
Oracle® Fusion Middleware
Reference for Oracle GoldenGate for
Windows and UNIX

12c (12.2.0.1)
E66350-08
July 2018

Oracle Fusion Middleware Reference for Oracle GoldenGate for Windows and UNIX, 12c (12.2.0.1)

E66350-08

Copyright © 2013, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xvi

Documentation Accessibility xvi

Related Information xvi

Conventions xvii

1 Oracle GoldenGate GGSCI Commands

1.1 Summary of Oracle GoldenGate Commands 1-1

1.1.1 Summary of Manager Commands 1-1

1.1.2 Summary of Extract Commands 1-1

1.1.3 Summary of Replicat Commands 1-2

1.1.4 Summary of the ER Command 1-3

1.1.5 Summary of Wallet Commands 1-3

1.1.6 Summary of Credential Store Commands 1-3

1.1.7 Summary of Trail Commands 1-4

1.1.8 Summary of Parameter Commands 1-4

1.1.9 Summary of Database Commands 1-5

1.1.10 Summary of Trandata Commands 1-5

1.1.11 Summary of Checkpoint Table Commands 1-5

1.1.12 Summary of Oracle Trace Table Commands 1-6

1.1.13 Summary of Oracle GoldenGate Data Store Commands 1-6

1.1.14 Summary of Oracle GoldenGate Monitor JAgent Commands 1-7

1.1.15 Summary of Oracle GoldenGate Automatic Heartbeat Commands 1-7

1.1.16 Summary of Miscellaneous Oracle GoldenGate Commands 1-7

1.2 INFO MANAGER 1-8

1.3 SEND MANAGER 1-8

1.4 START MANAGER 1-9

1.5 STATUS MANAGER 1-10

1.6 STOP MANAGER 1-10

1.7 ADD EXTRACT 1-11

1.8 ALTER EXTRACT 1-19

1.9 CLEANUP EXTRACT 1-22

iii

1.10 DELETE EXTRACT 1-23

1.11 INFO EXTRACT 1-23

1.12 KILL EXTRACT 1-26

1.13 LAG EXTRACT 1-26

1.14 REGISTER EXTRACT 1-27

1.15 SEND EXTRACT 1-30

1.16 START EXTRACT 1-41

1.17 STATS EXTRACT 1-44

1.18 STATUS EXTRACT 1-46

1.19 STOP EXTRACT 1-47

1.20 UNREGISTER EXTRACT 1-47

1.21 ADD REPLICAT 1-48

1.22 ALTER REPLICAT 1-52

1.23 CLEANUP REPLICAT 1-54

1.24 DELETE REPLICAT 1-55

1.25 INFO REPLICAT 1-56

1.26 KILL REPLICAT 1-59

1.27 LAG REPLICAT 1-60

1.28 REGISTER REPLICAT 1-60

1.29 SEND REPLICAT 1-61

1.30 START REPLICAT 1-67

1.31 STATS REPLICAT 1-70

1.32 STATUS REPLICAT 1-72

1.33 STOP REPLICAT 1-73

1.34 SYNCHRONIZE REPLICAT 1-74

1.35 UNREGISTER REPLICAT 1-74

1.36 ER 1-75

1.37 CREATE WALLET 1-76

1.38 OPEN WALLET 1-76

1.39 PURGE WALLET 1-77

1.40 ADD MASTERKEY 1-77

1.41 INFO MASTERKEY 1-78

1.42 RENEW MASTERKEY 1-79

1.43 DELETE MASTERKEY 1-80

1.44 UNDELETE MASTERKEY 1-81

1.45 ADD CREDENTIALSTORE 1-82

1.46 ALTER CREDENTIALSTORE 1-83

1.47 INFO CREDENTIALSTORE 1-85

1.48 DELETE CREDENTIALSTORE 1-86

1.49 ADD EXTTRAIL 1-86

1.50 ADD RMTTRAIL 1-87

iv

1.51 ALTER EXTTRAIL 1-88

1.52 ALTER RMTTRAIL 1-88

1.53 DELETE EXTTRAIL 1-89

1.54 DELETE RMTTRAIL 1-89

1.55 INFO EXTTRAIL 1-90

1.56 INFO RMTTRAIL 1-90

1.57 VIEW PARAMS 1-91

1.58 EDIT PARAMS 1-92

1.59 SET EDITOR 1-92

1.60 INFO PARAM 1-93

1.61 GETPARAMINFO 1-93

1.62 DBLOGIN 1-94

1.63 ENCRYPT PASSWORD 1-98

1.64 DUMPDDL 1-99

1.65 FLUSH SEQUENCE 1-100

1.66 LIST TABLES 1-101

1.67 MININGDBLOGIN 1-102

1.68 SET NAMECCSID 1-104

1.69 ADD SCHEMATRANDATA 1-105

1.70 ADD TRANDATA 1-108

1.71 DELETE SCHEMATRANDATA 1-113

1.72 DELETE TRANDATA 1-114

1.73 INFO SCHEMATRANDATA 1-115

1.74 INFO TRANDATA 1-115

1.75 SET_INSTANTIATION_CSN 1-116

1.76 CLEAR_INSTANTIATION_CSN 1-117

1.77 CLEANUP CHECKPOINTTABLE 1-117

1.78 DELETE CHECKPOINTTABLE 1-118

1.79 INFO CHECKPOINTTABLE 1-119

1.80 UPGRADE CHECKPOINTTABLE 1-119

1.81 ADD TRACETABLE 1-120

1.82 DELETE TRACETABLE 1-121

1.83 INFO TRACETABLE 1-121

1.84 ALTER DATASTORE 1-122

1.85 CREATE DATASTORE 1-122

1.86 DELETE DATASTORE 1-123

1.87 INFO DATASTORE 1-123

1.88 REPAIR DATASTORE 1-123

1.89 INFO JAGENT 1-124

1.90 START JAGENT 1-124

1.91 STATUS JAGENT 1-124

v

1.92 STOP JAGENT 1-124

1.93 ADD HEARTBEATTABLE 1-125

1.94 ALTER HEARTBEATTABLE 1-126

1.95 DELETE HEARTBEATTABLE 1-127

1.96 DELETE HEARTBEATENTRY 1-127

1.97 INFO HEARTBEATTABLE 1-127

1.98 ! 1-127

1.99 ALLOWNESTED | NOALLOWNESTED 1-128

1.100 CREATE SUBDIRS 1-128

1.101 DEFAULTJOURNAL 1-129

1.102 FC 1-129

1.103 HELP 1-131

1.104 HISTORY 1-131

1.105 INFO ALL 1-131

1.106 INFO MARKER 1-132

1.107 OBEY 1-133

1.108 SHELL 1-134

1.109 SHOW 1-134

1.110 VERSIONS 1-135

1.111 VIEW GGSEVT 1-135

1.112 VIEW REPORT 1-135

1.113 ADD CHECKPOINTTABLE 1-136

2 Oracle GoldenGate Native Commands

2.1 Summary of Oracle GoldenGate IBM i Native Commands 2-1

2.2 checkprm 2-3

2.3 convchk 2-5

2.4 defgen 2-5

2.5 extract 2-7

2.6 ggsci 2-8

2.7 keygen 2-9

2.8 logdump 2-9

2.9 mgr 2-10

2.10 replicat 2-11

3 Oracle GoldenGate Parameters

3.1 Summary of Oracle GoldenGate Parameters 3-1

3.1.1 Summary of GLOBALS Parameters 3-1

3.1.2 Summary of Manager Parameters 3-3

vi

3.1.3 Summary of Parameters Common to Extract and Replicat 3-4

3.1.4 Summary of Extract Parameters 3-8

3.1.5 Summary of Replicat Parameters 3-11

3.1.6 Summary of Wildcard Exclusion Parameters 3-14

3.1.7 Summary of DEFGEN Parameters 3-15

3.1.8 Summary of DDL Parameters 3-15

3.1.9 Summary of Oracle GoldenGate Data Store Commands 3-16

3.2 ABORTDISCARDRECS 3-16

3.3 ACCESSRULE 3-17

3.4 ALLOCFILES 3-19

3.5 ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP 3-19

3.6 ALLOWINVISIBLEINDEXKEYS 3-20

3.7 ALLOWNONVALIDATEDKEYS 3-21

3.8 ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES 3-22

3.9 ALLOWOUTPUTDIR 3-23

3.10 APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES 3-23

3.11 ASCIITOEBCDIC 3-24

3.12 ASSUMETARGETDEFS 3-24

3.13 AUTORESTART 3-25

3.14 AUTOSTART 3-26

3.15 BATCHSQL 3-27

3.16 BEGIN 3-32

3.17 BLOBMEMORY 3-32

3.18 BOOTDELAYMINUTES 3-32

3.19 BR 3-33

3.20 BULKLOAD 3-40

3.21 CACHEMGR 3-41

3.22 CATALOGEXCLUDE 3-42

3.23 CHARMAP 3-44

3.24 CHARSET 3-45

3.25 CHECKMINUTES 3-46

3.26 CHECKPARAMS 3-46

3.27 CHECKPOINTSECS 3-47

3.28 CHECKPOINTTABLE 3-48

3.29 CMDTRACE 3-48

3.30 COLCHARSET 3-49

3.31 COLMATCH 3-50

3.32 COMMENT | -- 3-52

3.33 COMPRESSDELETES | NOCOMPRESSDELETES 3-53

3.34 COMPRESSUPDATES | NOCOMPRESSUPDATES 3-54

3.35 COORDSTATINTERVAL 3-55

vii

3.36 COORDTIMER 3-55

3.37 CREDENTIALSTORELOCATION 3-56

3.38 CRYPTOENGINE 3-56

3.39 CUSEREXIT 3-57

3.40 DBOPTIONS 3-59

3.41 DDL 3-69

3.42 DDLERROR 3-77

3.43 DDLOPTIONS 3-80

3.44 DDLSUBST 3-88

3.45 DDLRULEHINT 3-90

3.46 DDLTABLE 3-91

3.47 DECRYPTTRAIL 3-91

3.48 DEFERAPPLYINTERVAL 3-92

3.49 DEFSFILE 3-93

3.50 DISCARDFILE | NODISCARDFILE 3-95

3.51 DISCARDROLLOVER 3-97

3.52 DOWNREPORT 3-98

3.53 DSOPTIONS 3-99

3.54 DYNAMICPORTLIST 3-100

3.55 DYNAMICRESOLUTION | NODYNAMICRESOLUTION 3-101

3.56 EBCDICTOASCII 3-102

3.57 ENABLECATALOGNAMES 3-102

3.58 ENABLEMONITORING 3-102

3.59 ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE 3-103

3.60 ENCRYPTTRAIL | NOENCRYPTTRAIL 3-104

3.61 END 3-106

3.62 EOFDELAY | EOFDELAYCSECS 3-107

3.63 EXCLUDEHIDDENCOLUMNS 3-108

3.64 EXCLUDETAG 3-108

3.65 EXCLUDEWILDCARDOBJECTSONLY 3-109

3.66 EXTFILE 3-110

3.67 EXTRACT 3-111

3.68 EXTTRAIL 3-112

3.69 FETCHOPTIONS 3-113

3.70 FETCHUSERID 3-116

3.71 FETCHUSERIDALIAS 3-119

3.72 FILTERDUPS | NOFILTERDUPS 3-121

3.73 FLUSHSECS | FLUSHCSECS 3-122

3.74 FORMATASCII 3-122

3.75 FORMATSQL 3-126

3.76 FORMATXML 3-128

viii

3.77 FUNCTIONSTACKSIZE 3-129

3.78 GENLOADFILES 3-130

3.79 GETAPPLOPS | IGNOREAPPLOPS 3-133

3.80 GETDELETES | IGNOREDELETES 3-134

3.81 GETENV 3-134

3.82 GETINSERTS | IGNOREINSERTS 3-152

3.83 GETREPLICATES | IGNOREREPLICATES 3-153

3.84 GETTRUNCATES | IGNORETRUNCATES 3-154

3.85 GETUPDATEAFTERS | IGNOREUPDATEAFTERS 3-156

3.86 GETUPDATEBEFORES | IGNOREUPDATEBEFORES 3-156

3.87 GETUPDATES | IGNOREUPDATES 3-158

3.88 GGSCHEMA 3-158

3.89 GROUPTRANSOPS 3-159

3.90 HANDLECOLLISIONS | NOHANDLECOLLISIONS 3-160

3.91 HANDLETPKUPDATE 3-166

3.92 HAVEUDTWITHNCHAR 3-167

3.93 HEARTBEATTABLE 3-168

3.94 INCLUDE 3-168

3.95 INSERTALLRECORDS 3-169

3.96 INSERTAPPEND | NOINSERTAPPEND 3-170

3.97 INSERTDELETES | NOINSERTDELETES 3-171

3.98 INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES 3-172

3.99 INSERTUPDATES | NOINSERTUPDATES 3-172

3.100 LAGCRITICAL 3-173

3.101 LAGINFO 3-174

3.102 LAGREPORT 3-174

3.103 LIST | NOLIST 3-175

3.104 LOBMEMORY 3-176

3.105 LOGALLSUPCOLS 3-178

3.106 MACRO 3-179

3.107 MACROCHAR 3-181

3.108 MAP for Extract 3-182

3.109 MAP 3-183

3.110 MAPEXCLUDE 3-183

3.111 MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS 3-184

3.112 MARKERTABLE 3-185

3.113 MAXDISCARDRECS 3-186

3.114 MAXGROUPS 3-187

3.115 MAXSQLSTATEMENTS 3-187

3.116 MAXTRANSOPS 3-188

3.117 MGRSERVNAME 3-189

ix

3.118 MONITORING_HEARTBEAT_TIMEOUT 3-190

3.119 NAMECCSID 3-190

3.120 NAMEMATCH parameters 3-191

3.121 NOCATALOG 3-191

3.122 NODUPMSGSUPPRESSION 3-192

3.123 NUMFILES 3-192

3.124 OBEY 3-193

3.125 OUTPUTFILEUMASK 3-194

3.126 OVERRIDEDUPS | NOOVERRIDEDUPS 3-194

3.127 PTKCAPTUREPROCSTATS 3-195

3.128 PTKMONITORFREQUENCY 3-196

3.129 PORT 3-196

3.130 PRESERVETARGETTIMEZONE 3-197

3.131 PROCEDURE 3-197

3.132 PURGEDDLHISTORY | PURGEDDLHISTORYALT 3-198

3.133 PURGEMARKERHISTORY 3-200

3.134 PURGEOLDEXTRACTS for Extract and Replicat 3-201

3.135 PURGEOLDEXTRACTS for Manager 3-202

3.136 PURGEOLDTASKS 3-205

3.137 RECOVERYOPTIONS 3-206

3.138 REPERROR 3-206

3.139 REPFETCHEDCOLOPTIONS 3-212

3.140 REPLACEBADCHAR 3-215

3.141 REPLACEBADNUM 3-217

3.142 REPLICAT 3-217

3.143 REPORT 3-218

3.144 REPORTCOUNT 3-219

3.145 REPORTROLLOVER 3-220

3.146 RESTARTCOLLISIONS | NORESTARTCOLLISIONS 3-222

3.147 RMTFILE 3-222

3.148 RMTHOST 3-224

3.149 RMTHOSTOPTIONS 3-229

3.150 RMTTASK 3-232

3.151 RMTTRAIL 3-234

3.152 ROLLOVER 3-235

3.153 SCHEMAEXCLUDE 3-237

3.154 SEQUENCE 3-238

3.155 SESSIONCHARSET 3-241

3.156 SETENV 3-242

3.157 SHOWSYNTAX 3-243

3.158 SOURCECATALOG 3-245

x

3.159 SOURCECHARSET 3-246

3.160 SOURCEDB 3-248

3.161 SOURCEDEFS 3-249

3.162 SOURCEISTABLE 3-250

3.163 SOURCETIMEZONE 3-251

3.164 SPACESTONULL | NOSPACESTONULL 3-252

3.165 SPECIALRUN 3-253

3.166 SQLDUPERR 3-253

3.167 SQLEXEC 3-254

3.168 STARTUPVALIDATIONDELAY[CSECS] 3-265

3.169 STATOPTIONS 3-266

3.170 SYSLOG 3-268

3.171 TABLE | MAP 3-269

3.172 TABLE for DEFGEN 3-310

3.173 TABLE for Replicat 3-312

3.174 TABLEEXCLUDE 3-313

3.175 TARGETDB 3-314

3.176 TARGETDEFS 3-315

3.177 TCPSOURCETIMER | NOTCPSOURCETIMER 3-316

3.178 THREADOPTIONS 3-317

3.179 TRACE | TRACE2 3-318

3.180 TRACETABLE | NOTRACETABLE 3-320

3.181 TRAILBYTEORDER 3-321

3.182 TRAILCHARSET 3-322

3.183 TRAILCHARSETASCII 3-323

3.184 TRAILCHARSETUNICODE 3-324

3.185 TRAILCHARSETEBCDIC 3-326

3.186 TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D 3-326

3.187 TRANLOGOPTIONS 3-327

3.188 TRANSACTIONTIMEOUT 3-351

3.189 TRANSMEMORY 3-353

3.190 TRIMSPACES | NOTRIMSPACES 3-356

3.191 TRIMVARSPACES | NOTRIMVARSPACES 3-357

3.192 UPDATEDELETES | NOUPDATEDELETES 3-358

3.193 UPDATEINSERTS | NOUPDATEINSERTS 3-358

3.194 UPDATERECORDFORMAT 3-359

3.195 UPREPORT 3-361

3.196 USE_TRAILDEFS | NO_USE_TRAILDEFS 3-361

3.197 USEANSISQLQUOTES | NOUSEANSISQLQUOTES 3-362

3.198 USEDEDICATEDCOORDINATIONTHREAD 3-364

3.199 USEIPV4 3-364

xi

3.200 USEIPV6 3-365

3.201 USERID | NOUSERID 3-365

3.202 USERIDALIAS 3-371

3.203 VAM 3-374

3.204 VARWIDTHNCHAR | NOVARWIDTHNCHAR 3-376

3.205 VERIDATAREPORTAGE 3-377

3.206 WALLETLOCATION 3-377

3.207 WARNLONGTRANS 3-378

3.208 WARNRATE 3-380

3.209 WILDCARDRESOLVE 3-380

3.210 XAGENABLE 3-381

3.211 Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT 3-382

4 Collector Parameters

4.1 Overview of the Collector Process 4-1

4.2 Summary of Collector Parameters 4-1

4.3 -B 4-2

4.4 -b 4-2

4.5 -cp 4-3

4.6 -d 4-3

4.7 -E 4-3

4.8 -e 4-4

4.9 -ENCRYPT 4-4

4.10 -f 4-5

4.11 -g 4-5

4.12 -h 4-5

4.13 -k 4-6

4.14 -KEYNAME 4-6

4.15 -l 4-6

4.16 -m 4-6

4.17 -P 4-7

4.18 -p 4-7

4.19 -R 4-7

4.20 -x 4-8

5 Column Conversion Functions

5.1 Summary of Column-Conversion Functions 5-1

5.2 AFTER 5-3

5.3 BEFORE 5-3

xii

5.4 BEFOREAFTER 5-4

5.5 BINARY 5-4

5.6 BINTOHEX 5-5

5.7 CASE 5-5

5.8 COLSTAT 5-6

5.9 COLTEST 5-7

5.10 COMPUTE 5-7

5.11 DATE 5-9

5.12 DATEDIFF 5-12

5.13 DATENOW 5-13

5.14 DDL 5-13

5.15 EVAL 5-13

5.16 GETENV 5-14

5.17 GETVAL 5-32

5.18 HEXTOBIN 5-34

5.19 HIGHVAL | LOWVAL 5-35

5.20 IF 5-35

5.21 NUMBIN 5-36

5.22 NUMSTR 5-36

5.23 OGG_SHA1 5-37

5.24 RANGE 5-37

5.25 STRCAT 5-39

5.26 STRCMP 5-39

5.27 STREQ 5-40

5.28 STREXT 5-41

5.29 STRFIND 5-41

5.30 STRLEN 5-42

5.31 STRLTRIM 5-42

5.32 STRNCAT 5-43

5.33 STRNCMP 5-43

5.34 STRNUM 5-44

5.35 STRRTRIM 5-45

5.36 STRSUB 5-46

5.37 STRTRIM 5-47

5.38 STRUP 5-47

5.39 TOKEN 5-47

5.40 VALONEOF 5-48

6 User Exit Functions

6.1 Calling a User Exit 6-1

xiii

6.2 Summary of User Exit Functions 6-1

6.3 Using EXIT_CALL_TYPE 6-1

6.4 Using EXIT_CALL_RESULT 6-3

6.5 Using EXIT_PARAMS 6-3

6.6 Using ERCALLBACK 6-4

6.7 Function Codes 6-5

6.8 COMPRESS_RECORD 6-7

6.9 DECOMPRESS_RECORD 6-9

6.10 GET_BASE_OBJECT_NAME 6-11

6.11 GET_BASE_OBJECT_NAME_ONLY 6-12

6.12 GET_BASE_SCHEMA_NAME_ONLY 6-14

6.13 GET_BEFORE_AFTER_IND 6-15

6.14 GET_CATALOG_NAME_ONLY 6-16

6.15 GET_COL_METADATA_FROM_INDEX 6-18

6.16 GET_COL_METADATA_FROM_NAME 6-20

6.17 GET_COLUMN_INDEX_FROM_NAME 6-23

6.18 GET_COLUMN_NAME_FROM_INDEX 6-24

6.19 GET_COLUMN_VALUE_FROM_INDEX 6-25

6.20 GET_COLUMN_VALUE_FROM_NAME 6-29

6.21 GET_DATABASE_METADATA 6-33

6.22 GET_DDL_RECORD_PROPERTIES 6-34

6.23 GETENV 6-36

6.24 GET_ENV_VALUE 6-54

6.25 GET_ERROR_INFO 6-55

6.26 GET_GMT_TIMESTAMP 6-56

6.27 GET_MARKER_INFO 6-57

6.28 GET_OBJECT_NAME 6-59

6.29 GET_OBJECT_NAME_ONLY 6-60

6.30 GET_OPERATION_TYPE 6-62

6.31 GET_POSITION 6-63

6.32 GET_RECORD_BUFFER 6-64

6.33 GET_RECORD_LENGTH 6-67

6.34 GET_RECORD_TYPE 6-68

6.35 GET_SCHEMA_NAME_ONLY 6-69

6.36 GET_SESSION_CHARSET 6-71

6.37 GET_STATISTICS 6-72

6.38 GET_TABLE_COLUMN_COUNT 6-74

6.39 GET_TABLE_METADATA 6-75

6.40 GET_TABLE_NAME 6-76

6.41 GET_TABLE_NAME_ONLY 6-78

6.42 GET_TIMESTAMP 6-80

xiv

6.43 GET_TRANSACTION_IND 6-81

6.44 GET_USER_TOKEN_VALUE 6-82

6.45 OUTPUT_MESSAGE_TO_REPORT 6-83

6.46 RESET_USEREXIT_STATS 6-84

6.47 SET_COLUMN_VALUE_BY_INDEX 6-84

6.48 SET_COLUMN_VALUE_BY_NAME 6-87

6.49 SET_OPERATION_TYPE 6-89

6.50 SET_RECORD_BUFFER 6-91

6.51 SET_SESSION_CHARSET 6-92

6.52 SET_TABLE_NAME 6-93

xv

Preface

This guide contains reference information, with usage and syntax guidelines, for:

• Oracle GoldenGate GGSCI commands.

• Oracle GoldenGate configuration parameters.

• Oracle GoldenGate column-conversion functions.

• Oracle GoldenGate user exit functions.

Audience
This guide is intended for the person or persons who are responsible for operating
Oracle GoldenGate and maintaining its performance. This audience typically includes,
but is not limited to, systems administrators and database administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at

Oracle GoldenGate

Oracle GoldenGate Application Adapters

Oracle GoldenGate for Big Data

Oracle GoldenGate Plug-in for EMCC

Oracle GoldenGate Monitor

Oracle GoldenGate for HP NonStop (Guardian)

Oracle GoldenGate Veridata

Oracle GoldenGate Studio

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/goldengate/c1221/gg-winux/index.html
https://docs.oracle.com/goldengate/gg121211/gg-adapter/index.html
https://docs.oracle.com/goldengate/bd1221/gg-bd/index.html
http://docs.oracle.com/goldengate/em1321/gg-emplugin/index.html
https://docs.oracle.com/goldengate/m12212/gg-monitor/index.html
http://docs.oracle.com/goldengate/ns1221/gg-nsk/index.html
http://docs.oracle.com/goldengate/v12212/gg-veridata/index.html
https://docs.oracle.com/goldengate/s1221/gg-studio/index.html

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic
italic

Italic type indicates placeholder variables for which you supply
particular values, such as in the parameter statement: TABLE
table_name. Italic type also is used for book titles and emphasis.

monospace

MONOSPACE

Monospace type indicates code components such as user exits and
scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace
type is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{ } Braces within syntax enclose a set of options that are separated by
pipe symbols, one of which must be selected, for example: {option1 |
option2 | option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name [,
SAVE count]. Multiple options within an optional element are separated
by a pipe symbol, for example: [option1 | option2].

Preface

xvii

http://www.ateam-oracle.com/category/data-integration/di-ogg/

1
Oracle GoldenGate GGSCI Commands

This chapter describes the commands that can be issued through the Oracle
GoldenGate Software Command Interface (GGSCI). This is the command interface
between users and Oracle GoldenGate functional components.

1.1 Summary of Oracle GoldenGate Commands
This section summarizes the GGSCI commands and includes the following topics:

Topics:

1.1.1 Summary of Manager Commands
Use the Manager commands to control the Manager process. Manager is the parent
process of Oracle GoldenGate and is responsible for the management of its processes
and files, resources, user interface, and the reporting of thresholds and errors.

Table 1-1 Manager Commands

Command Description

INFO MANAGER Returns information about the Manager port and child
processes.

SEND MANAGER Returns information about a running Manager process.

START MANAGER Starts the Manager process.

STATUS MANAGER Returns the state of the Manager process.

STOP MANAGER Stops the Manager process.

1.1.2 Summary of Extract Commands
Use the Extract commands to create and manage Extract groups. The Extract process
captures either full data records or transactional data changes, depending on
configuration parameters, and then sends the data to a trail for further processing by a
downstream process, such as a data-pump Extract or the Replicat process.

Table 1-2 Extract Commands

Command Description

ADD EXTRACT Creates an Extract group.

ALTER EXTRACT Changes attributes of an Extract group

CLEANUP EXTRACT Deletes run history for an Extract group

DELETE EXTRACT Deletes an Extract group.

INFO EXTRACT Returns information about an Extract group.

1-1

Table 1-2 (Cont.) Extract Commands

Command Description

KILL EXTRACT Forcibly terminates the run of an Extract group.

LAG EXTRACT Returns information about Extract lag.

REGISTER EXTRACT Registers an Extract group with an Oracle database.

SEND EXTRACT Sends instructions to, or returns information about, a running
Extract group.

START EXTRACT Starts an Extract group.

STATS EXTRACT Returns processing statistics for an Extract group.

STATUS EXTRACT Returns the state of an Extract group.

STOP EXTRACT Stops an Extract group.

UNREGISTER EXTRACT Unregisters an Extract group from an Oracle database.

1.1.3 Summary of Replicat Commands
Use the Replicat commands to create and manage Replicat groups. The Replicat
process reads data extracted by the Extract process and applies it to target tables or
prepares it for use by another application, such as a load application.

Table 1-3 Replicat Commands

Command Description

ADD REPLICAT Adds a Replicat group.

ALTER REPLICAT Changes attributes of a Replicat group.

CLEANUP REPLICAT Deletes run history of a Replicat group.

DELETE REPLICAT Deletes a Replicat group.

INFO REPLICAT Returns information about a Replicat group.

KILL REPLICAT Forcibly terminates a Replicat group.

LAG REPLICAT Returns information about Replicat lag.

REGISTER REPLICAT Registers a Replicat group with an Oracle database.

SEND REPLICAT Sends instructions to, or returns information about, a running
Replicat group.

START REPLICAT Starts a Replicat group.

STATS REPLICAT Returns processing statistics for a Replicat group.

STATUS REPLICAT Returns the state of a Replicat group.

STOP REPLICAT Stops a Replicat group.

SYNCHRONIZE REPLICAT Returns all threads of a coordinated Replicat to a uniform start
point after an unclean shutdown of the Replicat process.

UNREGISTER REPLICAT Unregisters a Replicat group from an Oracle database.

Chapter 1
Summary of Oracle GoldenGate Commands

1-2

1.1.4 Summary of the ER Command
Use the ER command to issue standard Extract and Replicat commands to multiple
Extract and Replicat groups as a unit. See "ER" for how to use this command.

Table 1-4 ER Commands

Command Description

INFO ER * Returns information about the specified wildcarded groups.

KILL ER * Forcibly terminates the specified wildcarded groups.

LAG ER * Returns lag information about the specified wildcarded groups.

SEND ER * Sends instructions to, or returns information about, the specified
wildcarded groups.

START ER * Starts the specified wildcarded groups.

STATS ER * Returns processing statistics for the specified wildcarded groups.

STATUS ER * Returns the state of the specified wildcarded groups.

STOP ER * Stops the specified wildcarded groups.

1.1.5 Summary of Wallet Commands
Use the wallet commands to manage the master-key wallet that stores Oracle
GoldenGate master encryptions keys, and to add master keys to this wallet.

Table 1-5 Wallet Commands

Command Description

CREATE WALLET Creates a wallet that stores master encryption keys.

OPEN WALLET Opens a master-key wallet.

PURGE WALLET Permanently removes from a wallet the master keys that are
marked as deleted.

ADD MASTERKEY Adds a master key to a master-key wallet.

INFO MASTERKEY Returns information about master keys.

RENEW MASTERKEY Adds a new version of a master key.

DELETE MASTERKEY Marks a master key for deletion.

UNDELETE MASTERKEY Changes the state of a master key from being marked as deleted
to marked as available.

1.1.6 Summary of Credential Store Commands
Use the credential store commands to manage an Oracle GoldenGate credential store
and to add credentials to the credential store.

Chapter 1
Summary of Oracle GoldenGate Commands

1-3

Table 1-6 Credential Store Commands

Command Description

ADD CREDENTIALSTORE Creates a credentials store (wallet) that stores encrypted
database user credentials.

ALTER CREDENTIALSTORE Changes the contents of a credentials store.

INFO CREDENTIALSTORE Returns information about a credentials store.

DELETE CREDENTIALSTORE Deletes the wallet that serves as a credentials store.

1.1.7 Summary of Trail Commands
Use the trail commands to create and manage Oracle GoldenGate trails. A trail is a
series of files in which Oracle GoldenGate temporarily stores extracted data on disk
until it has been applied to the target location.

Table 1-7 Trail Commands

Command Description

ADD EXTTRAIL Adds a local trail to the Oracle GoldenGate configuration.

ADD RMTTRAIL Adds a remote trail to the Oracle GoldenGate configuration.

ALTER EXTTRAIL Changes attributes of a local trail.

ALTER RMTTRAIL Changes attributes of a remote trail.

DELETE EXTTRAIL Removes a local trail from the Oracle GoldenGate configuration.

DELETE RMTTRAIL Removes a remote trail from the Oracle GoldenGate
configuration.

INFO EXTTRAIL Returns information about a local trail.

INFO RMTTRAIL Returns information about a remote trail.

1.1.8 Summary of Parameter Commands
Use the parameter commands to view and manage Oracle GoldenGate parameter
files. See Administering Oracle GoldenGate for Windows and UNIX for more
information about how to work with parameter files.

Table 1-8 Parameter Commands

Command Description

EDIT PARAMS Opens a parameter file for editing in the default text editor.

SET EDITOR Sets the default text editor program for editing parameter files.

VIEW PARAMS Displays the contents of a parameter file in read-only mode on-
screen.

INFO PARAM Queries for and displays static information.

GETPARAMINFO Displays currently-running parameter values.

Chapter 1
Summary of Oracle GoldenGate Commands

1-4

1.1.9 Summary of Database Commands
Use the database commands to interact with the database from GGSCI.

Table 1-9 Database Commands

Command Description

DBLOGIN Logs the GGSCI session into a database so that other
commands that affect the database can be issued.

DUMPDDL Shows the data in the Oracle GoldenGate DDL history table.

ENCRYPT PASSWORD Encrypts a database login password.

FLUSH SEQUENCE Updates an Oracle sequence so that initial redo records are
available at the time that Extract starts capturing transaction data
after the instantiation of the replication environment.

LIST TABLES Lists the tables in the database with names that match the input
specification.

MININGDBLOGIN Specifies the credentials of the user that an Oracle GoldenGate
process uses to log into an Oracle mining database.

SET NAMECCSID Sets the CCSID of the GGSCI session in a DB2 for i
environment.

1.1.10 Summary of Trandata Commands
Use trandata commands to configure the appropriate database components to provide
the transaction information that Oracle GoldenGate needs to replicate source data
operations.

Table 1-10 Trandata Commands

Command Description

ADD SCHEMATRANDATA Enables schema-level supplemental logging.

ADD TRANDATA Enables table-level supplemental logging.

DELETE SCHEMATRANDATA Disables schema-level supplemental logging.

DELETE TRANDATA Disables table-level supplemental logging.

INFO SCHEMATRANDATA Returns information about the state of schema-level
supplemental logging.

INFO TRANDATA Returns information about the state of table-level supplemental
logging.

SET_INSTANTIATION_CSN Sets whether and how table instantiation CSN filtering is used.

CLEAR_INSTANTIATION_CSN Clears table instantiation CSN filtering.

1.1.11 Summary of Checkpoint Table Commands
Use the checkpoint table commands to manage the checkpoint table that is used by
Oracle GoldenGate to track the current position of Replicat in the trail.

Chapter 1
Summary of Oracle GoldenGate Commands

1-5

For more information about checkpoints and using a checkpoint table, see
Administering Oracle GoldenGate for Windows and UNIX.

Table 1-11 Checkpoint Table Commands

Command Description

ADD CHECKPOINTTABLE Creates a checkpoint table in a database.

CLEANUP CHECKPOINTTABLE Removes checkpoint records that are no longer needed.

DELETE CHECKPOINTTABLE Removes a checkpoint table from a database.

INFO CHECKPOINTTABLE Returns information about a checkpoint table.

UPGRADE
CHECKPOINTTABLE

Adds a supplemental checkpoint table when upgrading Oracle
GoldenGate from version 11.2.1.0.0 or earlier.

1.1.12 Summary of Oracle Trace Table Commands
Use the trace table commands to manage the Oracle GoldenGate trace table that is
used with bidirectional synchronization of Oracle databases. Replicat generates an
operation in the trace table at the start of each transaction. Extract ignores all
transactions that begin with an operation to the trace table. Ignoring Replicat's
operations prevents data from looping back and forth between the source and target
tables.

For more information about bidirectional synchronization, see Administering Oracle
GoldenGate for Windows and UNIX.

Table 1-12 Oracle Trace Table Commands

Command Description

ADD TRACETABLE Creates a trace table.

DELETE TRACETABLE Removes a trace table.

INFO TRACETABLE Returns information about a trace table.

1.1.13 Summary of Oracle GoldenGate Data Store Commands
Use the data store commands to control the data store that Oracle GoldenGate uses
to store monitoring information for use by Oracle GoldenGate Monitor.

Table 1-13 Oracle GoldenGate Veridata Data Store Commands

Command Description

ALTER DATASTORE Changes the memory model that is used for interprocess
communication by the data store.

CREATE DATASTORE Creates the data store.

DELETE DATASTORE Removes the data store.

INFO DATASTORE Returns information about the data store.

REPAIR DATASTORE Repairs the data store after an upgrade or if it is corrupt.

Chapter 1
Summary of Oracle GoldenGate Commands

1-6

1.1.14 Summary of Oracle GoldenGate Monitor JAgent Commands
Use the JAgent commands to control the Oracle GoldenGate Monitor JAgent.

Table 1-14 JAgent Commands

Command Description

INFO JAGENT Returns information about the JAgent.

START JAGENT Starts the JAgent.

STATUS JAGENT Returns the state of the JAgent.

STOP JAGENT Stops the JAgent.

1.1.15 Summary of Oracle GoldenGate Automatic Heartbeat
Commands

Use the heartbeat table commands to control the Oracle GoldenGate automatic
heartbeat functionality.

Table 1-15 Heartbeat Table Commands

Command Description

ADD HEARTBEATTABLE Creates the objects required for automatic heartbeat
functionality.

ALTER HEARTBEATTABLE Alters existing heartbeat objects.

DELETE HEARTBEATTABLE Deletes existing heartbeat objects.

DELETE HEARTBEATENTRY Deletes entries in the heartbeat table.

INFO HEARTBEATTABLE Displays heartbeat table information.

1.1.16 Summary of Miscellaneous Oracle GoldenGate Commands
Use the following commands to control various other aspects of Oracle GoldenGate.

Table 1-16 Miscellaneous Commands

Command Description

! Executes a previous GGSCI command without modifications.

ALLOWNESTED |
NOALLOWNESTED

Enables or disables the use of nested OBEY files.

CREATE SUBDIRS Creates the default directories within the Oracle GoldenGate
home directory.

DEFAULTJOURNAL Sets a default journal for multiple tables or files for the ADD
TRANDATA command when used for a DB2 for i database.

FC Allows the modification and re-execution of a previously issued
GGSCI command.

Chapter 1
Summary of Oracle GoldenGate Commands

1-7

Table 1-16 (Cont.) Miscellaneous Commands

Command Description

HELP Provides assistance with syntax and usage of GGSCI
commands.

HISTORY Shows a list of the most recently issued commands since the
startup of the GGSCI session.

INFO ALL Displays status and lag for all Oracle GoldenGate processes on
a system.

INFO MARKER Displays recently processed markers from a NonStop system.

OBEY Processes a file that contains a list of Oracle GoldenGate
commands.

SHELL Executes shell commands from within the GGSCI interface.

SHOW Displays the attributes of the Oracle GoldenGate environment.

VERSIONS Displays information about the operating system and database.

VIEW GGSEVT Displays the Oracle GoldenGate error log (ggserr.log file).

VIEW REPORT Displays the process report or the discard file that is generated
by Extract or Replicat.

1.2 INFO MANAGER
Use INFO MANAGER (or INFO MGR) to determine whether or not the Manager process is
running and the process ID. If Manager is running, the port number is displayed. This
command is an alias for STATUS MANAGER.

Syntax

INFO MANAGER
INFO MGR

1.3 SEND MANAGER
Use SEND MANAGER to retrieve the status of the active Manager process or to retrieve
dynamic port information as configured in the Manager parameter file.

Syntax

SEND MANAGER
[CHILDSTATUS [DEBUG]]
[GETPORTINFO [DETAIL]
[GETPURGEOLDEXTRACTS]

CHILDSTATUS [DEBUG]

Retrieves status information about processes started by Manager. DEBUG returns the
port numbers that are allocated to processes.

Chapter 1
INFO MANAGER

1-8

GETPORTINFO [DETAIL]

By default, retrieves the current list of ports that have been allocated to processes and
their corresponding process IDs. DETAIL provides a list of all the ports defined using
the DYNAMICPORTLIST parameter.

GETPURGEOLDEXTRACTS

Displays information about trail maintenance rules that are set with the
PURGEOLDEXTRACTS parameter in the Manager parameter file. For more information, see
"PURGEOLDEXTRACTS for Extract and Replicat".

Examples

Example 1
SEND MANAGER CHILDSTATUS DEBUG returns a child process status similar to the following.
The basic CHILDSTATUS option returns the same display, without the Port column.

ID Group Process Retry Retry Time Start Time Port
1 ORAEXT 2400 0 None 2011/01/21 21:08:32 7840
2 ORAEXT 2245 0 None 2011/01/23 21:08:33 7842

Example 2
SEND MANAGER GETPORTINFO DETAIL returns a dynamic port list similar to the following.

Entry Port Error Process Assigned Program
0 8000 0 2387 2011-01-01 10:30:23
1 8001 0
2 8002 0

Example 3
SEND MANAGER GETPURGEOLDEXTRACTS outputs information similar to the following.

PurgeOldExtracts Rules
Fileset MinHours MaxHours MinFiles MaxFiles UseCP
S:\GGS\DIRDAT\EXTTRAIL\P4* 0 0 1 0 Y
S:\GGS\DIRDAT\EXTTRAIL\P2* 0 0 1 0 Y
S:\GGS\DIRDAT\EXTTRAIL\P1* 0 0 1 0 Y
S:\GGS\DIRDAT\REPTRAIL\P4* 0 0 1 0 Y
S:\GGS\DIRDAT\REPTRAIL\P2* 0 0 1 0 Y
S:\GGS\DIRDAT\REPTRAIL\P1* 0 0 1 0 Y
OK
Extract Trails
Filename Oldest_Chkpt_Seqno IsTable IsVamTwoPhaseCommit
S:\GGS\8020\DIRDAT\RT 3 0 0
S:\GGS\8020\DIRDAT\REPTRAIL\P1\RT 13 0 0
S:\GGS\8020\DIRDAT\REPTRAIL\P2\RT 13 0 0
S:\GGS\8020\DIRDAT\REPTRAIL\P4\RT 13 0 0
S:\GGS\8020\DIRDAT\EXTTRAIL\P1\ET 14 0 0
S:\GGS\8020\DIRDAT\EXTTRAIL\P2\ET 14 0 0
S:\GGS\8020\DIRDAT\EXTTRAIL\P4\ET 14 0 0

1.4 START MANAGER
Use START MANAGER to start the Manager process. This applies to a non-clustered
environment. In a Windows cluster, you should stop Manager from the Cluster
Administrator.

Chapter 1
START MANAGER

1-9

Syntax

START MANAGER
[, CPU number]
[, PRI number]
[, HOMETERM device_name]
[, PROCESSNAME process_name]

CPU number

Valid for SQL/MX. Specifies the number of the CPU to be used for the process. Valid
values are numbers 0 - 15 and -1 is default, which is assigned 1 higher than the last
Manager started.

PRI number
Valid for SQL/MX. Specifies the Extract process priority. Valid values are numbers are
1 - 199 and -1 is the default, and is the same as the manager process priority.

HOMETERM device_name
Valid for SQL/MX. Specifies the name of the device to be used and must be a
terminal or process. It can be entered in either Guardian $ or OSS /G/xxxxx form. The
default is $zhome or the current session HOMETERM when $zhome is not defined.

PROCESSNAME process_name
Valid for SQL/MX. Specifies the name of the process as alphanumeric string up to five
characters and can be entered in either Guardian $ or OSS /G/xxxxx form. The default
is a system generated process name.

Examples

Example 1

START MANAGER, CPU 2, PRI 148, HOMETERM /G/zhome, PROCESSNAME $ogmgr

1.5 STATUS MANAGER
Use STATUS MANAGER to see if the Manager process is running and any associate
process ID. If Manager is running, the port number is displayed.

Syntax

STATUS MANAGER

1.6 STOP MANAGER
Use STOP MANAGER to stop the Manager process. This applies to non-clustered
environments. In a Windows cluster, Manager must be stopped through the Cluster
Administrator.

Syntax

STOP MANAGER [!]

!

(Exclamation point) Bypasses the prompt that confirms the intent to shut down
Manager.

Chapter 1
STATUS MANAGER

1-10

1.7 ADD EXTRACT
Use ADD EXTRACT to create an Extract group. Unless a SOURCEISTABLE task or an alias
Extract is specified, ADD EXTRACT creates an online group that uses checkpoints so that
processing continuity is maintained from run to run.

For DB2 for i, this command establishes a global start point for all journals and is a
required first step. After issuing the ADD EXTRACT command, you can then optionally
position any given journal at a specific journal sequence number by using the ALTER
EXTRACT command with an appropriate journal option.

For Informix, this command initializes the position in the Informix logical log to capture
the CDC record. When the first DML is processed, the Informix CDC record is
contained in the logical log. Each record in the log is associated with a position, which
is called LSN (Log Sequence Number). Only when initialization is complete will it be
able to honor the positioning based on the LSN. The very first time you add an Extract,
you must ensure that the has initialization completed (the duration depends on number
of tables in your Extract parameter file) using the INFO EXTRACT command. Then ensure
that the LSN number displayed matches the LSN displayed as the first record
processed in the Extract report file. For example, if the LSN number returned by INFO
EXTRACT is LSN: 892:0X1235018, then the message in the report file must be Position of
first record processed LSN: 892:0X1235018, Apr 16, 2014 2:56:58 AM. When the initial
Extract log positioning is complete, you can issue a stop or kill command though not
before; doing so before results in any capture restart always starting from the EOF
position of the database logs.

Oracle GoldenGate supports up to 5,000 concurrent Extract and Replicat groups per
instance of Oracle GoldenGate Manager. At the supported level, all groups can be
controlled and viewed in full with GGSCI commands such as the INFO and STATUS
commands. Oracle GoldenGate recommends keeping the combined number of Extract
and Replicat groups at the default level of 300 or below in order to manage your
environment effectively.

This command cannot exceed 500 bytes in size for all keywords and input, including
any text that you enter for the DESC option.

Syntax for a Regular, Passive, or Data Pump Extract

ADD EXTRACT group_name
{, SOURCEISTABLE |
 , TRANLOG [bsds_name | LRI_number] |
 , INTEGRATED TRANLOG |
 , VAM |
 , EXTFILESOURCE file_name |
 , EXTTRAILSOURCE trail_name |
 , VAMTRAILSOURCE VAM_trail_name}
[, BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]} |
[, EXTSEQNO sequence_number, EXTRBA relative_byte_address |
[, EOF |
[, LSN value |
[, EXTRBA relative_byte_address |
[, EOF | LSN value |
[, PAGE data_page, ROW row_ID |
[, SEQNO sequence_number
[, SCN value]
[, THREADS n]
[, PASSIVE]

Chapter 1
ADD EXTRACT

1-11

[, PARAMS file_name]
[, REPORT file_name]
[, DESC 'description']
[, CPU number]
[, PRI number]
[, HOMETERM device_name]
[, PROCESSNAME process_name]
[, SOCKSPROXY {host_name | IP_address}[:port] [PROXYCSALIAS credential_store_alias
[PROXYCSDOMAIN credential_store_domain]]]
[, RMTNAME passive_Extract_name]
[, DESC 'description']

group_name

The name of the Extract group. The name of an Extract group can contain up to eight
characters. See Administering Oracle GoldenGate for Windows and UNIX for group
naming conventions.

SOURCEISTABLE

Creates an Extract task that extracts entire records from the database for an initial
load using the Oracle GoldenGate direct load method or the direct bulk load to
SQL*Loader method. If SOURCEISTABLE is not specified, ADD EXTRACT creates an online
change-synchronization process, and one of the other data source options must be
specified. When using SOURCEISTABLE, do not specify any service options. Task
parameters must be specified in the parameter file.
For more information about initial load methods, see Administering Oracle
GoldenGate for Windows and UNIX.

TRANLOG [bsds_name | LRI_NUMBER]
Specifies the transaction log as the data source. Use this option for all databases
except Informix and Teradata. TRANLOG requires the BEGIN option.
(DB2 on z/OS) You can use the bsds_name option for DB2 on a z/OS system to specify
the Bootstrap Data Set file name of the transaction log, though it is not required and is
not used. You do not need to change existing TRANLOG parameters.
(DB2 LUW) You can use the LRI_NUMBER option for DB2 LUW systems to specify the
LRI record value for the checkpoint transaction log.
(Oracle) As of Oracle Standard or Enterprise Edition 11.2.0.3, this mode is known as
classic capture mode. Extract reads the Oracle redo logs directly. See INTEGRATED
TRANLOG for an alternate configuration.

INTEGRATED TRANLOG

(Oracle) Adds this Extract in integrated capture mode. In this mode, Extract integrates
with the database logmining server, which passes logical change records (LCRs)
directly to Extract. Extract does not read the redo log. Before using INTEGRATED
TRANLOG, use the REGISTER EXTRACT command. For information about integrated
capture, see Installing and Configuring Oracle GoldenGate for Oracle Database.

VAM

(Informix, MySQL, and Teradata) Specifies that the Extract API known as the Vendor
Access Module (VAM) will be used to transfer change data to Extract.

EXTFILESOURCE file_name
Specifies an extract file as the data source. Use this option with a secondary Extract
group (data pump) that acts as an intermediary between a primary Extract group and
the target system.
For file_name, specify the relative or fully qualified path name of the file, for example
dirdat\extfile or c:\ggs\dirdat\extfile.

Chapter 1
ADD EXTRACT

1-12

EXTTRAILSOURCE trail_name
Specifies a trail as the data source. Use this option with a secondary Extract group
(data pump) that acts as an intermediary between a primary Extract group and the
target system.
For trail_name, specify the relative or fully qualified path name of the trail, for example
dirdat\aa or c:\ggs\dirdat\aa.

VAMTRAILSOURCE VAM_trail_name
(Teradata) Specifies a VAM trail. Use this option when using Teradata maximum
protection mode.
For VAM_trail_name, specify the relative or fully qualified path name of the VAM trail to
which the primary Extract group is writing. Use a VAM-sort Extract group to read the
VAM trail and send the data to the target system.

BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]}
Specifies a timestamp in the data source at which to begin processing.

NOW

For all databases except DB2 LUW, NOW specifies the time at which the ADD
EXTRACT command is issued.
For DB2 LUW, NOW specifies the time at which START EXTRACT takes effect. It
positions to the first record that approximately matches the date and time. This is
because the only log records that contain timestamps are the commit and abort
transaction records, so the starting position can only be calculated relative to
those timestamps. This is a limitation of the API that is used by Oracle
GoldenGate.
Do not use NOW for a data pump Extract except to bypass data that was captured
to the trail prior to the ADD EXTRACT statement.

yyyy-mm-dd[hh:mi:[ss[.cccccc]]]

A date and time (timestamp) in the given form. For an Oracle Extract in integrated
mode, the timestamp value must be greater than the timestamp at which the
Extract was registered with the database.

• Positioning by timestamp in a SQL Server transaction log is affected by the
following characteristics of SQL Server:

– The timestamps recorded in the SQL Server transaction log use a 3.3333
microsecond (ms) granularity. This level of granularity may not allow
positioning by time between two transactions, if the transactions began in
the same 3.3333 ms time interval.

– Timestamps are not recorded in every SQL Server log record, but only in
the records that begin and commit the transaction, as well as some others
that do not contain data.

– SQL Server timestamps are not from the system clock, but instead are
from an internal clock that is specific to the individual processors in use.
This clock updates several times a second, but between updates it could
get out of sync with the system clock. This further reduces the precision
of positioning by time.

Chapter 1
ADD EXTRACT

1-13

– Timestamps recorded for log backup files may not precisely correspond
to times recorded inside the backup (however this imprecision is less than
a second).

Positioning to an LSN is precise.

• Positioning by timestamp in a Sybase transaction log is affected by the
following characteristics of Sybase:

Sybase only records timestamps in BEGIN and COMMIT records. Regardless of
the actual timestamp that is specified, the start position will be the first record
of the transaction that starts closest to, or at, the specified timestamp. The
Extract report will display the following positions:

Positioning To: This is the specified begin time, for example:

Positioning to begin time Jan 1, 2011 12:13:33 PM.

Positioned To: If the specified timestamp is less than, or equal to, the
timestamp of the transaction log that contains the BEGIN or COMMIT record,
Positioned To Page is displayed as in this example:

2011-01-01 12:13:39 INFO OGG-01516 Positioned to
Page #: 0004460243
Row #: 00111, Jan 1, 2011 12:13:38 PM.

First Record Position: This is the position of the first valid record at, or after,
the Positioned To position, as in this example:

2011-01-01 12:13:39 INFO OGG-01517 Position of first record processed
Page #: 0004460243
Row #: 00111, Jan 1, 2011 12:13:38 PM.

EXTSEQNO sequence_number, EXTRBA relative_byte_address
Valid for a primary Extract in classic capture mode for Oracle, a primary Extract for
NonStop SQL/MX, and a data pump Extract. Not supported for an Oracle Extract in
integrated mode. Specifies either of the following:

• sequence number of an Oracle redo log and RBA within that log at which to begin
capturing data.

• the NonStop SQL/MX TMF audit trail sequence number and relative byte address
within that file at which to begin capturing data. Together these specify the
location in the TMF Master Audit Trail (MAT).

• the file in a trail in which to begin capturing data (for a data pump). Specify the
sequence number, but not any zeroes used for padding. For example, if the trail
file is c:\ggs\dirdat\aa000026, you would specify EXTSEQNO 26. By default,
processing begins at the beginning of a trail unless this option is used.

Contact Oracle Support before using this option. For more information, go to http://
support.oracle.com.

EXTRBA relative_byte_address
Valid for DB2 on z/OS. Specifies the relative byte address within a transaction log at
which to begin capturing data. The required format is 0Xnnn, where nnn is a 1 to 20
digit hexadecimal number (the first character is the digit zero, and the second
character can be upper or lower case letter x).

Chapter 1
ADD EXTRACT

1-14

http://support.oracle.com.
http://support.oracle.com.

EOF

Valid for SQL Server and DB2 for i. Configures processing to start at the end of the
log files (or journals) that the next record will be written to. Any active transactions will
not be captured.

LSN value
Valid for Informix and SQL Server. Specifies the LSN in a transaction log at which to
start capturing data. The specified LSN should exist in a log backup or the online log.
An alias for this option is EXTLSN.
For SQL Server, an LSN is composed of one of these, depending on how the
database returns it:

• Colon separated hex string (8:8:4) padded with leading zeroes and 0X prefix, as in
0X00000d7e:0000036b:01bd

• Colon separated decimal string (10:10:5) padded with leading zeroes, as in
0000003454:0000000875:00445

• Colon separated hex string with 0X prefix and without leading zeroes, as in 0Xd7e:
36b:1bd

• Colon separated decimal string without leading zeroes, as in 3454:875:445

• Decimal string, as in 3454000000087500445

In the preceding, the first value is the virtual log file number, the second is the
segment number within the virtual log, and the third is the entry number.
You can find the LSN for named transactions by using a query like:

select [Current LSN], [Transaction Name], [Begin Time]
 from fn_dblog(null, null)
 where Operation = 'LOP_BEGIN_XACT'
 and [Begin Time] >= 'time'

The time format that you should use in the query should be similar to '2015/01/30
12:00:00.000' and not '2015-01-30 12:00:00.000'.
You can determine the time that a particular transaction started, then find the relevant
LSN, and then position between two transactions with the same begin time.

EOF | LSN value
Valid for DB2 LUW. Specifies a start position in the transaction logs when Extract
starts.

EOF

Configures processing to start at the active LSN in the log files. The active LSN is
the position at the end of the log files that the next record will be written to. Any
active transactions will not be captured.

LSN value
Configures processing to start at an exact LSN if a valid log record exists there. If
one does not exist, Extract will abend. Note that, although Extract might position
to a given LSN, that LSN might not necessarily be the first one that Extract will
process. There are numerous record types in the log files that Extract ignores,
such as DB2 internal log records. Extract will report the actual starting LSN to the
Extract report file.

PAGE data_page, ROW row_ID
Valid for Sybase. Specifies a data page and row that together define a start position in
a Sybase transaction log. Because the start position must be the first record of the

Chapter 1
ADD EXTRACT

1-15

transaction that starts closest to, or at, the specified PAGE and ROW, the Extract report
will display the following positions:

• Positioning To is the position of the record that is specified with PAGE and ROW.

• Positioned To is the position where the first BEGIN record is found at, or after, the
Positioning To position.

• First Record Position is the position of the first valid record at, or after, the
Positioned To position.

SEQNO sequence_number
Valid for DB2 for i. Starts capture at, or just after, a system sequence number, which
is a decimal number up to 20 digits in length.

SCN value

Valid for Oracle. Starts Extract at the transaction in the redo log that has the specified
Oracle system change number (SCN). This option is valid for Extract both in classic
capture and integrated modes. For Extract in integrated mode, the SCN value must
be greater than the SCN at which the Extract was registered with the database. For
more information, see REGISTER EXTRACT.

PARAMS file_name
Specifies the full path name of an Extract parameter file in a location other than the
default of dirprm within the Oracle GoldenGate directory.

REPORT file_name
Specifies the full path name of an Extract report file in a location other than the default
of dirrpt within the Oracle GoldenGate directory.

THREADS n
Valid for Oracle classic capture mode. Specifies the number of producer threads that
Extract maintains to read redo logs.
Required in an Oracle RAC configuration to specify the number of producer threads.
These are the Extract threads that read the different redo logs on the various RAC
nodes. The value must be the same as the number of nodes from which you want to
capture redo data.

PASSIVE

Specifies that this Extract group runs in passive mode and can only be started and
stopped by starting or stopping an alias Extract group on the target system. Source-
target connections will be established not by this group, but by the alias Extract from
the target.
This option can be used for a regular Extract group or a data-pump Extract group. It
should only be used by whichever Extract on the source system is the one that will be
sending the data across the network to a remote trail on the target.
For instructions on how to configure passive and alias Extract groups, see
Administering Oracle GoldenGate for Windows and UNIX.

DESC 'description'

Specifies a description of the group, such as 'Extracts account_tab on Serv1'.
Enclose the description within single quotes. You may use the abbreviated keyword
DESC or the full word DESCRIPTION.

Chapter 1
ADD EXTRACT

1-16

CPU number

Valid for SQL/MX. Specifies the number of the CPU to be used for the process. Valid
values are numbers 0 - 15 and -1 is default, which is assigned 1 higher than the last
Manager started.

PRI number
Valid for SQL/MX. Specifies the Extract process priority. Valid values are numbers are
1 - 199 and -1 is the default, and is the same as the manager process priority.

HOMETERM device_name
Valid for SQL/MX. Specifies the name of the device to be used and must be a
terminal or process. It can be entered in either Guardian $ or OSS /G/xxxxx form. The
default is $zhome or the current session HOMETERM when $zhome is not defined.

PROCESSNAME process_name
Valid for SQL/MX. Specifies the name of the process as alphanumeric string up to five
characters and can be entered in either Guardian $ or OSS /G/xxxxx form. The default
is a system generated process name.

SOCKSPROXY {host_name | IP_address}[:port] [PROXYCSALIAS credential_store_alias
[PROXYCSDOMAIN credential_store_domain]
Use for an alias Extract. Specifies the DNS host name or IP address of the proxy
server. You can use either one to define the host though you must use the IP address
if your DNS server is unreachable. If you are using an IP address, use either an IPv6
or IPv4 mapped address, depending on the stack of the destination system. You must
specify the PROXYCSALIAS. In addition, you can specify the port to use, and the
credential store domain.

RMTNAME passive_extract_name
Use for an alias Extract. Specifies the passive Extract name, if different from that of
the alias Extract.

Examples

Example 1
The following creates an Extract group named finance that extracts database
changes from the transaction logs. Extraction starts with records generated at the
time when the group was created with ADD EXTRACT.

ADD EXTRACT finance, TRANLOG, BEGIN NOW

Example 2
The following creates an Extract group named finance that extracts database
changes from Oracle RAC logs. Extraction starts with records generated at the time
when the group was created. There are four RAC instances, meaning there will be
four Extract threads.

ADD EXTRACT finance, TRANLOG, BEGIN NOW, THREADS 4

Example 3
The following creates an Extract group named finance that extracts database
changes from the transaction logs. Extraction starts with records generated at 8:00 on
January 21, 2011.

ADD EXTRACT finance, TRANLOG, BEGIN 2011-01-21 08:00

Chapter 1
ADD EXTRACT

1-17

Example 4
The following creates an integrated capture Extract group.

ADD EXTRACT finance, INTEGRATED TRANLOG, BEGIN NOW

Example 5
The following creates an Extract group named finance that interfaces with a Teradata
TAM in either maximum performance or maximum protection mode. No BEGIN point is
used for Teradata sources.

