Understanding Heartbeat Table End-To-End Replication Flow
	18.4.2 Updating Heartbeat Tables
	18.4.3 Purging the Heartbeat History Tables
	18.4.4 Best Practice
	18.4.5 Using the Automatic Heartbeat Commands

	18.5 Monitoring Processing Volume
	18.6 Using the Error Log
	18.7 Using the Process Report
	18.7.1 Scheduling Runtime Statistics in the Process Report
	18.7.2 Viewing Record Counts in the Process Report
	18.7.3 Preventing SQL Errors from Filling the Replicat Report File

	18.8 Using the Discard File
	18.9 Maintaining the Discard and Report Files
	18.10 Using the System Logs
	18.11 Reconciling Time Differences
	18.12 Sending Event Messages to a NonStop System
	18.12.1 Running EMSCLNT on a Windows or UNIX System
	18.12.2 Running the Collector on NonStop

	18.13 Getting Help with Performance Tuning

	19 Tuning the Performance of Oracle GoldenGate
	19.1 Using Multiple Process Groups
	19.1.1 Considerations for Using Multiple Process Groups
	19.1.1.1 Maintaining Data Integrity
	19.1.1.2 Number of Groups
	19.1.1.3 Memory
	19.1.1.4 Isolating Processing-Intensive Tables

	19.1.2 Using Parallel Replicat Groups on a Target System
	19.1.2.1 To Create the Extract Group
	19.1.2.2 To Create the Replicat Groups

	19.1.3 Using Multiple Extract Groups with Multiple Replicat Groups
	19.1.3.1 To Create the Extract Groups
	19.1.3.2 To Create the Replicat Groups

	19.2 Splitting Large Tables Into Row Ranges Across Process Groups
	19.3 Configuring Oracle GoldenGate to Use the Network Efficiently
	19.3.1 Detecting a Network Bottleneck that is Affecting Oracle GoldenGate
	19.3.2 Working Around Bandwidth Limitations by Using Data Pumps
	19.3.3 Reducing the Bandwidth Requirements of Oracle GoldenGate
	19.3.4 Increasing the TCP/IP Packet Size

	19.4 Eliminating Disk I/O Bottlenecks
	19.4.1 Improving I/O performance Within the System Configuration
	19.4.2 Improving I/O Performance Within the Oracle GoldenGate Configuration

	19.5 Managing Virtual Memory and Paging
	19.6 Optimizing Data Filtering and Conversion
	19.7 Tuning Replicat Transactions
	19.7.1 Tuning Coordination Performance Against Barrier Transactions
	19.7.2 Applying Similar SQL Statements in Arrays
	19.7.3 Preventing Full Table Scans in the Absence of Keys
	19.7.4 Splitting Large Transactions
	19.7.5 Adjusting Open Cursors
	19.7.6 Improving Update Speed
	19.7.7 Set a Replicat Transaction Timeout

	20 Performing Administrative Operations
	20.1 Performing Application Patches
	20.2 Initializing the Transaction Logs
	20.3 Shutting Down the System
	20.4 Changing Database Attributes
	20.4.1 Changing Database Metadata
	20.4.2 Adding Tables to the Oracle GoldenGate Configuration
	20.4.3 Coordinating Table Attributes between Source and Target
	20.4.4 Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables
	20.4.5 Dropping and Recreating a Source Table
	20.4.6 Changing the Number of Oracle RAC Threads when Using Classic Capture
	20.4.7 Changing the ORACLE_SID
	20.4.8 Purging Archive Logs
	20.4.9 Reorganizing a DB2 Table (z/OS Platform)

	20.5 Adding Process Groups to an Active Configuration
	20.5.1 Before You Start
	20.5.2 Adding Another Extract Group to an Active Configuration
	20.5.3 Adding Another Data Pump to an Active Configuration
	20.5.4 Adding Another Replicat Group to an Active Configuration

	20.6 Changing the Size of Trail Files
	20.7 Switching Extract from Classic Mode to Integrated Mode
	20.8 Switching Extract from Integrated Mode to Classic Mode
	20.9 Switching Replicat from Nonintegrated Mode to Integrated Mode
	20.10 Switching Replicat from Integrated Mode to Nonintegrated Mode
	20.11 Switching Replicat to Coordinated Mode
	20.11.1 Procedure Overview
	20.11.2 Performing the Switch to Coordinated Replicat

	20.12 Administering a Coordinated Replicat Configuration
	20.12.1 Performing a Planned Re-partitioning of the Workload
	20.12.2 Recovering Replicat After an Unplanned Re-partitioning
	20.12.2.1 Reprocessing From the Low Watermark with HANDLECOLLISIONS
	20.12.2.2 Using the Auto-Saved Parameter File

	20.12.3 Synchronizing Threads After an Unclean Stop

	20.13 Restarting a Primary Extract after System Failure or Corruption
	20.13.1 Details of This Procedure
	20.13.2 Performing the Recovery

	21 Undoing Data Changes with the Reverse Utility
	21.1 Overview of the Reverse Utility
	21.2 Reverse Utility Restrictions
	21.3 Configuring the Reverse Utility
	21.4 Creating Process Groups and Trails for Reverse Processing
	21.5 Running the Reverse Utility
	21.6 Undoing the Changes Made by the Reverse Utility

	A Supported Character Sets
	A.1 Supported Character Sets - Oracle
	A.2 Supported Character Sets - Non-Oracle

	B Supported Locales
	C About the Oracle GoldenGate Trail
	C.1 Trail Recovery Mode
	C.2 Trail File Header Record
	C.3 Trail Record Format
	C.4 Example of an Oracle GoldenGate Record
	C.5 Record Header Area
	C.5.1 Description of Header Fields
	C.5.2 Using Header Data

	C.6 Record Data Area
	C.6.1 Full Record Image Format (NonStop Sources)
	C.6.2 Compressed Record Image Format (Windows, UNIX, Linux Sources)

	C.7 Tokens Area
	C.8 Oracle GoldenGate Operation Types
	C.9 Oracle GoldenGate Trail Header Record

	D About the Commit Sequence Number
	E About Checkpoints
	E.1 Extract Checkpoints
	E.1.1 About Extract read checkpoints
	E.1.1.1 Startup Checkpoint
	E.1.1.2 Recovery Checkpoint
	E.1.1.3 Current Checkpoint

	E.1.2 About Extract Write Checkpoints

	E.2 Replicat Checkpoints
	E.2.1 About Replicat Checkpoints
	E.2.1.1 Startup Checkpoint
	E.2.1.2 Current Checkpoint

	E.3 Internal Checkpoint Information
	E.4 Oracle GoldenGate Checkpoint Tables

	F About Using NFS Mount Options