ADD EXTRACT finance, VAM

Example 6
The following creates a VAM-sort Extract group named finance. The process reads
from the VAM trail /ggs/dirdat/vt.

ADD EXTRACT finance, VAMTRAILSOURCE dirdat/vt

Example 7
The following creates a data-pump Extract group named finance. It reads from the
Oracle GoldenGate trail c:\ggs\dirdat\lt.

ADD EXTRACT finance, EXTTRAILSOURCE dirdat\lt

Example 8
The following creates an initial-load Extract named load.

ADD EXTRACT load, SOURCEISTABLE

Example 9
The following creates a passive Extract group named finance that extracts database
changes from the transaction logs.

ADD EXTRACT finance, TRANLOG, BEGIN NOW, PASSIVE

Example 10
The following creates an alias Extract group named financeA. The alias Extract is
associated with a passive extract named finance on source system sysA. The
Manager on that system is using port 7800.

ADD EXTRACT financeA, RMTHOST sysA, MGRPORT 7800, RMTNAME finance

Example 11
The following examples create and position Extract at a specific Oracle system
change number (SCN) in the redo log.

ADD EXTRACT finance TRANLOG SCN 123456
ADD EXTRACT finance INTEGRATED TRANLOG SCN 123456

Example 12
The following example creates an alias Extract specifying the host to use.

ADD EXTRACT apmp desc "alias extract" RMTHOST lc01abc MGRPORT 7813 RMTNAME
ppmp SOCKSPROXY lc02def:3128 PROXYCSALIAS proxyAlias

Example 13
The following example creates an Extract on a SQL/MX system.

ADD EXTRACT ext exttcp, CPU 3, PRI 148, HOMETERM $ZTN0.#PTHBP32, PROCESSNAME $ext1

Chapter 1
ADD EXTRACT

1-18

Example 14
The following example creates an Extract on a DB2 LUW system.
ADD EXTRACT extcust, TRANLOG LRI 8066.322711

1.8 ALTER EXTRACT
Use ALTER EXTRACT for the following purposes:

• To change the attributes of an Extract group created with the ADD EXTRACT
command.

• To increment a trail to the next file in the sequence.

• To upgrade to an integrated capture configuration.

• To downgrade from an integrated capture configuration.

• To position any given IBM for i journal at a specific journal sequence number.

• To position any given Informix logical log at a specific LSN.

Before using this command, stop the Extract with the STOP EXTRACT group_name
command.

Syntax

ALTER EXTRACT group_name
[, ADD_EXTRACT_attribute]
[, TRANLOG LRI LRI_number]
[, UPGRADE INTEGRATED TRANLOG]
[, DOWNGRADE INTEGRATED TRANLOG [THREADS number]]
[, THREAD number]
[, LSN value]
[, SCN value]
[, ETROLLOVER]

The following ALTER EXTRACT options are supported for DB2 for i to position Extract for a
given journal:

ALTER EXTRACT {BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]}
[JOURNAL journal_library/journal_name [JRNRCV receiver_library/
 receiver_name]] |
, EOF [JOURNAL journal_library/journal_name
 [JRNRCV receiver_library/receiver_name]] |
, SEQNO sequence_number [JOURNAL journal_library/journal_name
 [JRNRCV receiver_library/receiver_name]]}

group_name

The name of the Extract group that is to be altered.

ADD_EXTRACT_attribute

You can change any of the attributes specified with the ADD EXTRACT command, except
for the following:

• Altering an Extract specified with the EXTTRAILSOURCE option.

• Altering the number of RAC threads specified with the THREADS option.

For these exceptions, delete the Extract group and then add it again.
If using the BEGIN option, do not combine other options in the statement. Issue
separate statements, for example:

Chapter 1
ALTER EXTRACT

1-19

ALTER EXTRACT finance, BEGIN 2011-01-01
ALTER EXTRACT finance, ETROLLOVER
ALTER EXTRACT finance, SCN 789000

If using the SCN or BEGIN option for Integrated Extract, it requires a DBLOGIN, and the
SCN or timestamp value specified cannot be below the outbound server's first SCN or
timestamp. To find the outbound server's first SCN, issue the following command:

INFO EXTRACT group_name, SHOWCH DETAIL

The first SCN value is listed as shown in the following example:

Integrated Extract outbound server first scn: 0.665884 (665884)

TRANLOG LRI LRI_number

(DB2 LUW) You can use this option for DB2 LUW systems to specify the LRI record
value for the checkpoint transaction log.

UPGRADE INTEGRATED TRANLOG

Upgrades the Extract group from classic capture to integrated capture. To support the
upgrade, the transaction log that contains the start of the oldest open transaction must
be available on the source or downstream mining system. For instructions on making
the transition from classic to integrated capture, see the full procedure in
Administering Oracle GoldenGate for Windows and UNIX.

DOWNGRADE INTEGRATED TRANLOG [THREADS number]
Downgrades the Extract group from integrated capture to classic capture. When
downgrading on a RAC system, the THREADS option must be used to specify the
number of RAC threads. On a non-RAC system, you can optionally specify THREADS 1
to cause the downgraded classic Extract to run in threaded mode with one thread,
which is similar to doing an ADD EXTRACT with THREADS 1 on a non-RAC system.
See Administering Oracle GoldenGate for Windows and UNIX for the full procedure
for performing the transition from integrated to classic capture.
To support the downgrade, the transaction log that contains the start of the oldest
open transaction must be available on the source or downstream mining system. For
information about integrated capture, see Installing and Configuring Oracle
GoldenGate for Oracle Database.

THREAD number
Valid for classic capture mode. In an Oracle RAC configuration, alters Extract only for
the specified redo thread. Only one thread number can be specified.

LSN value

Valid for Informix. Repositions Extract to by the specified LSN to begin from the EOF
in the logical log. This option is valid classic capture mode.

SCN value

Valid for Oracle. Repositions Extract to the transaction in the redo log that has the
specified Oracle system change number (SCN). This option is valid both for integrated
capture mode and classic capture mode.

ETROLLOVER

Causes Extract to increment to the next file in the trail sequence when restarting. For
example, if the current file is ET000002, the current file will be ET000003 when Extract
restarts. A trail can be incremented from 000001 through 999999, and then the
sequence numbering starts over at 000000.

Chapter 1
ALTER EXTRACT

1-20

CPU number

Valid for SQL/MX. Specifies the number of the CPU to be used for the process. Valid
values are numbers 0 - 15 and -1 is default, which is assigned 1 higher than the last
Manager started.

PRI number
Valid for SQL/MX. Specifies the Extract process priority. Valid values are numbers are
1 - 199 and -1 is the default, and is the same as the manager process priority.

HOMETERM device_name
Valid for SQL/MX. Specifies the name of the device to be used and must be a
terminal or process. It can be entered in either Guardian $ or OSS /G/xxxxx form. The
default is $zhome or the current session HOMETERM when $zhome is not defined.

PROCESSNAME process_name
Valid for SQL/MX. Specifies the name of the process as alphanumeric string up to five
characters and can be entered in either Guardian $ or OSS /G/xxxxx form. The default
is a system generated process name.

BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]}
[JOURNAL journal_library/journal_name
[JRNRCV receiver_library/ receiver_name]] |
, EOF [JOURNAL journal_library/journal_name
[JRNRCV receiver_library/receiver_name]] |
, SEQNO sequence_number [JOURNAL journal_library/journal_name
[JRNRCV receiver_library/receiver_name]]

These IBM for i options allow journal-specific Extract positioning after the global start
point is issued with ADD EXTRACT. A specific journal position set with ALTER EXTRACT does
not affect any global position that was previously set with ADD EXTRACT or ALTER
EXTRACT; however a global position set with ALTER EXTRACT overrides any specific
journal positions that were previously set in the same Extract configuration.

Note:

SEQNO, when used with a journal in ALTER EXTRACT, is the journal sequence
number that is relative to that specific journal, not the system sequence
number that is global across journals.

Examples

Example 1
The following alters Extract to start processing data from January 1, 2011.

ALTER EXTRACT finance, BEGIN 2011-01-01

Example 2
The following alters Extract to start processing at a specific location in the trail.

ALTER EXTRACT finance, EXTSEQNO 26, EXTRBA 338

Example 3
The following alters Extract in an Oracle RAC environment, and applies the new begin
point only for redo thread 4.

ALTER EXTRACT accounts, THREAD 4, BEGIN 2011-01-01

Chapter 1
ALTER EXTRACT

1-21

Example 4
The following alters Extract in a SQL Server environment to start at a specific LSN.

ALTER EXTRACT sales, LSN 3454:875:445

Example 5
The following alters Extract to increment to the next file in the trail sequence.

ALTER EXTRACT finance, ETROLLOVER

Example 6
The following alters Extract to upgrade to integrated capture.

ALTER EXTRACT finance, UPGRADE INTEGRATED TRANLOG

Example 7
The following alters Extract to downgrade to classic capture in a RAC environment.

ALTER EXTRACT finance, DOWNGRADE INTEGRATED TRANLOG THREADS 3

Example 8
The following alters Extract in an Oracle environment to start processing data from
source database SCN 778899.

ALTER EXTRACT finance, SCN 778899

Example 9
The following shows ALTER EXTRACT for an IBM for i journal start point.

ALTER EXTRACT finance, SEQNO 1234 JOURNAL accts/acctsjrn

Example 10
The following shows ALTER EXTRACT for an IBM for i journal and receiver start point.

ALTER EXTRACT finance, SEQNO 1234 JOURNAL accts/acctsjrn JRNRCV accts/jrnrcv0005

Example 11
The following alters an Extract on a SQL/MX NonStop platform.

ALTER EXTRACT exttcp, CPU 1, PRI 150, HOMETERM /G/zhome, PROCESSNAME $ose01

Example 12
The following example alters an Extract on a DB2 LUW system.
ALTER EXTRACT extcust, TRANLOG LRI 8066.322711

1.9 CLEANUP EXTRACT
Use CLEANUP EXTRACT to delete run history for the specified Extract group. The cleanup
keeps the last run record intact so that Extract can resume processing from where it
left off. Before using this command, stop Extract by issuing the STOP EXTRACT
command.

Syntax

CLEANUP EXTRACT group_name [, SAVE count]

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* cleans up all Extract groups whose names start with T.

Chapter 1
CLEANUP EXTRACT

1-22

SAVE count

Excludes the specified number of the most recent records from the cleanup.

Examples

Example 1
The following deletes all but the last record.

CLEANUP EXTRACT finance

Example 2
The following deletes all but the most recent five records.

CLEANUP EXTRACT *, SAVE 5

1.10 DELETE EXTRACT
Use DELETE EXTRACT to delete an Extract group. This command deletes the checkpoint
file that belongs to the group, but leaves the parameter file intact. You can then re-
create the group or delete the parameter file as needed.

Before using DELETE EXTRACT, stop Extract with the STOP EXTRACT command.

To delete the trail files that are associated with the Extract group, delete them
manually through the operating system.

Syntax

DELETE EXTRACT group_name [!]

group_name

The name of an Extract group or a wildcard specification (*) to specify multiple
groups. For example, T* deletes all Extract groups whose names start with T.

!

(Exclamation point) Deletes all Extract groups associated with a wildcard without
prompting.

1.11 INFO EXTRACT
Use INFO EXTRACT to view the following information.

• The status of Extract (STARTING, RUNNING, STOPPED or ABENDED). STARTING means that
the process has started but has not yet locked the checkpoint file for processing.

• Approximate Extract lag.

• Checkpoint information.

• Process run history.

• The trail(s) to which Extract is writing.

• Status of upgrade to, or downgrade from, Integrated Extract

Extract can be running or stopped when INFO EXTRACT is issued. In the case of a
running process, the status of RUNNING can mean one of the following:

• Active: Running and processing (or able to process) data. This is the normal state
of a process after it is started.

Chapter 1
DELETE EXTRACT

1-23

• Suspended: The process is running, but suspended due to an EVENTACTIONS
SUSPEND action. In a suspended state, the process is not active, and no data can be
processed, but the state of the current run is preserved and can be continued by
issuing the SEND EXTRACT command with the RESUME option in GGSCI. The RBA in
the INFO command reflects the last checkpointed position before the suspend
action. To determine whether the state is active or suspended, issue the SEND
EXTRACT command with the STATUS option.

The basic command displays information only for online (continuous) Extract
processes. Tasks are excluded.

About Extract Lag

The Checkpoint Lag field of the INFO EXTRACT output reflects the lag, in seconds, at the
time that the last checkpoint was written to the trail. For example, if the following is
true...

• Current time = 15:00:00

• Last checkpoint = 14:59:00

• Timestamp of the last record processed = 14:58:00

...then the lag is reported as 00:01:00 (one minute, the difference between 14:58 and
14:59).

A lag value of UNKNOWN indicates that the process could be running but has not yet
processed records, or that the source system's clock is ahead of the target system's
clock (due to clock imperfections, not time zone differences).

For more precise lag information, use LAG EXTRACT (see "LAG EXTRACT").

Syntax

INFO EXTRACT group_name
[, SHOWCH [n]]
[, DETAIL]
[, TASKS | ALLPROCESSES]
[, UPGRADE | DOWNGRADE]

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* shows information for all Extract groups whose names start with T.

SHOWCH [n]

The basic command shows information about the current Extract checkpoints. Extract
checkpoint positions are composed of read checkpoints in the data source and write
checkpoints in the trail. The trail type (RMTTRAIL or EXTTRAIL) is also noted.
Optionally, specify a value for n to include the specified number of previous
checkpoints as well as the current one.

Note:

You might see irregular indents and spacing in the output. This is normal
and does not affect the accuracy of the information.

Chapter 1
INFO EXTRACT

1-24

See Administering Oracle GoldenGate for Windows and UNIX for more information
about checkpoints, including descriptions of the types of checkpoints made by each
process and the internal metadata entries that are included in the display.

DETAIL

Displays the following:

• Extract run history, including start and stop points in the data source, expressed
as a time.

• Trails to which Extract is writing.

TASKS

Displays only Extract tasks. Tasks that were specified by a wildcard argument are not
displayed by INFO EXTRACT.

ALLPROCESSES

Displays all Extract groups, including tasks.

UPGRADE | DOWNGRADE

Valid for an Oracle database only.

• UPGRADE displays whether the Extract can be upgraded from classic capture mode
to integrated capture mode.

• DOWNGRADE displays whether the Extract can be downgraded from integrated
capture mode to classic capture mode.

If Extract cannot be upgraded or downgraded, the reason why is displayed.
A wildcarded Extract name is not allowed with this option.
Before using this command, issue the DBLOGIN command.

Examples

Example 1

INFO EXTRACT fin*, SHOWCH

Example 2

INFO EXTRACT *, TASKS

Example 3 (Oracle only)

INFO EXTRACT finance UPGRADE

Example 4
The following example shows basic INFO EXTRACT output.

EXTRACT EXTCUST Last Started 2011-01-05 16:09 Status RUNNING
Checkpoint Lag 00:01:30 (updated 97:16:45 ago)
Log Read Checkpoint File /rdbms/data/oradata/redo03a.log
 2011-01-05 16:05:17 Seqno 2952, RBA 7598080

Example 5
The following is an example of the output of INFO EXTRACT with DETAIL.

EXTRACT ORAEXT Last Started 2011-01-15 16:16 Status STOPPED
Checkpoint Lag 00:00:00 (updated 114:24:48 ago)
Log Read Checkpoint File C:\ORACLE\ORADATA\ORA920\REDO03.LOG

Chapter 1
INFO EXTRACT

1-25

 2011-01-15 16:17:53 Seqno 46, RBA 3757568

Target Extract Trails:

Trail Name Seqno RBA Max MB Trail Type

 c:\goldengate802\dirdat\xx 0 57465 10 RMTTRAIL
 c:\goldengate802\dirdat\jm 0 19155 10 RMTTRAIL

Extract Source Begin End

C:\ORACLE\ORADATA\ORA920\REDO03.LOG 2011-01-15 16:07 2011-01-15 16:17
C:\ORACLE\ORADATA\ORA920\REDO03.LOG 2011-01-15 15:55 2011-01-15 16:07
C:\ORACLE\ORADATA\ORA920\REDO03.LOG 2011-01-15 15:42 2011-01-15 15:55
C:\ORACLE\ORADATA\ORA920\REDO03.LOG 2011-01-15 15:42 2011-01-15 15:42
 Not Available * Initialized * 2011-01-15 15:42

Current directory C:\GoldenGate802

Report file C:\GoldenGate802\dirrpt\ORAEXT.rpt
Parameter file C:\GoldenGate802\dirprm\ORAEXT.prm
Checkpoint file C:\GoldenGate802\dirchk\ORAEXT.cpe
Process file C:\GoldenGate802\dirpcs\ORAEXT.pce
Error log C:\GoldenGate802\ggserr.log

1.12 KILL EXTRACT
Use KILL EXTRACT to kill an Extract process running in regular or PASSIVE mode. Use
this command only if a process cannot be stopped gracefully with the STOP EXTRACT
command. The Manager process will not attempt to restart a killed Extract process.

Syntax

KILL EXTRACT group_name

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* kills all Extract processes whose group names start with T.

Example

KILL EXTRACT finance

1.13 LAG EXTRACT
Use LAG EXTRACT to determine a true lag time between Extract and the data source. LAG
EXTRACT calculates the lag time more precisely than INFO EXTRACT because it
communicates with Extract directly, rather than reading a checkpoint position in the
trail.

For Extract, lag is the difference, in seconds, between the time that a record was
processed by Extract (based on the system clock) and the timestamp of that record in
the data source.

If the heartbeat functionality is enabled, you can view the associated lags.

Chapter 1
KILL EXTRACT

1-26

Syntax

LAG EXTRACT
[, group_name]
[, GLOBAL]

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* determines lag time for all Extract groups whose names start with T.

GLOBAL

Displays the lags in the GG_LAGS view.

Examples

Example 1

LAG EXTRACT *

Example 2

LAG EXTRACT *fin*

Example 3
The following is sample output for LAG EXTRACT.

Sending GETLAG request to EXTRACT CAPTPCC...
Last record lag: 2 seconds.
At EOF, no more records to process.

1.14 REGISTER EXTRACT
Use REGISTER EXTRACT to register a primary Extract group with an Oracle database to:

• Enable integrated capture mode

• Specify options for integrated Extract from a multitenant container database

• Enable Extract in classic capture mode to work with Oracle Recovery Manager to
retain the archive logs needed for recovery

REGISTER EXTRACT is not valid for a data pump Extract.

To unregister an Extract group from the database, use the UNREGISTER EXTRACT
command (see "UNREGISTER EXTRACT").

See Installing and Configuring Oracle GoldenGate for Oracle Database for more
information about using REGISTER EXTRACT.

Syntax

For classic Extract:

REGISTER EXTRACT group_name LOGRETENTION

For integrated Extract:

RREGISTER EXTRACT <group-name>
 (LOGRETENTION | DATABASE
 ([CONTAINER <container-list> |
 ADD CONTAINER <container-list> |

Chapter 1
REGISTER EXTRACT

1-27

 DROP CONTAINER <container-list>]
 [SCN <scn>]
 [SHARE (AUTOMATIC | <group-name> | NONE)]
 [[NO]OPTIMIZED]
)
)

The default value is NOOPTIMIZED.

group_name

The name of the Extract group that is to be registered. Do not use a wildcard.

DATABASE [
CONTAINER (container[, ...]) |
ADD CONTAINER (container[, ...]) |
DROP CONTAINER (container[, ...])
[

Without options, DATABASE enables integrated capture from a non-CDB database for
the Extract group. In this mode, Extract integrates with the database logmining server
to receive change data in the form of logical change records (LCR). Extract does not
read the redo logs. Extract performs capture processing, transformation, and other
requirements. The DML filtering is performed by the Logmining server. For support
information and configuration steps, see Installing and Configuring Oracle
GoldenGate for Oracle Database.
Before using REGISTER EXTRACT with DATABASE, use the DBLOGIN command for all
Extracts with the privileges granted using the
dbms_goldengate_auth.grant_admin_privilege procedure. If you have a downstream
configuration, then you must also issue the MININGDBLOGIN command. If the source
database you are registering is a CDB database and Extract will fetch data, then
grant_admin_privilege must be called with the CONTAINER=>'ALL' parameter.
After using REGISTER EXTRACT, use ADD EXTRACT with the INTEGRATED TRANLOG option to
create an Extract group of the same name. You must register an Extract group before
adding it.

CONTAINER (container[, ...])

Applies the registration to a list of one or more pluggable databases (containers)
of a multitenant container database (CDB). Specify one or more pluggable
databases as a comma-delimited list within parentheses, for example: CONTAINER
(pdb1, pdb2, pdb3). All of the pluggable databases must exist in the database,
and all names must be explicit, not wildcarded.

ADD CONTAINER (container[, ...])

Adds the specified pluggable database to an existing Extract capture
configuration. Specify one or more pluggable databases as a comma-delimited list
within parentheses, for example: ADD CONTAINER (pdb1, pdb2, pdb3). Before
issuing REGISTER EXTRACT with this option, stop the Extract group.
For Oracle, adding CONTAINERs at particular SCN on an existing Extract is not
supported.

DROP CONTAINER (container[, ...])

Drops the specified pluggable database from an existing Extract capture
configuration. Specify one or more pluggable databases as a comma-delimited list
within parentheses, for example: DROP CONTAINER (pdb1, pdb2, pdb3). Before
issuing REGISTER EXTRACT with this option, stop the Extract group.

Chapter 1
REGISTER EXTRACT

1-28

LOGRETENTION

Valid for classic Extract only. Enables an Extract group in classic capture mode to
work with Oracle Recovery Manager (RMAN) to retain the logs that Extract needs for
recovery. LOGRETENTION is ignored if the Extract group is configured for integrated
capture.
LOGRETENTION creates an underlying Oracle Streams capture process that is dedicated
to the Extract group and has a similar name. This capture is used only for the purpose
of log retention.
The logs are retained from the time that REGISTER EXTRACT is issued, based on the
current database SCN. The log-retention feature is controlled with the LOGRETENTION
option of the TRANLOGOPTIONS parameter.
Before using REGISTER EXTRACT with LOGRETENTION, issue the DBLOGIN command with the
privileges shown in "DBLOGIN".

SCN system_change_number

Registers Extract to begin capture at a specific system change number (SCN) in the
past. Without this option, capture begins from the time that REGISTER EXTRACT is issued.
The specified SCN must correspond to the begin SCN of a dictionary build operation
in a log file. You can issue the following query to find all valid SCN values:

SELECT first_change#
 FROM v$archived_log
 WHERE dictionary_begin = 'YES' AND
 standby_dest = 'NO' AND
 name IS NOT NULL AND
 status = 'A';

When used alone, the SCN value is the beginning SCN of the dictionary build
operation in a log file.
When used in conjunction with SHARE AUTOMATIC or SHARE extract_name, then the
specified SCN is the start_scn for the capture session and has the following
restrictions:

• Should be lesser than or equal to the current SCN.

• Should be greater than the minimum (first SCN) of the existing captures.

{SHARE [
AUTOMATIC |
extract |
NONE]}

Registers the Extract to return to an existing LogMiner data dictionary build with a
specified SCN creating a clone. This allows for faster creation of Extracts by
leveraging existing dictionary builds.
SHARE cannot be used on a CDB.
The following GGSCI commands are supported:

REGISTER EXTRACT extract database SCN #### SHARE AUTOMATIC
REGISTER EXTRACT extract database SCN #### SHARE extract
REGISTER EXTRACT extract database SHARE NONE
REGISTER EXTRACT extract database SCN #### SHARE NONE

Or

REGISTER EXTRACT extract DATABASE SHARE NONE
REGISTER EXTRACT extract DATABASE SCN #### SHARE NONE

Chapter 1
REGISTER EXTRACT

1-29

In contrast, the following GGSCI commands are not supported in a downstream
configuration:

REGISTER EXTRACT extract DATABASE SHARE AUTOMATIC
REGISTER EXTRACT extract DATABASE SHARE extract

AUTOMATIC

Clone from the existing closest capture. If no suitable clone candidate is found,
then a new build is created.

extract

Clone from the capture session associated for the specified Extract. If this is not
possible, then an error occurs the register does not complete.

NONE

Does not clone or create a new build; this is the default.

In a downstream configuration, the SHARE clause must be used in conjunction with the
SCN clause when registering for Extract.

Examples

Example 1

REGISTER EXTRACT sales LOGRETENTION

Example 2

REGISTER EXTRACT sales DATABASE

Example 3

REGISTER EXTRACT sales DATABASE CONTAINER (sales, finance, hr)

Example 4

REGISTER EXTRACT sales DATABASE ADD CONTAINER (customers)

Example 5

REGISTER EXTRACT sales DATABASE DROP CONTAINER (finance)

Example 6

REGISTER EXTRACT sales DATABASE SCN 136589

The beginning SCN of the dictionary build is 136589.

Example 7

REGISTER EXTRACT sales DATABASE SCN 67000 SHARE ext2

The valid start SCN, 67000 in this case; it is not necessarily the current SCN.

Example 8

REGISTER EXTRACT sales DATABASE CONTAINER (sales, finance, hr) SCN 136589

1.15 SEND EXTRACT
Use SEND EXTRACT to communicate with a running Extract process. The request is
processed as soon as Extract is ready to accept commands from users.

Chapter 1
SEND EXTRACT

1-30

Syntax

SEND EXTRACT group_name, {
BR {BRINTERVAL interval |
 BRSTART |
 BRSTOP |
 BRCHECKPOINT {IMMEDIATE | IN n{M|H} | AT yyyy-mm-dd hh:mm[:ss]]}} |
BR BRFSOPTION { MS_SYNC | MS_ASYNC }
CACHEMGR {CACHESTATS | CACHEQUEUES | CACHEPOOL n} |
CACHEMGR CACHEFSOPTION { MS_SYNC | MS_ASYNC } |
FORCESTOP |
FORCETRANS transaction_ID [THREAD n] [FORCE] |
GETLAG |
GETPARAMINFO [parameter_name] [FILE output_file] |
GETTCPSTATS |
LOGEND |
LOGSTATS |
REPORT |
RESUME |
ROLLOVER |
SHOWTRANS [transaction_ID] [THREAD n] [COUNT n]
 [DURATION duration unit] [TABULAR]
 [FILE file_name [DETAIL]] |
SKIPTRANS transaction_ID [THREAD n] [FORCE] |
STATUS |
STOP |
TRACE[2] file_name |
TRACE[2] OFF |
TRACE OFF file_name |
TRACEINIT |
TRANSLOGOPTIONS INTEGRATEDPARAMS(parameter_specification) |
TRANLOGOPTIONS {PREPAREFORUPGRADETOIE | NOPREPAREFORUPGRADETOIE} |TRANLOGOPTIONS
{PURGEORPHANEDTRANSACTIONS | NOPURGEORPHANEDTRANSACTIONS} |
TRANLOGOPTIONS TRANSCLEANUPFREQUENCY minutes |
VAMMESSAGE 'Teradata_command' |
VAMMESSAGE {'ARSTATS' | 'INCLUDELIST [filter]' | 'FILELIST [filter]'| 'EXCLUDELIST
[filter]'} |
VAMMESSAGE 'OPENTRANS'
}

group_name

The name of the Extract group or a wildcard (*) to specify multiple groups. For
example, T* sends the command to all Extract processes whose group names start
with T. If an Extract is not running, an error is returned.

BR {BRINTERVAL interval | BRSTART | BRSTOP |
BRCHECKPOINT {IMMEDIATE | IN n {H|M} | AT yyyy-mm-dd[hh:mm[:ss]]}}
Sends commands that affect the Bounded Recovery mode of Extract.

BRINTERVAL interval
Sets the time between Bounded Recovery checkpoints. Valid values are from 20
minutes to 96 hours specified as M for minutes or H for hours, for example 20M or
2H. The default interval is 4 hours.

BRSTART

Starts Bounded Recovery. This command should only be used under direction of
Oracle Support.

Chapter 1
SEND EXTRACT

1-31

BRSTOP

Stops Bounded Recovery for the run and for recovery. Consult Oracle Support
before using this option. In most circumstances, when there is a problem with
Bounded Recovery, it turns itself off.

BRCHECKPOINT {IMMEDIATE | IN n{H|M} | AT yyyy-mm-dd[hh:mm[:ss]]}}
Sets the point at which a bounded recovery checkpoint is made. IMMEDIATE issues
the checkpoint immediately when SEND EXTRACT is issued. IN issues the checkpoint
in the specified number of hours or minutes from when SEND EXTRACT is issued. AT
issues the checkpoint at exactly the specified time.

BR BRFSOPTION {MS_SYNC | MS_ASYNC}

Performs synchronous/asynchronous writes of the mapped data in Bounded
Recovery.

MS_SYNC

Bounded Recovery writes of mapped data are synchronized for I/O data integrity
completion.

MS_ASYNC

Bounded Recovery writes of mapped data are initiated or queued for servicing.

CACHEMGR {CACHESTATS | CACHEQUEUES | CACHEPOOL n}

Returns statistics about the Oracle GoldenGate memory cache manager. CACHESTATS
should only be used as explicitly directed by Oracle Support.

CACHESTATS

Returns statistics for virtual memory usage and file caching.

CACHEQUEUES

Returns statistics for the free queues only.

CACHEPOOL n

Returns statistics for the specified object pool only.

CACHEMGR CACHEFSOPTION {MS_SYNC | MS_ASYNC}

Performs synchronous or asynchronous writes of the mapped data in the Oracle
GoldenGate memory cache manager.

FORCESTOP

Forces Extract to stop, bypassing any notifications. This command will stop the
process immediately.

FORCETRANS transaction_ID [THREAD n] [FORCE]

Valid for MySQL, Oracle, SQL/MX, SQL Server, Sybase.
Forces Extract to write a transaction specified by its transaction ID number to the trail
as a committed transaction. FORCETRANS does not commit the transaction to the source
database. It only forces the existing data to the trail so that it is processed (with an
implicit commit) by Replicat. You can repeat FORCETRANS for other transactions in order
of their age. Note that forcing a transaction to commit to the trail (and therefore the
target database) may cause data discrepancies if the transaction is rolled back by the
source user applications.
After using FORCETRANS, wait at least five minutes if you intend to issue SEND EXTRACT
with FORCESTOP. Otherwise, the transaction will still be present.
If FORCETRANS is used immediately after Extract starts, you might receive an error
message that asks you to wait and then try the command again. This means that no

Chapter 1
SEND EXTRACT

1-32

other transactions have been processed yet by Extract. Once another transaction is
processed, you will be able to force the transaction to trail.

transaction_ID

The ID of the transaction. Get the transaction ID number with SHOWTRANS or from an
Extract runtime message. Extract ignores any data added to the transaction after
this command is issued. A confirmation prompt must be answered unless FORCE is
used. To use FORCETRANS, the specified transaction must be the oldest one in the
list of transactions shown with SHOWTRANS with the exception of SQL/MX. For
SQL/MX, the transaction does not have to be the oldest outstanding.

THREAD n

Valid only for Oracle.
Use THREAD n to specify which thread generated the transaction in an Oracle RAC
environment if there are duplicate transaction IDs across threads.

FORCE

Valid for Oracle, SQL/MX, SQL Server, Sybase. Not valid for MySQL.
Use FORCE to bypass the confirmation prompt.

GETLAG

Determines a true lag time between Extract and the data source. Returns the same
results as LAG EXTRACT (see "LAG EXTRACT").

GETPARAMINFO [parameter_name] [FILE output_file]
Use GETPARAMINFO to query runtime parameter values of a running instance, including
Extract, Replicat, and Manager. You can query for a single parameter or all
parameters and send the output to the console or a text file

parameter_name

The default behavior is to display all parameters in use, meaning those
parameters that have ever been queried by the application, parameters, and their
current values. If you specify a particular parameter, then the output is filtered by
that name.

FILE output_file
The name of the text file that your output is redirected to.

GETTCPSTATS

Displays statistics about network activity between Extract and the target system. The
statistics include:

• Local and remote IP addresses.

• Inbound and outbound messages, in bytes and bytes per second.

• Number of receives (inbound) and sends (outbound). There will be at least two
receives per inbound message: one for the length and one or more for the data.

• Average bytes per send and receive.

• Send and receive wait time: Send wait time is how long it takes for the write to
TCP to complete. The lower the send wait time, the better the performance over
the network. Receive wait time is how long it takes for a read to complete.
Together, the send and receive wait times provide a rough estimate of network
round trip time. These are expressed in microseconds.

Chapter 1
SEND EXTRACT

1-33

• Status of data compression (enabled or not).

• Uncompressed bytes and compressed bytes: When compared (uncompressed to
compressed), these comprise the compression ratio, meaning how many bytes
there were before and after compression. You can compare the compression ratio
with the bytes that are being compressed per second to determine if the
compression rate is worth the cost in terms of resource and network consumption.

The TCPBUFSIZE option of RMTHOST and RMTHOSTOPTIONS controls the size of the TCP
buffer for uncompressed data. What actually enters the network will be less than this
size if compression is enabled. GETTCPSTATS shows post-compression throughput.

LOGEND

Confirms whether or not Extract has processed all of the records in the data source.

LOGSTATS

Valid only for Oracle.
Instructs Extract to issue a report about the statistics that are related to the processing
of data from the Oracle redo log files. Extract uses an asynchronous log reader that
reads ahead of the current record that Extract is processing, so that the data is
available without additional I/O on the log files. The processing is done through a
series of read/write queues. Data is parsed by a producer thread at the same time
that additional data is being read from the log file by a reader thread. Thus, the reason
for the term "read-ahead" in the statistics.
The statistics are:

• AsyncReader.Buffersn: There is a field like this for each buffer queue that contains
captured redo data. It shows the size, the number of records in it, and how long
the wait time is before the data is processed. These statistics are given for write
operations and read operations on the queue.

• REDO read ahead buffers: The number of buffers that are being used to read
ahead asynchronously.

• REDO read ahead buffer size: The size of each buffer.

• REDO bytes read ahead for current redo: Whether read-ahead mode is on or off
for the current redo log file (value of ON or OFF).

• REDO bytes read: The number of bytes read from all redo log files that are
associated with this instance of Extract.

• REDO bytes read ahead: The number of bytes that were processed by the read-
ahead mechanism.

• REDO bytes unused: The number of read-ahead bytes that were subsequently
dropped as the result of Extract position changes or stale reads.

• REDO bytes parsed: The number of bytes that were processed as valid log data.

• REDO bytes output: The number of bytes that were written to the trail file (not
including internal Oracle GoldenGate overhead).

REPORT

Generates an interim statistical report to the Extract report file. The statistics that are
displayed depend upon the configuration of the STATOPTIONS parameter when used
with the RESETREPORTSTATS | NORESETREPORTSTATS option.

Chapter 1
SEND EXTRACT

1-34

RESUME

Resumes (makes active) a process that was suspended by an EVENTACTIONS SUSPEND
event. The process resumes normal processing from the point at which it was
suspended.

ROLLOVER

Causes Extract to increment to the next file in the trail when restarting. For example, if
the current file is ET000002, the current file will be ET000003 after the command
executes. A trail can be incremented from 000001 through 999999, and then the
sequence numbering starts over at 000000.

SHOWTRANS [transaction_ID] [THREAD n] [COUNT n]
[DURATION duration unit] [TABULAR] | [FILE file_name [DETAIL]]

Valid for MySQL, Oracle, SQL/MX, SQL Server, Sybase.
Displays information about open transactions. SHOWTRANS shows any of the following,
depending on the database type:

• Process checkpoint (indicating the oldest log needed to continue processing the
transaction in case of an Extract restart). See Administering Oracle GoldenGate
for Windows and UNIX for more information about checkpoints.

• Transaction ID

• Extract group name

• Redo thread number

• Timestamp of the first operation that Oracle GoldenGate extracts from a
transaction (not the actual start time of the transaction)

• System change number (SCN)

• Redo log number and RBA

• Status (Pending COMMIT or Running). Pending COMMIT is displayed while a transaction
is being written after a FORCETRANS was issued.

Without options, SHOWTRANS displays all open transactions that will fit into the available
buffer. However, it doesn't display the output user name sometimes for an open active
transaction because the user name is not provided in the begin record from
transaction log.
See the examples for sample output of SHOWTRANS. To further control output, see the
following options.

transaction_ID

Limits the command output to a specific transaction.

THREAD n

Valid only for Oracle.
Constrains the output to open transactions against a specific Oracle RAC thread.
For n, use a RAC thread number that is recognized by Extract.

COUNT n

Constrains the output to the specified number of open transactions, starting with
the oldest one. Valid values are 1 to 1000.

DURATION duration unit

Restricts the output to transactions that have been open longer than the specified
time, where:

Chapter 1
SEND EXTRACT

1-35

duration is the length of time expressed as a whole number.
unit is one of the following to express seconds, minutes, hours, or days:

S|SEC|SECS|SECOND|SECONDS
M|MIN|MINS|MINUTE|MINUTES
H|HOUR|HOURS
D|DAY|DAYS

For Sybase, which does not put a timestamp on each record, the duration is not
always precise and depends on the time information that is stored in the
transaction log for the BEGIN and COMMIT records.

TABULAR

Valid only for Oracle.
Generates output in tabular format similar to the default table printout from
SQL*Plus. The default is field-per-row.

FILE file_name [DETAIL]

Valid only for Oracle and SQL Server. Not valid for MySQL, SQL/MX, Sybase.
Forces Extract to write the transaction information to the specified file. There is no
output to the console.
For Oracle, you can write a hex and plain-character dump of the data by using
FILE with DETAIL. This dumps the entire transaction from memory to the file.
Viewing the data may help you decide whether to skip the transaction or force it to
the trail.

Note:

Basic detail information is automatically written to the report file at intervals
specified by the WARNLONGTRANS CHECKINTERVAL parameter.

SKIPTRANS transaction_ID [THREAD n] [FORCE]

Valid for MySQL, Oracle, SQL/MX, SQL Server, Sybase.
Forces Extract to skip the specified transaction, thereby removing any current data
from memory and ignoring any subsequent data. A confirmation prompt must be
answered unless FORCE is used. After using SKIPTRANS, wait at least five minutes if you
intend to issue SEND EXTRACT with FORCESTOP. Otherwise, the transaction will still be
present. Note that skipping a transaction may cause data loss in the target database.

Note:

To use SKIPTRANS, the specified transaction must be the oldest one in the list
of transactions shown with SHOWTRANS with the exception of SQL/MX. For
SQL/MX, the transaction does not have to be the oldest outstanding. You
can repeat the command for other transactions in order of their age.

transaction_ID

The transaction ID number. Get the ID number with SHOWTRANS or from an Extract
runtime message.

Chapter 1
SEND EXTRACT

1-36

THREAD n

Valid only for Oracle.
Use THREAD n to specify which thread generated the transaction in an Oracle RAC
environment if there are duplicate transaction IDs. SKIPTRANS specifies the
checkpoint index number, not the actual thread number. To specify the correct
thread, issue the INFO EXTRACT group_name SHOWCH command, and then specify the
READ checkpoint index number that corresponds to the thread number that you
want to skip. See the examples for details. See Administering Oracle GoldenGate
for Windows and UNIX for more information about checkpoints.

FORCE

Valid for Oracle, SQL/MX, SQL Server, Sybase. Not valid for MySQL
Use FORCE to bypass the prompt that confirms your intent to skip the transaction.

STATUS

Returns a detailed status of the processing state, including current position and
activity. Possible processing status messages on the Current status line are:

• Delaying – waiting for more data

• Suspended – waiting to be resumed

• Processing data – processing data

• Starting initial load – starting an initial load task

• Processing source tables – processing data for initial load task

• Reading from data source – reading from the data source, such as a source table
or transaction log

• Adding record to transaction list – adding a record to the file memory
transaction list

• At EOF (end of file) – no more records to process

In addition to the preceding statuses, the following status notations appear during an
Extract recovery after an abend event. You can follow the progress as Extract
continually changes its log read position over the course of the recovery.

• In recovery[1] – Extract is recovering to its checkpoint in the transaction log.

• In recovery[2] – Extract is recovering from its checkpoint to the end of the trail.

• Recovery complete – The recovery is finished, and normal processing will resume.

STOP

Stops Extract. If there are any long-running transactions (based on the WARNLONGTRANS
parameter), the following message will be displayed:

Sending STOP request to EXTRACT JC108XT...
There are open, long-running transactions. Before you stop Extract, make the
archives containing data for those transactions available for when Extract
restarts. To force Extract to stop, use the SEND EXTRACT group, FORCESTOP command.
Oldest redo log file necessary to restart Extract is:
Redo Thread 1, Redo Log Sequence Number 150, SCN 31248005, RBA 2912272.

TRACE[2] {file_name | OFF}

Turns tracing on and off. Tracing captures information to the specified file to reveal
processing bottlenecks. Contact Oracle Support for assistance if the trace reveals
significant processing bottlenecks.

Chapter 1
SEND EXTRACT

1-37

TRACE

Captures step-by-step processing information.

TRACE2

Identifies code segments rather than specific steps.

file_name

Specifies the name of the file to which the trace information is written. If a trace is
already running when SEND EXTRACT is issued with TRACE, the existing trace file is
closed and the trace is resumed to the new file specified with file_name.

OFF

Turns off tracing.

TRACE OFF file_name

Turns tracing off only for the specified trace file.

TRACEINIT

Resets tracing statistics back to 0 and then starts accumulating statistics again. Use
this option to track the current behavior of processing, as opposed to historical.

INTEGRATEDPARAMS(parameter_specification)

(Oracle) Supports an integrated Extract. Sends a parameter specification to the
database inbound server while Extract is running in integrated mode. Only one
parameter specification can be sent at a time with this command. You can send
multiple parameter changes, issue multiple SEND EXTRACT commands.
To preserve the continuity of processing, the parameter change is made at a
transaction boundary. For a list of supported inbound server parameters, see
Installing and Configuring Oracle GoldenGate for Oracle Database.

TRANLOGOPTIONS {PREPAREFORUPGRADETOIE | NOPREPAREFORUPGRADETOIE}
(Oracle) Valid when upgrading from Classic to Integrated Extract on Oracle RAC.
When upgrading on Oracle RAC from Classic to Integrated Extract, you must set the
PREPAREFORUPGRADETOIE option before stopping Classic Extract for the upgrade then
wait for the information message in the report file that indicates that the parameter
has taken effect before proceeding with the upgrade. For detailed upgrade
instructions, see Upgrading Oracle GoldenGate for Windows and UNIX.

PREPAREFORUPGRADETOIE

Set PREPAREFORUPGRADETOIE in the Extract parameter file, which requires a restart of
Extract, or you can set it dynamically for a running extract from GGSCI using this
command:
SEND EXTRACT extract_name TRANLOGOPTIONS PREPAREFORUPGRADETOIE

NOPREPAREFORUPGRADETOIE

Dynamically turns off the PREPAREFORUPGRADETOIE option if necessary. The default is
NOPREPAREFORUPGRADETOIE.

TRANLOGOPTIONS {PURGEORPHANEDTRANSACTIONS | NOPURGEORPHANEDTRANSACTIONS}

Valid for Oracle RAC. Enables or disables purging of orphaned transactions that
occur when a node fails and Extract cannot capture the rollback.

Chapter 1
SEND EXTRACT

1-38

TRANLOGOPTIONS TRANSCLEANUPFREQUENCY minutes

Valid for Oracle RAC. Specifies the interval, in minutes, after which Oracle
GoldenGate scans for orphaned transactions and then re-scans to confirm and delete
them. Valid values are from 1 to 43200 minutes. Default is 10 minutes.

VAMMESSAGE 'Teradata_command'
VAMMESSAGE { 'ARSTATS' | 'INCLUDELIST [filter]' | 'EXCLUDELIST [filter]' }
VAMMESSAGE 'OPENTRANS'

Sends a command to the capture API that is used by Extract.
A Teradata command can be any of the following:

'control:terminate'

Stops a replication group. Required before dropping or altering a replication group
in Teradata.

'control:suspend'

Suspends a replication group. Can be used when upgrading Oracle GoldenGate.

'control:resume'

Resumes a replication group after it has been suspended.

'control:copy database.table'

Copies a table from the source database to the target database.

A SQL/MX command can be any of the following. The module returns a response to
GGSCI. The response can be either ERROR or OK along with a response message.

'ARSTATS'

Displays TMF audit reading statistics.

'FILELIST [filter]'

Displays the list of tables for which Extract has encountered data records in the
audit trail that match the selection criteria in the TABLE parameters. The filter
option allows use of a wildcard pattern to filter the list of tables returned.
GETFILELIST can also be used in the same manner.

'EXCLUDELIST [filter]'

Displays the list of tables for which Extract has encountered data records in the
audit trail that do not match the selection criteria in the TABLE parameters. The
filter option allows use of a wildcard pattern to filter the list of tables returned.
Certain system tables that are implicitly excluded will always be present in the list
of excluded tables.

A SQL Server command can be the following:

'OPENTRANS'

Prints a list of open transactions with their transaction ID, start time, first LSN, and
the number of operations they contain.

Examples

Example 1

SEND EXTRACT finance, ROLLOVER

Chapter 1
SEND EXTRACT

1-39

Example 2

SEND EXTRACT finance, STOP

Example 3

SEND EXTRACT finance, VAMMESSAGE 'control:suspend'

Example 4

SEND EXTRACT finance, TRANLOGOPTIONS TRANSCLEANUPFREQUENCY 20

Example 5
This example explains SKIPTRANS. Start with the following SHOWCH output, which shows
that thread 2 is at Read Checkpoint #3. See Administering Oracle GoldenGate for
Windows and UNIX for more information about checkpoints.

INFO extract SHOWCH

Read Checkpoint #3
Oracle RAC Redo Log
Startup Checkpoint (starting position in the data source):
Thread #: 2
Sequence #: 17560
RBA: 65070096
Timestamp: 2011-07-30 20:04:47.000000
SCN: 1461.3499051750 (6278446271206)
Redo File: RAC4REDO/sss11g/onlinelog/group_4.292.716481937

Therefore, SKIPTRANS should be: SKIPTRANS xid THREAD 3.

Example 6

SEND EXTRACT finance, SHOWTRANS COUNT 2

Example 7
The following shows the default output of SHOWTRANS.

Oldest redo log file necessary to restart Extract is:
Redo Thread 1, Redo Log Sequence Number 148, SCN 30816254, RBA 17319664
--
XID : 5.15.52582
Items : 30000
Extract : JC108XT
Redo Thread : 1
Start Time : 2011-01-18:12:51:27
SCN : 20634955
Redo Seq : 103
Redo RBA : 18616848
Status : Running
--
XID : 7.14.48657
Items : 30000
Extract : JC108XT
Redo Thread : 1
Start Time : 2011-01-18:12:52:14
SCN : 20635145
Redo Seq : 103
Redo RBA : 26499088
Status : Running

Chapter 1
SEND EXTRACT

1-40

Example 8
The following shows SHOWTRANS output with TABULAR in effect (view is truncated on right)

XID Items Extract Redo Thread Start Time
5.15.52582 30000 JC108XT 1 2011-01-18:12:52:14

Dumping transaction memory at 2011-01-21 13:36:54.
Record #1:
Header (140 bytes):
 0: 0000 0A4A 0000 FFFF 0000 0000 0057 6C10 ...J.........Wl.
 16: 02FF 3F50 FF38 7C40 0303 4141 414E 5A77 ..?P.8|@..AAANZw
 32: 4141 4641 4141 4B6F 4941 4144 0041 4141 AAFAAAKoIAAD.AAA
 48: 4E5A 7741 4146 4141 414B 6F49 4141 4400 NZwAAFAAAKoIAAD.
 64: 4141 414E 5A77 414A 2F41 4142 7A31 7741 AAANZwAJ/AABz1wA
 80: 4141 0041 4141 4141 4141 4141 4141 4141 AA.AAAAAAAAAAAAA
 96: 4141 4141 4100 0000 0140 FF08 0003 0000 AAAAA....@......
 112: 0000 0000 0000 70FF 0108 FFFF 0001 4A53 p.......JS
 128: 554E 2E54 4355 5354 4D45 5200 UN.TCUSTMER.

Data (93 bytes):
 0: 2C00 0400 0400 0000 0100 0200 0300 0000 ,...............
 16: 0000 0000 0800 0000 1800 0000 2000 0400
 32: 1000 0600 0200 0000 284A 414E 456C 6C6F (JANEllo
 48: 6352 4F43 4B59 2046 4C59 4552 2049 4E43 cROCKY FLYER INC
 64: 2E44 454E 5645 5220 6E43 4F20 7365 7400 .DENVER nCO set.
 80: 0000 0000 0000 0C00 0000 0000 00

When analyzing the summary output of SHOWTRANS, understand that it shows all
currently running transactions on the database (as many as will fit into a predefined
buffer). Extract must track every open transaction, not just those that contain
operations on tables configured for Oracle GoldenGate.

The Items field of the SHOWTRANS output shows the number of operations in the
transaction that have been captured by Oracle GoldenGate so far, not the total
number of operations in the transaction. If none of the operations are for configured
tables, or if only some of them are, then Items could be 0 or any value less than the
total number of operations.

The Start Time field shows the timestamp of the first operation that Oracle GoldenGate
extracts from a transaction, not the actual start time of the transaction itself.

Note:

Command output may vary somewhat from the examples shown due
ongoing enhancements of Oracle GoldenGate.

1.16 START EXTRACT
Use START EXTRACT to start the Extract process. To confirm that Extract has started, use
the INFO EXTRACT or STATUS EXTRACT command. Extract can be started at its normal start
point (from initial or current checkpoints) or from an alternate, user-specified position in
the data source.

Chapter 1
START EXTRACT

1-41

Normal Start Point

Without options, START EXTRACT directs a primary Extract and a data pump Extract to
start processing at one of the following locations in the data source to maintain data
integrity:

• After graceful or abnormal termination: At the first unprocessed transaction in the
data source from the previous run, as represented by the current read checkpoint.

• First-time startup after the group was created: At the start point specified with the
ADD EXTRACT command.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about checkpoints.

Extract also can be started from the command line of the operating system for certain
synchronization configurations. For more information on the proper configuration and
startup method to use for your purposes, see Administering Oracle GoldenGate for
Windows and UNIX.

Alternate Start Point

The ATCSN and AFTERCSN options enable you to establish a logical starting point for a
primary Extract or a data pump, after you establish an approximate physical starting
point with the ADD EXTRACT or ALTER EXTRACT command. For example, in an initial-load
scenario, after a backup is applied to the target, the serial identifier of the last
transaction (such as an Oracle SCN) can be mapped to an Oracle GoldenGate CSN
(commit sequence number) value, which can be used to start Extract with the AFTERCSN
option. By starting with the first transaction after the specified CSN, Extract omits the
transactions that were included in the backup, which would otherwise cause duplicate-
record and missing-record errors.

Before starting Extract with ATCSN or AFTERCSN, you must establish a physical starting
location with one of the following commands:

• ADD EXTRACT with the BEGIN option set to a timestamp that is earlier than the CSN
value specified with ATCSN or AFTERCSN. The transaction log that contains the
timestamp and every log thereafter must be available on the system before Extract
is started.

• ALTER EXTRACT to the sequence number of the log that contains the CSN specified
with ATCSN or AFTERCSN.

Note:

See Administering Oracle GoldenGate for Windows and UNIX for more
information about the values that comprise a CSN for a given database.

Syntax

START EXTRACT group_name [ATCSN csn | AFTERCSN csn]

Chapter 1
START EXTRACT

1-42

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* starts all Extract groups whose names begin with T.

ATCSN csn | AFTERCSN csn
Specifies an alternate start point. (See "Alternate Start Point" for usage instructions.)

ATCSN

Directs Extract to position its start point at the first transaction that has the
specified CSN. Any transactions in the data source that have CSN values less
than the specified one are skipped.

AFTERCSN

Directs Extract to position its start point at the beginning of the first transaction
after the one that has the specified CSN. Any transactions in the data source that
have CSN values that are less than, or equal to, the specified one are skipped.

csn

Specifies a CSN value. Enter the CSN value in the format that is valid for the
database. See Administering Oracle GoldenGate for Windows and UNIX for CSN
formats and descriptions. Extract abends if the format is invalid and writes a
message to the report file. To determine the CSN to supply after an initial load is
complete, use the serial identifier at which the load utility completed. Otherwise,
follow the instructions in the initial load procedure for determining when to start
Extract.

The following are additional guidelines to observe when using ATCSN and AFTERCSN:

• To support starting at, or after, a CSN, the trail must be of Oracle GoldenGate
version 10.0.0 or later, because the CSN is stored in the file header so that it is
available to downstream processes.

• When a record that is specified with a CSN is found, Extract issues a checkpoint.
The checkpoint ensures that subsequent Extract startups begin from the
requested location, and not from a point prior to the requested CSN.

• You must establish a physical start point in the transaction log or trail for Extract
with ADD EXTRACT or ALTER EXTRACT before using ATCSN or AFTERCSN. These options
are intended to be an additional filter after Extract is positioned to a physical
location in the data source.

Examples

Example 1

START EXTRACT finance

Example 2

START EXTRACT finance ATCSN 684993

Example 3

START EXTRACT finance AFTERCSN 684993

Chapter 1
START EXTRACT

1-43

1.17 STATS EXTRACT
Use STATS EXTRACT to display statistics for one or more Extract groups. The output
includes DML and DDL operations that are included in the Oracle GoldenGate
configuration.

To get the most accurate number of operations per second that are being processed,
do the following.

1. Issue the STATS EXTRACT command with the RESET option.

2. Issue the STATS EXTRACT REPORTRATE command. The LATEST STATISTICS field shows
the operations per second.

Note:

The actual number of DML operations executed on a DB2 database might
not match the number of extracted DML operations reported by Oracle
GoldenGate. DB2 does not log update statements if they do not physically
change a row, so Oracle GoldenGate cannot detect them or include them in
statistics.

To get accurate statistics on a Teradata source system where Oracle GoldenGate is
configured in maximum protection mode, issue STATS EXTRACT to the VAM-sort Extract,
not the primary Extract. The primary Extract may contain statistics for uncommitted
transactions that could be rolled back; whereas the VAM-sort Extract reports statistics
only for committed transactions.

Syntax

STATS EXTRACT group_name
[, statistic]
[, TABLE [container. | catalog.]schema.table]
[, TOTALSONLY [container. | catalog.]schema.table]
[, REPORTCHARCONV]
[, REPORTFETCH | NOREPORTFETCH]
[, REPORTRATE time_units]
[, ...]

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* returns statistics for all Extract groups whose names start with T.

statistic

The statistic to be displayed. More than one statistic can be specified by separating
each with a comma, for example STATS EXTRACT finance, TOTAL, DAILY.
Valid values:

TOTAL

Displays totals since process startup.

DAILY

Displays totals since the start of the current day.

Chapter 1
STATS EXTRACT

1-44

HOURLY

Displays totals since the start of the current hour.

LATEST

Displays totals since the last RESET command.

RESET

Resets the counters in the LATEST statistical field.

TABLE [container. | catalog.]schema.table

Displays statistics only for the specified table or a group of tables specified with a
wildcard (*). The table name or wildcard specification must be fully qualified with the
two-part or three-part name, for example hr.emp or *.*.*.

TOTALSONLY [container. | catalog.]schema.table

Summarizes the statistics for the specified table or a group of tables specified with a
wildcard (*). The table name or wildcard specification must be fully qualified with the
two-part or three-part name, for example hr.emp or *.*.*.

REPORTCHARCONV

Use only when TABLE parameters have a TARGET clause and character-set conversion
is performed. The following statistics are added to the STATS output:
Total column character set conversion failure: the number of validation or
conversion failures in the current Extract run.
Total column data truncation: the number of times that column data was truncated in
the current Extract run as the result of character set conversion

REPORTFETCH | NOREPORTFETCH

Controls whether or not statistics about fetch operations are included in the output.
The default is NOREPORTFETCH. See "STATOPTIONS" for defaults that control fetching
and options for altering fetch behavior. The output of REPORTFETCH is as follows:

• row fetch attempts: The number of times Extract attempted to fetch a column
value from the database when it could not obtain the value from the transaction
log.

• fetch failed: The number of row fetch attempts that failed.

• row fetch by key: Valid for Oracle. The number of row fetch attempts that were
made by using the primary key. The default is to fetch by row ID.

REPORTRATE time_units

Displays statistics in terms of processing rate rather than absolute values.
Valid values:

HR
MIN
SEC

Example

Example 1
The following example displays total and hourly statistics per minute for a specific
table, and it also resets the latest statistics and outputs fetch statistics.

STATS EXTRACT finance, TOTAL, HOURLY, TABLE hr.acct,
REPORTRATE MIN, RESET, REPORTFETCH

Chapter 1
STATS EXTRACT

1-45

Example 2
The following is sample output using the LATEST and REPORTFETCH options

STATS EXTRACT ext, LATEST, REPORTFETCH
Sending STATS request to EXTRACT GGSEXT...
Start of Statistics at 2011-01-08 11:45:05.
DDL replication statistics (for all trails):
*** Total statistics since extract started ***
 Operations 3.00
 Mapped operations 3.00
 Unmapped operations 0.00
 Default operations 0.00
 Excluded operations 0.00
Output to ./dirdat/aa:
Extracting from HR.EMPLOYEES to HR.EMPLOYEES:
*** Latest statistics since 2011-01-08 11:36:55 ***
 Total inserts 176.00
 Total updates 0.00
 Total deletes 40.00
 Total discards 0.00
 Total operations 216.00
Extracting from HR.DEPARTMENTS to HR.DEPARTMENTS:
*** Latest statistics since 2011-01-08 11:36:55 ***
No database operations have been performed.
End of Statistics.

1.18 STATUS EXTRACT
Use STATUS EXTRACT to determine whether or not Extract is running. A status of RUNNING
can mean one of the following:

• Active: Running and processing (or able to process) data. This is the normal state
of a process after it is started.

• Suspended: The process is running, but suspended due to an EVENTACTIONS
SUSPEND action. In a suspended state, the process is not active, and no data can be
processed, but the state of the current run is preserved and can be continued by
issuing the RESUME command in GGSCI. The RBA in the INFO command reflects the
last checkpointed position before the suspend action. To determine whether the
state is active or suspended, issue the SEND EXTRACT command with the STATUS
option.

Syntax

STATUS EXTRACT group_name [, TASKS | ALLPROCESSES] [UPGRADE | DOWNGRADE]

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* returns status for all Extract groups whose names begin with T.

TASKS

Displays status only for Extract tasks. By default, tasks are not displayed unless you
specify a single Extract group (without wildcards).

ALLPROCESSES

Displays status for all Extract groups, including tasks.

Chapter 1
STATUS EXTRACT

1-46

UPGRADE | DOWNGRADE

Valid for an Oracle database only. If Extract cannot be upgraded or downgraded, the
reason why is displayed. A wildcarded Extract name is not allowed with this option.
Before using this command, issue the DBLOGIN command.

UPGRADE

Displays whether the Extract can be upgraded from classic capture mode to
integrated capture mode.

DOWNGRADE

Displays whether the Extract can be downgraded from integrated capture mode to
classic capture mode.

Examples

Example 1

STATUS EXTRACT finance

Example 2

STATUS EXTRACT fin*

1.19 STOP EXTRACT
Use STOP EXTRACT to stop Extract gracefully. The command preserves the state of
synchronization for the next time Extract starts, and it ensures that Manager does not
automatically start Extract.

If there are open, long-running transactions when you issue STOP EXTRACT, you might
be advised of the oldest transaction log file that will be needed for that transaction
when Extract is restarted. You can use the SEND EXTRACT option of SHOWTRANS to view
details and data of those transactions and then, if desired, use the SKIPTRANS or
FORCETRANS options to skip the transaction or force it to be written as a committed
transaction to the trail. See "SEND EXTRACT".

Syntax

STOP EXTRACT group_name

group_name

The name of an Extract group or a wildcard (*) to specify multiple groups. For
example, T* stops all Extract processes for groups whose names begin with T.

STOP EXTRACT finance

1.20 UNREGISTER EXTRACT
Use UNREGISTER EXTRACT to remove the registration of an Extract group from an Oracle
database. UNREGISTER EXTRACT is valid only for a primary Extract group. Do not use it for
a data pump Extract.

To register an Extract group with the database, use the REGISTER EXTRACT command.

To upgrade an Extract from classic capture mode to integrated capture mode, use the
ALTER EXTRACT command.

Chapter 1
STOP EXTRACT

1-47

See Installing and Configuring Oracle GoldenGate for Oracle Database for more
information about configuring and registering Oracle GoldenGate for an Oracle
database.

Syntax

UNREGISTER EXTRACT group_name
{DATABASE | LOGRETENTION}

group_name

The name of the Extract group that is to be unregistered from the database. Do not
use a wildcard. This group must currently be registered with the database.

DATABASE

Disables integrated capture mode for the Extract group.
This command removes the database capture (mining) server that has the same
name as the Extract group. For additional information about support for, and
configuration of, the Extract capture modes, see Installing and Configuring Oracle
GoldenGate for Oracle Database.
Before using UNREGISTER EXTRACT with DATABASE, do the following:

1. Stop Extract with the STOP EXTRACT command.

2. Log in to the mining database with the DBLOGIN or MININGDBLOGIN command with the
privileges granted in the dbms_goldengate_auth.grant_admin_privilege procedure.
For local capture, DBLOGIN is required. For downstream capture, DBLOGIN and
MININGDBLOGIN are both required.

3. Delete the Extract group with DELETE EXTRACT.

LOGRETENTION

Disables log retention for the specified Extract group and removes the underlying
Oracle Streams capture process. Use UNREGISTER EXTRACT with LOGRETENTION only if you
no longer want to capture changes with this Extract group. The log-retention feature is
controlled with the LOGRETENTION option of the TRANLOGOPTIONS parameter.
Before using UNREGISTER EXTRACT with LOGRETENTION, stop Extract with the STOP EXTRACT
command. Next, issue the DBLOGIN command with the privileges shown in 1–2.

Examples

Example 1

UNREGISTER EXTRACT sales LOGRETENTION

Example 2

UNREGISTER EXTRACT sales DATABASE

1.21 ADD REPLICAT
Use ADD REPLICAT to create a Replicat group. Unless SPECIALRUN is specified, ADD
REPLICAT creates an online process group that creates checkpoints so that processing
continuity is maintained from run to run.

This command cannot exceed 500 bytes in size for all keywords and input, including
any text that you enter for the DESC option.

Oracle GoldenGate supports up to 5,000 concurrent Extract and Replicat groups per
instance of Oracle GoldenGate Manager. At the supported level, all groups can be

Chapter 1
ADD REPLICAT

1-48

controlled and viewed in full with GGSCI commands such as the INFO and STATUS
commands. Oracle GoldenGate recommends keeping the number of Extract and
Replicat groups (combined) at the default level of 300 or below in order to manage
your environment effectively.

(Oracle) Unless the INTEGRATED option is used, this command creates a Replicat group
in non-integrated mode. For more information about Replicat modes, see "Deciding
Which Apply Method to Use" in Installing and Configuring Oracle GoldenGate for
Oracle Database and "BATCHSQL".

Syntax

ADD REPLICAT group_name
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
{, SPECIALRUN |
 , EXTFILE file_name |
 , EXTTRAIL trail_name}
[, BEGIN {NOW | yyyy-mm-dd[hh:mm[:ss[.cccccc]]]} |
 , EXTSEQNO sequence_number, EXTRBA rba]
{, CHECKPOINTTABLE owner.table | NODBCHECKPOINT}
[, PARAMS file_name]
[, REPORT file_name]
[, DESC 'description']
[, CPU number]
[, PRI number]
[, HOMETERM device_name]
[, PROCESSNAME process_name]

group_name

The name of the Replicat group. The name of a coordinated Replicat group can
contain a maximum of five characters. The name of a regular Replicat group can
contain up to eight characters. See Administering Oracle GoldenGate for Windows
and UNIX for more information about naming conventions for process groups.

INTEGRATED

(Oracle) Creates the Replicat in integrated mode. Without this option, ADD REPLICAT
creates the Replicat in non-integrated (classic) mode. In this mode, the Replicat
process leverages the apply processing functionality that is available within the Oracle
database. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs logical change records (LCR) that represent source database DML or
DDL transactions (in committed order).

• Attaches to a background process in the target database known as a database
inbound server by means of a lightweight streaming interface.

• Transmits the LCRs to the inbound server, which applies the data to the target
database.

Do not use INTEGRATED with the SPECIALRUN or EXTFILE options. INTEGRATED must be used
for an online change-synchronization Replicat that reads from a local EXTTRAIL-
specified trail.
Integrated Replicat does not require a checkpoint table (ADD CHECKPOINTTABLE
command and CHECKPOINTTABLE parameter) or a trace table (TRACETABLE parameter).
Integrated Replicat does not maintain either of these tables.
When in integrated mode, Replicat does not support the following parameters:

Chapter 1
ADD REPLICAT

1-49

• BULKLOAD (Do not use integrated Replicat as an initial-load Replicat.)

• SPECIALRUN

• GENLOADFILES

• SHOWSYNTAX

• MAXTRANSOPS (is ignored)

See Installing and Configuring Oracle GoldenGate for Oracle Database for more
information about configuring and using integrated Replicat.

COORDINATED [MAXTHREADS number]

Creates the Replicat in coordinated mode. A coordinated Replicat is multithreaded to
enable parallel processing. This option adds the coordinator (identified by the group
name itself) and the maximum number of processing threads that are specified by
default or with MAXTHREADS. Dependencies are computed and coordinated by the
coordinator, and the SQL processing is performed by the threads.
Do not use COORDINATED with the SPECIALRUN or EXTFILE options. COORDINATED must be
used for an online change-synchronization Replicat that reads from a local EXTTRAIL-
specified trail. For more information about coordinated Replicat, see Administering
Oracle GoldenGate for Windows and UNIX.

Note:

Note that the group name of a coordinated Replicat can contain only five
characters. See Administering Oracle GoldenGate for Windows and UNIX
for more information about naming conventions for process groups.

MAXTHREADS number

Specifies the maximum number of processing threads that this Replicat group can
spawn. These threads are all created on startup, but depending on what is
specified in the MAP statements in the parameter file, some or all of these threads
will process the workload at any given time. As a general rule, specify twice the
number of threads that you specify in the MAP statements when you partition the
workload. This allows you to add threads in the event that the workload increases,
without having to drop and recreate the Replicat group.
See TABLE | MAPfor more information about how to partition the workload across
threads.
The default number of threads is 25 if MAXTHREADS is omitted. The maximum
number of threads is 500.
MAXTHREADS has a relationship to the MAXGROUPS parameter. MAXGROUPS controls the
maximum number of process groups (Extract and Replicat) allowed per instance
of Oracle GoldenGate. Each Replicat thread is considered a Replicat group in the
context of MAXGROUPS. Therefore, the number of Extract and Replicat groups in the
Oracle GoldenGate instance, plus the value of MAXTHREADS, cannot exceed the
value of MAXGROUPS. For more information, see MAXGROUPS.

SPECIALRUN

Creates a Replicat special run as a task. Either SPECIALRUN, EXTFILE, or EXTTRAIL is
required. When Extract is in SPECIALRUN mode, do not start Replicat with the START
REPLICAT command in GGSCI. Do not use this option with the INTEGRATED or
COORDINATED option.

Chapter 1
ADD REPLICAT

1-50

EXTFILE file_name

Specifies the relative or fully qualified name of an extract file that is specified with
RMTFILE in the Extract parameter file. Do not use this option with the INTEGRATED option.

EXTTRAIL trail_name

Specifies the relative or fully qualified name of a trail that was created with the ADD
RMTTRAIL or ADD EXTTRAIL command.

BEGIN {NOW | yyyy-mm-dd[hh:mm[:ss[.cccccc]]]}

Defines an initial checkpoint in the trail. See Administering Oracle GoldenGate for
Windows and UNIX for more information about checkpoints.

NOW

Begins replicating changes from the time when the group is created.

yyyy-mm-dd[hh:mm[:ss[.cccccc]]]

Begins extracting changes from a specific time.

EXTSEQNO sequence_number

Specifies the sequence number of the file in a trail in which to begin processing data.
Specify the sequence number, but not any zeroes used for padding. For example, if
the trail file is c:\ggs\dirdat\aa000026, you would specify EXTSEQNO 26.
By default, processing begins at the beginning of a trail unless this option is used. To
use EXTSEQNO, you must also use EXTRBA. Contact Oracle Support before using this
option.

EXTRBA rba

Specifies the relative byte address within the trail file that is specified by EXTSEQNO.
Contact Oracle Support before using this option.

CHECKPOINTTABLE owner.table

Not valid for Oracle GoldenGate Applications Adapter or Oracle GoldenGate Big
Data.
Specifies that this Replicat group will write checkpoints to the specified table in the
database. Include the owner and table name, as in hr.hr_checkpoint. This argument
overrides any default CHECKPOINTTABLE specification in the GLOBALS file. The table must
first be added with the ADD CHECKPOINTTABLE command. Do not use this option with the
INTEGRATED option. When NODBCHECKPOINT is specified, an additional checkpoint file for
Java is not created.

NODBCHECKPOINT

Specifies that this Replicat group will not write checkpoints to a checkpoint table. This
argument overrides any default CHECKPOINTTABLE specification in the GLOBALS file. This
argument is required if you do not want to use a checkpoint table with the Replicat
group that is being created. Do not use this option with the INTEGRATED option.

PARAMS file_name

Specifies a parameter file in a location other than the default of dirprm within the
Oracle GoldenGate directory. Specify the fully qualified path name.

REPORT file_name

Specifies the full path name of a process report file in a location other than the default
of dirrpt within the Oracle GoldenGate directory.

Chapter 1
ADD REPLICAT

1-51

DESC 'description'
Specifies a description of the group, such as 'Loads account_tab on Serv2'. Enclose
the description within quotes. You can use either the abbreviated keyword DESC or the
full word DESCRIPTION.

CPU number

Valid for SQL/MX. Specifies the number of the CPU to be used for the process. Valid
values are numbers 0 - 15 and -1 is default, which is assigned 1 higher than the last
Manager started.

PRI number
Valid for SQL/MX. Specifies the Extract process priority. Valid values are numbers are
1 - 199 and -1 is the default, and is the same as the manager process priority.

HOMETERM device_name
Valid for SQL/MX. Specifies the name of the device to be used and must be a
terminal or process. It can be entered in either Guardian $ or OSS /G/xxxxx form. The
default is $zhome or the current session HOMETERM when $zhome is not defined.

PROCESSNAME process_name
Valid for SQL/MX. Specifies the name of the process as alphanumeric string up to five
characters and can be entered in either Guardian $ or OSS /G/xxxxx form. The default
is a system generated process name.

Examples

Example 1

ADD REPLICAT sales, EXTTRAIL dirdat/rt

Example 2

ADD REPLICAT sales, INTEGRATED, EXTTRAIL dirdat/rt

Example 3
This example creates Replicat in coordinated mode. It indicates that up to 100 threads
can be employed in parallel at any given point in processing.

ADD REPLICAT sales, COORDINATED MAXTHREADS 100, EXTTRAIL dirdat/rt

Example 4
This example creates Replicat on a SQL/MX platform.

ADD REPLICAT reptcp, CPU 2, PRI 148, HOMETERM $ZTN0.#PTHBP32, PROCESSNAME $rep1

1.22 ALTER REPLICAT
Use ALTER REPLICAT to change the attributes of a Replicat group that was created with
the ADD REPLICAT command. Before using this command, stop Replicat by issuing the
STOP REPLICAT command. If this is a coordinated Replicat group, the ALTER takes effect
for all threads unless the threadID option is used.

Chapter 1
ALTER REPLICAT

1-52

Note:

ALTER REPLICAT does not support switching from regular Replicat mode to
coordinated mode. You must stop processes, make certain all of the en route
data is applied to the target, roll the trail to a new trail, drop and recreate the
Replicat group in coordinated mode, and then start the processes again.

Syntax

ALTER REPLICAT group_name[threadID], {
 ADD REPLICAT option [, ...] |
 INTEGRATED | NONINTEGRATED, CHECKPOINTTABLE owner.table
}
[, CPU number]
[, PRI number]
[, HOMETERM device_name]
[, PROCESSNAME process_name]

group_name[threadID]

The name of the Replicat group or a thread of a coordinated Replicat that is to be
altered. To specify a thread, use the full thread name, such as ALTER REPLICAT fin003,
EXTSEQNO 53. If a thread ID is not specified, the ALTER takes effect for all threads of the
Replicat group.

ADD REPLICAT option

An ADD REPLICAT option. For a non-integrated Replicat, you can change the description
or any service option that was configured using the ADD REPLICAT command, except for
the CHECKPOINTTABLE and NODBCHECKPOINT options.

INTEGRATED

Switches Replicat from non-integrated mode to integrated mode. Transactions
currently in process are applied before the switch is made. See Administering Oracle
GoldenGate for Windows and UNIX for the full procedure for performing the transition
from non-integrated to integrated Replicat.

NONINTEGRATED, CHECKPOINTTABLE owner.table

(Oracle) Switches Replicat from integrated mode to non-integrated mode.
For CHECKPOINTTABLE, specify the owner and name of a checkpoint table. This table
must be created with the ADD CHECKPOINTTABLE command before issuing ALTER EXTRACT
with NONINTEGRATED.
See Administering Oracle GoldenGate for Windows and UNIX for the full procedure
for performing the transition from integrated Replicat to non-integrated Replicat.
See Installing and Configuring Oracle GoldenGate for Oracle Database for more
information about integrated Replicat.

CPU number

Valid for SQL/MX. Specifies the number of the CPU to be used for the process. Valid
values are numbers 0 - 15 and -1 is default, which is assigned 1 higher than the last
Manager started.

PRI number
Valid for SQL/MX. Specifies the Extract process priority. Valid values are numbers are
1 - 199 and -1 is the default, and is the same as the manager process priority.

Chapter 1
ALTER REPLICAT

1-53

HOMETERM device_name
Valid for SQL/MX. Specifies the name of the device to be used and must be a
terminal or process. It can be entered in either Guardian $ or OSS /G/xxxxx form. The
default is $zhome or the current session HOMETERM when $zhome is not defined.

PROCESSNAME process_name
Valid for SQL/MX. Specifies the name of the process as alphanumeric string up to five
characters and can be entered in either Guardian $ or OSS /G/xxxxx form. The default
is a system generated process name.

Examples

Example 1

ALTER REPLICAT finance, EXTSEQNO 53

Example 2

ALTER REPLICAT finance, EXTRBA 0

Example 3

ALTER REPLICAT finance, BEGIN 2011-01-07 08:00:00

Example 4

ALTER REPLICAT finance, INTEGRATED

Example 5

ALTER REPLICAT finance, NONINTEGRATED, CHECKPOINTTABLE ogg.checkpt

Example 6

ALTER REPLICAT fin001, EXTSEQNO 53

Example 7
The following alters a Replicat on a SQL/MX NonStop platform.

ALTER REPLICAT reptcp, CPU 3, PRI 150, HOMETERM /G/zhome, PROCESSNAME default

1.23 CLEANUP REPLICAT
Use CLEANUP REPLICAT to delete run history for a specified Replicat group. The cleanup
keeps the last run record intact so that Replicat can resume processing from where it
left off.

Before using this command, stop Replicat by issuing the STOP REPLICAT command.

Syntax

CLEANUP REPLICAT group_name[threadID] [, SAVE count]

group_name[threadID]

One of the following:

Chapter 1
CLEANUP REPLICAT

1-54

• group_name: The name of a Replicat group or a wildcard (*) to specify multiple
groups. For example, T* cleans up all Replicat groups whose names begin with T.
If the specified group (or groups) is a coordinated Replicat, the cleanup applies to
all threads.

• group_namethreadID: A thread of a coordinated Replicat, identified by its full name
(group name plus threadID), such as finance003.

SAVE count

Excludes the specified number of the most recent records from the cleanup.

Examples

Example 1
The following deletes all but the last record.

CLEANUP REPLICAT finance

Example 2
The following deletes all but the most recent five records.

CLEANUP REPLICAT *, SAVE 5

Example 3
The following deletes all but the most recent five records for thread 3 of coordinated
Replicat group fin.

CLEANUP REPLICAT fin003, SAVE 5

1.24 DELETE REPLICAT
Use DELETE REPLICAT to delete a Replicat group. This command deletes the checkpoint
file but leaves the parameter file intact. Then you can re-create the group or delete the
parameter file as needed. This command frees up trail files for purging by Manager,
because the checkpoints used by the deleted group are removed (assuming no other
processes are reading the file).

Before using DELETE REPLICAT, stop Replicat with the STOP REPLICAT command.

If this is an integrated Replicat (Oracle only) or a non-integrated Replicat that uses a
checkpoint table, do the following after you stop Replicat:

1. Log into the database by using the DBLOGIN command. DBLOGIN enables DELETE
REPLICAT to delete the checkpoints from the checkpoint table of a non-integrated
Replicat or to delete the inbound server that an integrated Replicat uses. For more
information, see "DBLOGIN".

2. Issue DELETE REPLICAT.

Syntax

DELETE REPLICAT group_name [!]

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* deletes all Replicat groups whose names begin with T.

Chapter 1
DELETE REPLICAT

1-55

!

Use this option to force the Replicat group to be deleted if the DBLOGIN command is not
issued before the DELETE REPLICAT command is issued. If the group is a nonintegrated
Replicat, this option deletes the group's checkpoints from the checkpoint file on disk,
but not from the checkpoint table in the database. If using this option to delete an
integrated Replicat group, you must use the UNREGISTER REPLICAT command to delete
the inbound server from the target database. This option can also be used to ignore
the prompt that occurs when a wildcard specifies multiple groups.

Note:

The basic DELETE REPLICAT command commits an existing Replicat
transaction, but the ! option prevents the commit.

Example

DELETE REPLICAT finance

1.25 INFO REPLICAT
Use INFO REPLICAT to retrieve the processing history of a Replicat group. The output of
this command includes:

• The status of Replicat (STARTING, RUNNING, STOPPED or ABENDED). STARTING means that
the process has started but has not yet locked the checkpoint file for processing.

• (Oracle database) The Replicat mode: non-integrated or integrated.

• Whether or not Replicat is in coordinated mode and, if so, how many threads it
currently uses.

• Approximate Replicat lag.

• The trail from which Replicat is reading.

• Replicat run history, including checkpoints in the trail.

• Information about the Replicat environment.

The basic command displays information only for online (continuous) Replicat groups.
Tasks are excluded.

Replicat can be stopped or running when INFO REPLICAT is issued. In the case of a
running process, the status of RUNNING can mean one of the following:

• Active: Running and processing (or able to process) data. This is the normal state
of a process after it is started.

• Suspended: The process is running, but suspended due to an EVENTACTIONS SUSPEND
action. In a suspended state, the process is not active, and no data can be
processed, but the state of the current run is preserved and can be continued by
issuing the RESUME command in GGSCI. The RBA in the INFO command reflects the
last checkpointed position before the suspend action. To determine whether the
state is active or suspended, issue the SEND REPLICAT command with the STATUS
option.

Chapter 1
INFO REPLICAT

1-56

About Lag

Checkpoint Lag is the lag, in seconds, at the time the last checkpoint was written to the
trail. For example, consider the following example.

• Current time = 15:00:00

• Last checkpoint = 14:59:00

• Timestamp of the last record processed =14:58:00

Assuming these values, the lag is reported as 00:01:00 (one minute, the difference
between 14:58 and 14:59).

A lag value of UNKNOWN indicates that Replicat could be running but has not yet
processed records, or that the source system's clock is ahead of the target system's
clock (due to clock imperfections, not time zone differences). For more precise lag
information, use LAG REPLICAT (see "LAG REPLICAT").

Syntax

INFO REPLICAT group_name[threadID]
[, DETAIL]
[, SHOWCH [n]]
[, TASKS | ALLPROCESSES]

group_name[threadID]

The name of:

• A Replicat group or a wildcard (*) to specify multiple groups. For example, T*
shows information for all Replicat groups whose names begin with T.

• A thread of a coordinated Replicat, identified by its full name. For example, fin003
shows information only for thread 3 of the fin group.

DETAIL

Displays detail information. For an Oracle target, DETAIL displays the name of the
inbound server when Replicat is in integrated mode.
To view LOGBSN information with the DETAIL output, issue the DBLOGIN command before
you issue INFO REPLICAT. If the command is issued for a specific thread ID of a
coordinated Replicat, only the LOGBSN for that thread is displayed. Otherwise, the
LOGBSNs for all threads are displayed. For more information about recovering Extract
by using the LOGBSN, see Administering Oracle GoldenGate for Windows and UNIX.
If Replicat is in coordinated mode, DETAIL will display only the active threads. For
example, if a Replicat named CR was created with a maximum of 15 threads, but only
threads 7-9 are running, INFO REPLICAT group_name with DETAIL will show only the
coordinator thread (CR), CR007, CR008, and CR009. Checkpoints will exist for the other
threads, but they will not be shown in the command output. See the examples for
sample output.

SHOWCH [n]

Displays current checkpoint details, including those recorded to the checkpoint file
and those recorded to the checkpoint table, if one is being used. The database
checkpoint display includes the table name, the hash key (unique identifier), and the
create timestamp.
Specify a value for n to include the specified number of previous checkpoints as well
as the current one.

Chapter 1
INFO REPLICAT

1-57

See Administering Oracle GoldenGate for Windows and UNIX for more information
about checkpoints.

TASKS

Displays only Replicat tasks. Tasks that were specified by a wildcard argument are
not displayed by INFO REPLICAT.

ALLPROCESSES

Displays all Replicat groups, including tasks.

Examples

Example 1

INFO REPLICAT *, DETAIL, ALLPROCESSES

Example 2

INFO REPLICAT *, TASKS

Example 3

INFO REPLICAT fin003, SHOWCH

Example 4
The following shows sample output of INFO REPLICAT with DETAIL.

REPLICAT DELTPCC Last Started 2011-01-21 11:40 Status RUNNING
Checkpoint Lag 00:00:00 (updated 232:39:41 ago)
Log Read Checkpoint File C:\GGS\DIRDAT\RT000000
 2011-01-21 18:54:33.000000 RBA 4735245

Extract Source Begin End
C:\GGS\DIRDAT\RT000000 2011-01-21 18:54 2011-01-21 18:54
C:\GGS\DIRDAT\RT000000 * Initialized * 2011-01-21 18:54

Current directory C:\GGS
Report file C:\GGS\dirrpt\DELTPCC.rpt
Parameter file dirprm\DELTPCC.prm
Checkpoint file C:\GGS\dirchk\DELTPCC.cpr
Checkpoint table GG.CHECKPT
Process file C:\GGS\dirpcs\DELTPCC.pcr
Error log C:\GGS\ggserr.log

Example 5
The following shows INFO EXTRACT with DETAIL for a coordinated Replicat.

GGSCI (sysa) 3> info ra detail

REPLICAT RA Last Started 2013-05-01 14:15 Status RUNNING
COORDINATED Coordinator MAXTHREADS 15
Checkpoint Lag 00:00:00 (updated 00:00:07 ago)
Process ID 11445
Log Read Checkpoint File ./dirdat/withMaxTransOp/bg000001
 2013-05-02 07:49:45.975662 RBA 44704

Lowest Log BSN value: (requires database login)

Active Threads:
 ID Group Name PID Status Lag at Chkpt Time Since Chkpt

Chapter 1
INFO REPLICAT

1-58

1 RA001 11454 RUNNING 00:00:00 00:00:01
2 RA002 11455 RUNNING 00:00:00 00:00:04
3 RA003 11456 RUNNING 00:00:00 00:00:01
5 RA005 11457 RUNNING 00:00:00 00:00:02
6 RA006 11458 RUNNING 00:00:00 00:00:04
7 RA007 11459 RUNNING 00:00:00 00:00:04
Current directory /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1
Report file /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/dirrpt/
RA.rpt
Parameter file /net/slc03jgo/scratch/vara/view_storage/vara_gg7/work/worklv/
oggora1/dirprm/ra.prm
Checkpoint file /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/dirchk/
RA.cpr
Checkpoint table atstgt.checkPoint_ra
Process file /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/dirpcs/
RA.pcr
Error log /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/
ggserr.log

Example 6
The following shows INFO EXTRACT with DETAIL for a threadID of a coordinated Replicat.

GGSCI (sysa) 5> info ra002 detail

REPLICAT RA002 Last Started 2013-05-01 14:15 Status RUNNING
COORDINATED Replicat Thread Thread 2
Checkpoint Lag 00:00:00 (updated 00:00:02 ago)
Process ID 11455
Log Read Checkpoint File ./dirdat/withMaxTransOp/bg000001
 2013-05-01 14:13:37.000000 RBA 44704

Current Log BSN value: (requires database login)

 Extract Source Begin End
 ./dirdat/withMaxTransOp/bg000001 2013-05-01 14:11 2013-05-01
14:13
 ./dirdat/withMaxTransOp/bg000001 2013-05-01 14:11 2013-05-01 14:11
 ./dirdat/withMaxTransOp/bg000001 * Initialized * 2013-05-01 14:11
 ./dirdat/withMaxTransOp/bg000000 * Initialized * First Record
 Current directory /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1
Report file /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/dirrpt/
RA002.rpt
Parameter file /net/slc03jgo/scratch/vara/view_storage/vara_gg7/work/worklv/
oggora1/dirprm/ra.prm
Checkpoint file /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/dirchk/
RA002.cpr
Checkpoint table atstgt.checkPoint_ra
Process file /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/dirpcs/
RA002.pcr
Error log /scratch/vara/view_storage/vara_gg7/work/worklv/oggora1/
ggserr.log

1.26 KILL REPLICAT
Use KILL REPLICAT to kill a Replicat process. Killing a process leaves the most recent
checkpoint in place, and the current transaction is rolled back by the database,
guaranteeing that no data is lost when the process is restarted. The Manager process
will not attempt to restart a killed Replicat process. Use this command only if Replicat
cannot be stopped gracefully with the STOP REPLICAT command.

Chapter 1
KILL REPLICAT

1-59

Syntax

KILL REPLICAT group_name

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* kills all Replicat processes whose group names begin with T.

Example

KILL REPLICAT finance

1.27 LAG REPLICAT
Use LAG REPLICAT to determine a true lag time between Replicat and the trail. LAG
REPLICAT estimates the lag time more precisely than INFO REPLICAT because it
communicates with Replicat directly rather than reading a checkpoint position.

For Replicat, lag is the difference, in seconds, between the time that the last record
was processed by Replicat (based on the system clock) and the timestamp of the
record in the trail.

If the heartbeat functionality is enable, you can view the associated lags. A DBLOGIN is
required to view the heartbeat lag.

Syntax

LAG REPLICAT

[, group_name[threadID]name]
[, GLOBAL]

group_name[threadID]

The name of:

• A Replicat group or a wildcard (*) to specify multiple groups. For example, T*
shows lag for all Replicat groups whose names begin with T.

• A thread of a coordinated Replicat, identified by its full name. For example, fin003
shows lag for thread 3 of coordinated Replicat fin.

GLOBAL

Displays the lags in the GG_LAGS view.

Examples

Example 1

LAG REPLICAT *

Example 2

LAG REPLICAT *fin*

1.28 REGISTER REPLICAT
Use the REGISTER REPLICAT command to register a Replicat group with a target Oracle
database to support integrated Replicat mode. This command should not be

Chapter 1
LAG REPLICAT

1-60

necessary under normal Replicat conditions. The startup registers Replicat with the
target database automatically. Use this command only if Oracle GoldenGate returns a
message that an integrated Replicat is not registered with the database.

Before issuing this command, issue the DBLOGIN command as the Replicat database
user with privileges granted through dbms_goldengate_auth.grant_admin_privilege.

For more information about integrated Replicat, see Installing and Configuring Oracle
GoldenGate for Oracle Database.

Syntax

REGISTER REPLICAT group_name DATABASE

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* registers all Replicat groups whose names begin with T.

DATABASE

Required keyword to register with the target database. Creates a database inbound
server and associates it with the specified Replicat group.

Example

REGISTER REPLICAT sales DATABASE

1.29 SEND REPLICAT
Use SEND REPLICAT to communicate with a starting or running Replicat process. The
request is processed as soon as Replicat is ready to accept commands from users.

Syntax

SEND REPLICAT group_name[threadID],
{
CACHEMGR {CACHESTATS | CACHEQUEUES | CACHEPOOL n} |
FORCESTOP |
GETLAG |
GETPARAMINFO [parameter_name] [FILE output_file] |
HANDLECOLLISIONS | NOHANDLECOLLISIONS [table_spec] |
INTEGRATEDPARAMS(parameter_specification) |
REPORT [HANDLECOLLISIONS [table_spec]] |
RESUME |
STATUS |
STOP |
TRACE[2] [DDLINCLUDE | DDL[ONLY]] file_name |
TRACE[2] OFF |
TRACE OFF file_name |
TRACEINIT |
THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
}

group_name[threadID]

The name of the Replicat group or the name of a specific thread of a coordinated
Replicat, for example fin003. If the command is issued for a specific thread, then an
option that is used applies only to that thread. As an alternative, you can issue SEND
REPLICAT with the THREADS option instead of including threadID with the group name. If
Replicat is not running, an error is returned.

Chapter 1
SEND REPLICAT

1-61

CACHEMGR {CACHESTATS | CACHEQUEUES | CACHEPOOL n}

Returns statistics about the Oracle GoldenGate memory cache manager. CACHEMGR
should only be used as explicitly directed by Oracle Support.

CACHESTATS

Returns statistics for virtual memory usage and file caching.

CACHEQUEUES

Returns statistics for the free queues only.

CACHEPOOL n

Returns statistics for the specified object pool only.

FORCESTOP

Forces Replicat to stop, bypassing any notifications. This command will roll back any
active transaction and stop the process immediately. This command applies to
Replicat as a whole and cannot be used for a specific Replicat thread.

GETLAG

Shows a true lag time between Replicat and the trail. Lag time is the difference, in
seconds, between the time that the last record was processed by Replicat and the
timestamp of the record in the trail. The results are the same as LAG REPLICAT.

GETPARAMINFO [parameter_name] [FILE output_file]
Use GETPARAMINFO to query runtime parameter values of a running instance, including
Extract, Replicat, and Manager. You can query for a single parameter or all
parameters and send the output to the console or a text file

parameter_name

The default behavior is to display all parameters in use, meaning those
parameters that have ever been queried by the application, parameters, and their
current values. If you specify a particular parameter, then the output is filtered by
that name.

FILE output_file
The name of the text file that your output is redirected to.

HANDLECOLLISIONS | NOHANDLECOLLISIONS [table_spec]

Control HANDLECOLLISIONS behavior. Instead of using this option, you can specify the
HANDLECOLLISIONS or NOHANDLECOLLISIONS parameter in the Replicat parameter file. See
"HANDLECOLLISIONS | NOHANDLECOLLISIONS" for more information about
HANDLECOLLISIONS. This command can be sent directly to an individual thread by
means of SEND REPLICAT group_name[threadID] or you can use the THREADS option to
send the command through the coordinator thread to affect multiple threads.

HANDLECOLLISIONS

Use HANDLECOLLISIONS to enable automatic error handling when performing initial
data loads while the source database is active. Make certain to disable
HANDLECOLLISIONS, either by issuing SEND REPLICAT with the NOHANDLECOLLISIONS
option or by removing the parameter from the parameter file, after the initial load
is complete and online data changes have been applied to the target tables.

Chapter 1
SEND REPLICAT

1-62

Note:

The message returned by SEND REPLICAT with HANDLECOLLISIONS, when issued
for a specific Replicat thread, shows that the command set HANDLECOLLISIONS
for all MAP statements, not only the one handled by the specified thread. This
is a known issue. The command actually affects only the MAP statement that
includes the specified thread.

NOHANDLECOLLISIONS

Turns off the HANDLECOLLISIONS parameter but does not remove it from the
parameter file. To avoid enabling HANDLECOLLISIONS the next time Replicat starts,
remove it from the parameter file.

table_spec

table_spec restricts HANDLECOLLISIONS or NOHANDLECOLLISIONSto a specific target
table or a group of target tables specified with a standard wildcard (*).

INTEGRATEDPARAMS(parameter_specification)

(Oracle) Supports an integrated Replicat. Sends a parameter specification to the
database inbound server while Replicat is running in integrated mode. Only one
parameter specification can be sent at a time with this command. To send multiple
parameter changes, issue multiple SEND REPLICAT commands as in the following
example.

SEND REPLICAT myrep INTEGRATEDPARAMS (parallelism 4)SEND REPLICAT myrep
INTEGRATEDPARAMS (max_sga_size 250)

To preserve the continuity of processing, the parameter change is made at a
transaction boundary. For a list of supported inbound server parameters, see
Installing and Configuring Oracle GoldenGate for Oracle Database.

REPORT [HANDLECOLLISIONS [table_spec]]

Generates an interim statistical report to the Extract report file. The statistics that are
displayed depend upon the configuration of the STATOPTIONS parameter when used
with the RESETREPORTSTATS | NORESETREPORTSTATS option. See "STATOPTIONS".

HANDLECOLLISIONS

Shows tables for which HANDLECOLLISIONS has been enabled.

table spec

Restricts the output to a specific target table or a group of target tables specified
with a standard wildcard (*).

RESUME

Resumes (makes active) a process that was suspended by an EVENTACTIONS SUSPEND
event. The process resumes normal processing from the point at which it was
suspended.

STATUS

Returns the current location within the trail and information regarding the current
transaction. Fields output are:

• Processing status (per thread, if Replicat is coordinated)

Chapter 1
SEND REPLICAT

1-63

• Position in the trail file (per thread, if Replicat is coordinated)

• Trail sequence number (per thread, if Replicat is coordinated)

• RBA in trail

• Trail name

Possible processing status messages are:

• Delaying – waiting for more data

• Suspended – waiting to be resumed

• Waiting on deferred apply – delaying processing based on the DEFERAPPLYINTERVAL
parameter.

• Processing data – processing data

• Skipping current transaction – START REPLICAT with SKIPTRANSACTION was used.

• Searching for START ATCSN csn – START REPLICAT with ATCSN was used.

• Searching for START AFTERCSN csn – START REPLICAT with AFTERCSN was used.

• Performing transaction timeout recovery – Aborting current incomplete
transaction and repositioning to start new one (see the TRANSACTIONTIMEOUT
parameter).

• Waiting for data at logical EOF after transaction timeout recovery – Waiting to
receive remainder of incomplete source transaction after a TRANSACTIONTIMEOUT
termination.

• At EOF (end of file) – no more records to process

Possible thread status messages when THREADS is used or the command is issued for
a specific thread are:

• Waiting for consensus stop point: This indicates that the threads are attempting
to synchronize for a barrier transaction.

• Waiting for Watermark: Indicates that all threads are attempting to stop at the
same transaction boundary in the trail, known as the global watermark.

• Waiting on all threads to start up: Indicates that the thread is waiting for all of
the threads to start after a successful barrier transaction or a Replicat startup.

Possible coordinator thread status messages are:

• Waiting for all threads to register: Indicates that the MAP statements are all
being parsed to determine the thread IDs that are specified in them.

• Processing data: Indicates that data is being processed normally.

• Suspended, waiting to be resumed: Indicates that a SEND REPLICAT command with a
SUSPEND request was sent to Replicat.

• At EOF: Indicates that there is no more data in the trail to process.

• Waiting to register MAP statistics: Indicates that Replicat is collecting
processing statistics to send to the report file.

STOP

Stops Replicat gracefully. This command applies to Replicat as a whole and cannot
be used for a specific Replicat thread.

Chapter 1
SEND REPLICAT

1-64

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Issues the command only for the specified thread or threads of a coordinated
Replicat. You can use this option or you can use groupname with threadID. Without
either of those options, the command applies to all active threads.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

TRACE[2] [DDLINCLUDE | DDL[ONLY]] file_name

Turns tracing on and off. Tracing captures information to the specified file to reveal
processing bottlenecks. Tracing also can be enabled by means of the Replicat
parameters TRACE and TRACE2.
If the Replicat is in coordinated mode and TRACE is used with a THREADS list or range, a
trace file is created for each currently active thread. Each file name is appended with
its associated thread ID. This method of identifying trace files by thread ID does not
apply when SEND REPLICAT is issued by groupname with threadID (as in SEND REPLICAT
fin003 TRACE...) or when only one thread is specified with THREADS.
Contact Oracle Support for assistance if the trace reveals significant processing
bottlenecks.

TRACE

Captures step-by-step processing information.

TRACE2

Identifies code segments rather than specific steps.

DDLINCLUDE | DDLONLY

(Replicat only) Enables DDL tracing and specifies how DDL tracing is included in
the trace report.

• DDLINCLUDE includes DDL tracing in addition to regular tracing of transactional
data processing.

• DDL[ONLY] excludes the tracing of transactional data processing and only
traces DDL. This option can be abbreviated to DDL.

file_name

file_name specifies the relative or fully qualified name of a file to which Oracle
GoldenGate logs the trace information. If a trace is already in progress, the
existing trace file is closed and the trace resumes to the file specified with
file_name. For example:

SEND REPLICAT group_name TRACE file_name DDLINCLUDE

If no other options will follow the file name, the FILE keyword can be omitted, for
example:

Chapter 1
SEND REPLICAT

1-65

SEND REPLICAT group_name TRACE DDLINCLUDE file_name

TRACE[2] OFF

Turns off tracing.

TRACE OFF file_name

Turns tracing off only for the specified trace file. This option supports the EVENTACTIONS
feature, where there can be multiple trace files due to multiple EVENTACTIONS
statements.

TRACEINIT

Resets tracing statistics back to 0 and then starts accumulating statistics again. Use
this option to track the current behavior of processing, as opposed to historical.

Examples

Example 1

SEND REPLICAT finance, HANDLECOLLISIONS

Example 2

SEND REPLICAT finance, REPORT HANDLECOLLISIONS fin_*

Example 3

SEND REPLICAT finance, GETLAG

Example 4

SEND REPLICAT finance, INTEGRATEDPARAMS(parallelism 10)

Example 5
The following gets lag for thread 3 of a coordinated Replicat.

SEND REPLICAT fin003, GETLAG

Example 6
The following enables tracing for only thread 1 of a coordinated Replicat. In this case,
because only one thread is being traced, the trace file will not have a threadID
extension. The file name is trace.trc.

SEND REPLICAT fin, TRACE THREADS(1) FILE ./dirrpt/trace.trc

Example 7
The following enables tracing for threads 1,2, and 3 of a coordinated Replicat.
Assuming all threads are active, the tracing produces files trace001, trace002, and
trace003.

SEND REPLICAT fin TRACE THREADS(1-3) FILE ./dirrpt/trace.trc

Example 8
The following enables tracing only for thread 1 of a coordinated Replicat. Because the
command was issued directly for thread 1 without the use of a THREAD clause, the trace
file is named trace (without a thread ID suffix).

SEND REPLICAT fin001 TRACE FILE ./dirrpt/trace.trc

Chapter 1
SEND REPLICAT

1-66

1.30 START REPLICAT
Use START REPLICAT to start Replicat. To confirm that Replicat has started, use the INFO
REPLICAT or STATUS REPLICAT command.

When starting an integrated Replicat group for an Oracle target database, START
REPLICAT automatically registers Replicat with the target database. See Installing and
Configuring Oracle GoldenGate for Oracle Database for more information about
integrated Replicat.

A coordinated Replicat can only be started as a whole. There is no option to start
individual threads. If the prior shutdown of a coordinated Replicat was not clean, the
threads may have stopped at different positions in the trail file. If this happens, START
REPLICAT writes a warning if the parameter file was changed since the prior run and
raises an error if the number of threads was changed. To resolve these problems and
start Replicat again, see Administering Oracle GoldenGate for Windows and UNIX.

Normal Start Point

Replicat can be started at its normal start point (from initial or current checkpoints) or
from an alternate, user-specified position in the trail.

START REPLICAT, without any options, causes Replicat to start processing at one of the
following points to maintain data integrity:

• After graceful or abnormal termination: At the first unprocessed transaction in the
trail from the previous run, as represented by the current read checkpoint.

• First-time startup after the group was created: From the beginning of the active
trail file (seqno 0, rba 0).

See Administering Oracle GoldenGate for Windows and UNIX for more information
about checkpoints.

Alternate Start Point

The SKIPTRANSACTION, ATCSN, and AFTERCSN options of START REPLICAT cause Replicat as
a whole, or specific threads of a coordinated Replicat, to begin processing at a
transaction in the trail other than the normal start point. Use these options to:

• Specify a logical recovery position when an error prevents Replicat from moving
forward in the trail. Replicat can be positioned to skip the offending transaction or
transactions, with the understanding that the data will not be applied to the target.

• Skip replicated transactions that will cause duplicate-record and missing-record
errors after a backup is applied to the target during an initial load. These options
cause Replicat to discard transactions that occurred earlier than the most recent
set of changes that were captured in the backup.You can map the value of the
serial identifier that corresponds to the completion of the backup to a CSN value,
and then start Replicat to begin applying transactions from the specified CSN
onward.

Chapter 1
START REPLICAT

1-67

Note:

Skipping a transaction, or starting at or after a CSN, might cause
Replicat to start more slowly than normal, depending on how much data
in the trail must be read before arriving at the appropriate transaction
record. To view the startup progress, use the SEND REPLICAT command
with the STATUS option. To omit the need for Replicat to read through
transactions that ultimately will be skipped, you can use the ATCSN or
AFTERCSN option when starting Extract and the data pumps, so that those
transactions are omitted from the trail. See "START EXTRACT".

See Administering Oracle GoldenGate for Windows and UNIX for more
information about performing an initial load.

Syntax

START REPLICAT group_name
[SKIPTRANSACTION | {ATCSN csn | AFTERCSN csn}]
[FILTERDUPTRANSACTIONS | NOFILTERDUPTRANSACTIONS]
[THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* starts all Replicat groups whose names begin with T.

SKIPTRANSACTION

Causes Replicat to skip the first transaction after its expected startup position in the
trail. All operations from that first transaction are excluded.
If the MAXTRANSOPS parameter is also being used for this Replicat, it is possible that the
process will start to read the trail file from somewhere in the middle of a transaction. In
that case, the remainder of the partial transaction is skipped, and Replicat resumes
normal processing from the next begin-transaction record in the file. The skipped
records are written to the discard file if the DISCARDFILE parameter is being used;
otherwise, a message is written to the report file that is similar to:

User requested START SKIPTRANSACTION. The current transaction will be skipped.
Transaction ID txid, position Seqno seqno, RBA rba

SKIPTRANSACTION is valid only when the trail that Replicat is reading is part of an online
change synchronization configuration (with checkpoints). Not valid for task-type initial
loads (where SPECIALRUN is used with ADD REPLICAT).

ATCSN csn | AFTERCSN csn
Sets a user-defined start point at a specific CSN. When ATCSN or AFTERCSN is used, a
message similar to one of the following is written to the report file:

User requested start at commit sequence number (CSN) csn-string

User requested start after commit sequence number (CSN) csn-string

General information about these options:

Chapter 1
START REPLICAT

1-68

• Valid only when the trail that Replicat is reading is part of an online change
synchronization configuration (with checkpoints). Not valid for task-type initial
loads (where SPECIALRUN is used with ADD REPLICAT).

• To support starting at, or after, a CSN, the trail must be of Oracle GoldenGate
version 10.0.0 or later, because the CSN is stored in the first trail record of each
transaction. If Replicat is started with AFTERCSN against an earlier trail version,
Replicat will abend and write an error to the report stating that the trail format is
not supported.

ATCSN

Causes Replicat to start processing at the transaction that has the specified
CSN. Any transactions in the trail that have CSN values that are less than the
specified one are skipped.

AFTERCSN

Causes Replicat to start processing at the transaction that occurred after the
one with the specified CSN. Any transactions in the trail that have CSN
values that are less than, or equal to, the specified one are skipped.

csn

Specifies a CSN value. Enter the CSN value in the format that is valid for the
database. See Administering Oracle GoldenGate for Windows and UNIX for
CSN formats and descriptions. Replicat abends if the format is invalid and
writes a message to the report file. To determine the CSN to supply after an
initial load is complete, use the commit identifier at which the load utility
completed the load. Otherwise, follow the instructions in the initial load
procedure for determining when to start Replicat.

FILTERDUPTRANSACTIONS | NOFILTERDUPTRANSACTIONS

Causes Replicat to ignore transactions that it has already processed. Use when
Extract was repositioned to a new start point (see the ATCSN or AFTERCSN option of
"START EXTRACT") and you are confident that there are duplicate transactions in the
trail that could cause Replicat to abend. This option requires the use of a checkpoint
table. If the database is Oracle, this option is valid only for Replicat in nonintegrated
mode. In case of Integrated mode and automatic target trail file regeneration, the
Integrated mode handles the duplicate transactions transparently. The default is
FILTERDUPTRANSACTIONS.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Valid for SKIPTRANSACTION, ATCSN, and AFTERCSN when Replicat is in coordinated mode.
Not valid for START REPLICAT without those options. Starts the specified Replicat thread
or threads at the specified location.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Chapter 1
START REPLICAT

1-69

Examples

Example 1

START REPLICAT finance

Example 2
The following starts Replicat at an Oracle-specific CSN.

START REPLICAT finance, ATCSN 6488359

Example 3
The following starts Replicat at a SQL Server-specific CSN after the one with the
specified CSN.

START REPLICAT finance, AFTERCSN 0X000004D2:0000162E:0009

Example 4
The following causes threads 4 and 5 of a coordinated Replicat to skip the first
transaction after their last checkpoint when Replicat is started. If this were a 10-thread
coordinated Replicat, threads 0-3 and 6-10 would all start at the normal start point,
that of their last checkpoint.

START REPLICAT fin SKIPTRANSACTION THREADS(4-5)

Example 5
The following example causes threads 1-3 of a coordinated Replicat to start at CSN
6488359, threads 9-10 to start after CSN 6488360, and threads 7 and 8 to skip the
first transaction after its last checkpoint.

START REPLICAT fin ATCSN 6488359 THREADS(1-3), AFTERCSN 6488360 THREADS(9-10),
SKIPTRANSACTION THREADS(7,8)

1.31 STATS REPLICAT
Use STATS REPLICAT to display statistics for one or more Replicat groups. Thread
statistics for a coordinated Replicat group are provided as follows.

Thread Lag Gap
The difference between the maximum lag and the minimum lag among all threads.

Coordinated Total DDLs
The total number of coordinated DDL transactions.

Coordinated Total PK-Update Transactions
The total number of coordinated transactions that involved an update to a primary
key.

Coordinated Total EMI Transactions
The total number of coordinated EVENTACTIONS events.

Total Transactions with User-requested Coordination
The total number of coordinations that were explicitly requested in the configuration
by means of the COORDINATED option of the MAP parameter.

Average Coordination Time
The average time (in seconds) spent in coordination among all threads.

Chapter 1
STATS REPLICAT

1-70

Syntax

STATS REPLICAT group_name
[, statistic]
[, TABLE [container. | catalog.]schema.table]
[, TOTALSONLY [container. | catalog.]schema.table]
[, REPORTCDR]
[, REPORTCHARCONV]
[, REPORTDETAIL | NOREPORTDETAIL]
[, REPORTRATE {HR | MIN | SEC}]
[, ...]

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* shows statistics for all Replicat groups whose names begin with T.

statistic

The statistic to be displayed. More than one statistic can be specified by separating
each with a comma, for example STATS REPLICAT finance, TOTAL, DAILY.
Valid values are:

TOTAL

Displays totals since process startup.

DAILY

Displays totals since the start of the current day.

HOURLY

Displays totals since the start of the current hour.

LATEST

Displays totals since the last RESET command.

RESET

Resets the counters in the LATEST statistical field.

TABLE [container. | catalog.]schema.table]

Displays statistics only for the specified table or a group of tables specified with a
wildcard (*). The table name or wildcard specification must be fully qualified with the
two-part or three-part name, for example hr.emp or *.*.*.

TOTALSONLY [container. | catalog.]schema.table]

Summarizes the statistics for the specified table or a group of tables specified with a
wildcard (*). The table name or wildcard specification must be fully qualified with the
two-part or three-part name, for example hr.emp or *.*.*.

REPORTCDR

Shows statistics for Conflict Detection and Resolution. Statistics include:

• Total CDR conflicts

• CDR resolutions succeeded

• CDR resolutions failed

• CDR INSERTROWEXISTS conflicts

• CDR UPDATEROWEXISTS conflicts

Chapter 1
STATS REPLICAT

1-71

• CDR UPDATEROWMISSING conflicts

• CDR DELETEROWEXISTS conflicts

• CDR DELETEROWMISSING conflicts

REPORTCHARCONV

Reports statistics for character validation when character-set conversion is performed.
The following statistics are added to the STATS output:
Total column character set conversion failure: the number of validation or
conversion failures in the current Replicat run.
Total column data truncation: the number of times that column data was truncated in
the current Replicat run as the result of character set conversion

REPORTDETAIL | NOREPORTDETAIL

Controls whether or not the output includes operations that were not replicated as the
result of collision errors. These operations are reported in the regular statistics
(inserts, updates, and deletes performed) plus as statistics in the detail display, if
enabled. For example, if 10 records were insert operations and they were all ignored
due to duplicate keys, the report would indicate that there were 10 inserts and also 10
discards due to collisions. The default is REPORTDETAIL. See also "STATOPTIONS".

REPORTRATE {HR | MIN | SEC}

Displays statistics in terms of processing rate rather than absolute values.

HR

Sets the processing rate in terms of hours.

MIN

Sets the processing rate in terms of minutes.

SEC

Sets the processing rate in terms of seconds.

Examples

Example 1
The following example displays total and hourly statistics per minute for a specific
table, and it also resets the latest statistics. Statistics for discarded operations are not
reported.

STATS REPLICAT finance, TOTAL, HOURLY, TABLE sales.acct,
REPORTRATE MIN, RESET, NOREPORTDETAIL

Example 2
The following example displays the same statistics as the previous example, but for
thread 3 of a coordinated Replicat group.

STATS REPLICAT fin003, TOTAL, HOURLY, TABLE sales.acct,
REPORTRATE MIN, RESET, NOREPORTDETAIL

1.32 STATUS REPLICAT
Use STATUS REPLICAT to determine whether or not Replicat is running. There are the
following four possible statuses:

Chapter 1
STATUS REPLICAT

1-72

Abended
The process abnormally ended.

Running
Means one of the following:

• Active: Running and processing (or able to process) data. This is the normal
state of a process after it is started.

• Suspended: The process is running though suspended due to an EVENTACTIONS
SUSPEND action. In a suspended state, the process is not active, and no data can
be processed, but the state of the current run is preserved and can be continued
by issuing the RESUME command in GGSCI. The RBA in the INFO command reflects
the last checkpointed position before the suspend action. To determine whether
the state is active or suspended, issue a SEND EXTRACT|REPLICAT group_name STATUS
command. For more information, see SEND EXTRACT or SEND REPLICAT.

Starting
The process is starting.

Stopped
The process was stopped.

Syntax

STATUS REPLICAT group_name
[, TASKS]
[, ALLPROCESSES]

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* shows status for all Replicat groups whose names begin with T.

TASKS

Displays status only for Replicat tasks. By default, tasks are not displayed unless you
specify a single Replicat group (without wildcards).

ALLPROCESSES

Displays status for all Replicat groups, including tasks.

Examples

Example 1

STATUS REPLICAT finance

Example 2

STATUS REPLICAT fin*

1.33 STOP REPLICAT
Use STOP REPLICAT to stop Replicat cleanly. This command preserves the state of
synchronization for the next time Replicat starts, and it ensures that Manager does not
automatically start Replicat.

In a clean shutdown of a coordinated Replicat, the coordinator thread attempts to stop
all of the threads on the same transaction boundary. If the shutdown of a coordinated
Replicat is not clean, the threads may stop at different positions in the trail file. If this

Chapter 1
STOP REPLICAT

1-73

happens, START REPLICAT writes a warning if the parameter file was changed since the
prior run and raises an error if the number of threads was changed. To resolve these
problems and start Replicat again, see Administering Oracle GoldenGate for Windows
and UNIX.

Syntax

STOP REPLICAT group_name [!]

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* stops all Replicat groups whose names begin with T.

!

(Exclamation point) Stops Replicat immediately. The transaction is aborted and the
process terminates.

Example

STOP REPLICAT finance

1.34 SYNCHRONIZE REPLICAT
Use SYNCHRONIZE REPLICAT to return all of the threads of a coordinated Replicat to the
same position in the trail file after an unclean shutdown. This position is the maximum
checkpoint position of all of the threads, in other words, the most recent trail record
processed among all of the threads. When SYNCHRONIZE REPLICAT is issued, all threads
are started and allowed to process transactions until they reach the maximum
checkpoint position, and then Replicat stops.

For more information about how to use SYNCHRONIZE REPLICAT to recover a coordinated
Replicat after an unclean shutdown, or to enable repartitioning of data among different
threads, see Administering Oracle GoldenGate for Windows and UNIX.

Syntax

SYNCHRONIZE REPLICAT group_name

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* synchronizes the threads of all Replicat groups whose names begin with
T. The threads synchronize to the same position within their group, not to the same
position across all Replicat groups being synchronized with this command.

Example

SYNCHRONIZE REPLICAT repA

1.35 UNREGISTER REPLICAT
Use the UNREGISTER REPLICAT command to unregister a Replicat group from a target
Oracle database to disable integrated Replicat mode. Use this command only if you
forcibly deleted the Replicat group. UNREGISTER REPLICAT should not be used when
deleting Replicat in the normal manner, where you first stop Replicat and then issue
the DELETE REPLICAT command.

Chapter 1
SYNCHRONIZE REPLICAT

1-74

Before issuing this command, issue the DBLOGIN command as the Replicat database
user with privileges granted through dbms_goldengate_auth.grant_admin_privilege.

For more information about integrated Replicat, see Installing and Configuring Oracle
GoldenGate for Oracle Database.

Syntax

UNREGISTER REPLICAT group_name DATABASE

group_name

The name of a Replicat group or a wildcard (*) to specify multiple groups. For
example, T* unregisters all Replicat groups whose names begin with T.

DATABASE

Required keyword to unregister from the target database. Removes the database
inbound server that is associated with this Replicat.

Example

UNREGISTER REPLICAT sales DATABASE

1.36 ER
Use the ER commands to control multiple Extract and Replicat groups as a unit. Use
them with wildcards to affect every Extract and Replicat group that satisfies the
wildcard.

Syntax

COMMAND ER wildcard_specification

COMMAND

Can be any of the following:

INFO
KILL
LAG
SEND
START
STATS
STATUS
STOP

For descriptions and optional documentation. For a list of command categories, see
"Summary of Oracle GoldenGate Commands".

ER

A required keyword indicating that the command affects both Extract (E) and Replicat
(R).

wildcard_specification

The wildcard specification for the groups that you want to affect with the command.
Oracle GoldenGate will automatically increase internal storage to track up to 100,000
wildcard entries.

Chapter 1
ER

1-75

Example

The following example starts and then stops the Extract and Replicat groups whose
names contain the letter X.

START ER *X*
STOP ER *X*

1.37 CREATE WALLET
Use the CREATE WALLET command to create a master-key wallet. This wallet stores the
master key that is used by Oracle GoldenGate processes to encrypt the encryption
keys that secure data over the network and in trail files and other Oracle GoldenGate
files that store sensitive data.

This command creates an empty wallet that remains open for the duration of the
GGSCI session. The GGSCI console returns messages similar to the following,
indicating that the wallet is present and open.

Created wallet at location './dirwlt'.
Opened wallet at location './dirwlt'.

The wallet is created as an autologin wallet (file extension .sso) to support automated
restarts of Oracle GoldenGate processes without requiring human intervention to
supply the necessary decryption passwords. The wallet file is created in the directory
specified by the GLOBALS parameter WALLETLOCATION, if present, or otherwise in the
default location of dirwlt in the Oracle GoldenGate installation directory.

The wallet is in a platform-independent format. It must either be stored on a shared file
system that is accessible by all systems in the Oracle GoldenGate environment, or it
must be copied to all of those systems initially and every time the master key changes.

The wallet is permanent within Oracle GoldenGate, but can be manually deleted with
the appropriate command in the operating system, if that becomes necessary.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

See "ADD MASTERKEY" to add a master key value to the wallet.

Syntax

CREATE WALLET

1.38 OPEN WALLET
Use the OPEN WALLET command to open a master-key wallet. Opening a wallet decrypts
the contents and loads them into the GGSCI memory. This command must be used
before using any of the commands that add, renew, or delete the master keys in the
wallet.

The wallet remains open for the rest of the GGSCI session. The name of the wallet to
be opened is taken from the GLOBALS parameter WALLETLOCATION, if present, or otherwise
it is opened from the default location in the Oracle GoldenGate installation directory.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

Chapter 1
CREATE WALLET

1-76

Syntax

OPEN WALLET

1.39 PURGE WALLET
Use the PURGE WALLET command to permanently remove master key versions from the
master-key wallet. Only the versions that are marked for deletion by the DELETE
MASTERKEY command are removed. The purge is not reversible.

Note:

For Oracle GoldenGate deployments using a shared wallet, the older
versions of the master key should be retained after the master key is
renewed until all processes are using the newest version. The time to wait
depends on the topology, latency, and data load of the deployment. A
minimum wait of 24 hours is a conservative estimate, but you may need to
perform testing to determine how long it takes for all processes to start using
a new key. To determine whether all of the processes are using the newest
version, view the report file of each Extract immediately after renewing the
master key to confirm the last SCN that was mined with the old key. Then,
monitor the Replicat report files to verify that this SCN was applied by all
Replicat groups. At this point, you can delete the older versions of the master
key.

The OPEN WALLET command must be used before using this command or any of the
commands that add, renew, or delete the master keys in the wallet.

After purging a wallet that is not maintained centrally on shared storage, the updated
wallet can be copied to all of the other systems in the Oracle GoldenGate configuration
that use this wallet, so that no purged keys remain in the configuration. Before doing
so, Extract must be stopped and then all of the downstream Oracle GoldenGate
processes must be allowed to finish processing their trails and then be stopped. After
the wallet is copied into place, the processes can be started again. For detailed
instructions, see Administering Oracle GoldenGate for Windows and UNIX.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

Syntax

PURGE WALLET

1.40 ADD MASTERKEY
Use the ADD MASTERKEY command to add a master key to a master-key wallet. The
master key is used by Extract and Replicat to encrypt the encryption keys that secure
data being sent across the network and in the trail files, so that those keys can be sent
to, and used, by downstream processes. The master key omits the need to use wallet
storage for the keys that actually encrypt the data.

Chapter 1
PURGE WALLET

1-77

The master-key wallet must be open to add a key. Use the CREATE WALLET or OPEN
WALLET command to open a wallet. The wallet remains open throughout the same
GGSCI session in which the command was issued.

The master key is generated as a random sequence of bits. The length is 256 bits by
default. The key name is OGG_DEFAULT_MASTERKEY.

The successful completion of this command returns a message similar to the following:

Masterkey 'OGG_DEFAULT_MASTERKEY' added to wallet at location './dirwlt'.

After adding a master key to a wallet that is not maintained centrally on shared
storage, the updated wallet must be copied to all of the other systems in the Oracle
GoldenGate configuration that use this wallet. Before doing so, Extract must be
stopped and then all of the downstream Oracle GoldenGate processes must be
allowed to finish processing their trails and then be stopped. After the wallet is copied
into place, the processes can be started again. For detailed instructions, see
Administering Oracle GoldenGate for Windows and UNIX.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

Syntax

ADD MASTERKEY

Example

This example creates a new master key.

ADD MASTERKEY

1.41 INFO MASTERKEY
Use the INFO MASTERKEY command to view the contents of a currently open master-key
wallet. The default output shows the version history of the master key, with the
creation date of a version and the status of the version. The status can be one of the
following:

• Current: Indicates this is the active version of the master key.

• Available: Indicates this version is not the current one but can be made active, if
needed.

• Deleted: Indicates that this version is marked to be deleted when the PURGE WALLET
command is issued.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

Syntax

INFO MASTERKEY [VERSION version]

VERSION version

Shows detailed information about a specific version of the master key. The output
includes the original creation date, the latest renewal date, the status, and the hash of
AES (Advanced Encryption Standard) Key.

Chapter 1
INFO MASTERKEY

1-78

Examples

Example 1
The following example shows the default input without any options.

INFO MASTERKEY

Masterkey Name: OGG_DEFAULT_MASTERKEY
Creation Date: Mon Aug 27 10:00:40 2012
Version: Creation Date: Status:
1 Mon Aug 27 10:00:40 2012 Deleted
2 Mon Aug 27 10:00:46 2012 Available
3 Mon Aug 27 10:02:58 2012 Deleted
4 Mon Aug 27 10:03:02 2012 Deleted5 Mon Aug 27
10:03:05 2012 Deleted
6 Mon Aug 27 10:03:09 2012 Available
7 Mon Aug 27 10:03:16 2012 Current

Example 2
The following example shows the results of INFO MASTERKEY with VERSION. The status of
Current in the output shows that version 7 is the active version.

INFO MASTERKEY VERSION 7

Masterkey Name: OGG_DEFAULT_MASTERKEY
Creation Date: Mon Aug 27 10:00:40 2012
Version: 7
Renew Date: Mon Aug 27 10:03:16 2012
Status: Current
Key Hash (SHA1): 0xC65ADFA1CF42F9DB2CED3BC39A53F661CDED3304

1.42 RENEW MASTERKEY
Use the RENEW MASTERKEY command to create a new version of the master encryption
key in the master-key wallet. The key name remains the same, but the bit ordering is
different. All versions of a master key remain in the wallet until they are marked for
deletion with the DELETE MASTERKEY command and then the wallet is purged with the
PURGE WALLET command.

The OPEN WALLET command must be used before using this command or any of the
commands that add or delete the master keys or purge the wallet.

A message similar to the following indicates that the command succeeded.

Masterkey 'OGG_DEFAULT_MASTERKEY' renewed to version 2 in wallet at location './
dirwlt'.

After renewing a master key in a wallet that is not maintained centrally on shared
storage, the updated wallet must be copied to all of the other systems in the Oracle
GoldenGate configuration that use this wallet. Before doing so, Extract must be
stopped and then all of the downstream Oracle GoldenGate processes must be
allowed to finish processing their trails and then be stopped. After the wallet is copied
into place, the processes can be started again. For detailed instructions, see
Administering Oracle GoldenGate for Windows and UNIX.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

Chapter 1
RENEW MASTERKEY

1-79

Syntax

RENEW MASTERKEY

Example

This example creates a new version of the master key.

RENEW MASTERKEY

1.43 DELETE MASTERKEY
Use the DELETE MASTERKEY command to mark a version of a master key for deletion.
Routinely deleting older versions of a master key ensures that they cannot be used
maliciously.

The OPEN WALLET command must be used before using this command or any of the
commands that add or renew the master keys or purge the wallet.

To view the version of a master key, use the INFO MASTERKEY command.

This command marks a version for deletion but does not physically remove it from the
wallet. See "PURGE WALLET" to remove the master key version permanently.

Note:

For Oracle GoldenGate deployments using a shared wallet, the older
versions of the master key should be retained after the master key is
renewed until all processes are using the newest version. The time to wait
depends on the topology, latency, and data load of the deployment. A
minimum wait of 24 hours is a conservative estimate, but you may need to
perform testing to determine how long it takes for all processes to start using
a new key. To determine whether all of the processes are using the newest
version, view the report file of each Extract immediately after renewing the
master key to confirm the last SCN that was mined with the old key. Then,
monitor the Replicat report files to verify that this SCN was applied by all
Replicat groups. At this point, you can delete the older versions of the master
key.

See "UNDELETE MASTERKEY" to reverse a deletion made by DELETE MASTERKEY.

Once a version number is used, the wallet reserves it forever, and no other key of the
same version can be generated. For example, you cannot mark version 2 of a key for
deletion, then purge the wallet to remove it, and then issue RENEW MASTERKEY to add a
version 2 again. Even though only version 1 of the key remains in the wallet after the
purge, the renewal generates version 3, not version 2.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

Syntax

DELETE MASTERKEY
{VERSION version | RANGE FROM begin_value TO end_value | ALL}

Chapter 1
DELETE MASTERKEY

1-80

VERSION version

Specifies a single version to be marked for deletion.

RANGE FROM begin_value TO end_value

Specifies a range of versions to be marked for deletion. The versions must be
contiguous. For example, specifying RANGE FROM 3 TO 6 marks versions 3, 4, 5, and 6.

ALL

Marks all versions of the master key for deletion, including the currently active one.
When this option is used, it should always be followed by a RENEW MASTERKEY command
to create a new, current version of the master key.

Examples

Example 1
This command marks one version of the master key for deletion and returns a
message similar to the one shown.

DELETE MASTERKEY VERSION 10
Version 10 of Masterkey 'OGG_DEFAULT_MASTERKEY' deleted from wallet at location './
dirwlt'.

Example 2
This command marks versions 3, 4, 5, and 6 for deletion and returns a message
similar to the one shown.

DELETE MASTERKEY RANGE FROM 3 TO 6

Version 3 of Masterkey 'OGG_DEFAULT_MASTERKEY' deleted from wallet at location './
dirwlt'.
Version 4 of Masterkey 'OGG_DEFAULT_MASTERKEY' deleted from wallet at location './
dirwlt'.
Version 5 of Masterkey 'OGG_DEFAULT_MASTERKEY' deleted from wallet at location './
dirwlt'.
Version 6 of Masterkey 'OGG_DEFAULT_MASTERKEY' deleted from wallet at location './
dirwlt'.

1.44 UNDELETE MASTERKEY
Use the UNDELETE MASTERKEY command to remove the deletion mark from a master key
version, thus retaining that version if the PURGE WALLET command is used. Only one
version can be unmarked per UNDELETE MASTERKEY command. See "DELETE
MASTERKEY" to mark a version of a master key for deletion.

The OPEN WALLET command must be used before using this command or any of the
commands that add, renew, or delete the master keys in the wallet.

The use of a wallet and master key is not supported for the iSeries, z/OS, and
NonStop platforms.

Syntax

UNDELETE MASTERKEY VERSION version

VERSION version

The version that is to be unmarked for deletion.

Chapter 1
UNDELETE MASTERKEY

1-81

Example

This command unmarks version 3 of the master key and returns a message similar to
the one shown.

UNDELETE MASTERKEY VERSION 3
Version 3 of Masterkey 'OGG_DEFAULT_MASTERKEY' undeleted from wallet at location './
dirwlt'.

1.45 ADD CREDENTIALSTORE
Use the ADD CREDENTIALSTORE command to create a credential store. The credential
store manages user IDs and their encrypted passwords (together known as
credentials) that are used by Oracle GoldenGate processes to interact with the local
database. The credential store eliminates the need to specify user names and clear-
text passwords in the Oracle GoldenGate parameter files. An optional alias can be
used in the parameter file instead of the user ID to map to a userid-password pair in
the credential store.

The credential store is implemented as an autologin wallet within the Oracle Credential
Store Framework (CSF). The use of an LDAP directory is not supported for the Oracle
GoldenGate credential store. The autologin wallet supports automated restarts of
Oracle GoldenGate processes without requiring human intervention to supply the
necessary passwords.

ADD CREDENTIALSTORE creates an empty credentials store in the location that is specified
with the CREDENTIALSTORELOCATION parameter in the GLOBALS file, if used, or otherwise in
the default location of dircrd in the Oracle GoldenGate installation directory. A
credential store can be shared by multiple instances (installations) of Oracle
GoldenGate on the same or different systems. Store a shared credential store in a
shared file system, and specify this location in each Oracle GoldenGate instance by
using the CREDENTIALSTORELOCATION parameter in each GLOBALS parameter file.

Only one credential store can be used at a time by any given instance of Oracle
GoldenGate. For example, you can have a credential store named /home/ogg/
credentials and a credential store named /test/ogg/credentials, but only one can be
used at runtime by a given instance of Oracle GoldenGate. You can stop the
processes to switch to a different credential store, but make certain to update the
CREDENTIALSTORELOCATION parameter in each GLOBALS parameter file, and change the
USERIDALIAS parameters to specify different aliases if needed.

SeeALTER CREDENTIALSTORE to add credentials to the credentials store.

The use of a credential store is not supported for the iSeries, z/OS, and NonStop
platforms.

For more information about Oracle GoldenGate security options, see Administering
Oracle GoldenGate for Windows and UNIX.

Syntax

ADD CREDENTIALSTORE

Chapter 1
ADD CREDENTIALSTORE

1-82

1.46 ALTER CREDENTIALSTORE
Use the ALTER CREDENTIALSTORE command to manage user ID and password pairs in the
credential store. This command enables you to add credentials to the credential store
and to specify different aliases for a user. Upon successful completion, the command
returns a message similar to the following:

Credential store altered.

The use of a credential store is not supported for the DBE for i, DB2 z/OS, and
NonStop platforms.

For more information about Oracle GoldenGate security options, see Administering
Oracle GoldenGate for Windows and UNIX.

Syntax

ALTER CREDENTIALSTORE {
 ADD USER userid |
 REPLACE USER userid |
 DELETE USER userid }
[PASSWORD password]
[ALIAS alias]
[DOMAIN domain]

ADD USER userid

Adds the specified user and its alias to the credential store. If the ALIAS option is not
used, the alias defaults to the user name. A credential can only be entered once
unless the ALIAS option is used to specify a different alias for each one. Unless the
PASSWORD option is used, the command prompts for the password of the specified user.
The user can be an actual user name or a SQL*Net connect string.

REPLACE USER userid

Changes the password of the specified user. If the ALIAS option is not used, the alias
defaults to the user name. You cannot change the alias or domain of a user with this
option, but you can use the ADD USER option to add a new entry for the user under the
desired ALIAS or DOMAIN. Unless the PASSWORD option is used, the command prompts for
the new password for the specified user.

DELETE USER userid

Removes the credential for the specified user from the credential store. If the ALIAS
option is not used, the alias defaults to the user name.

PASSWORD password

The user's password. The password is echoed (not obfuscated) when this option is
used. If this option is omitted, the command prompts for the password, which is
obfuscated as it is typed (recommended as more secure).

ALTER CREDENTIALSTORE ADD USER scott
Password: ********

ALIAS alias

Specifies an alias for the user name. Use this option if you do not want the user name
to be in a parameter file or command. If ALIAS is not used, the alias defaults to the
USER name, which then must be used in parameter files and commands where a login

Chapter 1
ALTER CREDENTIALSTORE

1-83

is required. You can create multiple entries for a user, each with a different alias, by
using the ADD USER option with ALIAS.

DOMAIN domain

Saves the credential user under the specified domain name. Enables the same alias
to be used by multiple Oracle GoldenGate installations that use the same credential
store. The default domain is Oracle GoldenGate. For example, the administrators of
system 1 might not want system 2 to have access to the same credentials that are
used on system 1. Those credentials can be stored as ALIAS extract, for example,
under DOMAIN system1, while a different set of credentials can be stored for ALIAS
extract under DOMAIN system2. See ADD CREDENTIALSTORE for information about
how to use a shared credential store.

Examples

Example 1
This example adds a user named scott but omits the PASSWORD specification, so the
command prompts for Scott's password.

ALTER CREDENTIALSTORE ADD USER scott
Password: ********

Example 2
This example adds the user scott with his password tiger and specifies an alias for
scott that is named scsm2.

ALTER CREDENTIALSTORE ADD USER scott PASSWORD tiger ALIAS scsm2

Example 3
This example adds the user scott under the domain of support.

ALTER CREDENTIALSTORE ADD USER scott ALIAS scsm3 DOMAIN support
Password: ********

Example 4
This example issues two ALTER CREDENTIALSTORE commands, each of which adds a
scott entry, but with a different alias.

ALTER CREDENTIALSTORE ADD USER scott ALIAS scsm2
Password: ********
ALTER CREDENTIALSTORE ADD USER scott ALIAS scsm3
Password: ********

Example 5
The following shows how the DELETE USER option works with and without the ALIAS
option.
The following command deletes the user1 entry for which the ALIAS is the same as the
user name.

ALTER CREDENTIALSTORE DELETE USER user1
Alias: user1
Userid: user1

The following command deletes the entry for user user1 that is associated with the
alias alias1.

ALTER CREDENTIALSTORE DELETE USER user1 ALIAS alias1
Alias: alias1
Userid: user1

Chapter 1
ALTER CREDENTIALSTORE

1-84

Example 6
This example uses a SQL*Net connect string as the user value. In this case, the
PASSWORD option is omitted. The person issuing the command will be prompted for the
password, which is obfuscated.

ALTER CREDENTIALSTORE ADD USER oggext1@ora1 ALIAS ora1

1.47 INFO CREDENTIALSTORE
Use the INFO CREDENTIALSTORE command to get information about an Oracle
GoldenGate credential store. This information includes the aliases that a credential
store contains and the user IDs that correspond to them. The encrypted passwords in
the credential store are not returned.

The credential store location is identified by the CREDENTIALSTORELOCATION parameter in
the GLOBALS file, if one exists, or otherwise by the default location of dircrd in the
Oracle GoldenGate installation directory.

The use of a credential store is not supported for the iSeries, z/OS, and NonStop
platforms.

For more information about Oracle GoldenGate security options, see Administering
Oracle GoldenGate for Windows and UNIX.

Syntax

INFO CREDENTIALSTORE [DOMAIN domain]

DOMAIN domain

Returns the aliases and user IDs for a specific domain. For security purposes, if the
DOMAIN option is omitted, only the aliases and user IDs under the default domain of
OracleGoldenGate are shown. It is not possible to see DOMAIN credentials unless the
person issuing the INFO CREDENTIALSTORE command knows the name of the domain.
See "ALTER CREDENTIALSTORE" for more information about domains.

Examples

Example 1
The following example shows the default output of INFO CREDENTIALSTORE.

INFO CREDENTIALSTORE
Domain: OracleGoldenGate
 Alias: support1
 Userid: scott
 Alias: sales1
 Userid: scott

Example 2
The following example shows the output when DOMAIN is used.

INFO CREDENTIALSTORE DOMAIN support
Domain: Support
 Alias: support1
 Userid: scott

Chapter 1
INFO CREDENTIALSTORE

1-85

1.48 DELETE CREDENTIALSTORE
Use the DELETE CREDENTIALSTORE command to remove a credential store from the
system. The credential store wallet and its contents are permanently deleted.

The use of a credential store is not supported for the iSeries, z/OS, and NonStop
platforms.

For more information about Oracle GoldenGate security options, see Administering
Oracle GoldenGate for Windows and UNIX.

Syntax

DELETE CREDENTIALSTORE

1.49 ADD EXTTRAIL
Use ADD EXTTRAIL to create a trail for online processing on the local system and:

• Associate it with an Extract group.

• Assign a maximum file size.

Syntax

ADD EXTTRAIL trail_name, EXTRACT group_name
[, MEGABYTES n]
[SEQNO n]

trail_name

The relative or fully qualified path name of the trail. The trail name can contain only
two characters. Oracle GoldenGate appends this name with a nine-digit sequence
number whenever a new file is created. For example, a trail named dirdat/tr would
have files named dirdat/tr000000001, dirdat/tr000000002, and so forth.

group_name

The name of the Extract group to which the trail is bound. Only one Extract process
can write data to a trail.

MEGABYTES n

The maximum size, in megabytes, of a file in the trail. The default is 500.

SEQNO n

Specifies that the first file in the trail will start with the specified trail sequence number.
Do not include any zero padding. For example, to start at sequence 3 of a trail named
tr, specify SEQNO 3. The actual file would be named /ggs/dirdat/tr000003. This option
can be used during troubleshooting when Replicat needs to be repositioned to a
certain trail sequence number. It eliminates the need to alter Replicat to read the
required sequence number.

Examples

Example 1

ADD EXTTRAIL dirdat\aa, EXTRACT finance, MEGABYTES 200

Chapter 1
DELETE CREDENTIALSTORE

1-86

Example 2

ADD EXTTRAIL /ggs/dirdat/tr000000003

1.50 ADD RMTTRAIL
Use ADD RMTTRAIL to create a trail for online processing on a remote system and:

• Assign a maximum file size.

• Associate the trail with an Extract group.

In the parameter file, specify a RMTHOST entry before any RMTTRAIL entries to identify the
remote system and TCP/IP port for the Manager process.

Note:

The RMTTRAIL size (Target Trail) must be greater than or equal to (<=) the
EXTTRAIL size (Source Trail), due to trail encryption requirements.

Syntax

ADD RMTTRAIL trail_name, EXTRACT group_name
[, MEGABYTES n]
[, SEQNO n]

trail_name

The relative or fully qualified path name of the trail. The actual trail name can contain
only two characters. Oracle GoldenGate appends this name with a nine-digit
sequence number whenever a new file is created. For example, a trail named ./
dirdat/tr would have files named ./dirdat/tr000000001, ./dirdat/tr000000002, and so
forth.

group_name

The name of the Extract group to which the trail is bound. Only one primary Extract
process can write data to a remote trail.

MEGABYTES n

The maximum size, in megabytes, of a file in the trail. The default is 500.

SEQNO n

Specifies that the first file in the trail will start with the specified trail sequence number.
Do not include any zero padding. For example, to start at sequence 3 of a trail named
tr, specify SEQNO 3. The actual file would be named /ggs/dirdat/tr000000003. This
option can be used during troubleshooting when Replicat needs to be repositioned to
a certain trail sequence number. It eliminates the need to alter Replicat to read the
required sequence number.

Example

Example 1

ADD RMTTRAIL dirdat\aa, EXTRACT finance, MEGABYTES 200

Chapter 1
ADD RMTTRAIL

1-87

Example 2

ADD RMTTRAIL /ggs/dirdat/tr000003

1.51 ALTER EXTTRAIL
Use ALTER EXTTRAIL to change the attributes of a trail that was created with the ADD
EXTTRAIL command (a trail on the local system). The change takes effect the next time
that Extract starts.

Before using this command, stop the Extract using the STOP EXTRACT group_name
command.

Syntax

ALTER EXTTRAIL trail_name, EXTRACT group_name
[, MEGABYTES n]

trail_name

The relative or fully qualified path name of the trail. For example, dirdat\aa.

group_name

The name of the Extract group to which the trail is bound.

MEGABYTES n

The maximum size of a file, in megabytes. The default is 500. After using this option,
issue the SEND EXTRACT command with the ROLLOVER option to close the current trail file
and open a new one.

Example

ALTER EXTTRAIL dirdat\aa, EXTRACT finance, MEGABYTES 200

1.52 ALTER RMTTRAIL
Use ALTER RMTTRAIL to change the attributes of a trail that was created with the ADD
RMTTRAIL command (a trail on a remote system). The change takes effect the next time
that Extract starts.

Syntax

ALTER RMTTRAIL trail_name, EXTRACT group_name
[, MEGABYTES n]

trail_name

The relative or fully qualified path name of the trail. For example, dirdat\aa.

group_name

The name of the Extract group to which the trail is bound.

MEGABYTES n

The maximum size of a file, in megabytes. The default is 500. After using this option,
issue the SEND EXTRACT command with the ROLLOVER option to close the current trail file
and open a new one.

Chapter 1
ALTER EXTTRAIL

1-88

Example

ALTER RMTTRAIL dirdat\aa, EXTRACT finance, MEGABYTES 200

1.53 DELETE EXTTRAIL
Use DELETE EXTTRAIL to delete the record of checkpoints associated with a trail on a
local system. Checkpoints are maintained in a file bearing the same name as the
group in the dirchk sub-directory of the Oracle GoldenGate directory.

This command only deletes references to the specified trail from the checkpoint file. It
does not delete the trail files themselves. To delete the trail files, use standard
operating system commands for removing files.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about checkpoints.

Syntax

DELETE EXTTRAIL trail_name

trail_name

The relative or fully qualified path name of the trail, including the two-character trail
prefix.

Example

DELETE EXTTRAIL dirdat/et

1.54 DELETE RMTTRAIL
Use DELETE RMTTRAIL to delete the record of checkpoints associated with a trail on a
remote system. Checkpoints are maintained in a file bearing the same name as the
group in the dirchk sub-directory of the Oracle GoldenGate directory.

This command only deletes references to the specified trail from the checkpoint file. It
does not delete the trail files themselves. To delete the trail files, use standard
operating system commands for removing files.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about checkpoints.

Syntax

DELETE RMTTRAIL trail_name[,EXTRACT group_name}

trail_name

The relative or fully qualified path name of the trail, including the two-character trail
prefix.

group_name

The name of the Extract group to which the trail is bound. If not specified, DELETE
RMTTRAIL deletes the trail reference from all Extract groups that write to the specified
trail.

Chapter 1
DELETE EXTTRAIL

1-89

Example

DELETE RMTTRAIL dirdat/et

1.55 INFO EXTTRAIL
Use INFO EXTTRAIL to retrieve configuration information for a local trail. It shows the
name of the trail, the Extract that writes to it, the position of the last data processed,
and the assigned maximum file size.

Syntax

INFO EXTTRAIL trail_name

trail_name

The relative or fully qualified path name of the trail or a wildcard designating multiple
trails.

Examples

Example 1

INFO EXTTRAIL dirdat\aa

Example 2

INFO EXTTRAIL *

Example 3
The following is sample output of INFO EXTTRAIL.

Extract Trail: c:\gg_81\dirdat\md
 Extract: GGSEXT8
 Seqno: 2
 RBA: 51080
 File Size: 100M

1.56 INFO RMTTRAIL
Use INFO RMTTRAIL to retrieve configuration information for a remote trail. It shows the
name of the trail, the Extract that writes to it, the position of the last data processed,
and the assigned maximum file size.

Syntax

INFO RMTTRAIL trail_name

trail_name

The relative or fully qualified path name of the trail or a wildcard designating multiple
trails.

Examples

Example 1

INFO RMTTRAIL dirdat\aa

Chapter 1
INFO EXTTRAIL

1-90

Example 2

INFO RMTTRAIL *

Example 3
The following is a sample of INFO RMTTRAIL output.

Extract Trail: /ogg/dirdat/aa
 Seqno Length: 9
 Flip Seqno Length: no
 Extract: OGGPMP
 Seqno: 4
 RBA: 78066
 File Size: 500M

1.57 VIEW PARAMS
Use VIEW PARAMS to view the contents of a parameter file.

Caution:

Do not use this command to view a parameter file that is in a character set
other than that of the local operating system (such as one where the CHARSET
option was used to specify a different character set). The contents may
become corrupted. View the parameter file from outside GGSCI.

Syntax

VIEW PARAMS {MGR | group_name | file_name}

MGR

Shows the Manager parameter file.

group_name

Shows the parameter file for the specified Extract or Replicat group.

file_name

Shows the specified file. By default, the subdirectory dirprm is used if no path is
specified. If the parameter file resides in a directory other than dirprm, specify the full
path name.

Examples

Example 1

VIEW PARAMS finance

Example 2

VIEW PARAMS c:\lpparms\replp.prm

Chapter 1
VIEW PARAMS

1-91

1.58 EDIT PARAMS
Use EDIT PARAMS to create or change a parameter file. By default, this command
launches Notepad on Windows systems or the vi editor on UNIX systems. You can
change the editor with the SET EDITOR command.

Caution:

Do not use this command to view or edit an existing parameter file that is in a
character set other than that of the local operating system (such as one
where the CHARSET option was used to specify a different character set). The
contents may become corrupted. View the parameter file from outside
GGSCI.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about how to work with parameter files.

Syntax

EDIT PARAMS {MGR | group_name | file_name}

MGR

Opens a parameter file for the Manager process.

group_name

Opens a parameter file for the specified Extract or Replicat group.

file_name

Opens the specified file. When you create a parameter file with EDIT PARAMS in GGSCI,
it is saved to the dirprm sub-directory of the Oracle GoldenGate directory. You can
create a parameter file in a directory other than dirprm by specifying the full path
name, but you must also specify the full path name with the PARAMS option of the ADD
EXTRACT or ADD REPLICAT command when you create the process group.

Examples

Example 1

EDIT PARAMS finance

Example 2

EDIT PARAMS c:\lpparms\replp.prm

1.59 SET EDITOR
Use SET EDITOR to change the default text editor for the current session of GGSCI. The
default editors are Notepad for Windows and vi for UNIX. GGSCI input, including to
create parameter files, takes the character set of the local operating system.

Syntax

SET EDITOR program_name

Chapter 1
EDIT PARAMS

1-92

program_name

Any text editor.

Example

The following example changes the default editor to Wordpad.

SET EDITOR wordpad

1.60 INFO PARAM
Use INFO PARAM to retrieve the parameter definition information. If a name matches
multiple records, they are all displayed. If the query parameter has child options, they
are not displayed in the output though their names are listed in the Options tab. To
display the full record of an option, the full name in the form of parameter.option should
be queried separately.

This parameter infrastructure allows unlimited levels of options. Thus, a full name of a
parameter or option might have numbers of segments, such as A.B.C.D.

Syntax

INFO PARAM name

name

The name of a parameter, an option, or a full name that is part of the several names
concatenated together using dot ('.') as the delimiter. These sample names are valid:

• STREAMING

• RMTHOST.STREAMING

• RMTHOST

• RMTHOSTOPTIONS.STREAMING

• TRANLOGOPTIONS.INTEGRATEDPARAM.EAGER_SIZE

The matching with this set of sample names is that STREAMING matches as an option of
both RMTHOST and RMTHOSTOPTIONS.

Example

INFO PARAM RMTHOST

1.61 GETPARAMINFO
Use GETPARAMINFO to query runtime parameter values of a running instance, including
Extract, Replicat, and Manager. You can query for a single parameter or all
parameters and send the output to the console or a text file.

Syntax

SEND MGR | group GETPARAMINFO [parameter_name] [FILE output_file]

group

The name of the Extract or Replicat instance or MGR.

Chapter 1
INFO PARAM

1-93

parameter_name

The default behavior is to display all parameters in use, meaning those parameters
that have ever been queried by the application, parameters, and their current values.
If you specify a particular parameter, then the output is filtered by that name.

FILE output_file
The name of the text file that your output is redirected to.

Examples

Example 1
This example displays one parameter.

SEND MGR GETPARAMINFO PORT

Example 2
This example displays all parameters loaded from parameter file into Replicat rep1
and those parameters that the rep1 has accessed.

SEND REPL GETPARAMINFO

Example 3
The following example redirects the output to a file.

SEND MGR GETPARAMINFO FILE mgrfile.out

1.62 DBLOGIN
Use DBLOGIN to establish a database connection through GGSCI in preparation to issue
other Oracle GoldenGate commands that affect the database. The user who issues
DBLOGIN should have the appropriate database privileges to perform the functions that
are enacted by those commands. Any other special privileges that are required for a
GGSCI command are listed with the reference documentation for that command.

Requirements When Configuring Extract or Replicat in Integrated Mode (Oracle)

If using DBLOGIN to issue ADD EXTRACT, ALTER EXTRACT, or REGISTER EXTRACT to initiate
integrated capture or ADD REPLICAT, ALTER REPLICAT, or REGISTER REPLICAT to initiate
integrated Replicat against an Oracle database, the user who issues DBLOGIN must:

• Have privileges granted through the Oracle
dbms_goldengate_auth.grant_admin_privilege procedure.

• Not be changed while Extract or Replicat is in integrated mode.

Special Database Privileges to Use Log Retention in Classic Capture Mode

When in classic capture mode for an Oracle database, Extract supports the log-
retention feature, whereby the database retains the logs that Extract needs. (See
Installing and Configuring Oracle GoldenGate for Oracle Database for more
information about classic capture.) To enable the log-retention feature, DBLOGIN must
be issued with special privileges before using REGISTER EXTRACT with the LOGRETENTION
option. For simplicity, you can log in as the Extract database user if the correct
privileges were granted to that user when Oracle GoldenGate was installed.
Otherwise, log in as a user with the privileges shown in Table 1-17.

Chapter 1
DBLOGIN

1-94

Table 1-17 Oracle Privileges for Log Retention

Oracle EE
version

How to Grant Privileges

11.1 and 11.2.0.1 1. Run package to grant Oracle GoldenGate admin privilege.

exec dbms_streams_auth.grant_admin_privilege('user')

2. Grant the 'become user' privilege.

grant become user to user;

11.2.0.2 and later Run package to grant Oracle GoldenGate admin privilege.

exec dbms_goldengate_auth.grant_admin_privilege('user')

Syntax

DBLOGIN {
[SOURCEDB data_source] |
[, database@host:port] |
USERID {/ | userid}[, PASSWORD password]
 [algorithm ENCRYPTKEY {keyname | DEFAULT}] |
USERIDALIAS alias [DOMAIN domain] |
[SYSDBA | SQLID sqlid]
[SESSIONCHARSET character_set]
}

SOURCEDB data_source

SOURCEDB specifies a data source name. This option is required to identify one of the
following:

• The source or target login database for Sybase, MySQL, and databases that use
ODBC

• The source or target SQL/MX catalog

database@host:port

(MySQL) Specifies a connection string that contains the database name, host name,
and database port number. Can be used to specify a port other than the default that is
specified in the database configuration.

USERID

Supplies a database login credential, if required. Can be used if an Oracle
GoldenGate credential store is not in use. (See the USERIDALIAS option.) Input varies,
depending on the database, as follows:

userid

Specifies the name of a database user or a schema, depending on the database
configuration. For Oracle, a SQL*Net connect string can be used. To log into a
pluggable database in an Oracle multitenant container database, specify userid
as a connect string, such as OGGUSER@FINANCE. To log into the root container,
specify userid as a common user, including the C## prefix, such as
C##GGADMIN@FINANCE.

Chapter 1
DBLOGIN

1-95

/

(Oracle) Directs Oracle GoldenGate to use an operating-system login for Oracle,
not a database user login. Use this argument only if the database allows
authentication at the operating-system level. To use this option, the correct user
name must exist in the database, in relation to the value of the Oracle
OS_AUTHENT_PREFIX initialization parameter. For more information, see the USERID |
NOUSERID parameter.

PASSWORD password

Use when authentication is required to specify the password for the database
user. If the password was encrypted by means of the ENCRYPT PASSWORD command,
supply the encrypted password; otherwise, supply the clear-text password. If the
password is case-sensitive, type it that way.
If the PASSWORD clause is omitted, you are prompted for a password, and the
password is not echoed.

algorithm

If the password was encrypted with the ENCRYPT PASSWORD command, specify the
encryption algorithm that was used:
AES128

AES192

AES256

BLOWFISH

ENCRYPTKEY {keyname | DEFAULT}

Specifies the encryption key that was specified with the ENCRYPT PASSWORD command.
Use one of the following:

ENCRYPTKEY keyname

Specifies the logical name of a user-created encryption key in the ENCKEYS
lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME keyname option.

ENCRYPTKEY DEFAULT

Directs Oracle GoldenGate to generate a Blowfish key. Use if the ENCRYPT
PASSWORD command was used with the KEYNAME DEFAULT option.

USERIDALIAS alias [DOMAIN domain]

Supplies a database login credential, if required. Can be used instead of the USERID
option if there is a local Oracle GoldenGate credential store that contains a credential
with the required privileges for this DBLOGIN command. For more information about
using a credential store, see Administering Oracle GoldenGate for Windows and
UNIX.

alias

Specifies the alias of a database user credential that is stored in the Oracle
GoldenGate credential store. To log into a pluggable database in an Oracle
multitenant container database, the user must be stored as a connect string, such
as OGGUSER@FINANCE. To log into the root container, the user must be stored as a
common user, including the C## prefix, such as C##GGADMIN@FINANCE. For more
information about configuring Oracle GoldenGate for a CDB, see Installing and
Configuring Oracle GoldenGate for Oracle Database.

DOMAIN domain

Specifies the credential store domain for the specified alias. A valid domain entry
must exist in the credential store for the specified alias.

Chapter 1
DBLOGIN

1-96

SYSDBA

(Oracle) Specifies that the user logs in as sysdba. This option can be used for USERID
and USERIDALIAS.

SQLID sqlid

(DB2 on z/OS) Issues the SQL command SET CURRENT SQLID = 'sqlid' after the
USERID login (with PASSWORD, if applicable) is completed. If the SET command fails, the
entire DBLOGIN command fails as a unit.

SESSIONCHARSET character_set

(Sybase, Teradata and MySQL) Sets a database session character set for the GGSCI
connection to the database. All subsequent commands will use the specified session
character set. This command option overrides any SESSIONCHARSET that is specified in
the GLOBALS file.
(Sybase) To display the language information in the process report file when using
this option for a Sybase database, make certain that locale.dat is set properly in the
Sybase installation directory. If the character set is not found in the supported Sybase
database character set, then it is validated against the Oracle GoldenGate supported
character set list. The character-set information is displayed with the LOCALE
INFORMATION entry in the report output. When issuing the DBLOGIN command, the
Sybase environment variable is examined to see if the language (LANG) is set. If the
language is not set, Oracle GoldenGate automatically sets it to US English.

Examples

Example 1 (Oracle)

DBLOGIN USERIDALIAS alias1

Example 2 (Oracle with non-default domain)

DBLOGIN USERIDALIAS alias1 DOMAIN domain1

Example 3 (Oracle with SYSDBA)

DBLOGIN USERID ogguser@pdb1 SYSDBA password
AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC AES128, ENCRYPTKEY securekey1

Example 4 (MySQL)

DBLOGIN SOURCEDB mysqldb@host1:3305, USERIDALIAS alias1

Example 5 (MySQL, Sybase)

DBLOGIN SOURCEDB database USERIDALIAS alias1

Example 6 (Sybase with Remote DB)

DBLOGIN SOURCEDB USERID ogguser@remotedatabase PASSWORD password

Example 7 (SQL Server with Integrated Windows authentication)

DBLOGIN SOURCEDB systemdsn

Example 8 (Informix, SQL Server)

DBLOGIN SOURCEDB systemdsn USERIDALIAS alias1

Chapter 1
DBLOGIN

1-97

1.63 ENCRYPT PASSWORD
Use ENCRYPT PASSWORD to encrypt a password that is used in an Oracle GoldenGate
parameter file or command.

Syntax

ENCRYPT PASSWORD password
[AES128 | AES192 | AES256 | BLOWFISH]
ENCRYPTKEY {key_name | DEFAULT}

password

The login password. Do not enclose the password within quotes. If the password is
case-sensitive, type it that way.

AES128 | AES192 | AES256 | BLOWFISH

Specifies the encryption algorithm to use.

• AES128 uses the AES-128 cipher, which has a key size of 128 bits.

• AES192 uses the AES-192 cipher, which has a key size of 192 bits.

• AES256 uses the AES-256 cipher, which has a key size of 256 bits.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-length
key size from 32 bits to 128 bits. Use BLOWFISH only for backward compatibility with
earlier Oracle GoldenGate versions.

If no algorithm is specified, AES128 is the default for all database types except DB2
on z/OS and NonStop SQL/MX, where BLOWFISH is the default. AES is not supported
for those platforms.
All of the AES ciphers have a 128-bit block size.
To use AES encryption for any database other than Oracle, the path of the lib sub-
directory of the Oracle GoldenGate installation directory must be specified as an
environment variable before starting any processes:

• UNIX: Specify the path as an entry to the LD_LIBRARY_PATH or SHLIB_PATH variable.
For example:

setenv LD_LIBRARY_PATH ./lib:$LD_LIBRARY_PATH

• Windows: Add the path to the PATH variable.

You can use the SETENV parameter to set it as a session variable for the process.

ENCRYPTKEY {key_name | DEFAULT}

Specifies the encryption key.

key_name

Specifies the logical name of a user-created encryption key in a local ENCKEYS
lookup file. The key name is used to look up the actual key in the ENCKEYS file. A
user-created key and an associated ENCKEYS file is required when using AES
encryption; optional, but recommended, for Blowfish encryption. To use key_name,
generate the key with KEYGEN or another utility, then store it in an ENCKEYS file on
the source and target systems. For more information, see the security guidelines
in the Administering Oracle GoldenGate for Windows and UNIX.

Chapter 1
ENCRYPT PASSWORD

1-98

DEFAULT

Directs Oracle GoldenGate to generate a random key that is stored in the trail so
that decryption can be performed by the downstream process. This type of key is
insecure and should not be used in a production environment. Use this option
only when BLOWFISH is specified. ENCRYPT PASSWORD returns an error if DEFAULT is
used with any AES algorithm.

Examples

Example 1

ENCRYPT PASSWORD ny14072 BLOWFISH ENCRYPTKEY DEFAULT

Example 2

ENCRYPT PASSWORD ny14072 BLOWFISH ENCRYPTKEY superkey3

Example 3

ENCRYPT PASSWORD ny14072 AES192 ENCRYPTKEY superkey2

1.64 DUMPDDL
Use the DUMPDDL command to view the data in the Oracle GoldenGate DDL history
table if the trigger-based DDL capture is in use. This information is the same
information that is used by the Extract process. It is stored in proprietary format, but
can be exported in human-readable form to the screen or to a series of SQL tables
that can be queried by using regular SQL.

DUMPDDL always dumps all of the records in the DDL history table. Use SQL queries or
search redirected standard output to view information about particular objects and the
operations you are interested in. Because the history table contains large amounts of
data, only the first 4000 bytes (approximately) of a DDL statement are displayed in
order to maintain efficient performance. The format of the metadata is string based. It
is fully escaped and supports table and column names in their native character set.

Because the information is historical data that is provided by the DDL before trigger, it
reflects the state of an object before a DDL change. Consequently, there will not be
any data for CREATE operations.

Note:

The default name of the before trigger is GGS_DDL_TRIGGER_BEFORE.

Before using DUMPDDL, log into the database as the owner of the history table by using
the DBLOGIN command.

The basic DUMPDDL command outputs metadata to the following tables.

Chapter 1
DUMPDDL

1-99

Table 1-18 DUMPDDL Tables

Table Description

GGS_DDL_OBJECTS Information about the objects for which DDL operations are being
synchronized. SEQNO is the primary key. All of the other tables listed
here contain a SEQNO column that is the foreign key to
GGS_DDL_OBJECTS.

GGS_DDL_COLUMNS Information about the columns of the objects involved in DDL
synchronization.

GGS_DDL_LOG_GROUPS Information about the supplemental log groups involved in DDL
synchronization.

GGS_DDL_PARTITIONS Information about the partitions for objects involved in DDL
synchronization.

GGS_DDL_PRIMARY_KEYS Information about the primary keys of the objects involved in DDL
synchronization.

The SEQNO column is the DDL sequence number that is listed in the Extract and
Replicat report files. It also can be obtained by querying the DDL history table (default
name is GGS_DDL_HIST).

All of these tables are owned by the schema that was designated as the Oracle
GoldenGate DDL schema during the installation of the DDL objects. To view the
structure of these tables, use the DESC command in SQL*Plus.

Syntax

DUMPDDL [SHOW]

SHOW

Dumps the information contained in the history table to the screen in standard output
format. No output tables are produced. All records in the DDL history table are shown.

1.65 FLUSH SEQUENCE
Use FLUSH SEQUENCE immediately after you start Extract for the first time during an initial
synchronization or a re-synchronization. This command updates an Oracle sequence
so that initial redo records are available at the time that Extract starts to capture
transaction data. Normally, redo is not generated until the current cache is exhausted.
The flush gives Replicat an initial start point with which to synchronize to the correct
sequence value on the target system. From then on, Extract can use the redo that is
associated with the usual cache reservation of sequence values.

To Use FLUSH SEQUENCE

1. The following Oracle procedures are used by FLUSH SEQUENCE:

Chapter 1
FLUSH SEQUENCE

1-100

Table 1-19 Procedures That Support FLUSH SEQUENCE

Databas
e

Procedure User and Privileges

Source updateSequence Grants EXECUTE to the owner of the Oracle GoldenGate
DDL objects, or other selected user if not using DDL
support.

Target replicateSequence Grants EXECUTE to the Oracle GoldenGate Replicat
user.

The sequence.sql script installs these procedures. Normally, this script is run as
part of the Oracle GoldenGate installation process, but make certain that was
done before using FLUSH SEQUENCE. If sequence.sql was not run, the flush fails and
an error message similar to the following is generated:

Cannot flush sequence {0}. Refer to the Oracle GoldenGate for Oracle
documentation for instructions on how to set up and run the sequence.sql
script. Error {1}.

2. The GLOBALS file must contain a GGSCHEMA parameter that specifies the schema in
which the procedures are installed. This user must have CONNECT, RESOURCE, and
DBA privileges.

3. Before using FLUSH SEQUENCE, issue the DBLOGIN command as the database user
that has EXECUTE privilege on the updateSequence procedure. If logging into a
multitenant container database, log into the pluggable database that contains the
sequence that is to be flushed.

Note:

For full instructions on configuring Oracle GoldenGate to support sequences,
see Installing and Configuring Oracle GoldenGate for Oracle Database.

Syntax

FLUSH SEQUENCE owner.sequence

owner.sequence

The owner and name of an Oracle sequence. The schema name cannot be null. You
can use an asterisk (*) wildcard for the sequence name but not for the owner name.

Example

FLUSH SEQUENCE scott.seq*

1.66 LIST TABLES
Use LIST TABLES to list all tables in the database that match the specification provided
with the command argument. Use the DBLOGIN command to establish a database
connection before using this command. If logging into an Oracle multitenant container
database, log in to the pluggable database that contains the tables that you want to
list.

Chapter 1
LIST TABLES

1-101

Syntax

LIST TABLES table

table

The name of a table or a group of tables specified with a wildcard (*).

Example

The following shows a LIST TABLES command and sample output.

list tables tcust*

TCUSTMER
TCUSTORD

1.67 MININGDBLOGIN
Use MININGDBLOGIN to establish a connection to a downstream Oracle database
logmining server in preparation to issue other Oracle GoldenGate commands that
affect this database, such as REGISTER EXTRACT. Use this command only if establishing
Extract in integrated capture mode for an Oracle database.

To log into a source Oracle database that serves as the database logmining server,
use the DBLOGIN command. MININGDBLOGIN is reserved for login to a downstream mining
database.

The user who issues MININGDBLOGIN must:

• Have privileges granted through the Oracle
dbms_goldengate_auth.grant_admin_privilege procedure.

• Be the user that is specified with the TRANLOGOPTIONS MININGUSER parameter for the
Extract group that is associated with this MININGDBLOGIN.

• Not be changed while Extract is in integrated capture mode.

For support and configuration information for integrated capture, see Installing and
Configuring Oracle GoldenGate for Oracle Database.

Syntax

MININGDBLOGIN {
USERID {/ | userid}[, PASSWORD password]
 [algorithm ENCRYPTKEY {keyname | DEFAULT}] |
USERIDALIAS alias [DOMAIN domain] |
[SYSDBA]
}

USERID

Supplies a database login credential. Can be used if an Oracle GoldenGate credential
store is not in use. (See the USERIDALIAS option.) Input varies, depending on the
database, as follows:

userid

Specifies the name of a database user or a SQL*Net connect string. To log into a
pluggable database in an Oracle multitenant container database, specify userid

Chapter 1
MININGDBLOGIN

1-102

as a connect string, such as OGGUSER@FINANCE. To log into the root container,
specify userid as a common user, including the C## prefix, such as
C##GGADMIN@FINANCE. For more information about configuring Oracle GoldenGate
for a CDB, see Installing and Configuring Oracle GoldenGate for Oracle
Database.

/

(Oracle) Directs Oracle GoldenGate to use an operating-system login for Oracle,
not a database user login. Use this argument only if the database allows
authentication at the operating-system level. To use this option, the correct user
name must exist in the database, in relation to the value of the Oracle
OS_AUTHENT_PREFIX initialization parameter. For more information, see the USERID |
NOUSERID parameter.

PASSWORD password

Use when authentication is required to specify the password for the database
user. If the password was encrypted by means of the ENCRYPT PASSWORD command,
supply the encrypted password; otherwise, supply the clear-text password. If the
password is case-sensitive, type it that way.
If the PASSWORD clause is omitted, you are prompted for a password, and the
password is not echoed.

algorithm

If the password was encrypted with the ENCRYPT PASSWORD command, specify the
encryption algorithm that was used:
AES128

AES192

AES256

BLOWFISH

ENCRYPTKEY {keyname | DEFAULT}

Specifies the encryption key that was specified with the ENCRYPT PASSWORD command.
Use one of the following:

ENCRYPTKEY keyname

Specifies the logical name of a user-created encryption key in the ENCKEYS
lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME keyname option.

ENCRYPTKEY DEFAULT

Directs Oracle GoldenGate to generate a Blowfish key. Use if the ENCRYPT
PASSWORD command was used with the KEYNAME DEFAULT option.

USERIDALIAS alias [DOMAIN domain]

Supplies the alias of a database login credential. Can be used instead of the USERID
option if there is a local Oracle GoldenGate credential store that contains a credential
with the required privileges for this MININGDBLOGIN command. For more information
about using a credential store, see Administering Oracle GoldenGate for Windows
and UNIX.
To log into a pluggable database in an Oracle multitenant container database, the
user must be stored as a connect string, such as OGGUSER@FINANCE. To log into the root
container, the user must be stored as a common user, including the C## prefix, such
as C##GGADMIN@FINANCE. For more information about configuring Oracle GoldenGate for
a CDB, see Installing and Configuring Oracle GoldenGate for Oracle Database.

Chapter 1
MININGDBLOGIN

1-103

alias

Specifies the alias of a database user credential that is stored in the Oracle
GoldenGate credential store. The user that is specified with USERIDALIAS must be
the common database user.

DOMAIN domain

Specifies the credential store domain for the specified alias. A valid domain entry
must exist in the credential store for the specified alias.

SYSDBA

(Oracle) Specifies that the user logs in as sysdba. This option can be used for USERID
and USERIDALIAS.

Examples

Example 1

MININGDBLOGIN USERIDALIAS oggalias SESSIONCHARSET ISO-8859-11

Example 2

MININGDBLOGIN USERID ogg@ora1.ora, PASSWORD
AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC AES128, ENCRYPTKEY securekey1

1.68 SET NAMECCSID
Use NAMECCSID to set the CCSID (coded character set identifier) of the GGSCI session
when you need to issue commands for tables in a DB2 for i database. This command
is required if the CCSID of the object names stored in the SQL catalog tables is
different from the CCSID of the system. The SQL catalog tables are created with the
CCSID of the system, but the actual database object names could be represented with
a different CCSID. The catalog does not indicate this difference when queried, and
therefore Oracle GoldenGate could retrieve the name incorrectly unless NAMECCSID is
present to supply the correct CCSID value.

To set the CCSID for GLOBALS, Extract, Replicat, or DEFGEN, use the NAMECCSID
parameter.

SET NAMECCSID is not valid if the DBLOGIN command was previously issued, because that
command affects the GGSCI session. To issue SET NAMECCSID after a DBLOGIN
command, restart GGSCI.

To view the current CCSID, use the SHOW command. If the CCSID is not set through
the GGSCI session or through the parameter NAMECCSID, the SHOW value will be DEFAULT.

Syntax

SET NAMECCSID {CCSID | DEFAULT}

CCSID

A valid DB2 for i coded character set identifier that is to be used for the GGSCI
session.

DEFAULT

Indicates that the system CCSID is to be used for the GGSCI session.

Chapter 1
SET NAMECCSID

1-104

Example

SET NAMECCSID 1141

1.69 ADD SCHEMATRANDATA
Valid for Oracle. Use ADD SCHEMATRANDATA to enable schema-level supplemental logging
for a table. ADD SCHEMATRANDATA acts on all of the current and future tables in a given
schema to automatically log a superset of available keys that Oracle GoldenGate
needs for row identification.

ADD SCHEMATRANDATA is valid for both integrated and classic capture and does the
following:

• Enables Oracle supplemental logging for new tables created with a CREATE TABLE.

• Updates supplemental logging for tables affected by an ALTER TABLE to add or drop
columns.

• Updates supplemental logging for tables that are renamed.

• Updates supplemental logging for tables for which unique or primary keys are
added or dropped.

By default, ADD SCHEMATRANDATA logs the key columns of a table in the following order of
priority:

1. Primary key

2. In the absence of a primary key, all of the unique keys of the table, including those
that are disabled, unusable or invisible. Unique keys that contain ADT member
columns are also logged. Only unique keys on virtual columns (function-based
indexes) are not logged.

3. If none of the preceding exists, all scalar columns of the table are logged.
(System-generated row-OIDs are always logged.)

ADD SCHEMATRANDATA also supports the conditional or unconditional logging requirements
for using integrated Replicat.

Note:

Apply Oracle Patch 10423000 to the source database if the Oracle version is
earlier than 11.2.0.2.

When to Use ADD SCHEMATRANDATA

ADD SCHEMATRANDATA must be used in the following cases:

• For all tables that are part of an Extract group that is to be configured for
integrated capture. ADD SCHEMATRANDATA ensures that the correct key is logged by
logging all of the keys.

• For all source tables that will be processed in an integrated Replicat group.
Options are provided that enable the logging of the primary, unique, and foreign
keys to support the computation of dependencies among relational tables being
processed through different apply servers.

Chapter 1
ADD SCHEMATRANDATA

1-105

• When DDL replication is active and DML is concurrent with DDL that creates new
tables or alters key columns. It best handles scenarios where DML can be applied
to objects very shortly after DDL is issued on them. ADD SCHEMATRANDATA causes the
appropriate key values to be logged in the redo log atomically with each DDL
operation, thus ensuring metadata continuity for the DML when it is captured from
the log, despite any lag in Extract processing.

Database-level Logging Requirements for Using ADD SCHEMATRANDATA

Oracle strongly encourages putting the source database into forced logging mode and
enabling minimal supplemental logging at the database level when using Oracle
GoldenGate. This adds row chaining information, if any exists, to the redo log for
update operations. See Installing and Configuring Oracle GoldenGate for Oracle
Database for more information about configuring logging to support Oracle
GoldenGate.

Additional Considerations for Using ADD SCHEMATRANDATA

• Before using ADD SCHEMATRANDATA, issue the DBLOGIN command. The user who
issues the command must be granted the Oracle Streams administrator privilege.

SQL> exec dbms_streams_auth.grant_admin_privilege('user')

• ADD SCHEMATRANDATA can be used instead of the ADD TRANDATA command when DDL
replication is not enabled. Note, however, that if a table has no primary key but
has multiple unique keys, ADD SCHEMATRANDATA causes the database to log all of the
unique keys. In such cases, ADD SCHEMATRANDATA causes the database to log more
redo data than does ADD TRANDATA. To avoid the extra logging, designate one of the
unique keys as a primary key, if possible.

• For tables with a primary key, with a single unique key, or without a key, ADD
SCHEMATRANDATA adds no additional logging overhead, as compared to ADD TRANDATA.
For more information, see ADD TRANDATA.

• If you must log additional, non-key columns of a specific table (or tables) for use
by Oracle GoldenGate, such as those needed for FILTER statements and KEYCOLS
clauses in the TABLE and MAP parameters, issue an ADD TRANDATA command for
those columns. That command has a COLS option to issue table-level supplemental
logging for the columns, and it can be used in conjunction with ADD SCHEMATRANDATA.

Syntax

ADD SCHEMATRANDATA schema {
[ALLOWNONVALIDATEDKEYS]
[NOSCHEDULINGCOLS | ALLCOLS]}
[NOVALIDATE]
[PREPARECSN {WAIT | LOCK | NOWAIT | NONE}]

schema

The schema for which you want the supplementary key information to be logged. Do
not use a wildcard. To issue ADD SCHEMATRANDATA for schemas in more than one
pluggable database of a multitenant container database, log in to each pluggable
database separately with DBLOGIN and then issue ADD SCHEMATRANDATA. See DBLOGIN
for more information.

ALLOWNONVALIDATEDKEYS

This option is not valid for Oracle 11.2.0.3 or 12.1.0.1. It includes NON VALIDATED and
NOT VALID primary keys in the supplemental logging. These keys override the normal

Chapter 1
ADD SCHEMATRANDATA

1-106

key selection criteria that is used by Oracle GoldenGate. If the GLOBALS parameter
ALLOWNONVALIDATEDKEYS is being used, ADD SCHEMATRANDATA runs with
ALLOWNONVALIDATEDKEYS whether or not it is specified. By default NON VALIDATED and NOT
VALID primary keys are not logged. For more information, see the GLOBALS
ALLOWNONVALIDATEDKEYS parameter.

NOSCHEDULINGCOLS | ALLCOLS

These options control supplemental logging for an Oracle target database. You can
use these options together though the latter option is used. For example, with the ADD
SCHEMATRANDATA oggadm_ext ALLCOL NOSCHEDULINGCOLS command the NOSCHEDULINGCOLS
option would be used.

NOSCHEDULINGCOLS

Disables the logging of scheduling columns. By default, ADD SCHEMATRANDATA
enables the unconditional logging of the primary key and the conditional
supplemental logging of all unique key(s) and foreign key(s) of all current and
future tables in the given schema. Unconditional logging forces the primary key
values to the log whether or not the key was changed in the current operation.
Conditional logging logs all of the column values of a foreign or unique key if at
least one of them was changed in the current operation. The integrated Replicat
primary key, unique keys, and foreign keys must all be available to the inbound
server to compute dependencies. For more information about integrated Replicat,
see Installing and Configuring Oracle GoldenGate for Oracle Database.

ALLCOLS

Enables the unconditional supplemental logging of all supported key and non-key
columns for all current and future tables in the given schema. This option enables
the logging of the keys required to compute dependencies, plus columns that are
required for filtering, conflict resolution, or other purposes. Columns like LOB,
LONG, and ADT are not included.

NOVALIDATE

Valid for all databases supported by ADD SCHEMATRANDATA.
Suppresses additional information about the table being handled being processed by
ADD SCHEMATRANDATA. By default, this option is enabled. The additional information
processing creates a lapse time on command response so this option can be used to
increase response time.

PREPARECSN {WAIT | LOCK | NOWAIT | NONE}

Valid for Oracle for both DML and DDL. Automatically prepares the tables at the
source so the Oracle data pump Export dump file will includes Instantiation CSNs.
Replicat uses the per table instantiation CSN set by the Oracle data pump (on import)
to filter out trail records. On the target, the data pump import populates the system
tables and views with instantiation SCNs using the DBOPTIONS
ENABLE_INSTANTIATION_FILTERING parameter to enable table-level instantiation filtering.

WAIT

Wait for any in-flight transactions and prepare table instantiation.

LOCK

Put a lock on the table (to prepare for table instantiation).

NOWAIT

Default behavior, preparing for instantiation is done immediately.

Chapter 1
ADD SCHEMATRANDATA

1-107

NONE

No instantiation preparation occurs.

Example

Example 1
The following enables supplemental logging for the schema scott.

ADD SCHEMATRANDATA scott

Example 2
The following example logs all supported key and non-key columns for all current and
future tables in the schema named scott.

ADD SCHEMATRANDATA scott ALLCOLS

Example 3
The following example suppress additional table information processing.

ADD SCHEMATRANDATA acct.emp* NOVALIDATE

1.70 ADD TRANDATA
Use ADD TRANDATA to enable Oracle GoldenGate to acquire the transaction information
that it needs from the transaction records.

Before using this command, use the DBLOGIN command to establish a database
connection.

ADD TRANDATA is valid only for the databases that are listed here. For other supported
databases, this functionality may exist already or must be configured through the
database interface. See the Oracle GoldenGate installation guide for your database for
any special requirements that apply to making transaction information available.

DB2 for i Databases

Use ADD TRANDATA to start the journaling of data. The ADD TRANDATA command calls
STRJRNPF and is the recommended method to start journaling for tables, because it
ensures that the required journal image attribute of Record Images (IMAGES): *BOTH is
set on the STRJRNPF command.

DB2 LUW Database

Use ADD TRANDATA to enable DATA CAPTURE CHANGES on specified tables. By default, ADD
TRANDATA issues the following command to the database:

ALTER TABLE name DATA CAPTURE CHANGES INCLUDE LONGVAR COLUMNS;

You can exclude the LONGVAR clause by using ADD TRANDATA with the EXCLUDELONG option.

DB2 z/OS Database

Use ADD TRANDATA to enable DATA CAPTURE CHANGES on specified tables. By default, ADD
TRANDATA issues the following command to the database:

ALTER TABLE name DATA CAPTURE CHANGES;

Chapter 1
ADD TRANDATA

1-108

Oracle Database

By default, ADD TRANDATA for Oracle enables the unconditional logging of the primary
key and the conditional supplemental logging of all unique key(s) and foreign key(s) of
the specified table. See Installing and Configuring Oracle GoldenGate for Oracle
Database for more information about how Oracle GoldenGate handles supplemental
logging for Oracle databases.

If possible, use the ADD SCHEMATRANDATA command rather than the ADD TRANDATA
command. The ADD SCHEMATRANDATA command ensures replication continuity should
DML occur on an object for which DDL has just been performed. You can exclude
objects from the schema specification by using the exclusion parameters. See
Summary of Wildcard Exclusion Parametersfor more information.

To use the Oracle GoldenGate DDL replication feature, you must use the ADD
SCHEMATRANDATA command to log the required supplemental data.

When using ADD SCHEMATRANDATA, you can use ADD TRANDATA with the COLS option to log
any non-key columns, such as those needed for FILTER statements and KEYCOLS
clauses in the TABLE and MAP parameters.

Note:

It is possible to use ADD TRANDATA for Oracle when DDL support is enabled,
but only if you can stop DML on all tables before DDL is performed on them
or, if that is not possible, you can guarantee that no users or applications will
issue DDL that adds new tables whose names satisfy an object specification
in a TABLE or MAP statement. There must be no possibility that users or
applications will issue DDL that changes the key definitions of any tables that
are already in the Oracle GoldenGate configuration.

For more information, see ADD SCHEMATRANDATA.

Oracle strongly encourages putting the source database into forced logging mode and
enabling minimal supplemental logging at the database level when using Oracle
GoldenGate. This adds row chaining information, if any exists, to the redo log for
update operations. See Installing and Configuring Oracle GoldenGate for Oracle
Database for more information about configuring logging to support Oracle
GoldenGate.

Take the following into account when using ADD TRANDATA for an Oracle database:

• If any of the logging details change after Oracle GoldenGate starts extracting data,
you must stop and then start the Extract process that is reading from the affected
table before any data is changed.

• When creating a supplemental log group with ADD TRANDATA, Oracle GoldenGate
appends the object ID to a prefix of GGS_, for example GGS_18342.

SQL Server Database

Use ADD TRANDATA to provide the extended logging information that Oracle GoldenGate
needs to reconstruct SQL operations. The SQL Server transaction log does not
provide enough information by default.

Chapter 1
ADD TRANDATA

1-109

Sybase Database

ADD TRANDATA marks a Sybase table for replication by executing the Sybase
sp_setreptable and sp_setrepcol system procedures. ADD TRANDATA options employ
database features to control how the database propagates LOB data for the specified
table. See the ADD TRANDATA options list.

Syntax

ADD TRANDATA {[container.]owner.table | schema.table [JOURNAL
library/journal] |
 library/file [JOURNAL library/journal]}
[, NOSCHEDULINGCOLS | ALLCOLS]
[, COLS (columns)]
[, INCLUDELONG | EXCLUDELONG]
[, LOBSNEVER | LOBSALWAYS | LOBSIFCHANGED | LOBSALWAYSNOINDEX]
[, NOKEY]
[, PREPARECSN {WAIT | LOCK | NOWAIT | NONE}]

[container.]owner.table

Valid for DB2 LUW, DB2 for z/OS, Oracle, SQL Server, and Sybase.
The two-part or three-part name specification. Use a two-part name of owner.table for
all supported databases except an Oracle multitenant container database. Use a
three-part name of container.owner.table for an Oracle multitenant container
database. A wildcard can be used for any component. Used with a wildcard, ADD
TRANDATA filters out names that match the names of system objects. To use ADD
TRANDATA for objects that are not system objects but have names that match those of
system objects in a wildcard pattern, issue ADD TRANDATA for those objects without
using a wildcard.

schema.table [JOURNAL library/journal] |
library/file [JOURNAL library/journal]

Valid for DB2 for i.
Specifies the SQL schema and name of a table or the native library and file name. If a
default journal is set with the DEFAULTJOURNAL command, you can omit the JOURNAL
option; otherwise it is required.

NOSCHEDULINGCOLS | ALLCOLS

Valid for Oracle
These options satisfy the logging requirements of an integrated Replicat that will be
processing the tables that you are specifying with ADD TRANDATA.

NOSCHEDULINGCOLS

Disables the logging of scheduling columns. By default, ADD TRANDATA enables the
unconditional logging of the primary key and the conditional supplemental logging
of all unique key(s) and foreign key(s) of the specified table. Unconditional logging
forces the primary key values to the log whether or not the key was changed in
the current operation. Conditional logging logs all of the column values of a
foreign or unique key if at least one of them was changed in the current operation.
The primary key, unique keys, and foreign keys must all be available to the
inbound server to compute dependencies. For more information about integrated
Replicat, see Installing and Configuring Oracle GoldenGate for Oracle Database.

Chapter 1
ADD TRANDATA

1-110

ALLCOLS

Enables the unconditional supplemental logging of all of the key and non-key
columns of the table. This option enables the logging of the keys required to
compute dependencies, plus all other columns for use in filtering, conflict
resolution, or other purposes.

COLS (columns)

Valid for all databases supported by ADD TRANDATA.
Use the COLS option to log specific non-key columns. Can be used to log columns
specified in a KEYCOLS clause and to log columns that will be needed for filtering or
manipulation purposes, which might be more efficient than fetching those values with
a FETCHCOLS clause in a TABLE statement. Separate multiple columns with commas, for
example NAME, ID, DOB.

INCLUDELONG | EXCLUDELONG

Valid for DB2 LUW.
Controls whether or not the ALTER TABLE issued by ADD TRANDATA includes the INCLUDE
LONGVAR COLUMNS attribute. INCLUDELONG is the default. When ADD TRANDATA is issued with
this option, Oracle GoldenGate issues the following statement:

ALTER TABLE name DATA CAPTURE CHANGES INCLUDE LONGVAR COLUMNS;

When EXCLUDELONG is used, the following is the command:

ALTER TABLE name DATA CAPTURE CHANGES;

When EXCLUDELONG is used, Oracle GoldenGate does not support functionality that
requires before images of tables that include LONGVAR columns. Examples of this
functionality are the GETUPDATEBEFORES, NOCOMPRESSUPDATES, and NOCOMPRESSDELETES
parameters. To support this functionality, changes to LONGVAR columns in the
transaction logs must include both the before and after images of the column value.

LOBSNEVER | LOBSALWAYS | LOBSIFCHANGED | LOBSALWAYSNOINDEX

Valid for Sybase.
Controls how the database propagates LOB data for the specified table.

Note:

The ADD TRANDATA command will overwrite the LOB setting that is currently
set for the table. To change the setting afterwards, you must use the
sp_setrepcol script.

LOBSNEVER

Prevents LOB data from being propagated. Note this exception: If the LOB column
is inserted with a NULL value, or if it is skipped in an INSERT operation, then Extract
will write that column to the trail with NULL data.

LOBSALWAYS

Does two things: it uses sp_setrepcol to set LOB replication to ALWAYS_REPLICATE
(always replicate LOB data whether or not it has changed in a transaction), and it
marks the table to use an index on replication (by means of the USE_INDEX option
of sp_setreptable). Because a LOB is marked for replication in a single
transaction, this can take a long time, and USE_INDEX reduces that time by creating

Chapter 1
ADD TRANDATA

1-111

a global nonclustered index for every LOB. A shared-table lock is held while the
global nonclustered index is created.

LOBSIFCHANGED

Replicates LOB data only if it was changed during a transaction. This reduces
replication overhead but does not protect against inconsistencies that could occur
on the target outside the replication environment. This is the default.

LOBSALWAYSNOINDEX

Sets LOB replication to ALWAYS_REPLICATE (always replicate LOB data whether or not
it has changed in a transaction). This adds overhead, but protects against
inconsistencies that could occur on the target outside the replication environment.
LOBSALWAYSNOINDEX does not mark the table to use an index on replication. The
benefit is that no lock is held while ADD TRANDATA is being executed.
LOBSALWAYSNOINDEX is the default for Sybase databases earlier than version 15.

Note:

When using the ALWAYS_REPLICATE option, if a LOB column contains a NULL
value, and then another column in the table gets updated (but not the LOB),
that LOB will not be captured even though ALWAYS_REPLICATE is enabled.

You can check the LOB settings of a table with the INFO TRANDATA command, after ADD
TRANDATA has been used for that table. It shows the LOB settings for all of the LOB
columns. You can use the Sybase system procedures to change the LOB settings for
any given column as needed.

NOKEY

Valid for all databases supported by ADD TRANDATA.
Suppresses the supplemental logging of primary key columns. If using NOKEY, use the
COLS option to log alternate columns that can serve as keys, and designate those
columns as substitute keys by using the KEYCOLS option of the TABLE or MAP parameter.

PREPARECSN {WAIT | LOCK | NOWAIT | NONE}

Valid for Oracle for both DML and DDL. Automatically prepares the tables at the
source so the Oracle Datapump Export dump file will includes Instantiation CSNs.
Replicat uses the per table instantiation CSN set by the Oracle Datapump (on import)
to filter out trail records. On the target, the data pump import populates the system
tables and views with instantiation SCNs using the DBOPTIONS
ENABLE_INSTANTIATION_FILTERING parameter to enable table-level instantiation filtering.

WAIT

Wait for any in-flight transactions and prepare table instantiation.

LOCK

Put a lock on the table (to prepare for table instantiation).

NOWAIT

Default behavior, preparing for instantiation is done immediately.

NONE

No instantiation preparation occurs.

Chapter 1
ADD TRANDATA

1-112

Examples

Example 1
The following example causes one of the following: the primary key to be logged for
an Oracle table; supplemental data to be logged for a SQL Server table; or a Sybase
table to be marked for replication.

ADD TRANDATA finance.acct

Example 2
The following example enables the unconditional supplemental logging of all of the
key and non-key columns for the table named acct.

ADD TRANDATA acct ALLCOLS

Example 3
The following Oracle example causes the primary key to be logged plus the non-key
columns name and address.

ADD TRANDATA finance.acct, COLS (name, address)

Example 4
The following Oracle example prevents the primary key from being logged, but logs
the non-key columns name and pid instead.

ADD TRANDATA finance.acct, NOKEY, COLS (name, pid)

Example 5
The following Sybase example marks the acct table for replication and specifies to log
LOB data only if it was changed during a transaction.

ADD TRANDATA finance.acct, LOBSIFCHANGED

Example 6
The following example adds logging though does not prepare the table for
instantiation.

ADD TRANDATA acct PREPARECSN NONE

1.71 DELETE SCHEMATRANDATA
Use DELETE SCHEMATRANDATA to remove the Oracle schema-level supplemental logging
that was added with the ADD SCHEMATRANDATA command. Use the DBLOGIN command to
establish a database connection before using this command. The user that is specified
with this command must have the privilege to remove supplemental log groups.

By default, this command attempts to remove the supplemental logging of the key
columns that are used by Oracle GoldenGate (can be the primary key, a unique key,
KEYCOLS columns, or all columns) and also the scheduling columns. The scheduling
columns are the primary key, all of the unique keys, and all of the foreign keys. To
delete the logging of the Oracle GoldenGate key columns, but not the scheduling
columns, include the NOSCHEDULINGCOLS option with DELETE SCHEMATRANDATA. If ADD
SCHEMATRANDATA was issued with the ALLCOLS option, use DELETE SCHEMATRANDATA with the
ALLCOLS option to remove the supplemental logging of all of the columns, including the
Oracle GoldenGate key columns.

Chapter 1
DELETE SCHEMATRANDATA

1-113

Syntax

DELETE SCHEMATRANDATA schema [NOSCHEDULINGCOLS | ALLCOLS]

schema

The schema for which you want supplemental logging to be removed. Do not use a
wildcard. If the source is an Oracle multitenant container database, make certain to
log into the pluggable database that contains the schema for which you want to
remove the logging. See DBLOGIN for more information.

NOSCHEDULINGCOLS

Prevents the command from removing the supplemental logging of the scheduling
columns of the tables in the specified schema. The scheduling columns are the
primary key, all of the unique keys, and all of the foreign keys of a table.

ALLCOLS

Removes the supplemental logging of all of the columns of the tables in the specified
schema.

Examples

Example 1

DELETE SCHEMATRANDATA scott

Example 2

DELETE SCHEMATRANDATA scott ALLCOLS

1.72 DELETE TRANDATA
Use DELETE TRANDATA to do one of the following:

• DB2 LUW and DB2 on z/OS: Alters the table to DATA CAPTURE NONE.

• Oracle: Disable supplemental logging.

• Sybase: Disable replication.

• SQL Server: Stops extended logging for a table.

By default, this command attempts to remove the supplemental logging of the key
columns that are used by Oracle GoldenGate (can be the primary key, a unique key,
KEYCOLS columns, or all columns) and also the scheduling columns. The scheduling
columns are the primary key, all of the unique keys, and all of the foreign keys. To
delete the logging of the Oracle GoldenGate key columns, but not the scheduling
columns, include the NOSCHEDULINGCOLS option with DELETE TRANDATA. If ADD TRANDATA was
issued with the ALLCOLS option, use DELETE TRANDATA with the ALLCOLS option to remove
the supplemental logging of all of the columns, including the Oracle GoldenGate key
columns.

Use the DBLOGIN command to establish a database connection before using this
command. The user specified with this command must have the same privileges that
are required for ADD TRANDATA.

Syntax

DELETE TRANDATA [container.]owner.table [NOSCHEDULINGCOLS | ALLCOLS]

Chapter 1
DELETE TRANDATA

1-114

[container.]owner.table

The pluggable database (if this is an Oracle multitenant container database), owner
and name of the table or file. A wildcard can be used for any name component.

NOSCHEDULINGCOLS

Prevents the command from removing the supplemental logging of the scheduling
columns of the specified table. The scheduling columns are the primary key, all of the
unique keys, and all of the foreign keys of a table.

ALLCOLS

Removes the supplemental logging of all of the columns of the specified table.

Examples

Example 1

DELETE TRANDATA finance.acct

Example 2

DELETE TRANDATA finance.ac*

Example 3

DELETE TRANDATA finance.acct ALLCOLS

1.73 INFO SCHEMATRANDATA
Use INFO SCHEMATRANDATA to determine whether Oracle schema-level supplemental
logging is enabled for the specified schema or if any instantiation information is
available. Use the DBLOGIN command to establish a database connection before using
this command.

Syntax

INFO SCHEMATRANDATA schema

schema

The schema for which you want to confirm supplemental logging. Do not use a
wildcard. To get information on the appropriate schema in an Oracle multitenant
container database, make certain to log into the correct pluggable database with
DBLOGIN.

Example

INFO SCHEMATRANDATA scott

1.74 INFO TRANDATA
Use INFO TRANDATA to get the following information:

• DB2 LUW and DB2 on z/OS: Determine whether DATA CAPTURE is enabled or not.

• Oracle: Determine whether supplemental logging is enabled, and to show the
names of columns that are being logged supplementally. If all columns are being
logged, the notation ALL is displayed instead of individual column names.

Displays any SCN instantiation information.

Chapter 1
INFO SCHEMATRANDATA

1-115

• Sybase: Determine whether replication is enabled or not, and whether all LOB
columns have identical logging settings (as specified with the ADD TRANDATA LOB
options.

• SQL Server: Determine whether or not extended logging is enabled for a table.

Use the DBLOGIN command to establish a database connection before using this
command.

Syntax

INFO TRANDATA [container.]owner.table

[container.]owner.table

The pluggable database (if this is an Oracle multitenant container database), owner
and name of the table or file for which you want to view trandata information. The
owner is not required if it is the same as the login name that was specified by the
DBLOGIN command. A wildcard can be used for the table name but not the owner
name.

Examples

Example 1

INFO TRANDATA finance.acct

Example 2

INFO TRANDATA finance.ac*

1.75 SET_INSTANTIATION_CSN
Use SET_INSTANTIATION_CSN on your target database to set the instantiation CSN
manually. This command requires DBLOGIN. It enables a Replicat with the DBOPTIONS
ENABLE_INSTANTIATION_FILTERING option to filter out records below the specified CSN for
any object without Oracle Datapump import instantiation information. It is an
alternative to specifying @FILTER(@GETENV('TRANSACTION','CSN').

To enable instantiation SCN filtering, you must do the following:

1. Your Replicat parameter file must contain DBOPTIONS
ENABLE_INSTANTIATION_FILTERING.

2. The instantiation SCNs must be set at the target database for each table.

You can do this using one of the following two methods:

Automatically set the source SCN by the Oracle Datapump upon import if the
tables were prepared at the source database using ADD TRANDATA PREPARECSN or ADD
SCHEMATRANDATA PREPARECSN prior to the Oracle Datapump export.

or

Manually set the instantiation source SCN at the target database using this
command.

Syntax

SET_INSTANTIATION_CSN csn FOR [schema.]table FROM source_database_name

Chapter 1
SET_INSTANTIATION_CSN

1-116

csn

The CSN number that instantiation will begin.

[schema.]table

The name of the table to set the instantiation CSN on. If no schema is provided, the
DBLOGIN user will be used.

source_database_name

The global name of the source database for which this is a target.

Example

SET_INSTANTIATION_CSN 12345678 FOR hr.employees FROM DBS1.US.COMPANY.COM

1.76 CLEAR_INSTANTIATION_CSN
Use CLEAR_INSTANTIATION_CSN on your target database to clear (reverse) the
instantiation CSN manually. This command requires DBLOGIN where the user is the
default Oracle GoldenGate schema.

Syntax

CLEAR_INSTANTIATION_CSN FOR [schema.]table FROM source_database_name

[schema.]table

The name of the table to clear the instantiation CSN on. If no schema is provided, the
DBLOGIN user will be used.

source_database_name

The global name of the source database for which this is a target.

Example

CLEAR_INSTANTIATION_CSN FOR hr.employees FROM DBS1.US.COMPANY.COM

1.77 CLEANUP CHECKPOINTTABLE
Not valid for Replicat for Java, Oracle GoldenGate Applications Adapter, or Oracle
GoldenGate Big Data.

Use CLEANUP CHECKPOINTTABLE to remove checkpoint records from the checkpoint table
when there is no checkpoint file associated with it in the working Oracle GoldenGate
directory (from which GGSCI was started). The purpose of this command is to remove
checkpoint records that are not needed any more, either because groups were
changed or files were moved.

Use the DBLOGIN command to establish a database connection before using this
command.

Syntax

CLEANUP CHECKPOINTTABLE [[container. | catalog.]owner.table]

Chapter 1
CLEAR_INSTANTIATION_CSN

1-117

container. | catalog.
The Oracle pluggable database or SQL/MX catalog, if applicable. If this option is
omitted, the catalog or pluggable database defaults to the one that is associated with
the SOURCEDB, USERID, or USERIDALIAS portion of the DBLOGIN command (depending on
the database).

owner.table

The owner and name of the checkpoint table to be cleaned up. If an owner and name
are not specified, the table that is affected is the one specified with the
CHECKPOINTTABLE parameter in the GLOBALS parameter file.

Example

CLEANUP CHECKPOINTTABLE ggs.fin_check

1.78 DELETE CHECKPOINTTABLE
Not valid for Replicat for Java, Oracle GoldenGate Applications Adapter, or Oracle
GoldenGate Big Data.

Use DELETE CHECKPOINTTABLE to drop a checkpoint table from the database. Use the
DBLOGIN command to establish a database connection before using this command.

To stop using a checkpoint table while the associated Replicat group remains active,
follow these steps:

1. Run GGSCI.

2. Stop Replicat.

STOP REPLICAT group

3. Delete the Replicat group and then add it back with the following commands.

DELETE REPLICAT group
ADD REPLICAT group, EXTTRAIL trail, NODBCHECKPOINT

4. Exit GGSCI, then start it again.

5. Start Replicat again.

START REPLICAT group

6. Log into the database with the DBLOGIN command, using the appropriate
authentication options for the database. See "DBLOGIN".

7. Delete the checkpoint table with DELETE CHECKPOINTTABLE.

If the checkpoint table is deleted while Replicat is still running and transactions are
occurring, Replicat will abend with an error that the checkpoint table could not be
found. However, the checkpoints are still maintained on disk in the checkpoint file. To
resume processing, add the checkpoint table back under the same name. Data in the
trail resumes replicating. Then, you can delete the checkpoint table.

Syntax

DELETE CHECKPOINTTABLE [[container. | catalog.]owner.table] [!]

container. | catalog.
The Oracle pluggable database or SQL/MX catalog, if applicable. If this option is
omitted, the catalog or pluggable database defaults to the one that is associated with

Chapter 1
DELETE CHECKPOINTTABLE

1-118

the SOURCEDB, USERID, or USERIDALIAS portion (depending on the database) of the
DBLOGIN command.

owner.table

The owner and name of the checkpoint table to be deleted. An owner and name are
not required if they are the same as those specified with the CHECKPOINTTABLE
parameter in the GLOBALS file.

!

Bypasses the prompt that confirms intent to delete the table.

Example

DELETE CHECKPOINTTABLE ggs.fin_check

1.79 INFO CHECKPOINTTABLE
Not valid for Replicat for Java, Oracle GoldenGate Applications Adapter, or Oracle
GoldenGate Big Data.

Use INFO CHECKPOINTTABLE to confirm the existence of a checkpoint table and view the
date and time that it was created. It returns a message similar to the following:

Checkpoint table HR.CHKPT_TBLE created 2011-01-06 11:51:53.

Use the DBLOGIN command to establish a database connection before using this
command.

Syntax

INFO CHECKPOINTTABLE [[container. | catalog.]owner.table]

container. | catalog.
The Oracle pluggable database or SQL/MX catalog, if applicable. If this option is
omitted, the catalog or pluggable database defaults to the one that is associated with
the SOURCEDB, USERID, or USERIDALIAS portion of the DBLOGIN command (depending on
the database).

owner.table

The owner and name of the checkpoint table. An owner and name are not required if
they are the same as those specified with the CHECKPOINTTABLE parameter in the
GLOBALS file.

Example

INFO CHECKPOINTTABLE ggs.fin_check

1.80 UPGRADE CHECKPOINTTABLE
Not valid for Replicat for Java, Oracle GoldenGate Applications Adapter, or Oracle
GoldenGate Big Data.

Use the UPGRADE CHECKPOINTTABLE command to add a supplemental checkpoint table
when upgrading Oracle GoldenGate from version 11.2.1.0.0 or earlier.

Chapter 1
INFO CHECKPOINTTABLE

1-119

Syntax

UPGRADE CHECKPOINTTABLE [[container. | catalog.]owner.table]

container. | catalog.
The Oracle pluggable database or SQL/MX catalog, if applicable. If this option is
omitted, the catalog or pluggable database defaults to the one that is associated with
the SOURCEDB, USERID, or USERIDALIAS portion of the DBLOGIN command (depending on
the database).

owner.table

The owner and name of the checkpoint table. An owner and name are not required if
they are the same as those specified with the CHECKPOINTTABLE parameter in the
GLOBALS file.

Example

UPGRADE CHECKPOINTTABLE ggs.fin_check

1.81 ADD TRACETABLE
Use ADD TRACETABLE to create a trace table in the Oracle database. The trace table
must reside in the schema of the Oracle GoldenGate Extract user, as configured with
the USERID or USERIDALIAS parameter. The trace table prevents Replicat transactions
from being extracted again in a bidirectional synchronization configuration.

Use the DBLOGIN command to establish a database connection before using this
command.

The trace table has the following description.

Table 1-20 Description of trace table

Name Null? Type Description

GROUP_ID NOT NULL VARCHAR2(8) The name of the Replicat group or special run
process.

DB_USER VARCHAR2(30) The user ID of the Replicat group or special run
process.

LAST_UPDATE DATE The timestamp of the transaction.

Syntax

ADD TRACETABLE [[container.]owner.table]

container

The pluggable database, if the database is a multitenant container database (CDB).

owner.table

Optional, use only to specify a trace table with a name that is different from the default
of GGS_TRACE. The owner must be the same owner that is specified with the USERID or
USERIDALIAS parameter in the Extract parameter file.
To use the default name, omit this argument. Whenever possible, use the default
table name. When using a trace table name other than the default of GGS_TRACE,

Chapter 1
ADD TRACETABLE

1-120

specify it with the TRACETABLE parameter in the Extract and Replicat parameter files.
Record the name, because you will need it for the parameter files and to view
statistics or delete the table. For more information, see TRACETABLE |
NOTRACETABLE.

Examples

Example 1
The following adds a trace table with the default name of GGS_TRACE.

ADD TRACETABLE

Example 2
The following adds a trace table with a user-defined name of ora_trace.

ADD TRACETABLE ora_trace

1.82 DELETE TRACETABLE
Use DELETE TRACETABLE to delete a trace table. Use the DBLOGIN command to establish a
database connection before using this command.

Syntax

DELETE TRACETABLE [[container.]owner.table]

container

The pluggable database, if the database is a multitenant container database (CDB).

owner.table

The owner and name of the trace table to be deleted. An owner and name are not
required if the owner is the same as that specified with the USERID or USERIDALIAS
parameter and the trace table has the default name of GGS_TRACE.

Example

DELETE TRACETABLE ora_trace

1.83 INFO TRACETABLE
Use the INFO TRACETABLE command to verify the existence of the specified trace table in
the local instance of the database. If the table exists, Oracle GoldenGate displays the
name and the date and time that it was created; otherwise Oracle GoldenGate
displays a message stating that the table does not exist. Use the DBLOGIN command to
establish a database connection before using this command.

Syntax

INFO TRACETABLE [[container.]owner.table]

container

The pluggable database, if the database is a multitenant container database (CDB).

Chapter 1
DELETE TRACETABLE

1-121

owner.table

The owner and name of the trace table to be verified. An owner and name are not
required if the owner is the same as that specified with the USERID or USERIDALIAS
parameter and the trace table has the default name of GGS_TRACE.

Example

INFO TRACETABLE ora_trace

1.84 ALTER DATASTORE
Use the ALTER DATASTORE command to change the memory model that is used for
interprocess communication by the Oracle GoldenGate Monitor data store. Before
using this command, stop all Oracle GoldenGate processes, including Manager. See
Administering Oracle GoldenGate Monitor for more information about the data store.

Syntax

ALTER DATASTORE {MMAP | SHM [ID n]}

MMAP

Indicates that the data store should use memory mapped files for interprocess
communications.

SHM [ID n]
Indicates that the data store should use System V shared memory for interprocess
communications. This option is not available on Windows platforms. If ID is not
specified, a suitable default ID is used.

Examples

Example 1

ALTER DATASTORE MMAP

Example 2

ALTER DATASTORE SHM

Example 3

ALTER DATASTORE SHM ID 1000

1.85 CREATE DATASTORE
Use the CREATE DATASTORE command to create an Oracle GoldenGate Monitor data
store in the Oracle GoldenGate installation directory. For more information, see
Administering Oracle GoldenGate Monitor.

Syntax

CREATE DATASTORE [MMAP | SHM [ID n]]

MMAP

Indicates that the data store should use memory mapped files for interprocess
communications.

Chapter 1
ALTER DATASTORE

1-122

SHM [ID n]
Indicates that the data store should use System V shared memory for interprocess
communications. This option is not available on Windows platforms. If ID is not
specified, a suitable default ID is used. SHM is the default.

Examples

Example 1

CREATE DATASTORE MMAP

Example 2

CREATE DATASTORE SHM

Example 3

CREATE DATASTORE SHM ID 1000

1.86 DELETE DATASTORE
Use the DELETE DATASTORE command to remove the Oracle GoldenGate Monitor data
store from the Oracle GoldenGate installation directory. Before using this command,
stop all Oracle GoldenGate processes, including Manager. For more information, see
Administering Oracle GoldenGate Monitor.

Syntax

DELETE DATASTORE [!]

!
(Exclamation point character) Bypasses the prompt that confirms the intent to remove
the data store.

Examples

Example 1

DELETE DATASTORE

Example 2

DELETE DATASTORE !

1.87 INFO DATASTORE
Use the INFO DATASTORE command to display information about the Oracle GoldenGate
Monitor data store. For more information, see Administering Oracle GoldenGate
Monitor.

Syntax

INFO DATASTORE

1.88 REPAIR DATASTORE
Use the REPAIR DATASTORE command to repair the Oracle GoldenGate Monitor data
store if it is corrupt or after an upgrade.

Chapter 1
DELETE DATASTORE

1-123

Before using this command, stop all Oracle GoldenGate processes, including
Manager. For more information, see Administering Oracle GoldenGate Monitor.

Syntax

REPAIR DATASTORE

1.89 INFO JAGENT
Use the INFO JAGENT command to determine whether or not the Oracle GoldenGate
Monitor JAgent is running. This command is an alias for STATUS JAGENT. For more
information, see Administering Oracle GoldenGate Monitor.

Syntax

INFO JAGENT

1.90 START JAGENT
Use the START JAGENT command to start the Oracle GoldenGate Monitor JAgent
process in a non-clustered environment. In a Windows cluster, start JAgent from the
Cluster Administrator. For more information, see Administering Oracle GoldenGate
Monitor.

Syntax

START JAGENT

1.91 STATUS JAGENT
Use the STATUS JAGENT command to determine whether or not the Oracle GoldenGate
Monitor JAgent is running. This command is an alias for INFO JAGENT. For more
information, see Administering Oracle GoldenGate Monitor.

Syntax

STATUS JAGENT

1.92 STOP JAGENT
Use the STOP JAGENT command to stop the Oracle GoldenGate Monitor JAgent process
in a non-clustered environment. In a Windows cluster, stop JAgent from the Cluster
Administrator. For more information, see Administering Oracle GoldenGate Monitor.

Syntax

STOP JAGENT [!]

!
(Exclamation point character) Bypasses the prompt that confirms the intent to stop the
JAgent.

Chapter 1
INFO JAGENT

1-124

Examples

Example 1

STOP JAGENT

Example 2

STOP JAGENT !

1.93 ADD HEARTBEATTABLE
Use ADD HEARTBEATTABLE to create the objects necessary to use the automatic heartbeat
functionality. This command:

• creates a heartbeat seed table, heartbeat table, and heartbeat history table,

• creates the GG_LAG and GG_LAG_HISTORY views,

• creates the GG_UPDATE_HB_TAB and GG_PURGE_HB_TAB procedures that are called by
the scheduler jobs,

• creates the scheduler jobs that periodically update the heartbeat and seed table,
and purge the history table,

• populates the seed table.

The default seed, heartbeat, and history table names are GG_HEARTBEAT_SEED,
GG_HEARTBEAT, and GG_HEARTBEAT_HISTORY respectively. The tables, procedures and
scheduler jobs are created in the GGSCHEMA mentioned in GLOBALS file. The default
names can be overridden by specifying HEARTBEATTABLE hbschemaname.hbtablename in the
GLOBALS file. In this case, the tables, procedures, and jobs are created in the
schema, hbschemaname. The seed and history table are created by appending a _SEED
and _HISTORY to the table, hbtablename.

This command requires a DBLOGIN. On a CDB database, a PDB login is required.

For Oracle, the ADD HEARTBEATTABLE has to be performed in every PDB that you want to
generate heartbeats for in CDB mode.

For DB2 LUW, you must set the DB2_ATS_ENABLE property with the db2set
DB2_ATS_ENABLE=yes command.

For SQL/MX, the GGSCHEMA schema is not used so you must use a two or three-part
name only. Additionally, there are no stored procedures or scheduler jobs.

Syntax

ADD HEARTBEATTABLE
[, FREQUENCY number in seconds]
[, RETENTION_TIME number in days] |
[, PURGE_FREQUENCY number in days]

FREQUENCY

Specifies how often the heartbeat seed table and heartbeat table are updated. For
example, how frequently heartbeat records are generated. The default is 60 seconds.

Chapter 1
ADD HEARTBEATTABLE

1-125

RETENTION_TIME

Specifies when heartbeat entries older than the retention time in the history table are
purged. The default is 30 days.

PURGE_FREQUENCY

Specifies how often the purge scheduler is run to delete table entries that are older
than the retention time from the heartbeat history . The default is 1 day.

Examples

Example 1
The following command creates default heartbeat tables, procedures and jobs.

ADD HEARTBEATTABLE

Example 2
The following command creates the heartbeat tables, procedures and jobs with
custom frequency, retention time, and purge frequency.

ADD HEARTBEATTABLE, frequency 120, retention_time 10, purge_frequency 2

1.94 ALTER HEARTBEATTABLE
Use ALTER HEARTBEATTABLE to alter existing seed, heartbeat, and history table options
that you set with ADD HEARTBEATTABLE.

This command requires a DBLOGIN. On a CDB database, a PDB login is required.

Syntax

ALTER HEARTBEATTABLE
[, FREQUENCY number in seconds]
[, RETENTION_TIME number in days] |
[, PURGE_FREQUENCY number in days]

FREQUENCY

Alter frequency to zero (0) is equivalent to pausing the heartbeat. Heartbeat records
can be resumed by altering frequency to a value greater than 0.

RETENTION_TIME

Changes the heartbeat retention time specified, in days.

PURGE_FREQUENCY

Changes the repeat interval, in days, of the purge heartbeat table.

Examples

ALTER HEARTBEATTABLE FREQUENCY 60

ALTER HEARTBEATTABLE RETENTION_TIME 30

ALTER HEARTBEATTABLE PURGE_FREQUENCY 1

Chapter 1
ALTER HEARTBEATTABLE

1-126

1.95 DELETE HEARTBEATTABLE
Use DELETE HEARTBEATTABLE to delete tables, procedures, schedulers, and views. This
command requires a DBLOGIN. On a CDB database, a PDB login is required.

Syntax

DELETE HEARTBEATTABLE group_name

group_name

The name of the process to be cleaned.

1.96 DELETE HEARTBEATENTRY
Use DELETE HEARTBEATENTRY to delete the records in the heartbeat table with the
specified process name either in the incoming or outgoing path columns. This
command required a DBLOGIN. On a CDB database, a PDB login is required.

Syntax

DELETE HEARTBEATENTRY group_name

group_name

The name of the process to be cleaned.

1.97 INFO HEARTBEATTABLE
Use INFO HEARTBEATTABLE to display information about the heartbeat tables configured
in the database.

This command requires a DBLOGIN. On a CDB database, a PDB login is required.

Syntax

INFO HEARTBEATTABLE

1.98 !
Use the ! command to execute a previous GGSCI command without modifications. To
modify a command before executing it again, use the FCcommand (see "FC"). To
display a list of previous commands, use the HISTORY command (see "HISTORY").

The ! command without arguments executes the most recent command. Options
enable you to execute any previous command by specifying its line number or a text
substring. Previous commands can be executed again only if they were issued during
the current session of GGSCI, because command history is not maintained from
session to session.

Syntax

! [n | -n | string]

Chapter 1
DELETE HEARTBEATTABLE

1-127

n

Executes the command from the specified GGSCI line. Each GGSCI command line is
sequenced, beginning with 1 at the start of the session.

-n

Executes the command issued n lines before the current line.

string

Executes the last command that starts with the specified text string.

Example 1-1 Examples

Example 1

! 9

Example 2

! -3

Example 3

! sta

1.99 ALLOWNESTED | NOALLOWNESTED
Use the ALLOWNESTED and NOALLOWNESTED commands to enable or disable the use of
nested OBEY files. A nested OBEY file is one that contains another OBEY file.

When you exit your GGSCI session, the next GGSCI session will revert back to
NOALLOWNESTED.

For more information, see OBEY.

Syntax

ALLOWNESTED | NOALLOWNESTED

ALLOWNESTED

Enables the use of nested OBEY files. The maximum number of nested levels is 16.

NOALLOWNESTED

This is the default. An attempt to run a nested OBEY file in the default mode of
NOALLOWNESTED will cause an error that is similar to the following:

ERROR: Nested OBEY scripts not allowed. Use ALLOWNESTED to allow nested scripts.

1.100 CREATE SUBDIRS
Use CREATE SUBDIRS when installing Oracle GoldenGate. This command creates the
default directories within the Oracle GoldenGate home directory. Use CREATE SUBDIRS
before any other configuration tasks.

Chapter 1
ALLOWNESTED | NOALLOWNESTED

1-128

Note:

The dirbdb is not created with CREATE SUBDIRS; it is only created with CREATE
DATASTORE.

Syntax

CREATE SUBDIRS

1.101 DEFAULTJOURNAL
Use the DEFAULTJOURNAL command to set a default journal for multiple tables or files for
the ADD TRANDATA command when used with a DB2 for i database, instead of having to
use the JOURNAL keyword. Issue this command before issuing ADD TRANDATA. Any ADD
TRANDATA command used without a journal assumes the journal from DEFAULTJOURNAL. To
remove the use of a default journal, use the CLEAR option. To display the current setting
of DEFAULTJOURNAL, you can issue the command without arguments.

Syntax

DEFAULTJOURNAL [library/journal] [CLEAR]

library/journal

The native name of the journal that you want to use as the default journal for ADD
TRANDATA.

CLEAR

Stops the use of a default journal for ADD TRANDATA.

1.102 FC
Use FC to display edit a previously issued GGSCI command and then execute it again.
Previous commands are stored in the memory buffer and can be displayed by issuing
the HISTORY command (see "HISTORY").

Displaying Previous Commands

Issuing FC without arguments displays the most recent command. Options enable you
to execute any previous command by specifying its line number or a text substring.
Previous commands can be edited only if they were issued during the current GGSCI
session, because history is not maintained from one session to another.

Editing Commands

The FC command displays the specified command and then opens an editor with a
prompt containing a blank line starting with two dots. To edit a command, use the
space bar to position the cursor beneath the character in the displayed command
where you want to begin editing, and then use one of the following arguments.
Arguments are not case-sensitive and can be combined.

Chapter 1
DEFAULTJOURNAL

1-129

Table 1-21 FC Editor Commands

Argument Description

i text
Inserts text. For example:

GGSCI (SysA) 24> fc 9
GGSCI (SysA) 24> send mgr
GGSCI (SysA) 24.. i childstatus
GGSCI (SysA) 24> send mgr childstatus

r text
Replaces text. For example:

GGSCI (SysA) 25> fc 9
GGSCI (SysA) 25> info mgr
GGSCI (SysA) 25.. rextract extjd
GGSCI (SysA) 25> info extract extjd

d
Deletes a character. To delete multiple characters, enter a d for each
one. For example:

GGSCI (SysA) 26> fc 10
GGSCI (SysA) 26> info extract extjd, detail
GGSCI (SysA) 26.. dddddddd
GGSCI (SysA) 26> info extract extjd

replacement text
Replaces the displayed command with the text that you enter on a one-
for-one basis. For example:

GGSCI (SysA) 26> fc 10
GGSCI (SysA) 26> info mgr
GGSCI (SysA) 26.. extract extjd
GGSCI (SysA) 26> info extract extjd

To execute the command, press Enter twice, once to exit the editor and once to issue
the command. To cancel an edit, type a forward slash (/) twice.

Syntax

FC [n | -n | string]

n

Displays the command from the specified line. Each GGSCI command line is
sequenced, beginning with 1 at the start of the session.

-n

Displays the command that was issued n lines before the current line.

string

Displays the last command that starts with the specified text string.

Examples

Example 1

FC 9

Chapter 1
FC

1-130

Example 2

FC -3

Example 3

FC sta

1.103 HELP
Use HELP to obtain information about an Oracle GoldenGate command. The basic
command returns a list of command categories and the associated commands. The
command option restricts the output to that of a specific command.

Syntax

HELP [command]

command

The command for which you want help.

Example

HELP add replicat

1.104 HISTORY
Use HISTORY to view a list of the most recently issued GGSCI commands since the
startup of the GGSCI session. You can use the ! command ("!") or the FC command
("FC") to re-execute a command in the list.

Syntax

HISTORY [n]

n

Returns a specific number of recent commands, where n is any positive number.

Example

HISTORY 7

The result of this command would be similar to:

1: start manager
2: status manager
3: info manager
4: send manager childstatus
5: start extract extjd
6: info extract extjd
7: history

1.105 INFO ALL
Use INFO ALL to display the status and lag (where relevant) for all Manager, Extract,
and Replicat processes on a system. When Oracle Grid Infrastructure Agents (XAG)
Clusterware components are in use, the relevant information is also displayed. The

Chapter 1
HELP

1-131

basic command, without options, displays only online (continuous) processes. To
display tasks, use either INFO ALL TASKS or INFO ALL ALLPROCESSES.

The Status and Lag at Chkpt (checkpoint) fields display the same process status and
lag as the INFO EXTRACT and INFO REPLICAT commands.

If Replicat is in coordinated mode, INFO ALL shows only the coordinator thread. To view
information about individual threads, use INFO REPLICAT.

Example 1-2 Sample INFO ALL Output

Program Status Group Lag at Chkpt Time Since Chkpt
MANAGER RUNNING
EXTRACT ABENDED EXTCUST 00:00:00 96:56:14
EXTRACT STOPPED INITDL
EXTRACT STOPPED INITDBL

Syntax

INFO ALL [TASKS | ALLPROCESSES]

TASKS

Displays information only for tasks.

ALLPROCESSES

Displays information for online processes and tasks.

Examples

Example 1

INFO ALL TASKS

Example 2

INFO ALL ALLPROCESSES

1.106 INFO MARKER
Use INFO MARKER to review recently processed markers from a NonStop system. A
record is displayed for each occasion on which GGSCI, Logger, Extract, or Replicat
processed the marker.

Markers can only be added on a NonStop system, using Oracle GoldenGate for
NonStop for HP NonStop software.

The following is an example of the output.

Processed Added Diff Prog Group Node
2012-02-16:14:41:15 2012-02-16:14:41:08 00:00:07 Extract PQACMD \QAMD
 GROUPCMD REPLICAT RQACMD CLOSEFILES
2012-02-16:14:41:13 2012-02-16:14:41:08 00:00:05 Extract PQACMD \QAMD
 TACLCMD REPLICAT RQACMD FUP PURGEDATA $QA16.QAETAR

Where:

• Processed is the local time that a program processed the marker.

• Added is the local time at which the marker was inserted into the NonStop audit
trails or log trails.

Chapter 1
INFO MARKER

1-132

• Diff is the time difference between the Processed and Added values. Diff can serve
as an indicator of the lag between the user application and Extract and Replicat
activities.

• Prog shows which process processed the marker, such as GGSCI, Logger, Extract
or Replicat.

• Group shows the Extract or Replicat group or Logger process that processed the
marker. N/A is displayed if GGSCI processed the marker.

• Node shows the node where the marker was inserted into the audit trails.

• There might be an additional column if user-defined text was included in the ADD
MARKER statement.

Syntax

INFO MARKER [COUNT number]

COUNT number

Restricts the list to a specified number of the most recent markers.

1.107 OBEY
Use OBEY to process a file that contains a list of Oracle GoldenGate commands. OBEY is
useful for executing commands that are frequently used in sequence.

You can call one OBEY file from another one. This is called a nested OBEY file. You can
nest up to 16 OBEY files. To use nested OBEY files, you must enable the functionality by
first issuing the ALLOWNESTED command. See "ALLOWNESTED | NOALLOWNESTED".

Syntax

OBEY file_name

file_name

The relative or fully qualified path name of the file that contains the list of commands.

Examples

Example 1

OBEY ./mycommands.txt

The preceding command executes a file that looks similar to the following example:

add extract fin, tranlog, begin now
add exttrail dirdat/aa, extract fin
add extract hr, tranlog, begin now
add exttrail dirdat/bb, extract hr
start extract *
info extract *, detail

Example 2
The following example illustrates a nested OBEY file. Assume an OBEY file named
addcmds.txt. Inside this file, there is another OBEY command that calls the OBEY file
named startcmds.txt, which executes another set of commands.

OBEY ./addcmds.txt

Chapter 1
OBEY

1-133

(This OBEY statement executes the following:)

add extract fin, tranlog, begin now
add exttrail ggs/dirdat/aa, extract fin
add extract hr, tranlog, begin now
add exttrail ggs/dirdat/bb, extract hr
add replicat fin2, exttrail ggs/dirdat/aa, begin now
add replicat hr2, exttrail ggs/dirdat/bb, begin now
obey ./startcmds.txt

(The nested startcmds.txt file executes the following:)

start extract *
info extract *, detail
start replicat *
info replicat *, detail

1.108 SHELL
Use SHELL to execute shell commands from within the GGSCI interface.

Syntax

SHELL command

command

The system command to execute.

Examples

Example 1

SHELL dir dirprm*

Example 2

SHELL rm ./dat*

1.109 SHOW
Use SHOW to display the Oracle GoldenGate environment.

Syntax

SHOW

Example

The following is sample SHOW output. Additional entries may be displayed, depending
on the database type.

Parameter settings:
SET DEBUG OFF
Current directory: C:\GG_81
Using subdirectories for all process files
Editor: notepad
Reports (.rpt) C:\GG_81\dirrpt
Parameters (.prm) C:\GG_81\dirprm
Replicat Checkpoints (.cpr) C:\GG_81\dirchk
Extract Checkpoints (.cpe) C:\GG_81\dirchk

Chapter 1
SHELL

1-134

Process Status (.pcs) C:\GG_81\dirpcs
SQL Scripts (.sql) C:\GG_81\dirsql
Database Definitions (.def) C:\GG_81\dirdef

1.110 VERSIONS
Use VERSIONS to display operating system and database version information. For
ODBC connections, the driver version is also displayed. To include database
information in the output, issue a DBLOGIN command before issuing VERSIONS to
establish a database connection.

Syntax

VERSIONS

1.111 VIEW GGSEVT
Use VIEW GGSEVT to view the Oracle GoldenGate error log (ggserr.log file). This file
contains information about Oracle GoldenGate events, such as process startup,
shutdown, and exception conditions. This information is recorded in the system error
log, too, but viewing the Oracle GoldenGate error log sometimes is more convenient
and may retain events further back in time.

The display can be lengthy. To exit the display before reaching the end, use the
operating system's standard methods for terminating screen output.

Syntax

VIEW GGSEVT

Example

The following is sample VIEW GGSEVT output:

2011-01-08 11:20:56 GGS INFO 301 GoldenGate Manager for Oracle,
mgr.prm: Command received from GUI (START GGSCI).
2011-01-08 11:20:56 GGS INFO 302 GoldenGate Manager for Oracle,
mgr.prm: Manager started GGSCI process on port 7840.
2011-01-08 11:21:31 GGS INFO 301 GoldenGate Manager for Oracle,
mgr.prm: Command received from GUI (START GGSCI).

1.112 VIEW REPORT
Use VIEW REPORT to view the process report or the discard filet hat is generated by
Extract or Replicat. Each process generates a new report and discard file upon
startup.

Reports and discard files are aged whenever a process starts. Old files are appended
with a sequence number, for example finance0.rpt, finance1.rpt, and so forth, or
discard0.dsc, discard1.dsc, and so forth.

Syntax

VIEW REPORT group_name[version]

Chapter 1
VERSIONS

1-135

group_name

The name of the Extract or Replicat group. The command assumes the report file
named group.rpt or the discard file named group.dsc in the Oracle GoldenGate dirrpt
sub-directory.

version

The relative file name if stored in the default location, or the full path name if not
stored in the default location.

Examples

Example 1
View the most recent (active) report.

VIEW REPORT MYEXT

Example 2
View the second most recent report.

VIEW REPORT MYEXT0

Example 3
View the eleventh most recent report.

VIEW REPORT MYEXT9

Example 4
The following displays a specific discard file identified by its file name. Note that the
file name has a non-default file extension.

VIEW REPORT dirrpt\orders.rpt

1.113 ADD CHECKPOINTTABLE
Not valid for Replicat for Java, Oracle GoldenGate Applications Adapter, or Oracle
GoldenGate Big Data.

Use ADD CHECKPOINTTABLE to create a checkpoint table in the target database. Replicat
uses the table to maintain a record of its read position in the trail for recovery
purposes.

The use of a checkpoint table is strongly recommended, because it causes
checkpoints to be part of the Replicat transaction. This allows Replicat to recover more
easily in certain circumstances than when a checkpoint file alone is used. However, do
not use a checkpoint table when configuring Replicat to operate in integrated mode
against an Oracle target database. It is not required in that mode.

One table can serve as the default checkpoint table for all Replicat groups in an Oracle
GoldenGate instance if you specify it with the CHECKPOINTTABLE parameter in a GLOBALS
file. More than one instance of Oracle GoldenGate (multiple installations) can use the
same checkpoint table. Oracle GoldenGate keeps track of the checkpoints even when
the same Replicat group name exists in different instances.

Use the DBLOGIN command to establish a database connection before using this
command. Do not change the names or attributes of the columns in this table. You
may, however, change table storage attributes.

For more information about using a checkpoint table, see Administering Oracle
GoldenGate for Windows and UNIX.

Chapter 1
ADD CHECKPOINTTABLE

1-136

See Administering Oracle GoldenGate for Windows and UNIX for more information
about checkpoints.

Syntax

ADD CHECKPOINTTABLE [[container. | catalog.]owner.table]

container. | catalog.
The Oracle pluggable database or SQL/MX catalog, if applicable. If this option is
omitted, the catalog or pluggable database defaults to the one that is associated with
the SOURCEDB, USERID, or USERIDALIAS portion of the DBLOGIN command (depending on
the database) .

owner.table

The owner and name of the checkpoint table to be created. The name cannot contain
any special characters, such as quotes, backslash, dollar sign, and percent symbol.
The name of a MySQL checkpoint table can contain no more than 30 characters.
The owner and name can be omitted if you are using this table as the default
checkpoint table and it is listed with CHECKPOINTTABLE in the GLOBALS file.
It is recommended, but not required, that the table be created in a schema dedicated
to Oracle GoldenGate. If an owner and name are not specified, a default table is
created based on the CHECKPOINTTABLE parameter in the GLOBALS parameter file.
Record the name of the table, because you will need it to view statistics or delete the
table if needed.

Examples

Example 1
The following adds a checkpoint table with the default name specified in the GLOBALS
file.

ADD CHECKPOINTTABLE

Example 2
The following adds a checkpoint table with a user-defined name.

ADD CHECKPOINTTABLE ggs.fin_check

Chapter 1
ADD CHECKPOINTTABLE

1-137

2
Oracle GoldenGate Native Commands

This chapter contains reference information for commands that can be used to control
Oracle GoldenGate from the native command line of the operating system (outside the
GGSCI command interface). This enables you to include the commands in scripts to
run programs non-interactively.

2.1 Summary of Oracle GoldenGate IBM i Native
Commands

This section summarizes the commands that can be issued directly from the native
command line of the Linux, UNIX, Windows, or IBM i platforms. For the purpose of this
document, commands issued from the IBM i PASE environment are considered UNIX
commands.

On the IBM i platform, these commands are stored in the Oracle GoldenGate
installation library and can be used instead of issuing them from a PASE environment.
With this support, it is possible to use the typical job submission tools such as
SBMJOB to operate the Oracle GoldenGate product. If submitted to batch, the output
is written to a spool file, and only job messages and any exceptions are written to the
job log. In a typical installation, a batch submitted command should have both a QPRINT
output spool file and a joblog spool file.

To use the native commands from the IBM CLI, you need only include the Oracle
GoldenGate installation library in the library list, or reference it explicitly through a
qualified name such as OGGLIB/GGSCI. During the execution of the command the
current directory will be set to the Oracle GoldenGate installation directory, and all
appropriate environment variables will be set to operate the Oracle GoldenGate
commands. Therefore, the paths for any parameter that can take a path may be
specified either as an absolute path name or as a relative path name based at the
Oracle GoldenGate installation directory. The OTHERS parameter of the IBM i CLI
commands is used to allow the specification of other parameters not explicitly exposed
by the IBM i CLI commands. For example, if you want to specify REPORTFILE and
PROCESSID for Extract, you would use the following syntax:

EXTRACT PARAMFILE('dirprm/myext.prm') OTHERS(REPORTFILE 'dirrpt/myext.rpt' PROCESSID
myext)

Note:

Normally, Extract and Replicat should be run from GGSCI, but some
situations, such as certain initial load procedures, require running them from
the command line of the operating system.

2-1

Table 2-1 Commands

Command Description

checkprm Assess the validity of the
specified parameter file.

convchk Converts the trail files from
9 digit to 6 digit checkpoint
record for the named
Extract group.

defgen Runs the DEFGEN
program. This program
generates data definitions
in a file that is transferred
to a remote system to
support the retrieval of
object metadata.

extract Runs the Extract program.
This program captures
either full data records or
transactional data
changes, depending on
configuration parameters,
and then sends the data to
a trail for further
processing by a
downstream process, such
as a data-pump Extract or
the Replicat process.

ggsci Runs the Oracle
GoldenGate command line
interface.

keygen Runs the KEYGEN utility.
This utility generates
encryption keys to support
Oracle GoldenGate
security.

logdump Runs the Logdump utility.
This utility enables the
contents of a trail file to be
viewed for the purpose of
troubleshooting. This
command takes no
arguments. For more
information about
Logdump, see Logdump
Reference for Oracle
GoldenGate.

Chapter 2
Summary of Oracle GoldenGate IBM i Native Commands

2-2

Table 2-1 (Cont.) Commands

Command Description

mgr Runs the Manager
program. Manager is the
parent process of Oracle
GoldenGate and is
responsible for the
management of its
processes and files,
resources, user interface,
and the reporting of
thresholds and errors.

replicat Runs the Replicat
program. This program
reads a trail, performs
mapping and manipulation
as needed, and applies
the data to a target
database.

2.2 checkprm
Use the checkprm command to assess the validity of the specified parameter file, with a
configurable application and running environment. It can provide either a simple PASS/
FAIL or with optional details about how the values of each parameter are stored and
interpreted.

When you use checkprm and do not use any of these arguments, then checkprm
attempts to automatically detect Extract or Replicat and the platform and database of
the Oracle GoldenGate installation.

For more information about using checkprm, see olink:GWUAD473Administering Oracle
GoldenGate for Windows and UNIX.

Syntax

checkprm
[None]
[-v]
[? | help]
[parameter_file]
[-COMPONENT | -C) component_name]
[-MODE | -M) mode_name]
[-PLATFORM | -P) platform_name]
[-DATABASE | -D) database _ame]
[-VERBOSE | -V)]

None

Displays usage information.

-v

Displays banner. Cannot be combined with other options. Does not produce verbose
(-VERBOSE | -V) output.

Chapter 2
checkprm

2-3

? | help

Displays detailed usage information, include all possible values of each option.
Cannot be combine with other options.

parameter_file

Specifies the name of the parameter file, has to be the first argument if a validation is
requested. You must specify the absolute path to the parameter file. For example,
CHECKPRM ./dirprm/myext.prm.

-COMPONENT | -C component_name

Specifies the running component (application) that this parameter file is validated for.
This option can be omitted for Extract or Replicat because automatic detection is
attempted. Valid values include:

CACHEFILEDUMP COBGEN CONVCHK CONVPRM DDLCOB DEFGEN EMSCLNT EXTRACT GGCMD GGSCI
KEYGEN LOGDUMP
MGR OGGERR REPLICAT RETRACE
REVERSE SERVER GLOBALS

There is no default for this option.

-MODE | -M mode_name
Specifies the mode of the running application if applicable. This option is optional,
only applicable to Extract or Replicat.
Valid input of this option includes:

• Classic Extract

• Integrated Extract

• Initial Load Extract

• Remote Task Extract

• Data Pump Extract

• Passive Extract

• Classic Replicat

• Coordinated Replicat

• Integrated Replicat

• Special Run Replicat

• Remote Task

• Replicat All

When key in the value for this option, the application name is optional, as long as it
matches the value of component. For example, "Â"Data Pump ExtractÂ" is equivalent
to "Â"Data PumpÂ" if the component is Extract. However, it is invalid if the component is
Replicat.

-PLATFORM | -P platform_name
Specifies the platform the application is supposed to run on. The default value is the
platform that this checkprm executable is running on.
The possible values are:

AIX HP-OSS HPUX-IT HPUX-PA
Linux OS400 ZOS Solaris SPARC
Solaris x86 Windows x64 All

Chapter 2
checkprm

2-4

-DATABASE | -D database_name
Specifies the database the application is built against. The default value is the
database for your Oracle GoldenGate installation.
The database options are:

Generic Oracle 8 Oracle 9i
Oracle 10g Oracle 11g Oracle 12c
Sybase DB2LUW 9.5 DB2LUW 9.7
DB2LUW 10.5 DB2LUW 10.1 DB2 Remote
Teradata Timesten Timesten 7
Timesten 11.2.1 MySQL Ctree8
Ctree9 DB2 for I DB2 for i Remote
MS SQL Informix Informix1150
Informix1170 Informix1210 Ingres
SQL/MX DB2 z/OS PostgreSQL

-VERBOSE | -V

Directs checkprm to display detailed parameter information, to demonstrate how the
values are read and interpreted. It must be the last option specified in a validation and
provides more information than the -v option.

2.3 convchk
Use the convchk command to convert trail files from 9 digit to 6 digit checkpoint record
for the named extract group.

For more information about using convchk, see Administering Oracle GoldenGate for
Windows and UNIX.

Syntax for Windows, UNIX, and Linux

convchk <checkpoint_group> <trail_name> (SEQLEN_9D | SEQLEN_6D) [-force]

checkpoint_group

The name of the Extract group writing the trail.

trail_name

The relative or fully qualified path name of the trail that was used with the ADD EXTRAIL
command or ADD RMTTRAIL command.

seqlen_9d

Sets the sequence length to 9 digits. This is the default.

seqlen_6d

Sets the sequence length to 6 digits.

-force

Optional, not recommended. It can be used if the Extract was not stopped gracefully.

2.4 defgen
Use defgen to run the DEFGEN utility from the command line of the Linux, UNIX,
Windows, or IBM i operating system. The defgen command is installed in the Oracle
GoldenGate installation directory or library.

For more information about using DEFGEN, see Administering Oracle GoldenGate for
Windows and UNIX.

Chapter 2
convchk

2-5

Syntax for Windows, UNIX, and Linux

defgen paramfile parameter_file
[CHARSET character_set]
[COLCHARSET character_set]
[noextattr]
[pauseatend | nopauseatend]
[reportfile report_file]

The following syntax can also be used without any other options:

defgen defs_file updatecs charset

defgen

Used without options, the command runs the program interactively.

paramfile parameter_file

Required. Specifies the relative or absolute path name of the parameter file for the
DEFGEN program that is being run.

CHARSET character_set
Any supported character set. See CHARSET for more information.

COLCHARSET character_set

Any supported character set. See COLCHARSET for more information.

noextattr

Can be used to support backward compatibility with Oracle GoldenGate versions that
are older than Release 11.2.1 and do not support character sets other than ASCII, nor
case-sensitivity or object names that are quoted with spaces. NOEXTATTR prevents
DEFGEN from including the database locale and character set that support the
globalization features that were introduced in Oracle GoldenGate Release 11.2.1. If
the table or column name has multi-byte or special characters such as white spaces,
DEFGEN does not include the table definition when NOEXTATTR is specified. If APPEND
mode is used in the parameter file, NOEXTATTR is ignored, and the new table definition
is appended in the existing file format, whether with the extra attributes or not.

pauseatend | nopauseatend

(Windows only) When the process stops, requires an Oracle GoldenGate user to look
at the console output and then strike any key to clear it. Also indicates whether the
process ended normally or abnormally.

reportfile report_file

Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen.

defs_file updatecs charset
Converts the character set of a definitions file to a different character set if the file is
transferred to an operating system with an incompatible character set. This procedure
takes the name of the definitions file and the targeted character set as input. For
example: defgen ./dirdef/source.def UPDATECS UTF-8.
updatecs helps in situations such as when a Japanese table name on Japanese
Windows is written in Windows CP932 to the data-definitions file, and then the
definitions file is transferred to Japanese UNIX. The file cannot be used unless the
UNIX is configured in PCK locale. Thus, you must use updatecs to convert the
encoding of the definitions file to the correct format.

Chapter 2
defgen

2-6

Syntax for IBM i CLI

DEFGEN PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)

The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)

Any options that are supported in the UNIX version of the command provided as a
space separated list.

2.5 extract
Use extract to run the Extract program from the command line of the Linux, UNIX,
Windows, or IBM i operating system. The extract command is installed in the Oracle
GoldenGate installation directory or library.

Syntax for Windows, UNIX, and Linux

extract paramfile parameter_file
[atcsn CSN | aftercsn CSN]
[initialdataload]
[pauseatend | nopauseatend]
[processid PID]
[reportfile report_file]
[usesubdirs | nousesubdirs]

extract

Used without options, the command runs the program interactively.

paramfile parameter_file

Required. Specifies the relative or absolute path name of the parameter file for the
Extract program that is being run. The default location is the dirprm subdirectory of the
Oracle GoldenGate installation directory.

atcsn CSN | aftercsn CSN
Starts the process at or after the specified commit sequence number (CSN). For more
information, see "START EXTRACT".

initialdataload

Runs Extract to extract all of the data records directly from the source database to
support an initial load to the target.

pauseatend | nopauseatend

(Windows only) When the process stops, requires an Oracle GoldenGate user to look
at the console output and then strike any key to clear it. Also indicates whether the
process ended normally or abnormally.

processid PID

A name for the process. This name must match the name that is specified for the
EXTRACT parameter in the parameter file. Use one alphanumeric word. When used on

Chapter 2
extract

2-7

IBM i, this name (up to the first 10 characters) will be used as the job name in the IBM
i job list.

reportfile report_file

Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen. The default is the dirrpt subdirectory of the
Oracle GoldenGate installation directory.

usesubdirs | nousesubdirs

Includes the Oracle GoldenGate subdirectories when the process searches for a file
to open. usesubdirs is the default.

Syntax for IBM i CLI

EXTRACT PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)

The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)

Any options that are supported in the UNIX version of the command provided as a
space separated list.

2.6 ggsci
Use the ggsci command to run the GGSCI command interface from the command line
of the operating system. Optionally, you can provide input from an OBEY file. For more
information about using an input file into GGSCI, see Storing and Calling Frequently
Used Command Sequences in Administering Oracle GoldenGate for Windows and
UNIX.

Syntax for Windows, UNIX, and Linux

ggsci[< input_file]
[cd directory]
[log | nolog]

<

Pipes the input file into the GGSCI program.

ggsci

Used without options, the command runs the program interactively.

cd directory
Changes the current working directory of the process. The process will use the
specified directory for all of its operations, such as opening and writing files.

input_file

The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

Chapter 2
ggsci

2-8

log | nolog

Enables or suppresses the logging of GGSCI commands to the report file. The default
is log. The following commands are logged: ADD, ALTER, CREATE, DELETE, INFO, START,
STOP, CLEANUP, SEND, KILL, EDIT, REFRESH.

Syntax for IBM i CLI

GGSCI [PARAMFILE (input_file)] [OTHERS(other_options)]

PARAMFILE(input_file)

The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)

Any options that are supported in the UNIX version of the command provided as a
space separated list.

2.7 keygen
Use keygen to generate one or more encryption keys to use with Oracle GoldenGate
security features that use an ENCKEYS file. The key values are returned to your screen.
You can copy and paste them into the ENCKEYS file. For more information, see
Administering Oracle GoldenGate for Windows and UNIX.

Syntax

KEYGEN key_length n

keygen

Used without options, the command runs the program interactively.

key_length

The length of the encryption key, up to 256 bits (32 bytes).

n

The number of keys to generate.

Syntax for IBM i CLI

KEYGEN [KEYLEN(key_length)] [NUMKEYS(n)]

KEYGEN(key_length)

The length of the encryption key, up to 256 bits (32 bytes).

NUMKEYS(n)

The number of keys to generate.

2.8 logdump
Use logdump to run the Logdump utility. This command takes no arguments and runs
interactively. For more information about the Logdump utility, see Logdump Reference
for Oracle GoldenGate.

Chapter 2
keygen

2-9

Syntax for Windows, UNIX, and Linux

logdump

Syntax for IBM i CLI

LOGDUMP

2.9 mgr
Use mgr to run the Manager program from the command line of the Linux, UNIX,
Windows, or IBM i operating system. The mgr command is installed in the Oracle
GoldenGate installation directory or library.

Syntax for Windows, UNIX, and Linux

mgr paramfile parameter_file
[cd directory]
[pauseatend | nopauseatend]
[port portnum]
[reportfile report_file]
[usesubdirs | nousesubdirs]

mgr

Used without options, the command runs the program interactively.

paramfile parameter_file

Specifies the relative or absolute path name of the parameter file for the Manager
program that is being run.

cd directory
Changes the current working directory of the process. The process will use the
specified directory for all of its operations, such as opening and writing files.

pauseatend | nopauseatend

(Windows only) When the process stops, requires an Oracle GoldenGate user to look
at the console output and then strike any key to clear it. Also indicates whether the
process ended normally or abnormally.

port portnum

The number of the first port that Manager will check to start a connection. If this port
number is not available, Manager increments the number by one and continues
incrementing until it finds a port number that is available. However, if a port number is
specified in the Manager parameter file, that number takes precedence as the start
point for this search.

reportfile report_file

Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen.

usesubdirs | nousesubdirs

Includes the Oracle GoldenGate subdirectories when the process searches for a file
to open. usesubdirs is the default.

Chapter 2
mgr

2-10

Syntax for IBM i CLI

MGR PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)

The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)

Any options that are supported in the UNIX version of the command provided as a
space separated list.

2.10 replicat
Use replicat to run the Replicat program from the command line of the Linux, UNIX,
Windows, or IBM i operating system. The replicat command is installed in the Oracle
GoldenGate installation directory or library.

Syntax for Window, UNIX, and Linux

replicat paramfile parameter_file
[{atcsn CSN | aftercsn CSN} [threads(thread_list)]]
[filterduptransactions]
[initialdataload]
[pauseatend | nopauseatend]
[processid PID]
[reportfile report_file]
[skiptransaction [threads(thread_list)]]
[usesubdirs | nousesubdirs]

replicat

Used without options, the command runs the program interactively.

paramfile parameter_file

Specifies the relative or absolute path name of the parameter file for the Replicat
program that is being run. The default location is the dirprm subdirectory of the Oracle
GoldenGate installation directory.

atcsn CSN | aftercsn CSN [threads(thread_list)]
Starts the process at or after the specified commit sequence number (CSN). For more
information, see "START REPLICAT".

filterduptransactions

Causes Replicat to ignore transactions that it has already processed. For more
information, see "START REPLICAT".

initialdataload

Runs Replicat to apply all of the data as an initial load to populate the target.

pauseatend | nopauseatend

(Windows only) When the process stops, requires an Oracle GoldenGate user to look
at the console output and then strike any key to clear it. Also indicates whether the
process ended normally or abnormally.

Chapter 2
replicat

2-11

processid PID

A name for the process. This name must match the name that is specified for the
REPLICAT parameter in the parameter file. Use one alphanumeric word. When used on
IBM i, this name (up to the first 10 characters) will be used as the job name in the IBM
i job list.

reportfile report_file

Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen. The default is the dirrpt subdirectory of the
Oracle GoldenGate installation directory.

skiptransaction [threads(thread_list)]

Causes the process to skip the first transaction after its expected startup position in
the trail. For more information, see "START REPLICAT".

usesubdirs | nousesubdirs

Includes the Oracle GoldenGate subdirectories when the process searches for a file
to open. usesubdirs is the default.

Syntax for IBM i CLI

REPLICAT PARAMFILE(input_file)
[OTHERS(other_options)]

PARAMFILE(input_file)

The input text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued, one command per line. The name can be
anything supported by the operating system.

OTHERS(other_options)

Any options that are supported in the UNIX version of the command provided as a
space separated list.

Chapter 2
replicat

2-12

3
Oracle GoldenGate Parameters

This chapter contains summaries of the Oracle GoldenGate parameters that control
processing, followed by detailed descriptions of each parameter in alphabetical order.
For instructions on creating, changing, and storing Oracle GoldenGate parameter files,
see Administering Oracle GoldenGate for Windows and UNIX.

Topics:

3.1 Summary of Oracle GoldenGate Parameters
This section summarizes the Oracle GoldenGate parameters by module and purpose
and includes the following topics:

• Summary of GLOBALS Parameters

• Summary of Manager Parameters

• Summary of Parameters Common to Extract and Replicat

• Summary of Extract Parameters

• Summary of Replicat Parameters

• Summary of Wildcard Exclusion Parameters

• Summary of DEFGEN Parameters

• Summary of DDL Parameters

3.1.1 Summary of GLOBALS Parameters
The GLOBALS file stores parameters that relate to the Oracle GoldenGate instance as a
whole, as opposed to runtime parameters for a specific process.

Table 3-1 All GLOBALS Parameters

Parameter Description

ALLOWOUTPUTDIR Use to ALLOWOUTPUTDIR specify the allowed output trail directory
(including its subdirectories) through \u000b.

CHARMAP Specifies that the character mapping file overrides the character code
point mapping.

CHARSET Specifies a multibyte character set for the process to use instead of the
operating system default when reading the parameter file.

CHECKPOINTTABLE Specifies a default checkpoint table.

CREDENTIALSTORELO
CATION

Specifies the location of the Oracle GoldenGate credential store that
stores login credentials.

CRYPTOENGINE Selects which cryptographic library will the OGG processes use to
provide implementation of security primitives.

3-1

Table 3-1 (Cont.) All GLOBALS Parameters

Parameter Description

DDLTABLE Specifies a non-default name for the DDL history table that supports
DDL synchronization for Oracle.

ENABLECATALOGNAME
S

Enables support for three-part names for SQL/MX databases.

ENABLE_HEARTBEAT_
TABLE |
DISABLE_HEARTBEAT_
TABLE

Enables the processing of heartbeat tables.

ENABLEMONITORING Enables Oracle GoldenGate Monitor to view and monitor Oracle
GoldenGate instances.

EXCLUDEWILDCARDOB
JECTSONLY

Includes non-wildcarded source tables when a TABLEEXCLUDE,
SCHEMAEXCLUDE, or CATALOGEXCLUDE parameter contains a wildcard.

GGSCHEMA Specifies the name of the schema that contains the database objects
that support heartbeat tables and DDL synchronization for Oracle.

HEARTBEATTABLE Specifies the name of the heartbeat table.

MARKERTABLE Specifies a non-default name for the DDL marker table that supports
DDL synchronization for Oracle.

MAXGROUPS Specifies the maximum number of process groups that can run in an
instance of Oracle GoldenGate.

MGRSERVNAME Specifies the name of the Manager process when it is installed as a
Windows service.

NAMECCSID Specifies a DB2 for i CCSID if the object names in the SQL catalog are
of a different CCSID than the system.

NODUPMSGSUPPRESSI
ON

Prevents the automatic suppression of duplicate informational and
warning messages.

OUTPUTFILEUMASK Specifies a umask that can be used by Oracle GoldenGate processes
to create trail files and discard files.

USEANSISQLQUOTES |
NOUSEANSISQLQUOTE
S

Enables SQL-92 rules for quoted object names and literals.

SYSLOG Filters the types of Oracle GoldenGate messages that are written to
the system logs.

TRAILBYTEORDER Specifies the byte order (endianness) of a file created with the
EXTFILE, RMTFILE, EXTTRAIL, or RMTTRAIL parameter.

TRAIL_SEQLEN_6D |
TRAIL_SEQLEN_9D

Controls the sequence length for trail files.

UPREPORT Specifies the frequency with which Manager reports Extract and
Replicat processes that are running. Every time one of those
processes starts or stops, events are generated.

USE_TRAILDEFS |
NO_USE_TRAILDEFS

Controls where the data pump and Replicat processes obtain the table
definitions when the trail files contain full table definitions.

USEIPV4 Forces Oracle GoldenGate to use IPv4 for TCP/IP connections.

USEIPV6 Forces Oracle GoldenGate to use IPv6 for TCP/IP connections.

WALLETLOCATION Specifies the location of the master key wallet.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-2

Table 3-1 (Cont.) All GLOBALS Parameters

Parameter Description

XAGENABLE Enables the Oracle GoldenGate Transparent Integration with
Clusterware feature that allows you to continue using GGSCI to start
and stop manager when GoldenGate instance is under the
management of Oracle Grid Infrastructure Bundled Agents (XAG)).

3.1.2 Summary of Manager Parameters
Manager is the parent process of Oracle GoldenGate and is responsible for the
management of its processes, resources, user interface, and the reporting of
thresholds and errors. In most cases default settings for Manager suffice.

Table 3-2 Manager Parameters: General

Parameter Description

ACCESSRULE Adds security access rules for Manager.

CHARSET Specifies a multibyte character set for the process to use instead of
the operating system default when reading the parameter file.

COMMENT | -- Allows insertion of comments in a parameter file.

SOURCEDB Specifies a data source name as part of the login information.

USERIDALIAS Provides login information for Manager when it needs to access the
database.

Table 3-3 Manager Parameters: Port Management

Parameter Description

DYNAMICPORTLIST Specifies the ports that Collector can dynamically allocate.

PORT Establishes the TCP/IP port number on which Manager listens for
requests.

Table 3-4 Manager Parameters: Process Management

Parameter Description

AUTORESTART Specifies processes to be restarted by Manager after a failure.

AUTOSTART Specifies processes to be started when Manager starts.

BOOTDELAYMINUTES Determines how long after system boot time Manager delays until
performing main processing activities. This parameter supports
Windows.

MONITORING_HEARTB
EAT_TIMEOUT

Sets a process as non-responsive in a specified number of seconds.

UPREPORT Determines how often process heartbeat messages are reported.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-3

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/upreport.htm#GUID-A413B59D-2147-4948-84E0-A9F181523006

Table 3-5 Manager Parameters: Event Management

Parameter Description

DOWNREPORT Controls the frequency for reporting stopped processes.

LAGCRITICAL Specifies a lag threshold that is considered critical and generates a warning
to the error log.

LAGINFO Specifies a lag threshold at which an informational message is reported to
the error log.

LAGREPORT Sets an interval for reporting lag time to the error log.

Table 3-6 Manager Parameters: Maintenance

Parameter Description

CHECKMINUTES Determines how often Manager cycles through
maintenance activities.

PURGEDDLHISTORY |
PURGEDDLHISTORYALT

Purges rows from the Oracle DDL history table when
they are no longer needed.

PURGEMARKERHISTORY Purges Oracle marker table rows that are no longer
needed.

PURGEOLDEXTRACTS for Extract and
Replicat

Purges trail data that is no longer needed.

PURGEOLDEXTRACTS for Manager Purges trail files when processing has finished; Oracle
recommends use of this parameter rather than the
PURGEOLDEXTRACTS for Extract and Replicat parameter.

PURGEOLDTASKS Purges Extract and Replicat tasks after a specified
period of time.

STARTUPVALIDATIONDELAY[CSECS] Sets a delay time after which Manager checks that
processes are still running after startup.

VERIDATAREPORTAGE Purges old Veridata report files when they have reached
the specified age limit.

3.1.3 Summary of Parameters Common to Extract and Replicat
These parameters are available for both the Extract and Replicat processes.

Table 3-7 Parameters Common to Extract and Replicat: General

Parameter Description

ALLOCFILES Controls the incremental number of memory structures that
are allocated after the initial memory allocation specified by
the NUMFILES parameter is reached.

CHARSET Specifies a multibyte character set for the process to use
instead of the operating system default when reading the
parameter file.

CHECKPARAMS Verifies parameter file syntax.

COMMENT | -- Denotes comments in a parameter file.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-4

Table 3-7 (Cont.) Parameters Common to Extract and Replicat: General

Parameter Description

GETENV Retrieves variables that were set with the SETENV parameter.

OBEY Processes parameter statements contained in a different
parameter file.

SETENV Specifies a value for a UNIX environment variable from within
the GGSCI interface.

TRACETABLE | NOTRACETABLE Specifies a trace table to which Replicat adds a record
whenever it updates the target database. Causes Extract to
ignore database changes generated by Replicat. Supports
Oracle bi-directional replication.

USERID | NOUSERID Specifies database connection information.

USERIDALIAS Specifies database connection information when a credential
store is in use.

Table 3-8 Parameters Common to Extract and Replicat: Selection, Converting,
and Mapping Data

Parameter Description

ALLOWDUPTARGETMAP |
NOALLOWDUPTARGETMAP

Allows the same source-target MAP statement
to appear more than once in the parameter
file.

ASCIITOEBCDIC
Converts ASCII text to EBCDIC for DB2 on
z/OS systems running UNIX System Services.

CATALOGEXCLUDE Excludes the specified source container or
catalog from a wildcard specification.

COLMATCH
Establishes global column-mapping rules.

DDL
Enables and filters the capture of DDL
operations.

DDLSUBST
Enables string substitution in DDL processing.

GETDELETES | IGNOREDELETES
Controls the extraction of delete operations.

GETINSERTS | IGNOREINSERTS
Controls the extraction of insert operations.

GETTRUNCATES | IGNORETRUNCATES
Controls the extraction of truncate statements.

GETUPDATEAFTERS | IGNOREUPDATEAFTERS
Controls the extraction of update after images.

GETUPDATEBEFORES |
IGNOREUPDATEBEFORES

Controls the extraction of update before
images.

GETUPDATES | IGNOREUPDATES
Controls the extraction of update operations.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-5

Table 3-8 (Cont.) Parameters Common to Extract and Replicat: Selection,
Converting, and Mapping Data

Parameter Description

NAMECCSID Specifies a DB2 for i CCSID if the object
names in the SQL catalog are of a different
CCSID than the system.

PROCEDURE Specifies which feature groups of procedure
calls are included or excluded during
procedural replication.

REPLACEBADCHAR
Replaces invalid character values with another
value.

SCHEMAEXCLUDE Excludes the specified source schema from a
wildcard specification.

SOURCEDEFS
Specifies a file that contains source data
definitions created by the DEFGEN utility.

SOURCECATALOG Specifies a default container or catalog for all
following TABLE or MAP statements.

TRIMSPACES | NOTRIMSPACES
Controls whether trailing spaces are trimmed
or not when mapping CHAR to VARCHAR
columns.

VARWIDTHNCHAR | NOVARWIDTHNCHAR
Controls whether length information is written
to the trail for NCHAR columns.

Table 3-9 Parameters Common to Extract and Replicat: Custom Processing

Parameter Description

CUSEREXIT
Invokes a user exit routine during processing.

INCLUDE
Invokes a macro library.

MACRO
Defines an Oracle GoldenGate macro.

MACROCHAR
Defines a macro character other than the default of #.

SQLEXEC
Executes a stored procedure or query during Extract processing.

PTKCAPTUREPRO
CSTATS

Enables the capture of process and thread statistics for the PTK Monitoring.

PTKMONITORFRE
QUENCY

Sets the PTK Monitoring collection frequency interval.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-6

Table 3-10 Parameters Common to Extract and Replicat: Reporting

Parameter Description

CMDTRACE
Displays macro expansion steps in the report
file.

LIST | NOLIST
Displays or suppresses the listing of macros in
the report file.

REPORT
Schedules a statistical report.

STATOPTIONS
Specifies information to include in statistical
displays.

REPORTCOUNT
Reports the number of records processed.

TRACE | TRACE2
Shows processing information to assist in
revealing processing bottlenecks.

Table 3-11 Parameters common to Extract and Replicat: Tuning

Parameter Description

ALLOCFILES
Controls the number of incremental memory
structures allocated when the value of
NUMFILES is reached.

CACHEMGR Manages virtual memory resources.

CHECKPOINTSECS
Controls how often the process writes a
checkpoint.

DBOPTIONS
Specifies database options.

DDLOPTIONS
Specifies DDL processing options.

EOFDELAY | EOFDELAYCSECS
Determines how long the process delays
before searching for more data to process in
its data source.

FUNCTIONSTACKSIZE
Controls the size of the memory stack that is
used for processing Oracle GoldenGate
functions.

NUMFILES
Controls the initial allocation of memory
dedicated to storing information about tables
to be processed by Oracle GoldenGate.

Table 3-12 Parameters Common to Extract and Replicat: Error Handling

Parameter Description

DDLERROR
Controls error handling for DDL extraction.

DISCARDFILE | NODISCARDFILE
Contains records that could not be processed.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-7

Table 3-13 Parameters Common to Extract and Replicat: Maintenance

Parameter Description

DISCARDROLLOVER
Controls how often to create a new discard
file.

PURGEOLDEXTRACTS for Extract and Replicat
Purges obsolete trail files.

REPORTROLLOVER
Specifies when to create new report files.

3.1.4 Summary of Extract Parameters
The Extract process captures either full data records or transactional data changes,
depending on configuration parameters, and then sends the data to a target system to
be applied to target tables or processed further by another process, such as a load
utility.

Table 3-14 Extract Parameters: General

Parameter Description

ABORTDISCARDRECS Controls the number of discarded records after
which Extract aborts.

RECOVERYOPTIONS
Controls the recovery mode of the Extract
process.

SOURCEDB
Specifies the data source as part of the login
information.

TCPSOURCETIMER | NOTCPSOURCETIMER
Adjusts timestamps of records transferred to
other systems when those systems reflect
different times.

UPDATERECORDFORMAT Controls whether before and after images are
stored in one trail record or two.

Table 3-15 Extract Parameters: Processing Method

Parameter Description

DSOPTIONS
Specifies Extract processing options when a
Teradata Access Module (TAM) is being used.

EXTRACT
Defines an Extract group as an online process.

GETAPPLOPS | IGNOREAPPLOPS
Controls whether or not operations from all processes
except Replicat are written to a trail or file.

GETREPLICATES | IGNOREREPLICATES
Controls whether or not replicated operations are
captured by an Extract on the same system.

RMTTASK
Creates a processing task on a remote system.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-8

Table 3-15 (Cont.) Extract Parameters: Processing Method

Parameter Description

SOURCEISTABLE
Extracts entire records from source tables.

VAM
Indicates that a Teradata Access Module (TAM) is
being used to provide transactional data to the
Extract process.

Table 3-16 Extract Parameters: Selecting, Converting, and Mapping Data

Parameter Description

COMPRESSDELETES | NOCOMPRESSDELETES
Controls whether Oracle GoldenGate writes
only the key or all columns to the trail for
delete operations.

COMPRESSUPDATES | NOCOMPRESSUPDATES
Causes only primary key columns and
changed columns to be logged for updates.

EXCLUDETAG Specifies Replicat or data pump changes to
be excluded from trail files.

FETCHOPTIONS
Controls certain aspects of the way that
Oracle GoldenGate fetches data.

LOGALLSUPCOLS Logs the columns that are required to support
Conflict Detection and Resolution and
Integrated Replicat.

SEQUENCE
Specifies sequences for synchronization.

TABLE | MAP
Specifies tables for extraction and controls
column mapping and conversion.

TABLEEXCLUDE
Excludes source tables from the extraction
process.

TARGETDEFS
Specifies a file containing target table
definitions for target databases that reside on
the NonStop platform.

TRAILCHARSETASCII
Specifies the ASCII character set for data
captured from DB2 on z/OS, when both
ASCII and EBCDIC tables are present.

TRAILCHARSETEBCDIC
Specifies the EBCDIC character set for data
captured from DB2 on z/OS, when both
ASCII and EBCDIC tables are present.

Table 3-17 Extract Parameters: Routing Data

Paramete
r

Description

EXTFILE
Specifies an extract file to which extracted data is written on the local system.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-9

Table 3-17 (Cont.) Extract Parameters: Routing Data

Paramete
r

Description

EXTTRAIL
Specifies a trail to which extracted data is written on the local system.

RMTFILE
Specifies an extract file to which extracted data is written on a remote system.

RMTHOST
Specifies the target system and Manager port number.

RMTTRAIL
Specifies a trail to which extracted data is written on a remote system.

Table 3-18 Extract Parameters: Formatting Data

Parameter Description

FORMATASCII
Formats extracted data in external ASCII format.

FORMATSQL
Formats extracted data into equivalent SQL statements.

FORMATXML
Formats extracted data into equivalent XML syntax.

Table 3-19 Extract Parameters: Tuning

Parameter Description

BR
Controls the Bounded Recovery feature of Extract.

CACHEMGR
Controls the virtual memory cache manager.

FLUSHSECS | FLUSHCSECS
Determines the amount of time that record data remains buffered
before being written to the trail.

LOBMEMORY
Controls the amount of memory and temporary disk space
available for caching transactions that contain LOBs.

RMTHOSTOPTIONS
Specifies connection attributes other than host information for a
TCP/IP connection used by a passive Extract group.

THREADOPTIONS
Controls aspects of the way that Extract operates in an Oracle
Real Application Cluster environment.

TRANLOGOPTIONS
Supplies capture processing options.

TRANSMEMORY
Controls the amount of memory and temporary disk space
available for caching uncommitted transaction data.

WARNLONGTRANS
Defines a long-running transaction and controls the frequency of
checking for and reporting them.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-10

Table 3-20 Extract Parameters: Maintenance

Parameter Description

ROLLOVER
Specifies the way that trail files are aged.

Table 3-21 Extract Parameters: Security

Parameter Description

DECRYPTTRAIL Required to decrypt data when Extract is used as a data
pump and must do work on the data.

ENCRYPTTRAIL | NOENCRYPTTRAIL
Controls encryption of data in a trail or extract file.

3.1.5 Summary of Replicat Parameters
The Replicat process reads data extracted by the Extract process and applies it to
target tables or prepares it for use by another application, such as a load utility.

Table 3-22 Replicat Parameters: General

Parameter Description

TARGETDB
Specifies the data source as part of the login information.

HAVEUDTWITHNCHAR Causes Replicat to connect in UTF-8 to prevent data loss when the
record being processed is a user-defined type that has an NCHAR/
NVARCHAR2 attribute.

Table 3-23 Replicat Parameters: Processing Method

Parameter Description

BEGIN
Specifies a starting point for Replicat processing. Required when SPECIALRUN
is specified.

BULKLOAD
Loads data directly into the interface of the Oracle SQL*Loader utility.

END
Specifies a stopping point for Replicat processing. Required when using
SPECIALRUN.

GENLOADFILES
Generates run and control files that are compatible with a database load
utility.

REPLICAT
Specifies a Replicat group for online change synchronization.

SPECIALRUN
Used for one-time processing that does not require checkpointing from run to
run.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-11

Table 3-24 Replicat Parameters: Selecting, Converting, and Mapping Data

Parameter Description

ALLOWNOOPUPDATES |
NOALLOWNOOPUPDATES

Controls how Replicat responds to a no-op
operation. A no-op operation is one in which there is
no effect on the target table.

APPLYNOOPUPDATES |
NOAPPLYNOOPUPDATES

Force a no-op update to be applied using all
columns in both the SET and WHERE clauses.

ASSUMETARGETDEFS
Assumes that source and target tables have the
same column structure.

INSERTALLRECORDS
Inserts a new record into the target table for every
change operation made to a record.

INSERTDELETES | NOINSERTDELETES
Converts deletes to inserts.

INSERTMISSINGUPDATES |
NOINSERTMISSINGUPDATES

Converts an update to an insert when the target row
does not exist.

INSERTUPDATES | NOINSERTUPDATES
Converts updates to inserts.

TABLE | MAP
Specifies a relationship between one or more source
and target tables and controls column mapping and
conversion.

MAPEXCLUDE
Excludes source tables from being processed by a
wildcard specification supplied in MAP statements.

PRESERVETARGETTIMEZONE Overrides the default Replicat session time zone.

REPLACEBADNUM Specifies a global substitution value for invalid
numeric data encountered when mapping number
columns.

SOURCECHARSET Controls whether the source character set it
converted to the target character set.

SOURCETIMEZONE Specifies the time zone of the source database for
Replicat to use as the session time zone.

SPACESTONULL | NOSPACESTONULL
Controls whether or not a target column containing
only spaces is converted to NULL.

TABLE for Replicat
Specifies a table or tables for which event actions
are to take place when a row satisfies the given filter
criteria.

TRAILCHARSET Specifies the character set of the source data when
the trail is of an older version that does not store the
source character set, or to override the character set
that is stored in the trail.

UPDATEINSERTS | NOUPDATEINSERTS Converts insert operations to update operations for
all MAP statements that are specified after it in the
parameter file.

UPDATEDELETES | NOUPDATEDELETES
Converts deletes to updates.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-12

Table 3-24 (Cont.) Replicat Parameters: Selecting, Converting, and Mapping
Data

Parameter Description

USEDEDICATEDCOORDINATIONTHREAD Specifies a dedicated thread for barrier transactions
when Replicat is in coordinated mode.

Table 3-25 Replicat Parameters: Routing Data

Paramete
r

Description

EXTFILE
Defines the name of an extract file on the local system that contains data to be
replicated. Used for one-time processing.

EXTTRAIL
Defines a trail containing data to be replicated. Used for one-time processing.

Table 3-26 Replicat Parameters: Error Handling and Reporting

Parameter Description

HANDLECOLLISIONS | NOHANDLECOLLISIONS
Handles errors for duplicate and missing
records.

HANDLETPKUPDATE
Prevents constraint errors associated with
replicating transient primary key updates.

OVERRIDEDUPS | NOOVERRIDEDUPS
Overlays a replicated insert record onto an
existing target record whenever a duplicate-
record error occurs.

RESTARTCOLLISIONS | NORESTARTCOLLISIONS
Controls whether or not Replicat applies
HANDLECOLLISIONS logic after Oracle
GoldenGate has abended because of a
conflict.

REPERROR
Determines how Replicat responds to
database errors.

REPFETCHEDCOLOPTIONS
Determines how Replicat responds to
operations for which a fetch from the source
database was required.

SHOWSYNTAX
Causes Replicat to print its SQL statements
to the report file.

SQLDUPERR
Specifies the database error number that
indicates a duplicate record. Use with
OVERRIDEDUPS.

WARNRATE
Determines how often database errors are
reported.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-13

Table 3-27 Replicat Parameters: Tuning

Parameter Description

BATCHSQL
Increases the throughput of Replicat processing by
arranging similar SQL statements into arrays and
applying them at an accelerated rate.

COORDSTATINTERVAL The interval at which the coordinator thread sends a
request to the apply threads for statistics.

COORDTIMER The amount of time that the coordinator thread waits for
the apply threads to start.

DEFERAPPLYINTERVAL
Specifies a length of time for Replicat to wait before
applying replicated operations to the target database.

GROUPTRANSOPS
Controls the number of records that are grouped into a
Replicat transaction.

INSERTAPPEND | NOINSERTAPPEND
Controls whether or not Replicat uses an APPEND hint
when applying INSERT operations to Oracle target tables.

MAXDISCARDRECS
Limits the number of discarded records reported to the
discard file.

MAXSQLSTATEMENTS
Controls the number of prepared SQL statements that
can be used by Replicat.

MAXTRANSOPS
Divides large source transactions into smaller ones on
the target system.

NUMFILES
Controls the initial allocation of memory that is dedicated
to storing information about tables to be processed by
Oracle GoldenGate.

TRANSACTIONTIMEOUT
Specifies a time interval after which Replicat will commit
its open target transaction and roll back any incomplete
source transactions that it contains, saving them for
when the entire source transaction is ready to be
applied.

3.1.6 Summary of Wildcard Exclusion Parameters

Table 3-28 Wildcard Exclusion Parameters

Parameter Description

EXCLUDEWILDCARDOBJECTSO
NLY

Forces the inclusion of non-wildcarded source objects specified
in TABLE or MAP parameters when an exclusion parameter
contains a wildcard that otherwise would exclude that object.

MAPEXCLUDE
Excludes a source object from a MAP statement.

TABLEEXCLUDE
Excludes a source object from a TABLE statement.

CATALOGEXCLUDE Excludes source objects in the specified source container or
catalog from the Oracle GoldenGate configuration when the
container or catalog name is being specified with a wildcard in
TABLE or MAP statements.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-14

Table 3-28 (Cont.) Wildcard Exclusion Parameters

Parameter Description

SCHEMAEXCLUDE Excludes source objects that are owned by the specified
source owner (such as a schema) from the Oracle GoldenGate
configuration when wildcards are being used to specify the
owners in TABLE or MAP statements.

3.1.7 Summary of DEFGEN Parameters
DEFGEN creates a file with data definitions for source or target tables. Data definitions
are needed when the source and target tables have different definitions or the
databases are of different types.

Table 3-29 All DEFGEN Parameters

Parameter Description

CATALOGEXCLUDE Excludes the specified source container or catalog from a wildcard
specification.

CHARSET
Specifies a multibyte character set for the process to use instead of the
operating system default when reading the parameter file.

DEFSFILE
Identifies the name of the file to which DEFGEN writes the definitions

NAMECCSID Specifies a DB2 for i CCSID if the object names in the SQL catalog are of
a different CCSID than the system.

NOCATALOG Prevents the container or catalog name from being included in the
metadata.

SCHEMAEXCLUDE Excludes the specified source schema from a wildcard specification.

SOURCEDB
Specifies the data source as part of the login information.

TABLE for DEFGEN
Identifies a table for which you want to capture a definition.

USERIDALIAS
Specifies database connection information.

3.1.8 Summary of DDL Parameters
These parameters control Oracle GoldenGate DDL support. Other parameters may be
required with DDL support, but the ones here deal specifically with the DDL feature.

Table 3-30 All DDL Parameters

Parameter Description

DDL
Enables DDL support and filters DDL.

Chapter 3
Summary of Oracle GoldenGate Parameters

3-15

Table 3-30 (Cont.) All DDL Parameters

Parameter Description

DDLERROR
Handles errors that occur during DDL replication.

DDLOPTIONS
Configures aspects of DDL replication other than filtering and string
substitution.

DDLSUBST
Enables the substitution of strings in DDL operations.

DDLTABLE
Specifies an alternate name for the DDL history table.

GGSCHEMA
Specifies the name of the schema that contains the objects that
support DDL replication.

PURGEDDLHISTORY |
PURGEDDLHISTORYALT

Controls the size of the DDL history table.

PURGEMARKERHISTORY
Controls the size of the DDL marker table.

3.1.9 Summary of Oracle GoldenGate Data Store Commands
Use the data store commands to control the data store that Oracle GoldenGate uses
to store monitoring information for use by Oracle GoldenGate Monitor.

Table 3-31 Oracle GoldenGate Veridata Data Store Commands

Command Description

ALTER DATASTORE Changes the memory model that is used for interprocess
communication by the data store.

CREATE DATASTORE Creates the data store.

DELETE DATASTORE Removes the data store.

INFO DATASTORE Returns information about the data store.

REPAIR DATASTORE Repairs the data store after an upgrade or if it is corrupt.

3.2 ABORTDISCARDRECS
Valid For

Extract

Description

Use ABORTDISCARDRECS to abort Extracts configured with a DISCARDFILE after it has
discarded N number of records.

Chapter 3
ABORTDISCARDRECS

3-16

Default

Zero (0) (Do not abort Extract and any number of discards.)

Syntax

ABORTDISCARDRECS

3.3 ACCESSRULE
Valid for Manager

Use ACCESSRULE to control connection access to the Manager process and the
processes under its control. You can establish multiple rules by specifying multiple
ACCESSRULE statements in the parameter file and control their priority. There is no limit to
the number of rules that you can specify. To establish priority, you can either list the
rules in order from most important to least important, or you can explicitly set the
priority of each rule with the PRI option.

Default

None

Syntax

ACCESSRULE[, PROG program_name][, IPADDR address][, PRI rule][, login_ID]{, ALLOW |
DENY}

Argument Description

PROG program_name
Specifies connection security for a specific Oracle
GoldenGate program or multiple programs specified with a
wildcard. If one of these options is not specified, the access
rule applies to all programs that Manager starts, stops, or kills.

Valid values:

• GGSCI: Secures access to the GGSCI command-line
interface.

• GUI: Secures access to Oracle GoldenGate from the
Activity Console.

• MGR | MANAGER: Secures access to all inter-process
commands controlled by Manager, such as START, STOP,
and KILL

• REPLICAT: Secures connection to the Replicat process.
• COLLECTOR | SERVER: Secures the ability to dynamically

create a Collector process.
• * (asterisk): Wildcard. Use a wildcard to specify all of the

preceding options.

IPADDR address
Permits access to Manager from the host with the specified IP
address.

PRI rule
Specifies a priority for each ACCESSRULE statement. Valid
values are from 1 through 99, with 1 being the highest priority
and 99 being the lowest. Rules that have priorities assigned
can appear in any order in the parameter file.

Chapter 3
ACCESSRULE

3-17

Argument Description

login_ID
Permits access based on a user password. This option
requires specifying USER and PASSWORD options with the
RMTHOST parameter.

The syntax for login_ID is:

USER user, PASSWORD password, [ENCRYPTKEY keyname]

Valid values:

• user : The user specified with the USER option of the
RMTHOST parameter.

• password: The password specified with the PASSWORD
option of the RMTHOST parameter.

• keyname: Optional. Specifies an encryption key in the
ENCKEYS file.

When ENCRYPTKEY keyname is used as part of the login ID,
Oracle GoldenGate looks up the key in the ENCKEYS file on the
target system and uses it to decrypt the corresponding
password. If the decrypted password matches the password
supplied with the password portion of the login ID option, the
rule passes.

ALLOW | DENY
Determines whether the rule specified with ACCESSRULE
permits or denies access. Either ALLOW or DENY is required.

Example 1

The following access rules allow any nodes that begin with IP address 205 or the node
194.168.11.102 to access the requested services. All others are denied.

ACCESSRULE, PROG *, IPADDR 194.168.11.102, ALLOW ACCESSRULE, PROG *, IPADDR 205.*,
ALLOW ACCESSRULE, PROG *, IPADDR *, DENY

Example 2

The following access rules have been assigned explicit priority levels through the PRI
option. These rules allow any user to access the Collector process (the SERVER
program), and in addition, allow the IP address 122.11.12.13 to access GGSCI
commands. Access to all other Oracle GoldenGate programs is denied.

ACCESSRULE, PROG *, DENY, PRI 99ACCESSRULE, PROG SERVER, ALLOW, PRI 1ACCESSRULE,
PROG GGSCI, IPADDR 122.11.12.13, PRI 1

Example 3

The following access rules are the same as Example 2, but they assign priority by
means of their order in the parameter file, instead of the PRI option.

ACCESSRULE, PROG SERVER, ALLOWACCESSRULE, PROG GGSCI, IPADDR 122.11.12.13ACCESSRULE,
PROG *, DENY

Example 4

The following access rule grants access to all programs to the user JOHN.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEAN1

Chapter 3
ACCESSRULE

3-18

Example 5

The following access rule grants access to all programs to the user JOHN and
designates an encryption key to decrypt the password. If the password provided with
PASSWORD matches the one in the ENCKEYS lookup file, connection is granted.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEAN1, ENCRYPTKEY lookup1

3.4 ALLOCFILES
Valid For

Extract and Replicat

Description

Use the ALLOCFILES parameter to control the incremental number of memory structures
that are allocated after the initial memory allocation specified by the NUMFILES
parameter is reached. Together, these parameters control how process memory is
allocated for storing information about the source and target tables being processed.

The default values should be sufficient for both NUMFILES and ALLOCFILES, because
memory is allocated by the process as needed, system resources permitting.

ALLOCFILES must occur before any TABLE or MAP entries to have any effect. The valid
range of minimum value is 1

See NUMFILESfor more information.

Default

500

Syntax

ALLOCFILES number

number

The additional number of memory structures to be allocated. Do not set ALLOCFILES to
an arbitrarily high number, or memory will be consumed unnecessarily. The memory
structures of Oracle GoldenGate support up to two million tables.

Example

ALLOCFILES 1000

3.5 ALLOWDUPTARGETMAP |
NOALLOWDUPTARGETMAP

Valid For

Extract and Replicat

Chapter 3
ALLOCFILES

3-19

Description

Use the ALLOWDUPTARGETMAP and NOALLOWDUPTARGETMAP parameters to control whether or
not the following are accepted in a parameter file:

• In an Extract parameter file: duplicate TABLE parameters for the same source object
if the COLMAP option is used in any of them. By default, Extract abends on duplicate
TABLE statements when COLMAP is used.

• In a Replicat parameter file: duplicate MAP statements for the same source and
target objects. By default, duplicate MAP statements cause Replicat to abend.

If ALLOWDUPTARGETMAP is not specified and the same source and target tables are
mapped more than once, only the first MAP statement is used and the others are
ignored.

Default

NOALLOWDUPTARGETMAP

Syntax

ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP

Examples

Example 1
The following Extract parameter file is permissible with ALLOWDUPTARGETMAP enabled.

EXTRACT extcust
USERIDALIAS tiger1
EXTTRAIL dirdat/aa
TABLE ogg.tcustmer;
EXTTRAIL dirdat/bb
TABLE ogg.tcustmer, TARGET ogg.tcustmer, COLMAP (USEDEFAULTS, col1=id, col2=name);

Example 2
The following Replicat parameter file is permissible with ALLOWDUPTARGETMAP enabled.

REPLICAT repcust
USERIDALIAS tiger1
SOURCEDEFS /ggs/dirdef/source.def
ALLOWDUPTARGETMAP
GETINSERTS
GETUPDATES
IGNOREDELETES
MAP ggs.tcustmer, TARGET ggs.tcustmer, COLMAP (USEDEFAULTS, deleted_row = 'N');
IGNOREINSERTS
IGNOREUPDATES
GETDELETES
UPDATEDELETES
MAP ggs.tcustmer, TARGET ggs.tcustmer, COLMAP (USEDEFAULTS, deleted_row = 'Y');

3.6 ALLOWINVISIBLEINDEXKEYS
Valid For

GLOBALS

Chapter 3
ALLOWINVISIBLEINDEXKEYS

3-20

Description

Use the ALLOWINVISIBLEINDEXKEYS parameter in the GLOBALS file to allow Extract and
Replicat to use columns that are part of an Oracle invisible index as a unique row
identifier.

Note:

To enable trigger-based DDL replication to use Oracle invisible indexes, set
the following parameter to TRUE in the params.sql script:

define allow_invisible_index_keys = 'TRUE'

This functionality is automatically enabled for integrated capture and
Replicat.

Default

None

Syntax

ALLOWINVISIBLEINDEXKEYS

3.7 ALLOWNONVALIDATEDKEYS
Valid For

GLOBALS

Description

Use ALLOWNONVALIDATEDKEYS to allow Extract, Replicat, and GGSCI commands to use a
non-validated primary key or an invalid key as a unique identifier. This parameter
overrides the key selection criteria that is used by Oracle GoldenGate. When it is
enabled, Oracle GoldenGate will use NON VALIDATED and NOT VALID primary keys as a
unique identifier.

A key can become invalid as the result of an object reorganization or a number of
other actions, but if you know the keys are valid, ALLOWNONVALIDATEDKEYS saves the
downtime of re-validating them, especially in a testing environment. However, when
using ALLOWNONVALIDATEDKEYS, whether in testing or in production, you accept the risk
that the target data may not be maintained accurately through replication. If a key
proves to be non-valid and the table on which it is defined contains more than one
record with the same key value, Oracle GoldenGate might choose the wrong target
row to update.

To enable ALLOWNONVALIDATEDKEYS in a configuration where DDL replication is not active,
stop all processes, add ALLOWNONVALIDATEDKEYS to the GLOBALS parameter file, and then
restart the processes. To disable ALLOWNONVALIDATEDKEYS again, remove it from the
GLOBALS file and then restart the processes.

To enable ALLOWNONVALIDATEDKEYS functionality in a configuration where DDL support is
active, take the following steps.

Chapter 3
ALLOWNONVALIDATEDKEYS

3-21

1. Add the ALLOWNONVALIDATEDKEYS parameter to the GLOBALS parameter file.

2. Update the GGS_SETUP table in the DDL schema by using the following SQL.

UPDATE owner.GGS_SETUP SET value='1' WHERE
property='ALLOWNONVALIDATEDKEYS';
COMMIT;

3. Restart all Oracle GoldenGate processes including Manager. From this point on,
Oracle GoldenGate selects non-validated or non-valid primary keys as a unique
identifier.

To disable ALLOWNONVALIDATEDKEYS functionality when DDL support is active, take the
following steps.

1. Remove ALLOWNONVALIDATEDKEYS from the GLOBALS parameter file.

2. Update the record that you added to the GGS_SETUP table to 0.

3. Restart all of the Oracle GoldenGate processes.

Default

None (Disabled)

Syntax

ALLOWNONVALIDATEDKEYS

3.8 ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES
Valid For

Replicat

Description

Use ALLOWNOOPUPDATES and NOALLOWNOOPUPDATES to control how Replicat responds to a
no-op operation. A no-op operation is one in which there is no effect on the target
table. The following are some examples of how this can occur.

• The source table has a column that does not exist in the target table, or it has a
column that was excluded from replication (with a COLSEXCEPT clause). In either
case, if that source column is updated, there will be no target column name to use
in the SET clause within the Replicat SQL statement.

• An update is made that sets a column to the same value as the current one. The
database does not log the new value, because it did not change. However, Oracle
GoldenGate captures the operation as a change record because the primary key
was logged, but there is no column value for the SET clause in the Replicat SQL
statement.

By default (NOALLOWNOOPUPDATES), Replicat abends with an error because these types of
operations do not update the database. With ALLOWNOOPUPDATES, Replicat ignores the
operation instead of abending. The statistics reported by Replicat will show that an
UPDATE was made, but the database does not get updated.

You can use the internal parameter APPLYNOOPUPDATES to force the UPDATE to be applied.
APPLYNOOPUPDATES overrides ALLOWNOOPUPDATES. If both are specified, Replicat applies
updates for which there are key columns for the source and target tables. By default,

Chapter 3
ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

3-22

Oracle GoldenGate abends with the following message when there is a key on the
source table but no key on the target table.

2011-01-25 02:28:42 GGS ERROR 160 Encountered an update for target table TELLER,
which has no unique key defined. KEYCOLS can be used to define a key. Use
ALLOWNOOPUPDATES to process the update without applying it to the target database.
Use APPLYNOOPUPDATES to force the update to be applied using all columns in both the
SET and WHERE clause.

If ALLOWNOOPUPDATES is specified when the HANDLECOLLISIONS or INSERTMISSINGUPDATES
parameter is being used, and if Oracle GoldenGate has all of the target key values,
Oracle GoldenGate applies an UPDATE by using all of the columns of the table in the SET
clause and the WHERE clause (invoking APPLYNOOPUPDATES behavior). This is necessary so
that Oracle GoldenGate can determine whether the row is present or missing. If it is
missing, Oracle GoldenGate converts the UPDATE to an INSERT.

Default

NOALLOWNOOPUPDATES (only applies if the table does not have a key)

Syntax

ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

3.9 ALLOWOUTPUTDIR
Valid For

GLOBALS

Description

Use ALLOWOUTPUTDIR to specify the allowed output trail directory (including its
subdirectories). The specified path must exist. Symbolic links are resolved before
parsing and comparison.

Default

None (A directory must be specified.)

Syntax

ALLOWOUTPUTDIR [relative_dir_name | absolute_dir_name]

relative_dir_name | absolute_dir_name
Specify the output trail directory name with either the relative or absolute path.

3.10 APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES
Valid For

Replicat

Chapter 3
ALLOWOUTPUTDIR

3-23

Description

Use APPLYNOOPUPDATES to force a no-op UPDATE operation to be applied by using all of the
columns in the SET and WHERE clauses. See ALLOWNOOPUPDATES |
NOALLOWNOOPUPDATES for a description of no-op.

APPLYNOOPUPDATES causes Replicat to use whatever data is in the trail. If there is a
primary-key UPDATE record, Replicat uses the before columns from the source. If there
is a regular (non-key) UPDATE, Replicat assumes that the after value is the same as the
before value (otherwise it would be a primary-key update). The preceding assumes
source and target keys are identical. If they are not, you must use a KEYCOLS clause in
the TABLE statement on the source.

Default

NOAPPLYNOOPUPDATES

Syntax

APPLYNOOPUPDATES | NOAPPLYNOPUPDATES

3.11 ASCIITOEBCDIC
Valid For

Extract data pump and Replicat

Description

Use the ASCIITOEBCDIC parameter to control the conversion of data in the input trail file
from ASCII to EBCDIC format. This parameter should only be used to support
backward compatibility in cases where the input trail file was created by an Extract
version prior to v10.0. It is ignored for all other cases, because ASCII to EBCDIC
conversion is currently the default.

As of version 11.2.1, conversion is not allowed by a data pump.

Default

None

Syntax

ASCIITOEBCDIC

3.12 ASSUMETARGETDEFS
Valid For

Replicat (Not valid for SQL/MX) for trail file formats prior to 12c (12.2.0.1)

Description

Use the ASSUMETARGETDEFS parameter when the source and target objects specified in a
MAP statement have identical column structure, such as when synchronizing a hot site.
It directs Oracle GoldenGate to assume that the data definitions of the source and

Chapter 3
ASCIITOEBCDIC

3-24

target objects are identical, and to refer to the target definitions when metadata is
needed for the source data.

When source and target tables have dissimilar structures, do not use ASSUMETARGETDEFS.
Create a data-definitions file for the source object, and specify the definitions file with
the SOURCEDEFS parameter. See SOURCEDEFS for more information. Do not use
ASSUMETARGETDEFS and SOURCEDEFS in the same parameter file.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about metadata and how it applies to Oracle GoldenGate.

Default

None

Syntax

ASSUMETARGETDEFS [OVERRIDE]

OVERRIDE

By default, the table definitions from the metadata records override the definitions
from any ASSUMETARGETDEFS file.
Specify OVERRIDE to request Replicat to use the definitions from the target database as
the definitions for the trail records.

3.13 AUTORESTART
Valid For

Manager

Description

Use the AUTORESTART parameter to start one or more Extract and Replicat processes
automatically after they fail. AUTORESTART provides fault tolerance when something
temporary interferes with a process, such as intermittent network outages or programs
that interrupt access to transaction logs.

You can use multiple AUTORESTART statements in the same parameter file.

To apply this parameter to an Extract group that is created in PASSIVE mode, use it for
the Manager that is on the target system where the associated alias Extract group
resides. Oracle GoldenGate will send the start command to the source system. If
AUTORESTART is used locally for a passive Extract group, it is ignored.

If Manager encounters an out-of-order transaction upon restart, it will not restart
Extract. Instead, it will log a warning that notifies you to use the ETROLLOVER option of
SEND EXTRACT to advance the trail to skip the transaction that caused the error.

Default

Do not auto-restart

Syntax

AUTORESTART {EXTRACT | REPLICAT | ER} group_name
[, RETRIES number]
[, WAITMINUTES minutes]

Chapter 3
AUTORESTART

3-25

[, WAITSECONDS seconds]
[, RESETMINUTES minutes]
[, RESETSECONDS seconds]

EXTRACT

Restarts Extract automatically.

REPLICAT

Restarts Replicat automatically.

ER

Restarts Extract and Replicat automatically.

group_name

A group name or wildcard specification for multiple groups. When wildcarding is used,
Oracle GoldenGate starts all groups of the specified process type on the local system
that satisfy the wildcard, except those in PASSIVE mode.

RETRIES number

The maximum number of times that Manager should try to restart a process before
aborting retry efforts. The default number of tries is 2.

WAITMINUTES | WAITSECONDS {minutes | seconds}
The amount of time, in minutes or seconds, to pause between discovering that a
process has terminated abnormally and restarting the process. Use this option to
delay restarting until a necessary resource becomes available or some other event
occurs. The default delay is 2 minutes or 120 seconds.

RESETMINUTES | RESETSECONDS {minutes | seconds}
The window of time, in minutes or seconds, during which retries are counted. The
default is 120 minutes (2 hours) or 7200 seconds. After the time expires, the number
of retries reverts to zero.

Example

In the following example, Manager tries to start all Extract processes three times after
failure within a one hour time period, and it waits five minutes before each attempt.

AUTORESTART EXTRACT *, RETRIES 3, WAITMINUTES 5, RESETMINUTES 60

3.14 AUTOSTART
Valid For

Manager

Description

Use the AUTOSTART parameter to start one or more Extract and Replicat processes
automatically when Manager starts. AUTOSTART ensures that no process groups are
overlooked and that synchronization activities start immediately.

You can use multiple AUTOSTART statements in the same parameter file.

To apply this parameter to an Extract group that is created in PASSIVE mode, use it for
the Manager that is on the target system where the associated alias Extract group
resides. Oracle GoldenGate will send the start command to the source system. If
AUTOSTART is used locally for a passive Extract group, it is ignored.

Chapter 3
AUTOSTART

3-26

If Manager encounters an out-of-order transaction upon restart, it will not restart
Extract. Instead, it will log a warning that notifies you to use the ETROLLOVER option of
SEND EXTRACT to advance the trail to skip the transaction that caused the error.

Default

Do not autostart

Syntax

AUTOSTART {{EXTRACT | REPLICAT | ER} group_name | JAGENT}

EXTRACT

Starts Extract automatically.

REPLICAT

Starts Replicat automatically.

ER

Starts Extract and Replicat automatically.

JAGENT

Starts the Oracle GoldenGate Monitor JAgent automatically. For more information,
see Administering Oracle GoldenGate Monitor.

group_name

Valid for EXTRACT, REPLICAT, ER only. JAGENT does not take a group name as input.
Specifies a group name or wildcard specification for multiple groups. When
wildcarding is used, Oracle GoldenGate starts all groups of the specified process type
that satisfy the wildcard on the local system, except those in PASSIVE mode.

Example

AUTOSTART ER *

3.15 BATCHSQL
Valid For

Replicat

Description

Use the BATCHSQL parameter to increase the performance of Replicat. BATCHSQL causes
Replicat to organize similar SQL statements into arrays and apply them at an
accelerated rate. In its normal mode, Replicat applies one SQL statement at a time.
BatchSQL is supported for Sybase ASE 15.7 SP110 onwards.

BATCHSQL is valid for:

• DB2 for i (except V5R4 or i6.1)

• DB2 LUW

• DB2 on z/OS

• Oracle

• NonStop SQL/MX

Chapter 3
BATCHSQL

3-27

• PostgreSQL

• SQL Server

• Teradata

• TimesTen

How BATCHSQL Works

In BATCHSQL mode, Replicat organizes similar SQL statements into batches within a
memory queue, and then it applies each batch in one database operation. A batch
contains SQL statements that affect the same table, operation type (insert, update, or
delete), and column list. For example, each of the following is a batch:

• Inserts to table A

• Inserts to table B

• Updates to table A

• Updates to table B

• Deletes from table A

• Deletes from table B

Note:

Oracle GoldenGate analyzes foreign-key referential dependencies in the
batches before executing them. If dependencies exist among statements that
are in different batches, more than one SQL statement per batch might be
required to maintain the referential integrity.

Controlling the Number of Cached Statements

The MAXSQLSTATEMENTS parameter controls the number of statements that are cached.
See "MAXSQLSTATEMENTS" for more information. Old statements are recycled
using a least-recently-used algorithm. The batches are executed based on a specified
threshold (see "Managing Memory").

Usage Restrictions

SQL statements that are treated as exceptions include:

• Statements that contain LOB or LONG data.

• Statements that contain rows longer than 25k in length.

• Statements where the target table has one or more unique keys besides the
primary key. Such statements cannot be processed in batches because BATCHSQL
does not guarantee the correct ordering for non-primary keys if their values could
change.

• (SQL Server) Statements where the target table has a trigger.

• Statements that cause errors.

When Replicat encounters exceptions in batch mode, it rolls back the batch operation
and then tries to apply the exceptions in the following ways, always maintaining
transaction integrity:

Chapter 3
BATCHSQL

3-28

• First Replicat tries to use normal mode: one SQL statement at a time within the
transaction boundaries that are set with the GROUPTRANSOPS parameter. See
"GROUPTRANSOPS" for more information.

• If normal mode fails, Replicat tries to use source mode: apply the SQL within the
same transaction boundaries that were used on the source.

When finished processing exceptions, Replicat resumes BATCHSQL mode.

Table 3-32 Replicat Modes Comparison

Source Transactions
(Assumes same table
and column list)

Replicat Transaction in
Normal Mode

Replicat Transaction in
BATCHSQL Mode

Replicat Transactions in
Source Mode

Transaction 1:
INSERT

DELETE

Transaction2:
INSERT

DELETE

Transaction 3:
INSERT

DELETE

INSERT

DELETE

INSERT

DELETE

INSERT

DELETE

INSERT (x3)

DELETE (x3)

Transaction 1:
INSERT

DELETE

Transaction 2:
INSERT

DELETE

Transaction 3:
INSERT

DELETE

When to Use BATCHSQL

When Replicat is in BATCHSQL mode, smaller row changes will show a higher gain in
performance than larger row changes. At 100 bytes of data per row change, BATCHSQL
has been known to improve the performance of Replicat by up to 300 percent, but
actual performance benefits will vary, depending on the mix of operations. At around
5,000 bytes of data per row change, the benefits of using BATCHSQL diminish.

Managing Memory

The gathering of SQL statements into batches improves efficiency but also consumes
memory. To maintain optimum performance, use the following BATCHSQL options:

BATCHESPERQUEUE
BYTESPERQUEUE
OPSPERBATCH
OPSPERQUEUE

As a benchmark for setting values, assume that a batch of 1,000 SQL statements at
500 bytes each would require less than 10 megabytes of memory.

Default

Disabled (Process in normal Replicat mode)

Syntax

BATCHSQL
[BATCHERRORMODE | NOBATCHERRORMODE]
[BATCHESPERQUEUE n]
[BATCHTRANSOPS n]
[BYTESPERQUEUE n]

Chapter 3
BATCHSQL

3-29

[OPSPERBATCH n]
[OPSPERQUEUE n]
[THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]
[TRACE]

BATCHERRORMODE | NOBATCHERRORMODE

Sets the response of Replicat to errors that occur during BATCHSQL processing mode.

BATCHERRORMODE

Causes Replicat to try to resolve errors without leaving BATCHSQL mode. It converts
inserts that fail on duplicate-record errors to updates, and it ignores missing-
record errors for deletes. When using BATCHERRORMODE, use the HANDLECOLLISIONS
parameter to prevent Replicat from abending.

NOBATCHERRORMODE

The default, causes Replicat to disable BATCHSQL processing temporarily when
there is an error, and then retry the transaction first in normal mode and then, if
normal mode fails, in source mode (same transaction boundaries as on the
source).

BATCHESPERQUEUE n

Controls the maximum number of batches that one memory queue can contain. After
BATCHESPERQUEUE is reached, a target transaction is executed.

• Minimum value is 1.

• Maximum value is 1000.

• Default is 50.

BATCHTRANSOPS n

Controls the maximum number of batch operations that can be grouped into a
transaction before requiring a commit. When BATCHTRANSOPS is reached, the operations
are applied to the target.

• Minimum value is 1.

• Maximum value is 100000.

• Default is 1000 for nonintegrated Replicat (all database types) and 50 for an
integrated Oracle Replicat.

BYTESPERQUEUE n

Sets the maximum number of bytes that one queue can contain. After BYTESPERQUEUE is
reached, a target transaction is executed.

• Minimum value is 1000000 bytes (1 megabyte).

• Maximum value is 1000000000 bytes (1 gigabyte).

• Default is 2000000 bytes (20 megabytes).

OPSPERBATCH n

Sets the maximum number of row operations that one batch can contain. After
OPSPERBATCH is reached, a target transaction is executed.

• Minimum value is 1.

• Maximum value is 100000.

• Default is 1200.

Chapter 3
BATCHSQL

3-30

OPSPERQUEUE n

Sets the maximum number of row operations in all batches that one queue can
contain. After OPSPERQUEUE is reached, a target transaction is executed.

• Minimum value is 1.

• Maximum value is 100000.

• Default is 1200.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Valid for BATCHESPERQUEUE, BATCHTRANSOPS, and BYTESPERQUEUE. Applies these options to
the specified thread or threads of a coordinated Replicat.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

TRACE

Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

NUMTHREADS

Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

• Minimum value is 0.

• Maximum value is 50.

MAXTHREADQUEUEDEPTH

Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

• Minimum value is 0.

• Maximum value is 50.

• Default is 10.

CHECKUNIQUEKEYS

Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

ERRORHANDLING

Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

BYPASSCHECK

Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do
not set tracing without the guidance of an Oracle Support analyst.

Chapter 3
BATCHSQL

3-31

Example

BATCHSQL BATCHESPERQUEUE 100, OPSPERBATCH 2000

3.16 BEGIN
Valid For

Replicat

Description

Use the BEGIN parameter to direct Replicat to start processing at the first record in the
Oracle GoldenGate trail that has a timestamp greater than, or equal to, the time
specified with BEGIN. All subsequent records, including records where the timestamp is
less than the specified time, are processed. Use BEGIN when SPECIALRUN is specified for
the same Replicat group.

Default

None

Syntax

BEGIN date[time]

date[time]

Specifies a time at which to begin processing. Valid values are a date and optional
time in the format of yyyy-mm-dd[hh:mi[:ss[.cccccc]]] based on a 24-hour clock.
Seconds and centiseconds are optional.

Example

BEGIN 2011-01-01 04:30:00

3.17 BLOBMEMORY
This parameter is an alias for LOBMEMORY. See "LOBMEMORY" for more information.

3.18 BOOTDELAYMINUTES
Valid For

Manager

Description

Use the BOOTDELAYMINUTES parameter on a Windows system to delay the activities that
Manager performs when it starts, such as executing parameters. For example,
BOOTDELAYMINUTES can be used to delay AUTOSTART parameters until database services
are started.

Specify BOOTDELAYMINUTES before other parameter entries. This parameter only supports
Windows.

Chapter 3
BEGIN

3-32

Default

None (no delay)

Syntax

BOOTDELAYMINUTES minutes

minutes

The number of minutes to delay after system startup before starting Oracle
GoldenGate processing.

Example

BOOTDELAYMINUTES 5

3.19 BR
Valid For

Extract (Oracle only)

Description

Use the BR parameter to control the Bounded Recovery (BR) feature. This feature
currently supports Oracle databases.

Bounded Recovery is a component of the general Extract checkpointing facility. It
guarantees an efficient recovery after Extract stops for any reason, planned or
unplanned, no matter how many open (uncommitted) transactions there were at the
time that Extract stopped, nor how old they were. Bounded Recovery sets an upper
boundary for the maximum amount of time that it would take for Extract to recover to
the point where it stopped and then resume normal processing.

Caution:

Before changing this parameter from its default settings, contact Oracle
Support for guidance. Most production environments will not require changes
to this parameter. You can, however, specify the directory for the Bounded
Recovery checkpoint files without assistance.

How Extract Recovers Open Transactions

When Extract encounters the start of a transaction in the redo log (in Oracle, this is the
first executable SQL statement) it starts caching to memory all of the data that is
specified to be captured for that transaction. Extract must cache a transaction even if it
contains no captured data, because future operations of that transaction might contain
data that is to be captured.

When Extract encounters a commit record for a transaction, it writes the entire cached
transaction to the trail and clears it from memory. When Extract encounters a rollback
record for a transaction, it discards the entire transaction from memory. Until Extract

Chapter 3
BR

3-33

processes a commit or rollback, the transaction is considered open and its information
continues to be collected.

If Extract stops before it encounters a commit or rollback record for a transaction, all of
the cached information must be recovered when Extract starts again. This applies to
all transactions that were open at the time that Extract stopped.

Extract performs this recovery as follows:

• If there were no open transactions when Extract stopped, the recovery begins at
the current Extract read checkpoint. This is a normal recovery.

• If there were open transactions whose start points in the log were very close in
time to the time when Extract stopped, Extract begins recovery by re-reading the
logs from the beginning of the oldest open transaction. This requires Extract to do
redundant work for transactions that were already written to the trail or discarded
before Extract stopped, but that work is an acceptable cost given the relatively
small amount of data to process. This also is considered a normal recovery.

• If there were one or more transactions that Extract qualified as long-running open
transactions, Extract begins its recovery with a Bounded Recovery.

How Bounded Recovery Works

A transaction qualifies as long-running if it has been open longer than one Bounded
Recovery interval, which is specified with the BRINTERVAL option of the BR parameter.
For example, if the Bounded Recovery interval is four hours, a long-running open
transaction is any transaction that started more than four hours ago.

At each Bounded Recovery interval, Extract makes a Bounded Recovery checkpoint,
which persists the current state and data of Extract to disk, including the state and
data (if any) of long-running transactions. If Extract stops after a Bounded Recovery
checkpoint, it will recover from a position within the previous Bounded Recovery
interval or at the last Bounded Recovery checkpoint, instead of processing from the
log position where the oldest open long-running transaction first appeared.

The maximum Bounded Recovery time (maximum time for Extract to recover to where
it stopped) is never more than twice the current Bounded Recovery checkpoint
interval. The actual recovery time will be a factor of the following:

• the time from the last valid Bounded Recovery interval to when Extract stopped.

• the utilization of Extract in that period.

• the percent of utilization for transactions that were previously written to the trail.
Bounded Recovery processes these transactions much faster (by discarding them)
than Extract did when it first had to perform the disk writes. This constitutes most
of the reprocessing that occurs for transactional data.

When Extract recovers, it restores the persisted data and state that were saved at the
last Bounded Recovery checkpoint (including that of any long running transactions).

For example, suppose a transaction has been open for 24 hours, and suppose the
Bounded Recovery interval is four hours. In this case, the maximum recovery time will
be no longer than eight hours worth of Extract processing time, and is likely to be less.
It depends on when Extract stopped relative to the last valid Bounded Recovery
checkpoint, as well as Extract activity during that time.

Chapter 3
BR

3-34

Advantages of Bounded Recovery

The use of disk persistence to store and then recover long-running transactions
enables Extract to manage a situation that rarely arises but would otherwise
significantly (adversely) affect performance if it occurred. The beginning of a long-
running transaction is often very far back in time from the place in the log where
Extract was processing when it stopped. A long-running transaction can span
numerous old logs, some of which might no longer reside on accessible storage or
might even have been deleted. Not only would it take an unacceptable amount of time
to read the logs again from the start of a long-running transaction but, since long-
running transactions are rare, most of that work would be the redundant capture of
other transactions that were already written to the trail or discarded. Being able to
restore the state and data of persisted long-running transactions eliminates that work.

Bounded Recovery Example

The following diagram illustrates a timeline over which a series of transactions were
started. It shows how long-running open transactions are persisted to disk after a
specific interval and then recovered after a failure. It will help to understand the
terminology used in the example:

• A persisted object is any object in the cache that was persisted at a Bounded
Recovery checkpoint. Typically this is the transactional state or data, but the cache
is also used for objects that are internal to Extract. These are all collectively
referred to as objects.

• The oldest non-persisted object is the oldest open object in the cache in the
interval that immediately precedes the current Bounded Recovery checkpoint.
Typically this is the oldest open transaction in that interval. Upon the restart of
Bounded Recovery, runtime processing resumes from the position of the oldest
non-persisted object, which, in the typical case of transactions, will be the position
in the redo log of that transaction.

Figure 3-1 Sample Bounded Recovery Checkpoints

In this example, the Bounded Recovery interval is four hours. An open transaction is
persisted at the current Bounded Recovery checkpoint if it has been open for more
than one Bounded Recovery interval from the current Bounded Recovery checkpoint.

At BR Checkpoint n:

• There are five open transactions: T(27), T(45), T(801), T(950), T(1024). All other
transactions were either committed and sent to the trail or rolled back.
Transactions are shown at their start points along the timeline.

• The transactions that have been open for more than one Bounded Recovery
interval are T(27) and T(45). At BR Checkpoint n, they are persisted to disk.

• The oldest non-persisted object is T(801). It is not eligible to be persisted to disk,
because it has not been open across at least one Bounded Recovery interval. As

Chapter 3
BR

3-35

the oldest non-persisted object, its start position in the log is stored in the BR
Checkpoint n checkpoint file. If Extract stops unexpectedly after BR Checkpoint
n, it will recover to that log position and start to re-read the log there. If there is no
oldest non-persisted object in the preceding Bounded Recovery interval, Extract
will start re-reading the log at the log position of the current Bounded Recovery
checkpoint.

At BR Checkpoint n+1:

• T(45) was dirtied (updated) in the previous Bounded Recovery interval, so it gets
written to a new persisted object file. The old file will be deleted after completion of
BR Checkpoint n+1.

• If Extract fails while writing BR Checkpoint n+1 or at any time within that Bounded
Recovery checkpoint interval between BR Checkpoint n and BR Checkpoint n
+1, it will recover from BR Checkpoint n, the last valid checkpoint. The restart
position for BR Checkpoint n is the start of the oldest non-persisted transaction,
which is T(801). Thus, the worst-case recovery time is always no more than two
Bounded Recovery intervals from the point where Extract stopped, in this case no
more than eight hours.

At BR Checkpoint n+3000

• The system has been running for a long time. T(27) and T(45) remain the only
persisted transactions. T(801) and T(950) were committed and written to the trail
sometime before BR Checkpoint n+2999. Now, the only open transactions are
T(208412) and T(208863).

• BR Checkpoint n+3000 is written.

• There is a power failure in the interval after BR Checkpoint n+3000.

• The new Extract recovers to BR Checkpoint n+3000. T(27) and T(45) are
restored from their persistence files, which contain the state from BR Checkpoint
n. Log reading resumes from the beginning of T(208412).

Managing Long-running Transactions

Oracle GoldenGate provides the following parameters and commands to manage
long-running transactions:

• Use the WARNLONGTRANS parameter to specify a length of time that a transaction can
be open before Extract generates a warning message that the transaction is long-
running. Also use WARNLONGTRANS to control the frequency with which Oracle
GoldenGate checks for long-running transactions. Note that this setting is
independent of, and does not affect, the Bounded Recovery interval.

• Use the SEND EXTRACT command with the SKIPTRANS option to force Extract to skip a
specified transaction.

• Use the SEND EXTRACT command with the FORCETRANS option to force Extract to write
a specified transaction to the trail as a committed transaction.

• Use the TRANLOGOPTIONS parameter with the PURGEORPHANEDTRANSACTIONS option to
enable the purging of orphaned transactions that occur when a node fails and
Extract cannot capture the rollback.

Chapter 3
BR

3-36

About the Files that are Written to Disk

At the expiration of a Bounded Recovery interval, Extract always creates a Bounded
Recovery checkpoint file. Should there be long-running transactions that require
persistence, they each are written to their own persisted-object files. A persisted-object
file contains the state and data of a single transaction that is persisted to disk.

Field experience has shown that the need to persist long running transactions is rare,
and that the transaction is empty in most of those cases.

If a previously persisted object is still open and its state and/or data have been
modified during the just-completed Bounded Recovery interval, it is re-persisted to a
new persisted object file. Otherwise, previously persisted object files for open
transactions are not changed.

It is theoretically possible that more than one persisted file might be required to persist
a long-running transaction.

Note:

The Bounded Recovery files cannot be used to recover the state of Extract if
moved to another system, even with the same database, if the new system is
not identical to the original system in all relevant aspects. For example,
checkpoint files written on an Oracle 11g Solaris platform cannot be used to
recover Extract on an Oracle 11g Linux platform.

Circumstances that Change Bounded Recovery to Normal Recovery

Most of the time, Extract uses normal recovery and not Bounded Recovery, the
exception being the rare circumstance when there is a persisted object or objects.
Certain abnormal circumstances may prevent Extract from switching from Bounded
Recovery back to normal recovery mode. These include, but are not limited to, such
occurrences as physical corruption of the disk (where persisted data is stored for long-
running transactions), inadvertent deletion of the Bounded Recovery checkpoint files,
and other actions or events that corrupt the continuity of the environment. There may
also be more correctable reasons for failure.

In all but a very few cases, if Bounded Recovery fails during a recovery, Extract
switches to normal recovery. After completing the normal recovery, Bounded Recovery
is turned on again for runtime.

Bounded Recovery is not invoked under the following circumstances:

• The Extract start point is altered by CSN or by time.

• The Extract I/O checkpoint altered.

• The Extract parameter file is altered during recovery, such as making changes to
the TABLE specification.

After completion of the recovery, Bounded Recovery will be in effect again for the next
run.

Chapter 3
BR

3-37

What to Do if Extract Abends During Bounded Recovery

If Extract abends in Bounded Recovery, examine the error log to determine the
reason. It might be something that is quickly resolved, such as an invalid parameter
file or incorrect privileges on the directory that contains the Bounded Recovery files. In
such cases, after the problem is fixed, Extract can be restarted with Bounded
Recovery in effect.

If the problem is not correctable, attempt to restart Extract with the BRRESET option.
Extract may recover in normal recovery mode and then turn on Bounded Recovery
again.

Modifying the BR Parameter

Bounded Recovery is enabled by default with a default Bounded Recovery interval of
four hours (as controlled with the BRINTERVAL option). This interval should be
appropriate for most environments. Do not alter the BR parameter without first obtaining
guidance from an Oracle support analyst. Bounded Recovery runtime statistics are
available to help Oracle GoldenGate analysts evaluate the Bounded Recovery usage
profile to determine the proper setting for BRINTERVAL in the unlikely event that the
default is not sufficient.

Should you be requested to alter BR, be aware that the Bounded Recovery interval is a
multiple of the regular Extract checkpoint interval. The Extract checkpoint is controlled
by the CHECKPOINTSECS parameter. Thus, the BR parameter controls the ratio of the
Bounded Recovery checkpoint to the regular Extract checkpoint. You might need to
change both parameters, if so advised by your Oracle representative.

Supported Databases

This parameter applies to Oracle databases. For other databases, Extract recovers by
reading the old logs from the start point of the oldest open transaction at the point of
failure and does not persist long-running transactions.

Default

BR BRINTERVAL 4, BRDIR BR

Syntax

BR
[, BRDIR directory]
[, BRINTERVAL number {M | H}]
[, BRKEEPSTALEFILES]
[, BROFF]
[, BROFFONFAILURE]
[, BRFSOPTION { MS_SYNC | MS_ASYNC }]

BRDIR directory

Specifies the relative or full path name of the parent directory that will contain the BR
directory. The BR directory contains the Bounded Recovery checkpoint files, and the
name of this directory cannot be changed. The default parent directory for the BR
directory is a directory named BR in the root directory that contains the Oracle
GoldenGate installation files.

Chapter 3
BR

3-38

Each Extract group within a given Oracle GoldenGate installation will have its own
sub-directory under the directory that is specified with BRDIR. Each of those directories
is named for the associated Extract group.
For directory, do not use any name that contains the string temp or tmp (case-
independent). Temporary directories are subject to removal during internal or external
cleanup procedures.

BRINTERVAL number {M | H}
Specifies the time between Bounded Recovery checkpoints. This is known as the
Bounded Recovery interval. This interval is an integral multiple of the standard Extract
checkpoint interval, as controlled by the CHECKPOINTSECS parameter. However, it need
not be set exactly. Bounded Recovery will adjust any legal BRINTERVAL parameter
internally as it requires.
The minimum interval is 20 minutes. The maximum is 96 hours. The default interval is
4 hours.

BRKEEPSTALEFILES

Causes old Bounded Recovery checkpoint files to be retained. By default, only current
checkpoint files are retained. Extract cannot recover from old Bounded Recovery
checkpoint files. Retain old files only at the request of an Oracle support analyst.

BROFF

Turns off Bounded Recovery for the run and for recovery. Consult Oracle before using
this option. In most circumstances, when there is a problem with Bounded Recovery,
it turns itself off.

BROFFONFAILURE

Disables Bounded Recovery after an error. By default, if Extract encounters an error
during Bounded Recovery processing, it reverts to normal recovery, but then enables
Bounded Recovery again after recovery completes. BROFFONFAILURE turns Bounded
Recovery off for the runtime processing.

BRRESET

BRRESET is a start up option that forces Extract to use normal recovery for the current
run, and then turn Bounded Recovery back on after the recovery is complete. Its
purpose is for the rare cases when Bounded Recovery does not revert to normal
recovery if it encounters an error. Bounded Recovery is enabled during runtime.
Consult Oracle Support before using this option.
To use this option, you must start Extract from the command line. To run Extract from
the command line, use the following syntax:

extract paramfile name.prm reportfile name.rpt

Where:

• paramfile name.prm is the relative or fully qualified name of the Extract parameter
file. The command name can be abbreviated to pf.

• reportfile name.rpt is the relative or fully qualified name of the Extract report file,
if you want it in a place other than the default. The command name can be
abbreviated to rf.

BR BRFSOPTION {MS_SYNC | MS_ASYNC}

Performs synchronous/asynchronous writes of the mapped data in Bounded
Recovery.

Chapter 3
BR

3-39

MS_SYNC

Bounded Recovery writes of mapped data are synchronized for I/O data integrity
completion.

MS_ASYNC

Bounded Recovery writes of mapped data are initiated or queued for servicing.

Example

BR BRDIR /user/checkpt/br specifies that the Bounded Recovery checkpoint files will be
created in the /user/checkpt/br directory.

3.20 BULKLOAD
Valid For

Replicat

Description

Use the BULKLOAD parameter for an initial load Replicat when using the direct bulk load
to Oracle SQL*Loader method. This method passes initial-load data directly to the
interface of Oracle's SQL*Loader utility to perform a direct load. A Collector process
and trails are not used.

For a complete guide to the methods of loading data with Oracle GoldenGate, see
Administering Oracle GoldenGate for Windows and UNIX.

Default

None

Syntax

BULKLOAD
[LOGGING | NOLOGGING]
[PARALLEL | NOPARALLEL]
[SKIPALLINDEXES | SKIPUNUSEDINDEX | NOSKIPALLINDEXES]

LOGGING | NOLOGGING

Valid for Replicat for Oracle. LOGGING is the default and enables redo logging for the
loaded objects. NOLOGGING increases BULKLOAD performance by disabling redo logging of
the loaded objects. Do not specify NOLOGGING for cascading synchronization and
multiple master configurations.
However, BULKLOAD must be set to LOGGING if the target is part of a cascading or bi-
directional configuration, where a local Extract will capture the loaded objects.

PARALLEL | NOPARALLEL

Valid for Replicat for Oracle. PARALLEL enables BULKLOAD to use multiple load sessions
to load the same segment concurrently. NOPARALLEL is the default and disables parallel
loading.

SKIPALLINDEXES | SKIPUNUSEDINDEX | NOSKIPALLINDEXES

Valid for Replicat for Oracle. Controls the handling of indexes. NOSKIPALLINDEXES is the
default, which allows index maintenance during a direct load. SKIPALLINDEXES skips all
index maintenance. SKIPUNUSEDINDEX skips unusable indexes.

Chapter 3
BULKLOAD

3-40

3.21 CACHEMGR
Valid For

Extract and Replicat, all databases except DB2 on z/OS. .

Description

Use the CACHEMGR parameter to specify a non-default file system location for the
temporary files needed to hold uncommitted transaction data. The CACHEMGR parameter
can also be used to control the amount of virtual memory and temporary disk space
that is available for caching uncommitted transaction data. Both of these latter uses
are discouraged.

Caution:

Do not change this parameter without consulting Oracle Support. CACHEMGR is
internally self-configuring and self-adjusting. It is rare that this parameter
requires modification. Doing so unnecessarily may result in performance
degradation. It is best to acquire empirical evidence before opening an
Oracle Service Request and consulting with Oracle Support.
However, you can specify the directory for the temporary files without
assistance

Oracle GoldenGate only replicates committed transactions. Until a COMMIT is received,
any transactional data is stored in an area of virtual memory known as a cache. This
cache is managed by the CACHEMGR. If the amount of transaction data becomes too
great for the virtual memory, then the CACHEMGR writes some of the cached data to
temporary files on disk.

Your systems should have sufficient operating system swap and page file space.
Oracle recommends a minimum of 512GB.

Identifying the Paging Directory

By default, Oracle GoldenGate maintains the transaction data that it swaps to disk a
sub-directory of the Oracle GoldenGate installation directory. CACHEMGR assumes that all
of the free space on the file system is available. This directory may fill up quickly if
there is a large transaction volume with large transaction sizes. To prevent I/O
contention and possible disk-related failures, dedicate a disk to this directory. You can
assign directory location with the CACHEDIRECTORY option of the CACHEMGR parameter. A
size can also be assigned. However, this is discouraged and should only be done after
consulting Oracle Support.

Guidelines for Using CACHEMGR

• This parameter is valid for all databases supported by Oracle GoldenGate except
DB2 z/OS.

• At least one argument must be supplied. CACHEMGR by itself is invalid.

• Parameter options can be listed in any order.

Chapter 3
CACHEMGR

3-41

• Only one CACHEMGR parameter is permitted in a parameter file.

Default

None

Syntax

CACHEMGR {
[CACHEDIRECTORY path [size] [, CACHEDIRECTORY path [size] [, ...],]
CACHESIZE size
}

CACHEDIRECTORY path [size]

Specifies the name of the directory to which Oracle GoldenGate writes transaction
data to disk temporarily when necessary. The default without this parameter is the
dirtmp sub-directory of the Oracle GoldenGate installation directory. Any directory
for temporary files can be on an Oracle Database file system, but cannot be on a
direct I/O or concurrent I/O mounted file system that does not support the mmap() or
MapViewOfFile() system calls, like AIX.

• path is a fully qualified directory name.

• size sets a maximum amount of disk space that can be allocated to the specified
directory. The upper limit is imposed by the file system, such as the maximum file
size or number of files. The minimum size is 2 GB, which is enforced. There is no
default. Oracle discourages the use of the size option and you should only it when
in consultation with Oracle Support.

You can specify more than one directory by using a CACHEDIRECTORY clause for each
one. The maximum number of directories is 100.
The value can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes
in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

CACHESIZE size

Sets a soft limit for the amount of virtual memory (CACHESIZW) that is available for
caching transaction data. You can internally adjust the CACHESIZE using CACHEMGR as
necessary.
If you feel that the default CACHEMGR configuration and internal self-adjustment is
adversely affecting your system performance, then you should open a Service
Request with Oracle Support. It is best to have acquired empirical data showing the
problem symptoms in question to aid in configuring a new default.

Example

CACHEMGR CACHEDIRECTORY /net/d4atd/ggs/temp

3.22 CATALOGEXCLUDE
Valid For

Extract, Replicat, DEFGEN

Description

Use the CATALOGEXCLUDE parameter to explicitly exclude source objects in the specified
container or catalog from the Oracle GoldenGate configuration when the container or

Chapter 3
CATALOGEXCLUDE

3-42

catalog name is being specified with a wildcard in TABLE or MAP statements. This
parameter is valid when the database is an Oracle container database or a SQL/MX
database, where fully qualified three-part names are being used.

The positioning of CATALOGEXCLUDE in relation to parameters that specify files or trails
determines its effect. Parameters that specify trails or files are: EXTFILE, RMTFILE,
EXTTRAIL, RMTTRAIL. The parameter works as follows:

• When a CATALOGEXCLUDE specification is placed before any TABLE or SEQUENCE
parameters, and also before the parameters that specify trails or files, it applies
globally to all trails or files, and to all TABLE and SEQUENCE parameters.

• When a CATALOGEXCLUDE specification is placed after a parameter that specifies a
trail or file, it is effective only for that trail or file and only for the TABLE or SEQUENCE
parameters that are associated with it. Multiple trail or file specifications can be
made in a parameter file, each followed by a set of TABLE, SEQUENCE, and
CATALOGEXCLUDE specifications.

CATALOGEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE
parameter. Thus, the order in which they appear does not make a difference.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Default

None

Syntax

CATALOGEXCLUDE {container | catalog}

container | catalog

The source Oracle container or SQL/MX catalog that is to be excluded. A wildcard
can be used. Follow the rules for using wildcards described in Administering Oracle
GoldenGate for Windows and UNIX.

Examples

Example 1
This example omits all source catalogs that contain the string src_test.

EXTRACT capt
RMTHOST sysb, MGRPORT 7809
RMTTRAIL /ggs/dirdat/aa
CATALOGEXCLUDE src_test*
TABLE *.*.*;

Example 2
This example omits the pdb1 pluggable database.

EXTRACT capt
USERIDALIAS alias1
RMTHOST sysb, MGRPORT 7809
RMTTRAIL /ggs/dirdat/aa
CATALOGEXCLUDE pdb1
TABLE *.*.*;

Chapter 3
CATALOGEXCLUDE

3-43

3.23 CHARMAP
Valid For

Replicat

Description

Use the CHARMAP parameter to specify that the character mapping file overrides the
character code point mapping. By enabling character set conversion for same
character sets, you may encounter performance degradation.

Default

The encoding of the parameter file is operating system default character set.

Syntax

CHARMAP charmap filename

The character mapping file format is as follows:

 -- Sample character mapping file.
 -- Can use -- or COMMENT as comment line.
 -- Can use CHARSET parameter to specify file encoding.
 --
 -- Source character set
 SOURCECHARSET shiftjis
 --
 -- Target character set
 TARGETCHARSET ja16euc
 --
 -- Character map definition by one code point.
 -- left hand is source and right hand target code point.
 \xa2c1 \x89\xa2\xb7 -- override \xa2c1 to \x89\xa2\xb7
 --
 -- Character map definition by range. Number of source and target characters
must be the same.
 \x61 - \x7a \x41 - \x5a

Example

In the following example, the character map definition is given using a character
mapping text file:

CHARMAP charmapdesc.txt

REPLACEBADCHAR FORCECHECK

This enables strict character set conversion and check code point even if the source
and target are the same.

Add the following to your character mapping file:

 SOURCECHARSET windows-932
 TARGETCHARSET windows-932
 \x61 - \x7a \x41 - \x5a

Chapter 3
CHARMAP

3-44

3.24 CHARSET
Valid For

Extract, Replicat, DEFGEN, Manager, and GLOBALS

Description

Use the CHARSET parameter to specify the character set of the parameter files in the
local Oracle GoldenGate instance. By default, the parameter file is created in the
default character set of the local operating system. CHARSET specifies an alternative
character set to use in the event that the local platform does not support a required
character or characters.

CHARSET cannot be used with query parameters.

CHARSET allows operating-system incompatible characters, including multi byte
characters, to be used in the parameter file without the need for an escape sequence
(\uXXXX) when the local platform does not support multibyte characters as the default
character set of the operating system.

CHARSET can also be used when the parameter file is being created on one system but
will be used on a different system with a different character set. To avoid possible
incompatibilities between different character sets, you should create parameter files on
the same system where they will be used by Oracle GoldenGate.

Note:

Use of CHARSET in the mgr.prm file is not supported in 12.1.2.x or earlier
releases.

Placement in the Parameter File

CHARSET must be placed on the first line of the parameter file.

Usage in the GLOBALS File

CHARSET in a GLOBALS file sets a default character set for the parameter files of all local
processes. CHARSET in an individual parameter file overrides the default that is set in
GLOBALS.

Usage in Nested Parameter Files

You can use CHARSET in a parameter file that includes an OBEY or INCLUDE parameter, but
the referenced parameter file does not inherit the CHARSET character set. The CHARSET
character set is used to read wildcarded object names in the referenced file, but you
must use an escape sequence (\uXXXX) to specify all other incompatible characters in
the referenced file.

Default

None

Chapter 3
CHARSET

3-45

Syntax

CHARSET character_set

character_set

Any supported character set.

Example

CHARSET UTF-8

3.25 CHECKMINUTES
Valid For

Manager

Description

Use the CHECKMINUTES parameter to control how often Manager performs maintenance
activities. Decreasing this parameter can significantly affect performance if trail files
roll over frequently. Other events, such as processes ending abnormally, also trigger
the maintenance cycle.

Default

Every 10 minutes

Syntax

CHECKMINUTES minutes

minutes

The frequency, in minutes, to perform maintenance activities.

Example

CHECKMINUTES 15

3.26 CHECKPARAMS
Valid For

Extract and Replicat

Description

Use the CHECKPARAMS parameter to test the syntax of a parameter file. To start the test:

1. Edit the parameter file to add CHECKPARAMS.

2. (Optional) To verify the tables, add the NODYNAMICRESOLUTION parameter.

3. Start the process. Without processing data, Oracle GoldenGate audits the syntax.
If NODYNAMICRESOLUTION exists, Oracle GoldenGate connects to the database to
verify that the tables specified with TABLE or MAP exist. If there is a syntax failure,

Chapter 3
CHECKMINUTES

3-46

the process abends with error 190. If the syntax succeeds, the process stops and
writes a message to the report file that the parameters processed successfully.

4. Do one of the following:

• If the test succeeds, edit the file to remove the CHECKPARAMS parameter and the
NODYNAMICRESOLUTION parameter, if used, and then start the process again to
begin processing.

• If the test fails, edit the parameter file to fix the syntax based on the report's
findings, and then remove NODYNAMICRESOLUTION and start the process again.

CHECKPARAMS can be positioned anywhere within the parameter file.

Default

None

Syntax

CHECKPARAMS

3.27 CHECKPOINTSECS
Valid For

Extract and Replicat

Description

Use the CHECKPOINTSECS parameter to control how often Extract and Replicat make their
routine checkpoints.

• Decreasing the value causes more frequent checkpoints. This reduces the amount
of data that must be reprocessed if the process fails, but it could cause
performance degradation because data is written to disk more frequently.

• Increasing the value causes less frequent checkpoints. This might improve
performance, but it increases the amount of data that must be reprocessed if the
process fails. When using less frequent Extract checkpoints, make certain that the
transaction logs remain available in case the data has to be reprocessed.

Note:

In addition to its routine checkpoints, Replicat also makes a checkpoint when
it commits a transaction.

Avoid changing CHECKPOINTSECS unless you first open an Oracle service request.

Default

10 seconds

Syntax

CHECKPOINTSECS seconds

Chapter 3
CHECKPOINTSECS

3-47

seconds

The number of seconds to wait before issuing a checkpoint.

Example

CHECKPOINTSECS 20

3.28 CHECKPOINTTABLE
Valid For

GLOBALS

Description

Use the CHECKPOINTTABLE parameter in a GLOBALS parameter file to specify the name of a
default checkpoint table that can be used by all Replicat groups in one or more Oracle
GoldenGate instances. All Replicat groups created with the ADD REPLICAT command will
default to this table unless it is overridden by using the CHECKPOINTTABLE option of that
command.

To create the checkpoint table, use the ADD CHECKPOINTTABLE command in GGSCI. Do
not use a checkpoint table for a Replicat that is configured in integrated mode against
an Oracle target database. It is not required in that mode and will be ignored.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about creating a checkpoint table.

Default

None

Syntax

CHECKPOINTTABLE [container. | catalog.] owner.table

[container. | catalog.]owner.table

The owner and name of the checkpoint table. Additionally, for an Oracle container
database, specify the correct pluggable database (container). For a SQL/MX
database, specify the correct catalog.

Example

CHECKPOINTTABLE finance.ggs.chkpt

3.29 CMDTRACE
Valid For

Extract and Replicat

Description

Use the CMDTRACE parameter to display macro expansion steps in the report file. You
can use this parameter more than once in the parameter file to set different options for
different macros.

Chapter 3
CHECKPOINTTABLE

3-48

Default

OFF

Syntax

CMDTRACE [ON | OFF | DETAIL]

ON

Enables the display of macro expansion.

OFF

Disables the display of macro expansion.

DETAIL

Produces a verbose display of macro expansion.

Example

In the following example, tracing is enabled before #testmac is invoked, and then
disabled after the macro's execution.

MACRO #testmac
BEGIN
col1 = col2,
col3 = col4
END;
...
CMDTRACE ON
MAP test.table2 , TARGET test.table2,
COLMAP (#testmac);
CMDTRACE OFF

3.30 COLCHARSET

Valid For

Extract, Replicat, and DEFGEN

Description

Use COLCHARSET clause to specify particular column character set or disable character
set conversion. This parameter overrides the column character set for the specified
column.

The character set specified by the COLCHARSET parameter overrides the character set in
the trail file, the character set specified by the SOURCECHARSET OVERRIDE parameter and
the character set specified by the CHARSET parameter.

The character set specified by the COLCHARSET Replicat parameter overrides the column
level character set specified in the source table definition file.

If the COLCHARSET is specified for DEFGEN file format less than level four, the parameter
is ignored and warning message is issued. The column level character set attribute for
the older table definition file format is not output.

Chapter 3
COLCHARSET

3-49

The COLCHARSET parameter overrides the source column level character set and change
the Replicat character set conversion behavior by assuming the source column
character set as specified character set.

Default

None

Syntax

COLCHARSET character_set (column [, ...])

character_set

Any supported character set.

column

The name of a column. To specify multiple columns, create a comma-delimited list.

Examples

Example 1
The following example specifies multiple columns.

TABLE SchemaName.TableName, COLCHARSET(WE8MSWIN1252, col0, col2);

Example 2
The following example specifies a different character set.

MAP SchemaName.*, TargetName *.*,
 COLCHARSET(WE8MSWIN1252, col1),
 COLCHARSET(WE8ISO8859P1, col2)

Example 3
The following example specifies different character set.

MAP SchemaName.*, TargetName *.*,
 COLCHARSET(WE8MSWIN1252, col1),
 COLCHARSET(WE8ISO8859P1, col2)

Example 4
The following example specifies a wildcard.

MAP SchemaName.*, TargetName *.*, COLCHARSET(WE8MSWIN1252, col*)

Example 5
The following example disables character set conversion on particular column.

MAP SchemaName.*, TargetName *.*, COLCHARSET(PASSTHRU, col)

3.31 COLMATCH
Valid For

Extract and Replicat

Description

Use the COLMATCH parameter to create global rules for column mapping. COLMATCH rules
apply to all TABLE or MAP statements that follow the COLMATCH statement. Global rules can
be turned off for subsequent TABLE or MAP entries with the RESET option.

Chapter 3
COLMATCH

3-50

With COLMATCH, you can map between tables that are similar in structure but have
different column names for the same sets of data. COLMATCH provides a more
convenient way to map columns of this type than does using a COLMAP clause in
individual TABLE or MAP statements.

With COLMATCH, you can:

• Map explicitly based on column names.

• Ignore name prefixes or suffixes.

Either COLMATCH or a COLMAP clause of a TABLE or MAP statement is required when
mapping differently named source and target columns.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about mapping columns.

Default

None

Syntax

COLMATCH
{NAMES target_column = source_column |
PREFIX prefix |
SUFFIX suffix |
RESET}

NAMES target_column = source_column

Specifies the name of a target and source column, for example CUSTOMER_CODE and
CUST_CODE. If the database requires double quotes to enforce case-sensitivity, specify
the column name that way. For example: NAMES "ABC" = "ABC2". For other case-
sensitive databases, specify the column name as it is stored in the database, for
example: NAMES ABC = abc.

PREFIX prefix | SUFFIX suffix
Specifies a column name prefix or suffix to ignore. If the database requires double
quotes to enforce case-sensitivity, specify the prefix or suffix that way if it is case-
sensitive. For other case-sensitive databases, specify the prefix or suffix as it is stored
in the database
For example, to map a target column named "ORDER_ID" to a source column named
"P_ORDER_ID", specify:

COLMATCH PREFIX "P_"

To map a target column named "CUST_CODE_K" to a source column named CUST_CODE,
specify:

COLMATCH SUFFIX "_K"

RESET

Turns off previously defined COLMATCH rules for subsequent TABLE or MAP statements.

Examples

Example 1

COLMATCH NAMES "CUSTOMER_CODE" = "CUST_CODE"

Chapter 3
COLMATCH

3-51

Example 2

COLMATCH NAMES Customer_Code = "Cust_Code"

Example 3

COLMATCH PREFIX P_

Example 4

COLMATCH SUFFIX _K

Example 5

COLMATCH RESET

3.32 COMMENT | --
Valid For

Manager, Extract, Replicat

Description

Use the COMMENT parameter or double hyphens (--) to indicate comments anywhere
within a parameter file. Anything on the same line after COMMENT or double hyphens is
ignored during processing. Comments that continue to the next line must be preceded
by another COMMENT keyword or double hyphens.

Note:

If any columns in the tables that are being synchronized contain the word
"comment," there may be conflicts with the COMMENT parameter. Use double
hyphens instead.

COMMENT cannot be used with query parameters.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about working with parameter files.

Default

None

Syntax

{COMMENT comment} | {-- comment}

Examples

Example 1

COMMENT GoldenGate param file for fin Extract group.

Example 2

-- GoldenGate param file for fin Extract group.

Chapter 3
COMMENT | --

3-52

3.33 COMPRESSDELETES | NOCOMPRESSDELETES
Valid For

Extract

Description

Use the COMPRESSDELETES and NOCOMPRESSDELETES parameters to control the way that
columns are written to the trail record for DELETE operations.

COMPRESSDELETES and NOCOMPRESSDELETES can be used globally for all TABLE statements in
the parameter file, or they can be used as on-off switches for individual TABLE
statements.

These parameters support the following databases:

DB2 LUW
DB2 z/OS
DB2 for i
Informix
MySQL
Oracle
SQL/MX
SQL Server
Sybase
Teradata

These parameters do not affect data pumps.

Default

COMPRESSDELETES

Syntax

{COMPRESSDELETES | NOCOMPRESSDELETES [FETCHMISSINGCOLUMNS]}

COMPRESSDELETES

Causes Extract to write only the primary key to the trail for DELETE operations. This is
the default. The key provides enough information to delete the correct target record,
while restricting the amount of data that must be processed.

NOCOMPRESSDELETES [FETCHMISSINGCOLUMNS]

NOCOMPRESSDELETES sends all of the columns to the trail. This becomes the default when
a table definition does not include a primary key or unique index, or when a substitute
key is defined with the KEYCOLS option of TABLE. The KEYCOLS option writes the specified
columns to the trail whether or not a real key exists. See KEYCOLS (columns) for more
information about the KEYCOLS option.
NOCOMPRESSDELETES is also required when using the Conflict Detection and Resolution
(CDR) feature for a DB2 database on any of the platforms that are supported by
Oracle GoldenGate. See Administering Oracle GoldenGate for Windows and UNIX for
more information about CDR.

Chapter 3
COMPRESSDELETES | NOCOMPRESSDELETES

3-53

FETCHMISSINGCOLUMNS is valid for Oracle Database only. It causes the values of data
types that are only supported by fetching to be fetched from the database on DELETE
operations. These data types are LOB, UDT, LONG, and some XMLType columns.
For detailed information about columns that are supported by fetching (rather than
directly captured from the redo stream), see Installing and Configuring Oracle
GoldenGate for Oracle Database. The columns that are fetched will appear in the trail
file as part of the DELETE record. If NOCOMPRESSDELETES is used for Oracle Database data
without the FETCHMISSINGCOLUMNS option, only the LOB data that can be read from the
logs (without fetching) will be included in the DELETE operation in the trail.

3.34 COMPRESSUPDATES | NOCOMPRESSUPDATES
Valid For

Extract

Description

Use the COMPRESSUPDATES and NOCOMPRESSUPDATES parameters for Extract to control the
way columns are written to the trail record for UPDATE operations.

COMPRESSUPDATES, the default, causes Extract to write only the primary key and the
changed columns of a row to the trail for update operations. This provides enough
information to update the correct target record (unless conflict resolution is required),
while restricting the amount of data that must be processed.

If other columns are supplementally logged by the database for use by Oracle
GoldenGate, Extract writes those columns to the trail as well. Additionally, if a
substitute key is defined with the KEYCOLS option of the TABLE parameter, those columns
are written to the trail, whether or not a primary or unique key is defined. See "KEYCOLS
(columns)" for more information.

NOCOMPRESSUPDATES sends all of the columns to the trail. This becomes the default when
a table definition does not include a primary key or unique index. NOCOMPRESSUPDATES
also is required when using the Conflict Detection and Resolution (CDR) feature for a
DB2 database on any of the platforms that are supported by Oracle GoldenGate. See
Administering Oracle GoldenGate for Windows and UNIX for more information about
CDR.

COMPRESSUPDATES and NOCOMPRESSUPDATES apply globally for all TABLE statements in a
parameter file.

These parameters support the following databases:

DB2 LUW
DB2 z/OS
DB2 for i
Informix
MySQL
Oracle
SQL/MX
SQL Server
Sybase
Teradata

Chapter 3
COMPRESSUPDATES | NOCOMPRESSUPDATES

3-54

COMPRESSUPDATES and NOCOMPRESSUPDATES do not affect data pumps.

Default

COMPRESSUPDATES

Syntax

COMPRESSUPDATES | NOCOMPRESSUPDATES

3.35 COORDSTATINTERVAL
Valid For

Replicat in coordinated mode

Description

Use the COORDSTATINTERVAL parameter to set the amount of time, in seconds, between
requests for statistics sent by the Replicat coordinator thread to the apply threads. If a
thread does not return statistics within an internal heartbeat interval, Replicat logs a
warning message. The heartbeat interval is not configurable and is always six times
the COORDSTATINTERVAL interval. At the default COORDSTATINTERVAL interval of 10 seconds,
for example, the heartbeat default is one minute (60 seconds).

Default

The minimum value is 0; the maximum value is 2147483647. The default value is 10
seconds

Syntax

COORDSTATINTERVAL interval

interval

The interval, in seconds, between requests for thread statistics. Valid values are 0 or
any positive number.

3.36 COORDTIMER
Valid For

Replicat in coordinated mode

Description

Use the COORDTIMER parameter to set a base amount of time, in seconds, that the
threads and coordinator wait for each other to start. A thread will wait for this base time
interval before retrying a connection to the coordinator and it will do this a certain
number of times. The coordinator waits for the length of this base time interval and it is
reset after every thread is successfully registered. The overall time the coordinator
waits before abending is dependent on this timer and it is variable depending on the
register time of the threads.

A value of 0 disables this timing procedure. If timing is disabled, the coordinator thread
may wait indefinitely for the threads to start, and Replicat will enter a suspended state.

Chapter 3
COORDSTATINTERVAL

3-55

In this case, the internal Replicat heartbeat timer is disabled regardless of the
COORDSTATINTERVAL setting.

Default

The minimum value is 0; the maximum value is 2147483647. The default value is 180
seconds (three minutes)

Syntax

COORDTIMER wait_time

wait_time

The amount of time, in seconds, that the coordinator thread waits for the apply
threads to start. Valid values are 0 or any positive number.

3.37 CREDENTIALSTORELOCATION
Valid For

GLOBALS

Description

Use the CREDENTIALSTORE parameter to change the location of the Oracle GoldenGate
credential store from the default location. The default location is the dircrd directory in
the Oracle GoldenGate installation directory. The default location is the preferred
location.

The credential store stores database user names and passwords in encrypted format
as a security measure. When CREDENTIALSTORE is used, the specified location is
assumed for all GGSCI commands that manage the credential store. See
Administering Oracle GoldenGate for Windows and UNIX for more information about
configuring Oracle GoldenGate security.

Syntax

CREDENTIALSTORELOCATION directory

directory

The full path name of the directory where the credential store is to be stored.

Example

CREDENTIALSTORELOCATION /home/ogg/credentials

3.38 CRYPTOENGINE
Valid For

GLOBALS

Description

Use the CRYPTOENGINE to select which cryptographic library the Oracle GoldenGate
processes use to provide implementation of security primitives.

Chapter 3
CREDENTIALSTORELOCATION

3-56

Syntax

CRYPTOENGINE (CLASSIC | FIPS140 | NATIVE)

CRYPTOENGINE

Selects which cryptographic library will the OGG processes use to provide
implementation of security primitives.

CLASSIC

Uses the Oracle NNZ security framework without FIPS-140 enhancements.

FIPS140

Uses the Oracle NNA security framework, but enhanced with the FIPS-140.2
compliant version of the RSA MES shared libraries.

NATIVE

For the platforms where this is available, it will use a native library that makes more
efficient use of the CPU cryptographic primitives, resulting in higher product
throughput when using trail and TCP encryption. Currently, Intel's IPP library version
9.0 is used for Linux.x64 and Windows.x64. All other platforms fall back to CLASSIC
behavior.

3.39 CUSEREXIT
Valid For

Extract when fetching from a multitenant container database (CDB) and Replicat

Description

Use the CUSEREXIT parameter to call a custom exit routine written in C programming
code from a Windows DLL or UNIX shared object at a defined exit point within Oracle
GoldenGate processing. Your user exit routine must be able to accept different events
and information from the Extract and Replicat processes, process the information as
desired, and then return a response and information to the caller (the Oracle
GoldenGate process that called it).

User exits can be used as an alternative to, or in conjunction with, the data
transformation functions that are available within the Oracle GoldenGate solution.

Note:

When using a coordinated Replicat to call a user exit routine, you are
responsible for writing the user exits in a thread-safe manner.

For help with creating and implementing user exits, see Administering Oracle
GoldenGate for Windows and UNIX.

Default

None

Chapter 3
CUSEREXIT

3-57

Syntax

CUSEREXIT {DLL | shared_object} routine
[, INCLUDEUPDATEBEFORES]
[, PARAMS 'string']

{DLL | shared_object}
The name of the Windows DLL or UNIX shared object that contains the user exit
function.

routine

The name of the exit routine to be executed.

INCLUDEUPDATEBEFORES

Passes the before images of column values to a user exit. When using this
parameter, you must explicitly request the before image by setting the
requesting_before_after_ind flag to BEFORE_IMAGE_VAL within a callback function that
supports this flag. Otherwise, only the after image is passed to the user exit. By
default, Oracle GoldenGate only works with after images.
When using INCLUDEUPDATEBEFORES for a user exit that is called from a data pump or
from Replicat, always use the GETUPDATEBEFORES parameter for the primary Extract
process, so that the before image is captured, written to the trail, and causes a
process_record event in the user exit. In a case where the primary Extract also has a
user exit, GETUPDATEBEFORES causes both the before image and the after image to be
sent to the user exit as separate EXIT_CALL_PROCESS_RECORD events.
If the user exit is called from a primary Extract (one that reads the transaction log),
only INCLUDEUPDATEBEFORES is needed for that Extract. GETUPDATEBEFORES is not needed
in this case, unless other Oracle GoldenGate processes downstream will need the
before image to be written to the trail. INCLUDEUPDATEBEFORES does not cause before
images to be written to the trail.

PARAMS 'string'

Passes the specified string at startup. Can be used to pass a properties file, startup
parameters, or other string. Enclose the string within single quote marks.
Data in the string is passed to the user exit in the EXIT_CALL_START
exit_params_def.function_param. If no quoted string is specified with PARAMS, the
exit_params_def.function_param is NULL.

Examples

Example 1

CUSEREXIT userexit.dll MyUserExit

Example 2

CUSEREXIT userexit.dll MyUserExit, PARAMS 'init.properties'

Example 3

CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, PARAMS 'init.properties'

Example 4

CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, &
 PARAMS 'init.properties'

Chapter 3
CUSEREXIT

3-58

Example 5

CUSEREXIT cuserexit.dll MyUserExit, &
 INCLUDEUPDATEBEFORES, PARAMS 'Some text to start with during startup'

3.40 DBOPTIONS
Valid For

Extract and Replicat

Description

Use the DBOPTIONS parameter to specify database options. This is a global parameter,
applying to all TABLE or MAP statements in the parameter file. Some DBOPTIONS options
apply only to Extract or Replicat.

The DBOPTIONS parameter can be placed anywhere in the parameter file irrespective of
other parameters.

Default

None

Syntax

DBOPTIONS
[ALLOWLOBDATATRUNCATE | NOALLOWLOBDATATRUNCATE]
[ALLOWUNUSEDCOLUMN | NOALLOWUNUSEDCOLUMN]
[BINDCHARFORBITASCHAR]
[CATALOGCONNECT | NOCATALOGCONNECT]
[CONNECTIONPORT port]
[DECRYPTPASSWORD shared_secret ENCRYPTKEY {DEFAULT | key_name}]
[DEFERREFCONST]
[DISABLECOMMITNOWAIT]
[DISABLELOBCACHING]
[ENABLE_INSTANTIATION_FILTERING]
[EMPTYLOBSTRING 'string']
[FETCHBATCHSIZE records]
[FETCHCHECKFREQ seconds]
[FETCHLOBS | NOFETCHLOBS]
[FETCHRETRYCOUNT number]
[FECHTIMEOUT seconds | NOFECHTIMEOUT]
[HOST {DNS_name | IP_address}]
[INTEGRATEDPARAMS(parameter[, ...])]
[LIMITROWS | NOLIMITROWS]
[LOBBUFSIZE bytes]
[LOBWRITESIZE bytes]
[SESSIONPOOLMAX max_value |
[SESSIONPOOLMIN min_value][SESSIONPOOLINCR increment_value]
[SETTAG [tag_value | NULL]]
[SHOWINFOMESSAGES]
[SHOWWARNINGS]
[SKIPTEMPLOB | NOSKIPTEMPLOB]
[SOURCE_DB_NAME src_dbase_global_name]
[SPTHREAD | NOSPTHREAD]
[SUPPRESSTEMPORALUPDATES]
[SUPPRESSTRIGGERS | NOSUPPRESSTRIGGERS]
[TDSPACKETSIZE bytes]
[TRANSNAME trans_name]

Chapter 3
DBOPTIONS

3-59

[USEODBC | USEREPLICATIONUSER]
[XMLBUFSIZE bytes]

ALLOWUNUSEDCOLUMN | NOALLOWUNUSEDCOLUMN
Valid for Extract for Oracle. Controls whether Extract abends when it encounters a
table with an unused column.
The default is ALLOWUNUSEDCOLUMN. When Extract encounters a table with an unused
column, it continues processing and generates a warning.When using this parameter,
either the same unused column must exist on the target or a source definitions file for
the table must be specified to Replicat, so that the correct metadata mapping can be
performed.
NOALLOWUNUSEDCOLUMN causes Extract to abend on unused columns.

ALLOWLOBDATATRUNCATE | NOALLOWLOBDATATRUNCATE

Valid for Replicat for DB2 LUW, Sybase, and MySQL. ALLOWLOBDATATRUNCATE prevents
Replicat from abending when replicated LOB data is too large for a target CHAR, VARCHAR,
BINARY or VARBINARY column and is applicable to target LOB columns only. or replicat of
DB2 LUW, ALLOWLOBDATATRUNCATE prevents Replicat from abending when replicated LOB
data is too large for a target LOB column. The LOB data is truncated to the maximum
size of the target column without any further error messages or warnings.
NOALLOWLOBDATATRUNCATE is the default and causes Replicat to abend with an error
message if the replicated LOB is too large.

BINDCHARFORBITASCHAR

Valid for DEFGEN, Extract, and Replicat for DB2 for i. Allows columns that are
defined as CHAR or VARCHAR with CCSID 65535, or CHAR and VARCHAR FOR BIT DATA to be
treated as if the field had a normal translatable encoding. The encoding is picked up
from the job CCSID. When this option is in effect, DEFGEN does not indicate that the
field is binary in the defs file.

CATALOGCONNECT | NOCATALOGCONNECT

Valid for Extract and Replicat for ODBC databases. By default, Oracle GoldenGate
creates a new connection for catalog queries, but you can use NOCATALOGCONNECT to
prevent that. On DB2 for z/OS, NOCATALOGCONNECT prevents Oracle GoldenGate from
attempting multiple connections when the MVS DB2 initialization parameter
mvsattachtype is set to CAF. Because CAF mode does not support multiple
connections, it is possible that Oracle GoldenGate may issue commit locks on the
system catalog tablespaces until it receives the commit for its open connection. To
prevent commit locks, Oracle GoldenGate recommends using RRSAF
(mvsattachtype=RRSAF), which supports multiple connections.

CONNECTIONPORT port

Valid for Replicat for multi-daemon MySQL. Specifies the TCP/IP port of the instance
to which Replicat must connect. The minimum value is 1 and the default value is
3306.

DECRYPTPASSWORD shared_secret algorithm ENCRYPTKEY {key_name | DEFAULT}

Valid for Extract in classic capture mode (Oracle)
Specifies the shared secret (password) that decrypts the TDE key, which decrypts
redo log data that was encrypted with Oracle Transparent Data Encryption (TDE). The
TDE key is first encrypted in the Oracle server by using the shared secret as a key,
and then it is delivered to Extract, which decrypts it by using the same shared secret.
The shared secret must be created in the Oracle Wallet or Hardware Security Module
by the Oracle Server Security Officer. The only other person who should know the
shared secret is the Oracle GoldenGate Administrator.

Chapter 3
DBOPTIONS

3-60

To use the decryption options, you must first generate the encrypted shared secret
with the ENCRYPT PASSWORD command in GGSCI and create an ENCKEYS file.
Parameter options:

shared_secret

Is the encrypted shared secret (password) that is copied from the ENCRYPT
PASSWORD command results.

algorithm

Specifies the encryption algorithm that was used to encrypt the password: AES128,
AES192, AES256, or BLOWFISH. AES is not supported on DB2 on z/OS, DB2 for i, and
SQL/MX.

ENCRYPTKEY key_name

Specifies the logical name of a user-created encryption key in the ENCKEYS lookup
file. Use if ENCRYPT PASSWORD was used with the KEYNAME key_name option. Requires
an ENCKEYS file to be created on the local system.

ENCRYPTKEY DEFAULT

Directs Oracle GoldenGate to use a random key. Use if ENCRYPT PASSWORD was
used with the KEYNAME DEFAULT option.

For more information about configuring Extract to support TDE, see Installing and
Configuring Oracle GoldenGate for Oracle Database.
For more information about Oracle GoldenGate encryption options, including ENCKEYS,
see Administering Oracle GoldenGate for Windows and UNIX.

DEFERREFCONST

Valid for nonintegrated Replicat for Oracle. Sets constraints to DEFERRABLE to delay the
checking and enforcement of cascade delete and cascade update referential integrity
constraints by the Oracle target database until the Replicat transaction is committed.
At that point, if there are constraint violations, an error is generated. Integrated
Replicat does not require disabling of referential constraints on the target system.
You can use DEFERREFCONST instead of disabling the constraints on the target tables or
setting them to DEFERRED. When used, DEFERREFCONST defers both DEFERABLE and NOT
DEFERABLE constraints. DEFERREFCONST applies to every transaction that is processed by
Replicat. DEFERREFCONST is valid for Oracle Database 12c, 11g (11.2.0.2), and later 11g
R2 releases.
If used with an Oracle Database release that does not support this functionality,
DEFERREFCONST is ignored without returning a notification to the Oracle GoldenGate log.
To handle errors on the commit operation, you can use REPERROR at the root level of
the parameter file and specify the TRANSDISCARD or TRANSEXCEPTION option.

Note:

Do not to use with DEFERREFCONST coordinated Replicat because there is no
way to guarantee that related rows in parent and child tables are processed
by same thread

DISABLECOMMITNOWAIT

Valid for Replicat for Oracle. Disables the use of asynchronous COMMIT by Replicat. An
asynchronous COMMIT statement includes the NOWAIT option.

Chapter 3
DBOPTIONS

3-61

When DISABLECOMMITNOWAIT is used, Replicat issues a standard synchronous COMMIT
(COMMIT with WAIT option).

DISABLELOBCACHING

Valid for nonintegrated Replicat for Oracle. Disables Oracle's LOB caching
mechanism. By default, Replicat enables Oracle's LOB caching mechanism.

ENABLE_INSTANTIATION_FILTERING

Valid for Oracle. Enables automatic per table instantiation CSN filtering on tables
imported using Oracle Datapump or manually instantiated by the
SET_INSTANTIATION_CSN command.

EMPTYLOBSTRING 'string'

Valid for Replicat for Sybase. Substitutes a string value for empty (zero-length) LOB
columns, such as Sybase IMAGE or TEXT values, that are replicated to the target. By
default, Oracle GoldenGate sets empty columns to NULL on the target and will abend if
the target database does not permit LOB columns to be NULL. This option prevents
Replicat from abending.
For 'string' use any string that the column accepts, and enclose the string within
single quotes. The default is NULL.
Example:

DBOPTIONS EMPTYLOBSTRING 'empty'

FETCHBATCHSIZE records

Valid for Extract for Oracle, DB2 for i, DB2 z/OS, SQL/MX, Sybase, SQL Server,
Sybase, and Teradata. Enables array fetches for initial loads to improve performance,
rather than one row at a time.
Valid values for Oracle, DB2 for i, DB2 z/OS, SQL/MX, Sybase, SQL Server, Sybase,
and Teradata are 0 through 1000000 records per fetch. Valid values for DB2 LUW are
1 through 1000000 records per fetch; zero (0) is not a valid value.
The default is 1000. Performance slows when batch size gets very small or very large.
If the table contains LOB data, Extract reverts to single-row fetch mode, and then
resumes batch fetch mode afterward.

FETCHCHECKFREQ seconds
Valid for Integrated Extract for Oracle. Specifies the number of seconds that Extract
waits between each fetch check for the ADG to catch up. A low number improves
latency though increases the number of queries of current_scn from v$database. The
default is 3 seconds; the maximum is 120 seconds.

FETCHLOBS | NOFETCHLOBS

Valid for Extract for DB2 for z/OS and DB2 for LUW. Suppresses the fetching of LOBs
directly from the database table when the LOB options for the table are set to NOT
LOGGED. With NOT LOGGED, the value for the column is not available in the transaction
logs and can only be obtained from the table itself. By default, Oracle GoldenGate
captures changes to LOBs from the transaction logs. The default is FETCHLOBS.

FETCHRETRYCOUNT number
Valid for Integrated Extract for Oracle. Specifies the number of times that Extract tries
before it reports ADG progress or the reason for no progress when waiting for the
ADG to catch up. This value is multiplied with FETCHCHECKFREQ to determine
approximately how often the ADG progress is reported.

Chapter 3
DBOPTIONS

3-62

FECHTIMEOUT seconds | NOFECHTIMEOUT
Valid for Integrated Extract for Oracle. Specifies the number of seconds that Extract
after which it will abend when ADG makes no progress. No progress can be because
the MRP is not running or because it is not applying redo changes. When this occurs,
the ADG database should be examined. The default is 30 seconds; valid values are 0
- 4294967295 (ub4 max value) seconds. NOFETCHTIMEOUT means never timeout (the
same as FECHTIMEOUT 0) and seconds cannot be specified with it.

HOST {DNS_name | IP_address}

Valid for Replicat for multi-daemon MySQL. Specifies the DNS name or IP address of
the system that hosts the instance to which Replicat must connect.

INTEGRATEDPARAMS(parameter[, ...])

Valid for Replicat for Oracle. Passes settings for parameters that control the database
inbound server within the target Oracle database. Use this option only for an
integrated Replicat. For more information about integrated Replicat and a list of
supported inbound server parameters, see Installing and Configuring Oracle
GoldenGate for Oracle Database.

LIMITROWS | NOLIMITROWS

Valid for Replicat for MySQL, Oracle, SQL Server, and Sybase. LIMITROWS prevents
multiple rows from being updated or deleted by the same Replicat SQL statement
when the target table does not have a primary or unique key.
LIMITROWS is the default. LIMITROWS and NOLIMITROWS apply globally to all MAP statements
in a parameter file.
For MySQL, LIMITROWS uses a LIMIT 1 clause in the UPDATE or DELETE statement.
For Oracle targets, LIMITROWS (the default) must be used. It uses either WHERE ROWNUM =
1 or AND ROWNUM = 1 in the WHERE clause.
For SQL Server and Sybase, LIMITROWS uses a SET ROWCOUNT 1 clause before the
UPDATE or DELETE statement.
NOLIMITROWS permits multiple rows to be updated or deleted by the same Replicat SQL
statement.

LOBBUFSIZE bytes

Valid for Extract for Oracle. Determines the memory buffer size in bytes to allocate for
each embedded LOB attribute that is in an Oracle object type. Valid values are from
1024 and 10485760 bytes. The default is 1048576 bytes.
If the length of embedded LOB exceeds the specified LOBBUFSIZE size, an error
message similar to the following is generated:

GGS ERROR ZZ-0L3 Buffer overflow, needed: 2048, allocated: 1024.

LOBWRITESIZE bytes

Valid for nonintegrated Replicat for Oracle. Specifies a fragment size in bytes for each
LOB that Replicat writes to the target database. The LOB data is stored in a buffer
until this size is reached. Because LOBs must be written to the database in
fragments, writing in larger blocks prevents excessive I/O. The higher the value, the
fewer I/O calls that are made by Replicat to the database server to write the whole
LOB to the database.
Specify a multiple of the Oracle LOB fragment size. A given value will be rounded up
to a multiple of the Oracle LOB fragment size, if necessary. The default LOB write
size is 32k if DBOPTIONS NOSKIPTEMPLOB is specified, or 1MB if DBOPTIONS SKIPTEMPLOB is
specified. Valid values are from 2,048 bytes to 2,097,152 bytes (2MB).
By default, Replicat enables Oracle's LOB caching mechanism. To disable Oracle's
LOB caching, use the DISABLELOBCACHING option of DBOPTIONS.

Chapter 3
DBOPTIONS

3-63

SHOWINFOMESSAGES

Valid for Extract and Replicat for Sybase. Enables the following Sybase server
messages to be printed to the error log.

0: /* General informational message */
5701: /* Changed Database Context */
5703: /* Changed language setting */
5704: /* Changed client character set */
7326: /* Non ANSI Escaping */

Normally, these messages are suppressed because they do not affect Oracle
GoldenGate processing.

SHOWWARNINGS

Valid for Extract and Replicat for Sybase. Enables the logging of Sybase server
messages with a severity level greater than 10. These messages may be useful for
debugging when Sybase performs corrective action that causes data to change.

SESSIONPOOLMAX max_value

Valid for Extract in integrated mode for Oracle. Sets a maximum value for the number
of sessions in the OCI Session Pool, which is used by Extract for fetching from a
container database. The default value is 10 sessions. Must be specified before the
USERID or USERIDALIAS parameter; otherwise will be ignored and the default will be
used.

SESSIONPOOLMIN min_value

Valid for Extract in integrated mode for Oracle. Sets a minimum value for the number
of sessions in the OCI Session Pool, which is used by Extract for fetching from a
container database. The default value is 2 sessions. Must be specified before the
USERID or USERIDALIAS parameter; otherwise will be ignored and the default will be
used.

SESSIONPOOLINCR increment_value

Valid for Extract in integrated mode for Oracle. Sets a value for the number of
incremental sessions that can be added to the OCI Session Pool, which is used by
Extract for fetching from a container database. The default value is 2 sessions. Must
be specified before the USERID or USERIDALIAS parameter; otherwise will be ignored and
the default will be used.

SETTAG [tag_value | NULL
Valid for Replicat for Oracle. Sets the value for an Oracle redo tag that will be used to
identify the transactions of the associated Replicat in the redo log. A redo tag also can
be used to identify transactions other than those of Replicat.
Use this option to prevent cycling (loop-back) of Replicat the individual records in a bi-
directional configuration or to filter other transactions from capture. The default SETTAG
value is 00 and is limited to 2K bytes. A valid value is any single Oracle Streams tag.
A tag value can be up to 2000 hexadecimal digits (0-9 A-F) long. For more information
about Streams tags, see Oracle Streams Replication Administrator's Guide.
Transactions in the redo that are marked with the specified tag can be filtered by an
Extract that has the TRANLOGOPTIONS parameter with the EXCLUDETAG option set to the
tag_value. Use tag-based filtering to prevent cycling (loop-back) of Replicat
transactions in a bi-directional configuration or to filter other transactions from capture.
For more information, see TRANLOGOPTIONS.
You can disable the tagging of DDL by using the DDLOPTIONS parameter with the
NOTAG option.

Chapter 3
DBOPTIONS

3-64

hex_value

A hexadecimal value from 0 through F. The default value is 00. The following are
valid examples:

DBOPTIONS SETTAG 00112233445566778899AABBCCDDEEFF
DBOPTIONS SETTAG 00112233445566778899aabbccddeeff
DBOPTIONS SETTAG 123

NULL

Disables tag-based filtering for the associated Replicat.

SKIPTEMPLOB | NOSKIPTEMPLOB

Valid for Replicat for Oracle Database versions 11g and 12c. Controls how LOBs are
applied to a target Oracle database. The default of SKIPTEMPLOB .
SKIPTEMPLOB improves performance by directly writing LOB data to the target LOB
column. Replicat creates a SQL statement with an empty LOB value and returns the
LOB locator to the bind variable. After the SQL statement is executed successfully,
the LOB data is written directly to the LOB column using the returned LOB locator.
NOSKIPTEMPLOB uses a temporary LOB in the SQL statement. Replicat declares a bind
variable within SQL statement and associates a temporary LOB, then writes to the
temporary LOB. The Oracle Database applies the LOB column data from the
temporary LOB.
SKIPTEMPLOB applies to INSERT and UPDATE operations that contain LOB data. It does not
apply if the table has a functional index with a LOB column, if the LOB data is NULL,
empty, or stored inline. It does not apply to partial LOB operations.
SKIPTEMPLOB causes Replicat to generate/perform 1 DML+ n LOB_WRITE (piece-wise)
operations when updating/inserting a row with LOB columns. However, SKIPTEMPLOB
should not be used with FETCHPARTIALLOB (an Extract Parameter) because it results in
excessive fetching.
NOSKIPTEMPLOB is provided for backward compatibility; otherwise the default of
SKIPTEMPLOB should be retained.

SOURCE_DB_NAME src_dbase_global_name
Valid for Oracle. Indicates the Global Name of the Trail Source Database. It is used to
query the relevant instantiation information when DBOPTIONS
ENABLE_INSTANTIATION_FILTERING is enabled. This option is optional for instantiation
filtering in a 12.2. trail file with metadata enabled.
When the source has no DOMAIN, do not specify a DOMAIN for the downstream database.

SPTHREAD | NOSPTHREAD

Valid for Extract and Replicat for SQL Server. Creates a separate database
connection thread for stored procedures. The default is NOSPTHREAD.

SUPPRESSTEMPORALUPDATES

Valid for DB2 LUW 10.1 FixPack 2 and greater replication of temporal table.
Use SUPPRESSTEMPORALUPDATES to replicate system-period and bitemporal tables along
with associated history tables. Oracle GoldenGate replicates the row begin, row end,
and transaction start id columns along with the other columns of the table. You must
ensure that the database instance has the execute permission to run the
SYSPROC.SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY¿ stored procedure at the apply
side.
By default, Oracle GoldenGate does not replicate row begin, row end, and transaction
start id columns. To preserve the original values of these columns, implement one of
the followings options.

Chapter 3
DBOPTIONS

3-65

• Add extra timestamp columns in the target temporal table and map the columns
accordingly.

• Use a non-temporal table at the apply side and map the columns accordingly.

Replication in Heterogeneous Environment:
In heterogeneous environments where there is no temporal tables at the apply side,
you need to set the row begin, row end and transaction start id columns value. These
source columns will have timestamp values that the target database may not support.
You should first use the map conversion functions to convert these values into the
format that target database supports, and then map the columns accordingly. For
example, MySQL has a DATETIME range from `1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.999999¿'. You cannot replicate a DB2 LUW timestamp value of
`0001-01-01-00.00.00.000000000000¿ to MySQL. To replicate such values you must
convert this value into the MySQL DATETIME format. For example, if a system-period or
bitemporal table has the following timestamp column:

SYS_START

0001-01-01-00.00.00.000000000000

Then to replicate this column into MySQL, you would use the function colmap() as
follows:

map <source_schema>.<source_table>, target <target_schema>.<target_table>
colmap(sys_start= @IF((@NUMSTR(@STREXT(sys_start,1,4))) > 1000, sys_start,
'1000-01-01 00.00.00.000000'));

Initial Load of Temporal Table:
Oracle GoldenGate supports initial load of temporal table as usual.
Take into account the following considerations with temporal table:

• Replication between system-period and application-period temporal table is not
supported.

• Replication from a non-temporal table to a temporal table is not supported.

• Replication of system-period, bi-temporal tables, and SUPPRESSTEMPORALUPDATES
with the INSERTALLRECORDS parameter is not supported.

• If any unique index is created for application-period temporal table using
BUSINESS_TIME WITHOUT OVERLAPS for the target table, then the same unique index
must be created for the source table.

• Bidirectional replication between temporal tables is advised only with the default.

• CDR is supported only with SUPPRESSTEMPORALUPDATES. There is no CDR support in
bidirectional replication.

• By default, there are inconsistencies in row begin, row end, and transaction start
id columns of the temporal tables when the source and target databases operate
with different time zones. These timestamp columns of system-period and
bitemporal tables are automatically populated by the respective database
managers and will have values as per the respective time zones of the databases.

• Using the default with GETUPDATEBEFORES is in the replicate parameter file, you
cannot use the row begin, row end, and transaction start id columns in any delta
calculations. For example, taking before and after image of such columns in any
kind of calculations is not possible. These columns can be used in delta
calculations using SUPPRESSTEMPORALUPDATES.

Chapter 3
DBOPTIONS

3-66

SUPPRESSTRIGGERS | NOSUPPRESSTRIGGERS

Valid for Integrated Replicat and Classic Replicat for Oracle. Controls whether or not
triggers are fired during the Replicat session. Provides an alternative to manually
disabling triggers. (Integrated Replicat does not require disabling of triggers on the
target system.)
SUPPRESSTRIGGERS is the default and prevents triggers from firing on target objects that
are configured for replication with Oracle GoldenGate. SUPPRESSTRIGGERS is valid for
Oracle Database 12c, 11g (11.2.0.2), and later 11g R2 releases. SUPPRESSTRIGGERS is
not valid for 11g R1.
To allow a specific trigger to fire, you can use the following SQLEXEC statement in the
Replicat parameter file, where trigger_owner is the owner of the trigger and
trigger_name is the name of the trigger.

SQLEXEC 'DBMS_DDL.SET_TRIGGER_FIRING_PROPERTY('"S1"','"MY_TRIGGER"',FALSE);'

Note:

Once this SQLEXEC is executed with FALSE, the trigger will continue to fire until
the command is run again with a setting of TRUE.

NOSUPPRESSTRIGGERS allows target triggers to fire. To use [NO]SUPPRESSTRIGGERS, the
Replicat user must have the privileges granted through the
dbms_goldengate_auth.grant_admin_privilege package. This procedure is part of the
Oracle database installation. See the database documentation for more information.
The USERID or USERIDALIAS parameter must precede a DBOPTIONS statement that
contains SUPPRESSTRIGGERS or NOSUPPRESSTRIGGERS.

TDSPACKETSIZE bytes

Valid for Extract and Replicat for Sybase. Sets the TDS packet size for replication to a
Sybase target.
Valid values:

• Sybase version 12.5.4:

Note:

This version is de-supported as of Oracle GoldenGate 11.2.1.

512 to 65024

Default is 0 for Extract, 512 for Replicat

• Sybase15 or higher:

2048 to 65024

Default is 0 for Extract, 2048 for Replicat

The value must be a multiple of 512. The range of values that are set for the Sybase
Adaptive Server max network packet size and additional network memory parameters
must support the value that is set with TDSPACKETSIZE.

Chapter 3
DBOPTIONS

3-67

Note:

The higher the max network packet size value, the more memory (as set with
additional network memory) the database server needs to allocate for the
network data.

For best performance, choose a server packet size that works efficiently with the
underlying packet size on your network. The goals of this procedure are to:

• Reduce the number of server reads and writes to the network.

• Reduce unused space in the network packets to increase network throughput.

For example, if your network packet size carries 1500 bytes of data, you can achieve
better transfer performance by setting the packet size on the server to 1024 (512 x 2)
than by setting it to 1536 (512 x 3).
For optimal performance, start with the following configuration:
DBOPTIONS TDSPACKETSIZE 8192

The DBOPTIONS parameter can be placed anywhere in the parameter file irrespective of
other parameters.

TRANSNAME trans_name
Valid for Replicat for SQL Server. Allows an individual Replicat to use a specific
transaction name that is specified in the parameter file. The trans_name is the name of
the transaction that the Replicat uses for target DML transactions and overrides the
default ggs_repl transaction name when used.

USEODBC

Valid for Replicat for SQL Server. Configures Replicat to use ODBC to perform DML
operations. The default is to use OLE DB. Not valid if USEREPLICATIONUSER is enabled;
will cause Replicat to abend.

Note:

Replicat always uses ODBC to connect to the database catalog to obtain
metadata.

USEREPLICATIONUSER

Valid for Replicat for SQL Server. Configures Replicat to perform target DML
operations as the SQL Server replication user. The replication user is not a SQL
Server user or account, but is a property of the database connection.
USEREPLICATIONUSER honors the SQL Server NOT FOR REPLICATION flag when set on an
object or property, such as an Identity column or cascade constraint.
When the replication user is used, the following concerns must be addressed for their
effect on data integrity:

• IDENTITY seeds on the target are not updated. A partitioning scheme is needed to
avoid primary key violations unless the target is read-only.

• Foreign key constraints are not enforced.

Chapter 3
DBOPTIONS

3-68

• ON UPDATE CASCADE, ON DELETE CASCADE and triggers are disabled. This is beneficial
to Replicat, since it prevents duplicate operations, but may not be appropriate for
the target applications and might require modification to the code of the constraint
or trigger to ensure data integrity.

• CHECK constraints are not enforced, so data integrity cannot be certain on the
target.

When using USEREPLICATIONUSER, IDENTITY properties and constraints must be set with
the 'not for replication' option at the object level within the database. For more
information about these considerations, see Installing and Configuring Oracle
GoldenGate for SQL Server.
By default, USEREPLICATIONUSER is disabled and the default is to use OLE DB. The use
of USEREPLICATIONUSER is only advised if delivery performance must be increased. Not
valid if USEODBC is enabled; will cause Replicat to abend.

XMLBUFSIZE bytes

Valid for Extract for Oracle. Sets the size of the memory buffer that stores XML data
that was extracted from the sys.xmltype attribute of a SDO_GEORASTER object type. The
default is 1048576 bytes (1MB). If the data exceeds the default buffer size, Extract will
abend. If this occurs, increase the buffer size and start Extract again. The valid range
of values is 1024 to 10485760 bytes.

Examples

Example 1

DBOPTIONS HOST 127.0.0.1, CONNECTIONPORT 3307

Example 2

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH ENCRYPTKEY DEFAULT

Example 3

DBOPTIONS TDSPACKETSIZE 2048

Example 4

DBOPTIONS FETCHBATCHSIZE 2000

Example 5

DBOOPTION XMLBUFSIZE 2097152

3.41 DDL
Valid For

Extract and Replicat

Description

Use the DDL parameter to:

• enable DDL support

• filter DDL operations

• configure a processing action based on a DDL record

Chapter 3
DDL

3-69

When used without options, the DDL parameter performs no filtering, and it causes all
DDL operations to be propagated as follows:

• As an Extract parameter, it captures all supported DDL operations that are
generated on all supported database objects and sends them to the trail.

• As a Replicat parameter, it replicates all DDL operations from the Oracle
GoldenGate trail and applies them to the target. This is the same as the default
behavior without this parameter.

When used with options, the DDL parameter acts as a filtering agent to include or
exclude DDL operations based on:

• scope

• object type

• operation type

• object name

• strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine
multiple inclusion and exclusion options to filter the DDL to the required level.

• The filtering options of the DDL parameter are valid for a primary Extract that
captures from the transaction source, but not for a data-pump Extract.

• When combined, multiple filter option specifications are linked logically as AND
statements.

• All filter criteria specified with multiple options must be satisfied for a DDL
statement to be replicated.

• When using complex filtering criteria in a DDL parameter statement, it is
recommended that you test your configuration in a test environment before using it
in production.

• See Example 1, Example for more information.

Do not use the DDL parameter for:

• an Extract data pump

• a VAM-sort Extract (Teradata source databases)

These process types do not permit the mapping or conversion of DDL and will
propagate DDL records automatically in pass-through mode. DDL that is performed on
a source table (for example ALTER TABLE TableA...) will be applied by Replicat with the
same table name (ALTER TABLE TableA). It cannot be mapped as ALTER TABLE TableB.

For additional information about how to use Oracle GoldenGate DDL support, see
Installing and Configuring Oracle GoldenGate for Oracle Database or Installing and
Configuring Oracle GoldenGate for Teradata, as applicable.

Syntax

DDL [
{INCLUDE | EXCLUDE}
 [, MAPPED | UNMAPPED | OTHER | ALL]
 [, OPTYPE type]
 [, OBJTYPE 'type']
 [, SOURCECATALOG catalog | ALLCATALOGS]
 [, ALLOWEMPTYOBJECT]

Chapter 3
DDL

3-70

 [, ALLOWEMPTYOWNER]
 [, OBJNAME name]
 [, INSTR 'string']
 [, INSTRWORDS 'word_list']
 [, INSTRCOMMENTS 'comment_string']
 [, INSTRCOMMENTSWORDS 'word_list']
 [, STAYMETADATA]
 [, EVENTACTIONS (action)
]
[...]

DDL Filtering Options

The following are the syntax options for filtering and operating upon the DDL that is
replicated by Oracle GoldenGate. These options apply to the INCLUDE and EXCLUDE
clauses of the DDL parameter and other parameters that support DDL replication.

INCLUDE | EXCLUDE

Use INCLUDE or EXCLUDE to identify the beginning of an inclusion or exclusion clause.

• An inclusion clause contains filtering criteria that identifies the DDL that this
parameter will affect.

• An exclusion clause contains filtering criteria that excludes specific DDL from this
parameter.

The inclusion or exclusion clause must consist of the INCLUDE or EXCLUDE keyword
followed by any valid combination of the other filtering options of the DDL parameter.
If you use EXCLUDE, you must create a corresponding INCLUDE clause. For example, the
following is invalid:

DDL EXCLUDE OBJNAME "hr".*

However, you can use either of the following:

DDL INCLUDE ALL, EXCLUDE OBJNAME "hr"."*"
DDL INCLUDE OBJNAME fin.* EXCLUDE OBJNAME "fin.ss"

An EXCLUDE takes priority over any INCLUDEs that contain the same criteria. You can use
multiple inclusion and exclusion clauses.
Do not include any Oracle GoldenGate installed DDL objects in a DDL parameter, in a
TABLE parameter, or in a MAP parameter, nor in a TABLEEXCLUDE or MAPEXCLUDE parameter.
Make certain that wildcard specifications in those parameters do not include Oracle
GoldenGate-installed DDL objects. These objects must not be part of the Oracle
GoldenGate configuration, but the Extract process must be aware of operations on
them, and that is why you must not explicitly exclude them from the configuration with
an EXCLUDE, TABLEEXCLUDE, or MAPEXCLUDE parameter statement.

MAPPED | UNMAPPED | OTHER | ALL

Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE based on the DDL
operation scope.

• MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of MAPPED scope.
MAPPED filtering is performed before filtering that is specified with other DDL
parameter options.

• UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of UNMAPPED
scope.

Chapter 3
DDL

3-71

• OTHER applies INCLUDE or EXCLUDE to DDL operations that are of OTHER scope.

• ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

DDL EXCLUDE ALL is a special processing option that maintains up-to-date object
metadata for Oracle GoldenGate, while blocking the replication of the DDL
operations themselves. You can use DDL EXCLUDE ALL when using a method other
than Oracle GoldenGate to apply DDL to the target, but you want Oracle
GoldenGate to replicate data changes to the target objects. It provides the current
metadata to Oracle GoldenGate as objects change, thus preventing the need to
stop and start the Oracle GoldenGate processes. The following special conditions
apply to DDL EXCLUDE ALL:

• DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

• When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter to
IMMEDIATE to allow immediate DML resolution if required.

OPTYPE type

Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL operation, such
as CREATE, ALTER, and RENAME. For type, use any DDL command that is valid for the
database. For example, to include ALTER operations, the correct syntax is:

DDL INCLUDE OPTYPE ALTER

OBJTYPE 'type'

Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database object. For
type, use any object type that is valid for the database, such as TABLE, INDEX, and
TRIGGER. For an Oracle materialized view and materialized views log, the correct
types are snapshot and snapshot log, respectively. Enclose the name of the object
type within single quotes. For example:

DDL INCLUDE OBJTYPE 'INDEX'
DDL INCLUDE OBJTYPE 'SNAPSHOT'

For Oracle object type USER, do not use the OBJNAME option, because OBJNAME
expects owner.object or container.owner.object whereas USER only has a schema.

SOURCECATALOG catalog | ALLCATALOGS

Use these options to specify how unqualified object names in an OBJNAME clause
are resolved to the correct container. Use these options when the source
database is an Oracle container database.
SOURCECATALOG specifies a default container for all of the object names that are
specified in the same INCLUDE or EXCLUDE clause. To take effect, SOURCECATALOG
must be specified before the OBJNAME specification. See "SOURCECATALOG" for
more information including using statements that contain two-part names, where
three-part object names are required to fully identify an object.
ALLCATALOGS specifies that all of the containers of the database should be
considered when resolving object names that are specified in the same INCLUDE or
EXCLUDE clause. ALLCATALOGS can be placed before or after the OBJNAME
specification.
The following is the order of precedence that is given when there are different
catalog specifications in a parameter file:

1. ALLCATALOGS in an INCLUDE or EXCLUDE clause overrides all SOURCECATALOG
specifications in the INCLUDE or EXCLUDE clause and at the root of the parameter

Chapter 3
DDL

3-72

file, and it overrides the container specification of a fully qualified object name
in the OBJNAME clause.

2. An explicit catalog specification in the OBJNAME clause overrides all instances
of SOURCECATALOG (but not ALLCATALOGS).

3. SOURCECATALOG in an INCLUDE or EXCLUDE clause overrides the global
SOURCECATALOG parameter that is specified at the root of the TABLE or MAP
statement.

4. The global SOURCECATALOG parameter takes effect for any unqualified object
names in OBJNAME clauses if the INCLUDE or EXCLUDE clause does not specify
SOURCECATALOG or ALLCATALOGS.

5. In the absence of any of the preceding parameters, all catalogs are
considered.

ALLOWEMPTYOBJECT

Use ALLOWEMPTYOBJECT to allow an OBJNAME specification to process DDL that
contains no object name. For example:

DDL INCLUDE OBJNAME sch.* ALLOWEMPTYOBJECT

ALLOWEMPTYOWNER

Use ALLOWEMPTYOWNER to allow an OBJNAME specification to process DDL that
contains no owner name. For example:

DDL INCLUDE OBJNAME pdb.sch.* ALLOWEMPTYOWNER

OBJNAME name

Use OBJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of an object. To
specify two-part and three-part object names and wildcards correctly, see
Administering Oracle GoldenGate for Windows and UNIX.
Enclose case-sensitive object names within double quote marks.
Case-insensitive example:

DDL INCLUDE OBJNAME accounts.*

Case-sensitive example:

DDL INCLUDE OBJNAME accounts."cust"

Do not use OBJNAME for the Oracle USER object, because OBJNAME expects
owner.object or container.owner.object, whereas USER only has a schema.
When using OBJNAME with MAPPED in a Replicat parameter file, the value for OBJNAME
must refer to the name specified with the TARGET clause of the MAP statement. For
example, given the following MAP statement, the correct value is OBJNAME fin2.*.

MAP fin.exp_*, TARGET fin2.*;

In the following example, a CREATE TABLE statement executes as follows on the
source:

CREATE TABLE fin.exp_phone;

That same statement executes as follows on the target:

CREATE TABLE fin2.exp_phone;

Chapter 3
DDL

3-73

If a target owner is not specified in the MAP statement, Replicat maps it to the
database user that is specified with the USERID or USERIDALIAS parameter.
For DDL that creates derived objects, such as a trigger, the value for OBJNAME must
be the name of the base object, not the name of the derived object.
For example, to include the following DDL statement, the correct value is
hr.accounts, not hr.insert_trig.

CREATE TRIGGER hr.insert_trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table name. For
example, to include the following DDL statement, the correct value is hr.acct.

ALTER TABLE hr.accounts RENAME TO acct;

INSTR 'string'

Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain a specific
character string within the command syntax itself, but not within comments. For
example, the following excludes DDL that creates an index.

DDL INCLUDE ALL EXCLUDE INSTR 'CREATE INDEX'

Enclose the string within single quotes. The string search is not case sensitive.
INSTR does not support single quotation marks (' ') that are within the string, nor
does it support NULL values.

INSTRCOMMENTS 'comment_string'

(Valid for Oracle) Use INSTRCOMMENTS to apply INCLUDE or EXCLUDE to DDL
statements that contain a specific character string within a comment, but not
within the DDL command itself. By using INSTRCOMMENTS, you can use comments
as a filtering agent.
For example, the following excludes DDL statements that include the string
'source only' in the comments.

DDL INCLUDE ALL EXCLUDE INSTRCOMMENTS 'SOURCE ONLY'

In this example, DDL statements such as the following are not replicated.

CREATE USER john IDENTIFIED BY john /*source only*/;

Enclose the string within single quotes. The string search is not case sensitive.
You can combine INSTR and INSTRCOMMENTS to filter on a string in the command
syntax and in the comments of the same DDL statement.
INSTRCOMMENTS does not support single quotation marks (' ') that are within the
string, nor does it support NULL values.

INSTRWORDS 'word_list'

Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that contain the
specified words.
For word_list, supply the words in any order, within single quotes. To include
spaces, put the space (and the word, if applicable) in double quotes. Double
quotes also can be used to enclose sentences.
All specified words must be present in the DDL for INSTRWORDS to take effect.
Example:

DDL INCLUDE OPTYPE ALTER OBJTEYP 'TABLE' INSTRWORDS 'ALTER CONSTRAINT " xyz"'

This example matches the following DDL statements:

Chapter 3
DDL

3-74

ALTER TABLE ADD CONSTRAINT xyz CHECK

ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (' ') that are within the string,
nor does it support NULL values.

INSTRCOMMENTSWORDS 'word_list'

(Valid for Oracle) Works the same way as INSTRWORDS, but only applies to
comments within a DDL statement, not the DDL syntax itself. By using
INSTRCOMMENTS, you can use comments as a filtering agent.
INSTRCOMMENTSWORDS does not support single quotation marks (' ') that are within the
string, nor does it support NULL values.
You can combine INSTRWORDS and INSTRCOMMENTSWORDS to filter on a string in the
command syntax and in the comments of the same DDL statement.

STAYMETADATA

(Valid for Oracle). Prevents metadata from being captured by Extract or applied
by Replicat.
When Extract first encounters DML on a table, it retrieves the metadata for that
table. When DDL is encountered on that table, the old metadata is invalidated.
The next DML on that table is matched to the new metadata so that the target
table structure always is up-to-date with that of the source.
However, if you know that a particular DDL operation will not affect the table's
metadata, you can use STAYMETADATA so that the current metadata is not retrieved
or replicated. This is a performance improvement that has benefit for such
operations as imports and exports, where such DDL as truncates and the
disabling of constraints are often performed. These operations do not affect table
structure, as it relates to the integrity of subsequent data replication, so they can
be ignored in such cases. For example ALTER TABLE ADD FOREIGN KEY does not
affect table metadata.
An example of how this can be applied selectively is as follows:

DDL INCLUDE ALL INCLUDE STAYMETADATA OBJNAME xyz

This example states that all DDL is to be included for replication, but only DDL
that operates on object xyz will be subject to STAYMETADATA.
STAYMETADATA also can be used the same way in an EXCLUDE clause.
STAYMETADATA must be used the same way on the source and target to ensure
metadata integrity.
When STAYMETADATA is in use, a message is added to the report file. DDL reporting
is controlled by the DDLOPTIONS parameter with the REPORT option.
This same functionality can be applied globally to all DDL that occurs on the
source by using the @ddl_staymetadata scripts:

• @ddl_staymetadata_on globally turns off metadata versioning.

• @ddl_staymetadata_off globally enables metadata versioning again.

This option should be used with the assistance of Oracle GoldenGate technical
support staff, because it might not always be apparent which DDL affects object
metadata. If improperly used, it can compromise the integrity of the replication
environment.

Chapter 3
DDL

3-75

EVENTACTIONS (action)

Causes the Extract or Replicat process take a defined action based on a DDL
record in the transaction log or trail, which is known as the event record. The DDL
event is triggered if the DDL record is eligible to be written to the trail by Extract or
a data pump, or to be executed by Replicat, as determined by the other filtering
options of the DDL parameter. You can use this system to customize processing
based on database events.
For action, see EVENTACTIONS under the MAP and TABLE parameters.
Guidelines for using EVENTACTIONS on DDL records:

• CHECKPOINTBEFORE: Since each DDL record is autonomous, the DDL record is
guaranteed to be the start of a transaction; therefore, the CHECKPOINT BEFORE
event action is implied for a DDL record.

• IGNORE: This option is not valid for DDL records. Because DDL operations are
autonomous, ignoring a record is equivalent to ignoring the entire transaction.

EVENTACTIONS does not support the following DDL objects because they are
derived objects:

• indexes

• triggers

• synonyms

• RENAME on a table and ALTER TABLE RENAME

In a Teradata configuration where Extract is configured in maximum protection
mode, use EVENTACTIONS only in the VAM-sort Extract group. It is not supported by
the primary Extract in this configuration because concurrent changes are not
sorted in transaction order at this point in the processing stream. For more
information, see Installing and Configuring Oracle GoldenGate for Teradata.

Examples

Example 1 Combining DDL Parameter Options
The following is an example of how to combine the options of the DDL parameter.

DDL &
INCLUDE UNMAPPED &
 OPTYPE alter &
 OBJTYPE 'table' &
 OBJNAME users.tab* &
INCLUDE MAPPED OBJNAME * &
EXCLUDE MAPPED OBJNAME temporary.tab

The combined filter criteria in this statement specify the following:

• INCLUDE all ALTER TABLE statements for tables that are not mapped with a TABLE or
MAP statement (UNMAPPED scope), but only if those tables are owned by users and
their names start with tab,

• INCLUDE all DDL operation types for all tables that are mapped with a TABLE or MAP
statement (MAPPED scope),

• EXCLUDE all DDL operation types for all tables that are MAPPED in scope, but only if
those tables are owned by temporary and only if their names begin with tab.

Example 2 Including an Event Action
The following example specifies an event action of REPORT for all DDL records.

Chapter 3
DDL

3-76

DDL INCLUDE ALL EVENTACTIONS (REPORT)

Example 3 Using an Event Action on a Subset of DDL
The following example shows how EVENTACTIONS can be used on a subset of the DDL.
All DDL is to be replicated, but only the DDL that is executed on explicitly named
objects qualifies to trigger the event actions of REPORT and LOG.

DDL INCLUDE ALL &
 INCLUDE OBJNAME sales.t* EVENTACTIONS (REPORT) &
 INCLUDE OBJNAME fin.my_tab EVENTACTIONS (LOG) &

Example 4
The following example demonstrates the different ways to specify catalog names for
DDL that is issued on objects in a source Oracle container database.

• This includes pdb1.sch1.obj1 and pdb2.sch2.obj2 for DDL processing.

SOURCECATALOG pdb1
DDL INCLUDE OBJNAME sch1.obj1 INCLUDE SOURCECATALOG pdb2 OBJNAME sch2.obj2

• This includes all objects with the name sch.obj in any catalog for DDL processing.

DDL INCLUDE ALLCATALOGS OBJNAME sch.obj

• This also includes all objects with the name sch.obj in any catalog for DDL
processing, because ALLCATALOGS overrides any other catalog specification.

DDL INCLUDE ALLCATALOGS OBJNAME pdb.sch.obj

Example 5
The following shows the combined use of ALLOWEMPTYOBJECT and ALLOWEMPTYOWNER.

DDL INCLUDE pdb.*.* ALLOWEMPTYOWNER ALLOWEMPTYOBJECT

3.42 DDLERROR
Valid For

Extract and Replicat

Description

Use the DDLERROR parameter to handle DDL errors on the source and target systems.
Options are available for Extract and Replicat.

DDLERROR for Extract

Use the Extract option of the DDLERROR parameter to handle errors on objects found by
Extract for which metadata cannot be found.

Default

Abend

Syntax

DDLERROR [RESTARTSKIP number_of_skips] [RETRYDELAY seconds] [SKIPTRIGGERERROR
number_of_errors]

Chapter 3
DDLERROR

3-77

RESTARTSKIP number_of_skips

Causes Extract to skip and ignore a specific number of DDL operations on startup, to
prevent Extract from abending on an error. By default, a DDL error causes Extract to
abend so that no operations are skipped. Valid values are 1 to 100000.
To write information about skipped operations to the Extract report file, use the
DDLOPTIONS parameter with the REPORT option.

SKIPTRIGGERERROR number_of_errors

(Oracle) Causes Extract to skip and ignore a specific number of DDL errors that are
caused by the DDL trigger on startup. Valid values are 1 through 100000.
SKIPTRIGGERERROR is checked before the RESTARTSKIP option. If Extract skips a DDL
operation because of a trigger error, that operation is not counted toward the
RESTARTSKIP specification.

DDLERROR for Replicat

Use the Replicat options of the DDLERROR parameter to handle errors that occur when
DDL is applied to the target database. With DDLERROR options, you can handle most
errors in a default manner, for example to stop processing, and also handle other
errors in a specific manner. You can use multiple instances of DDLERROR in the same
parameter file to handle all errors that are anticipated.

Default

Abend

Syntax

DDLERROR
{error | DEFAULT} {response}
{INCLUDE inclusion_clause | EXCLUDE exclusion_clause}
[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]
[RETRYDELAY seconds]

{error | DEFAULT} {response}

error

Specifies an explicit DDL error for this DDLERROR statement to handle.

DEFAULT

Specifies a default response to any DDL errors for which there is not an explicit
DDLERROR statement.

response

The action taken by Replicat when a DDL error occurs. Can be one of the
following:

ABEND

Roll back the operation and terminate processing abnormally. ABEND is the
default.

DISCARD

Log the offending operation to the discard file but continue processing
subsequent DDL.

Chapter 3
DDLERROR

3-78

IGNORE

Ignore the error.

{INCLUDE inclusion_clause | EXCLUDE exclusion_clause}

Identifies the beginning of an inclusion or exclusion clause that controls whether
specific DDL is handled or not handled by the DDLERROR statement. See "DDL Filtering
Options" for syntax and usage.

[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]

Controls whether or not Extract abends when DML is issued on objects that could not
be found on the target. This condition typically occurs when DDL that is not in the
replication configuration is issued directly on the target, or it can occur when there is a
discrepancy between the source and target definitions.

IGNOREMISSINGOBJECTS

Causes Replicat to skip DML operations on missing tables.

ABENDONMISSINGOBJECTS

Causes Replicat to abend on DML operations on missing tables.

[RETRYDELAY seconds]

Specifies the delay in seconds between attempts to retry a failed operation. The
default is 10 seconds.

Examples

Example 1 DDLERROR Basic Example
In the following example, the DDLERROR statement causes Replicat to ignore the
specified error, but not before trying the operation again three times at ten-second
intervals. Replicat applies the error handling to DDL operations executed on objects
whose names satisfy the wildcard of tab* (any user, any operation) except those that
satisfy tab1*.

DDLERROR 1234 IGNORE RETRYOP MAXRETRIES 3 RETRYDELAY 10 &
INCLUDE ALL OBJTYPE TABLE OBJNAME tab* EXCLUDE OBJNAME tab1*

To handle all errors except that error, the following DDLERROR statement can be added.

DDLERROR DEFAULT ABEND

In this case, Replicat abends on DDL errors.

Example 2 Using Multiple DDLERROR Statements
The order in which you list DDLERROR statements in the parameter file does not affect
their validity unless multiple DDLERROR statements specify the same error, without any
additional qualifiers. In that case, Replicat only uses the first one listed. For example,
given the following statements, Replicat will abend on the error.

DDLERROR 1234 ABEND
DDLERROR 5678 IGNORE

With the proper qualifiers, however, the previous configuration becomes a more
useful one. For example:

DDLERROR 1234 ABEND INCLUDE OBJNAME tab*
DDLERROR 5678 IGNORE

Chapter 3
DDLERROR

3-79

In this case, because there is an INCLUDE statement, Replicat will abend only if an
object name in an errant DDL statement matches wildcard tab*. Replicat will ignore
errant operations that include any other object name.

3.43 DDLOPTIONS
Valid For

Extract and Replicat

Description

Use the DDLOPTIONS parameter to configure aspects of DDL processing other than
filtering and string substitution. You can use multiple DDLOPTIONS statements, but using
one is recommended. If using multiple DDLOPTIONS statements, make each of them
unique so that one does not override the other. Multiple DDLOPTIONS statements are
executed in the order listed in the parameter file.

Default

See the argument descriptions

Syntax

DDLOPTIONS
[, ADDTRANDATA {ABEND | RETRYOP RETRYDELAY seconds MAXRETRIES retries}
[, DEFAULTUSERPASSWORD password [algorithm [ENCRYPTKEY DEFAULT | ENCRYPTKEY key_name]
[, CAPTUREGLOBALTEMPTABLE]
[, DEFAULTUSERPASSWORDALIAS alias [DOMAIN domain]]
[, GETAPPLOPS | IGNOREAPPLOPS]
[, GETREPLICATES | IGNOREREPLICATES]
[, IGNOREMAPPING]
[, MAPDERIVED | NOMAPDERIVED]
[, MAPSCHEMAS]
[, MAPSESSIONSCHEMA source_schema TARGET target_schema]
[, NOTAG]
[, PASSWORD algorithm ENCRYPTKEY {key_name | DEFAULT}]
[, REMOVECOMMENTS {BEFORE | AFTER}]
[, REPLICATEPASSWORD | NOREPLICATEPASSWORD]
[, REPORT | NOREPORT]
[, UPDATEMETADATA]
[, USEPASSWORDVERIFIERLEVEL {10|11}]
[, _USEOWNERFORSESSION]

ADDTRANDATA {ABEND | RETRYOP RETRYDELAY seconds MAXRETRIES retries}
Valid for Extract (Teradata)
Not supported when Classic Extract is reading from an Active Data Guard standby
database because supplemental logging must be enabled on the primary database,
which is read/write. Not supported for multitenant container databases. Supplemental
logging must be enabled when using ADD SCHEMATRANDATA. This option should only be
used when schema-level supplemental logging is not an option in your environment.
No longer valid for Oracle and a warning is issued if used.
Use ADDTRANDATA to:

• Enable Oracle supplemental logging automatically for new tables created with a
CREATE TABLE statement.

Chapter 3
DDLOPTIONS

3-80

• Update supplemental logging for tables affected by an ALTER TABLE statement to
add or drop columns.

• Update supplemental logging for tables that are renamed.

• Update supplemental logging for tables where unique or primary keys are added
or dropped.

By default, ADDTRANDATA is disabled. The default for ADDTRANDATA when used without
additional options is:

DDLOPTIONS ADDTRANDATA RETRYOP RETRYDELAY 10 MAXRETRIES 10

To use ADDTRANDATA functionality, Oracle GoldenGate, the database, and the
appropriate tables must be configured for DDL capture. For Oracle, the Oracle
GoldenGate DDL objects must be installed and configured. For more information, see
Installing and Configuring Oracle GoldenGate for Oracle Database or the Installing
and Configuring Oracle GoldenGate for Teradata, depending on your environment.
For new tables created with CREATE TABLE, ADDTRANDATA produces the same results as
the default ADD TRANDATA command in GGSCI by issuing the Oracle ALTER TABLE
command with the ADD SUPPLEMENTAL LOG GROUP option. Oracle GoldenGate executes
this command when the CREATE TABLE or ALTER TABLE is captured on the source. If you
have special requirements for the supplemental logging, use the ADD TRANDATA
command, not DDLOPTIONS ADDTRANDATA. By default, the ALTER TABLE statement that
adds the supplemental logging is not replicated to the target unless the GETREPLICATES
option is in use.
For renamed tables, ADDTRANDATA deletes the supplemental log group for the old table
and creates it for the new one. If you do not use ADDTRANDATA and tables will be
renamed, do the following to create the log group before doing the rename:

1. Drop the supplemental log group using the database interface or the DELETE
TRANDATA command in GGSCI.

DELETE TRANDATA table_name

2. Rename the table.

3. Create the new supplemental log group using the database interface or the ADD
TRANDATA command in GGSCI.

ADD TRANDATA table_name

There might be a lag between the time when an original DDL operation occurs and
when the ADD TRANDATA takes effect. During this time, do not allow DML operations
(insert, update, delete) on the affected table if the data is to be replicated; otherwise, it
will not be captured. To determine when DML can be resumed after ADDTRANDATA, do
the following:

1. Edit the Extract parameter file in GGSCI.

WARNING:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit a
parameter file that was created in a character set other than that of the
local operating system. View the file from outside GGSCI; otherwise, the
contents may become corrupted.

Chapter 3
DDLOPTIONS

3-81

2. Add the REPORT option to DDLOPTIONS, then save and close the file.

DDLOPTIONS [, DDLOPTIONS_option] [,...] , REPORT

3. Stop and start Extract to activate the parameter changes.

STOP EXTRACT group_name
START EXTRACT group_name

4. View the Extract process report.

VIEW REPORT group_name

5. Look for the ALTER TABLE statement that added the log group to the table, and
make a note of the time that the command took effect. The entry looks similar to
the following:

Successfully added TRAN DATA for table with the key, table [MYSCHEMA1.MYTABLE],
operation [ALTER TABLE "MYSCHEMA1"."MYTABLE" ADD SUPPLEMENTAL LOG GROUP
"GGS_MYTABLE_53475" (MYID) ALWAYS /* GOLDENGATE_DDL_REPLICATION */].

6. Permit DML operations on the new table.

The ADDTRANDATA options are:

ABEND

Causes Extract to abend.

RETRYOP

Causes Extract to try again based on RETRYDELAY and MAXRETRIES.

RETRYDELAY seconds

Sets the delay before Extract tries again. The default is 10 seconds. The
maximum delay is 10,000 seconds.

MAXRETRIES retries

Sets the number of retries that Extract can make before abending. The default is
10 seconds. The maximum is 10,000 retries.

DEFAULTUSERPASSWORD password [algorithm ENCRYPTKEY {key_name | DEFAULT}]

Valid for Replicat. (Oracle only)
Can be used instead of the DEFAULTUSERPASSWORDALIAS option if an Oracle GoldenGate
credential store is not being used. Specifies a different password for a replicated
{CREATE | ALTER} USER name IDENTIFIED BY password statement from the one used in
the source statement. Replicat will replace the placeholder that Extract writes to the
trail with the specified password. When using DEFAULTUSERPASSWORD, use the
NOREPLICATEPASSWORD option of DDLOPTIONS for Extract.
DEFAULTUSERPASSWORD password without options specifies a clear-text password. If the
password is case-sensitive, type it that way.

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password
verification function must exist in the SYS schema. To replicate these DDLs
successfully, password verification function must be created manually on
both source/target(s) since DDL to SYS schema is excluded.

Chapter 3
DDLOPTIONS

3-82

Use the following options if the password was encrypted with the ENCRYPT PASSWORD
command in GGSCI:

algorithm

Specifies the encryption algorithm that was used to encrypt the password with the
ENCRYPT PASSWORD command: AES128, AES192, AES256, or BLOWFISH. Use AES unless
Blowfish is required for backward compatibility. AES is more secure than
Blowfish.

ENCRYPTKEY key_name

Specifies the logical name of a user-created encryption key in the ENCKEYS lookup
file. Use if ENCRYPT PASSWORD was used with the KEYNAME key_name option, and
specify the same key name.

ENCRYPTKEY DEFAULT

Directs Oracle GoldenGate to use a random key. Use if ENCRYPT PASSWORD was
used with the KEYNAME DEFAULT option.

For more information about Oracle GoldenGate security options, see Administering
Oracle GoldenGate for Windows and UNIX.

CAPTUREGLOBALTEMPTABLE

Valid for Oracle
Allows Global Temporary Tables (GTT) DDLs to be visible to Extract so that they can
be replicated. By default, GTT DDLs are not visible to Extract so using
CAPTUREGLOBALTEMPTABLE you can set Extract to include GTT DDLs that then can be
filtered by the DDL statement and if passed, written to the trail. The GTT DDLs are
included in Replicat, if present in trail, and are filtered by the DDL statement then if
they are passed they are executed.
For trigger-version of Extract, this option is set to false regardless of whether the table
is GTT or not.

DEFAULTUSERPASSWORDALIAS alias [DOMAIN domain]

Valid for Replicat. (Oracle only)
Can be used instead of the DEFAULTUSERPASSWORD option if an Oracle GoldenGate
credential store is being used. Specifies the alias of a credential whose password
replaces the one in the IDENTIFIED BY clause of a replicated CREATE USER or ALTER USER
statement. The alias is resolved to the encrypted password in the Oracle GoldenGate
credential store. Replicat replaces the placeholder that Extract writes to the trail with
the resolved password before applying the DDL to the target.
When using DEFAULTUSERPASSWORDALIAS, use the NOREPLICATEPASSWORD option of
DDLOPTIONS for Extract.

alias

Specifies the alias of the credential whose password will be used for the
replacement password. This credential must exist in the Oracle GoldenGate
credential store. If you are not sure what alias to use, you can inspect the content
of the credential store by issuing the INFO CREDENTIALSTORE command. See "INFO
CREDENTIALSTORE".

DOMAIN domain

Specifies the domain that is assigned to the specified user in the credential store.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about Oracle GoldenGate security.

Chapter 3
DDLOPTIONS

3-83

GETAPPLOPS | IGNOREAPPLOPS

Valid for Extract. (Oracle only)
Controls whether or not DDL operations produced by business applications except
Replicat are included in the content that Extract writes to a trail or file. GETAPPLOPS and
IGNOREAPPLOPS can be used together with the GETREPLICATES and IGNOREREPLICATES
options to control which DDL is propagated in a bidirectional or cascading
configuration.

• For a bidirectional configuration, use GETAPPLOPS with IGNOREREPLICATES . You also
must use the UPDATEMETADATA option.

• For a cascading configuration, use IGNOREAPPLOPS with GETREPLICATES on the
systems that will be cascading the DDL operations to the target.

The default is GETAPPLOPS.

GETREPLICATES | IGNOREREPLICATES

Valid for Extract (Oracle only). Controls whether or not DDL operations produced by
Replicat are included in the content that Extract writes to a trail or file. The default is
IGNOREREPLICATES. For more information, see the GETAPPLOPS | IGNOREAPPLOPS options of
DDLOPTIONS.

IGNOREMAPPING

Valid for Replicat. Disables the evaluation of name mapping that determines whether
DDL is of MAPPED or UNMAPPED scope. This option improves performance in like-to-like
DDL replication configurations, where source and target schema names and object
names match, and where mapping functions are therefore unnecessary. With
IGNOREMAPPING enabled, MAPPED or UNMAPPED scope cannot be determined, so all DDL
statements are treated as OTHER scope. Do not use this parameter when source
schemas and object names are mapped to different schema and object names on the
target.

MAPDERIVED | NOMAPDERIVED

Valid for Replicat (Oracle and Teradata). Controls how derived object names are
mapped.

MAPDERIVED

If a MAP statement exists for the derived object, the name is mapped to the name
specified in that TARGET clause. Otherwise, the name is mapped to the name
specified in the TARGET clause of the MAP statement that contains the base object.
MAPDERIVED is the default.

NOMAPDERIVED

Prevents name mapping. NOMAPDERIVED overrides any explicit MAP statements that
contain the name of the derived object.

For more information about how derived objects are handled during DDL replication,
see the Installing and Configuring Oracle GoldenGate for Oracle Database or
Installing and Configuring Oracle GoldenGate for Teradata, depending on your
installation.

MAPSCHEMAS

Valid for Replicat (Oracle and Teradata). Use only when MAPSESSIONSCHEMA is used.

• MAPSESSIONSCHEMA establishes a source-target mapping for session schemas and is
used for objects whose schemas are not qualified in the DDL.

Chapter 3
DDLOPTIONS

3-84

• MAPSCHEMAS maps objects that do have qualified schemas in the source DDL, but
which do not qualify for mapping with MAP, to the same session-schema mapping
as in MAPSESSIONSCHEMA. Examples of such objects are the Oracle CREATE TABLE AS
SELECT statement, which contains a derived object in the AS SELECT clause, or the
Teradata CREATE REPLICATION RULESET statement.

This mapping takes place after the mapping that is specified in the MAP statement.
As an example, suppose the following DDL statement is issued on a source Oracle
database:

create table a.t as select from b.t;

Suppose the MAP statement on the target is as follows:

MAP a.*, TARGET c.*;
DDLOPTIONS MAPSESSIONSCHEMA b, TARGET b1, MAPSCHEMAS

As a result of this mapping, Replicat issues the following DDL statement on the target:

create table c.t as select from b1.t;

• The base table gets mapped according to the TARGET clause (to schema c).

• The qualified derived object (table t in SELECT FROM) gets mapped according to
MAPSESSIONSCHEMA (to schema b1) because MAPSCHEMAS is present.

Without MAPSCHEMAS, the derived object would get mapped to schema c (as specified in
the TARGET clause), because MAPSESSIONSCHEMA alone only maps unqualified objects.

MAPSESSIONSCHEMA source_schema TARGET target_schema

Valid for Replicat (Oracle only). Enables a source session schema to be mapped to
(transformed to) a different session schema on the target.

• source_schema is the session schema that is set with ALTER SESSION set
CURRENT_SCHEMA on the source.

• target_schema is the session schema that is set with ALTER SESSION set
CURRENT_SCHEMA on the target.

Wildcards are not supported. You can use multiple MAPSESSIONSCHEMA parameters to
map different schemas.
MAPSESSIONSCHEMA overrides any mapping of schema names that is based on master or
derived object names
See the example at the end of this topic for usage.
See also MAPSCHEMAS.

NOTAG

Valid for Replicat
Prevents the tagging of DDL that is applied by Replicat with a redo tag (either the
default tag '00' or one set with the DBOPTIONS parameter with the SETTAG option). Use
this option for bidirectional configurations where GETREPLICATES is used and DDL
applied by Replicat must be captured back by Extract for a metadata refresh.

PASSWORD algorithm ENCRYPTKEY {key_name | DEFAULT}

Valid for Extract (Oracle only)
Directs Extract to encrypt all passwords in source DDL before writing the DDL to the
trail.

Chapter 3
DDLOPTIONS

3-85

algorithm

Specifies the encryption algorithm to be used to encrypt the password. Valid
values are AES128, AES192, AES256, or BLOWFISH. Use AES unless Blowfish is
required for backward compatibility. AES is more secure than Blowfish.

ENCRYPTKEY key_name

Specifies the logical name of a user-created encryption key in an ENCKEYS lookup
file.

ENCRYPTKEY DEFAULT

Directs Oracle GoldenGate to use a random key.

REMOVECOMMENTS {BEFORE | AFTER}

(Optional) Valid for Extract and Replicat (Oracle only). Controls whether or not
comments are removed from the DDL operation. By default, comments are not
removed, so that they can be used for string substitution with the DDLSUBST parameter.
See "DDLSUBST" for more information.

REMOVECOMMENTS BEFORE

Removes comments before the DDL operation is processed by Extract or
Replicat. They will not be available for string substitution.

REMOVECOMMENTS AFTER

Removes comments after they are used for string substitution. This is the default
behavior if REMOVECOMMENTS is not specified.

REPLICATEPASSWORD | NOREPLICATEPASSWORD

Valid for Extract (Oracle only). Applies to the password in a {CREATE | ALTER} USER
user IDENTIFIED BY password command.

• By default (REPLICATEPASSWORD), Oracle GoldenGate uses the source password in
the target CREATE or ALTER statement.

• To prevent the source password from being sent to the target, use
NOREPLICATEPASSWORD.

When using NOREPLICATEPASSWORD, specify a password for the target DDL statement by
using a DDLOPTIONS statement with the DEFAULTUSERPASSWORD or
DEFAULTUSERPASSWORDALIAS option in the Replicat parameter file.

REPORT | NOREPORT

Valid for Extract and Replicat (Oracle and Teradata). Controls whether or not
expanded DDL processing information is written to the report file. The default of
NOREPORT reports basic DDL statistics. REPORT adds the parameters being used and a
step-by-step history of the operations that were processed.

UPDATEMETADATA

Valid for Replicat (Oracle only). Use in an active-active bi-directional configuration.
This parameter notifies Replicat on the system where DDL originated that this DDL
was propagated to the other system, and that Replicat should now update its object
metadata cache to match the new metadata. This keeps Replicat's metadata cache
synchronized with the current metadata of the local database.

USEPASSWORDVERIFIERLEVEL {10|11}

Only valid in an Oracle to Oracle configuration. Checks if the password verifier being
sent in a DDL CREATE USER statement requires modifying. The reason for this check is
because Oracle has different password verifiers, depending on the database version:

Chapter 3
DDLOPTIONS

3-86

• 10g: A weak verifier kept in user$.password.

• 11g: The SHA-1 verifier.

• 12c: The SHA-2 and HTTP digest verifiers.

The SHA-1, SHA-2 and HTTP verifiers are captured in user$.spare4 in the format of:
'S:<SHA-1-verifier>;H:<http-verifier>;T:<SHA-2-verifier>'. Integrated Extract
returns the following DDL in 12c for create user DDL statements:

• In 12.0.1.0 it returns: CREATE USER username IDENTIFIED BY VALUES
'S:SHA-1;H:http;weak'.

• In 12.0.2.0 and later it returns: CREATE USER username IDENTIFIED BY VALUES
'S:SHA-1;H:http;T:SHA-2;weak'.

If Replicat runs against Oracle 12c, these forms of CREATE USER are handled at the
RDBMS level, but if Replicat runs against Oracle 10g or 11, these forms are not
handled by the RDBMS. Oracle 10g only accepts the weak verifier, whereas Oracle
11g only accepts the S:SHA-1 and weak verifiers.
To allow the CREATE USER DDL generated for an Extract connected to Oracle 12c to
work with a Replicat connected to Oracle 10g or 11g, this parameter can be used to
filter out the unwanted verifiers, as follows:

• If USEPASSWORDVERIFIERLEVEL is set to 10, everything except the weak verifier is
filtered out of the CREATE USER DDL verification string.

• If USEPASSWORDVERIFIERLEVEL is set to 11, everything except the S:SHA-1 and weak
verifiers is filtered out of the CREATE USER DDL verification string.

Examples

Example 1
The following shows how MAPSESSIONSCHEMA works to allow mapping of a source
session schema to another schema on the target.
Assume the following DDL capture and mapping configurations in Extract and
Replicat:
Extract:

DDL INCLUDE OBJNAME SRC.* INCLUDE OBJNAME SRC1.*
TABLE SRC.*;
TABLE SRC1.*;
DDL INCLUDE OBJNAME SRC.* INCLUDE OBJNAME SRC1.*
TABLE SRC.*;
TABLE SRC1.*;

Replicat:

DDLOPTIONS MAPSESSIONSCHEMA SRC TARGET DST
DDLOPTIONS MAPSESSIONSCHEMA SRC1 TARGET DST1
MAP SRC.*, TARGET DST.*;
MAP SRC1.*, TARGET DST1.*;
DDL INCLUDE OBJNAME DST.* INCLUDE OBJNAME DST1.*

Assume that the following DDL statements are issued by the logged-in user on the
source:

ALTER SESION SET CURRENT_SCHEMA=SRC;
CREATE TABLE tab (X NUMBER);
CREATE TABLE SRC1.tab (X NUMBER) AS SELECT * FROM tab;

Chapter 3
DDLOPTIONS

3-87

Replicat will perform the DDL as follows (explanations precede each code segment):

-- Set session to DST, because SRC.* is mapped to DST.* in MAP statement.
ALTER SESION SET CURRENT_SCHEMA=DST;
-- Create the first TAB table in the DST schema, using the DST session schema.
CREATE TABLE DST.tab (X NUMBER);
-- Restore Replicat schema.
ALTER SESSION SET CURRENT_SCHEMA=REPUSER
-- Set session schema to DST, per MAPSESSIONSCHEMA, so that AS SELECT succeeds.
ALTER SESION SET CURRENT_SCHEMA=DST;
-- Create the DST1.TAB table AS SELECT * FROM the first table (DST.TAB).
CREATE TABLE DST1.tab (X NUMBER) AS SELECT * FROM tab;
-- Restore Replicat schema.
ALTER SESSION SET CURRENT_SCHEMA=REPUSER

Without MAPSESSIONSCHEMA, the SELECT * FROM TAB would attempt to select from a non-
existent SRC.TAB table and fail. The default is to apply the source schema to
unqualified objects in a target DDL statement. The DDL statement in that case would
look as follows and would fail:

-- Set session to DST, because SRC.* is mapped to DST.* in MAP statement.
ALTER SESION SET CURRENT_SCHEMA=DST;
-- Create the first TAB table in the DST schema, using the DST session schema.
CREATE TABLE DST.tab (X NUMBER);
-- Restore Replicat schema.
ALTER SESSION SET CURRENT_SCHEMA=REPUSER
-- Set session schema to SRC, because TAB in the AS SELECT is unqualified-- and SRC
is the source session schema.
ALTER SESION SET CURRENT_SCHEMA=SRC;
-- Create DST1.TAB AS SELECT * from SRC.TAB (SRC=current session schema).
CREATE TABLE DST1.tab (X NUMBER) AS SELECT * FROM tab;
-- SRC.TAB does not exist.
-- Abend with an error unless the error is handled by a DDLERROR statement.

Example 2
The following shows how to use DEFAULTUSERPASSWORDALIAS to specify a different
password for a replicated {CREATE | ALTER} USER name IDENTIFIED BY password
statement from the one used in the source statement. In this example, the alias
ddlalias is in the target domain in the credential store.

DDLOPTIONS DEFAULTUSERPASSWORDALIAS ddlalias DOMAIN target

3.44 DDLSUBST
Valid For

Extract and Replicat

Description

Use the DDLSUBST parameter to substitute strings in a DDL operation. For example, you
could substitute one table name for another or substitute a string within comments.
The search is not case-sensitive. To represent a quotation mark in a string, use a
double quote mark.

Guidelines for Using DDLSUBST

• Do not use DDLSUBST to convert column names and data types to something
different on the target. Changing the structure of a target object in this manner will

Chapter 3
DDLSUBST

3-88

cause errors when data is replicated to it. Likewise, do not use DDLSUBST to change
owner and table names in a target DDL statement. Always use a MAP statement to
map a replicated DDL operation to a different target object.

• DDLSUBST always executes after the DDL parameter, regardless of their relative order
in the parameter file. Because the filtering executes first, use filtering criteria that is
compatible with the criteria that you are using for string substitution. For example,
consider the following parameter statements:

DDL INCLUDE OBJNAME fin.*
DDLSUBST 'cust' WITH 'customers' INCLUDE OBJNAME sales.*

In this example, no substitution occurs because the objects in the INCLUDE and
DDLSUBST statements are different. The fin-owned objects are included in the
Oracle GoldenGate DDL configuration, but the sales-owned objects are not.

• You can use multiple DDLSUBST parameters. They execute in the order listed in the
parameter file.

• For Oracle DDL that includes comments, do not use the DDLOPTIONS parameter with
the REMOVECOMMENTS BEFORE option if you will be doing string substitution on those
comments. REMOVECOMMENTS BEFORE removes comments before string substitution
occurs. To remove comments, but allow string substitution, use the REMOVECOMMENTS
AFTER option.

• There is no maximum string size for substitutions, other than the limit that is
imposed by the database. If the string size exceeds the database limit, the Extract
or Replicat process that is executing the operation abends.

Default

No substitution

Syntax

DDLSUBST 'search_string' WITH 'replace_string'
[INCLUDE inclusion_clause | EXCLUDE exclusion_clause]

'search_string'

The string in the source DDL statement that you want to replace. Enclose the string
within single quote marks. To represent a quotation mark in a string, use a double
quotation mark.

WITH

Required keyword.

'replace_string'

The string that you want to use as the replacement in the target DDL. Enclose the
string within single quote marks. To represent a quotation mark in a string, use a
double quotation mark.

INCLUDE inclusion_clause | EXCLUDE exclusion_clause

Specifies one or more INCLUDE and EXCLUDE statements to filter the DDL operations for
which the string substitution rules are applied. See "DDL Filtering Options" for syntax
and usage.

Chapter 3
DDLSUBST

3-89

Examples

Example 1
The following replaces the string cust with the string customers for tables in the fin
schema.

DDLSUBST 'cust' WITH 'customers'
INCLUDE ALL OBJTYPE 'table' OBJNAME fin.*

Example 2
The following substitutes a new directory only if the DDL command includes the word
logfile. If the search string is found multiple times, the replacement string is inserted
multiple times.

DDLSUBST '/file1/location1' WITH '/file2/location2' INCLUDE INSTR 'logfile'

Example 3
The following uses multiple DDLSUBST statements, which execute in the order shown.

DDLSUBST 'a' WITH 'b' INCLUDE ALL
DDLSUBST 'b' WITH 'c' INCLUDE ALL

The net effect of the preceding substitutes all a and b strings with c.

3.45 DDLRULEHINT
Valid For

GLOBALS

Description

Use the DDLRULEHINT parameter to add a RULE hint to the DDL trigger. For example you
can add the RULE (/*+NO_UNNEST*/) hint to improve the performance of the trigger when
performing SQL queries.

You can also use the define _ddl_rule_hint parameter in the params.sql file to add a
hint. For example: define _ddl_rule_hint = '/*+NO_UNNEST*/'

Default

None

Syntax

DDLRULEHINT hint_syntax

hint_syntax

The syntax of the hint. Spaces are not permitted within the hint syntax.

Example

DDLRULEHINT /*+NO_UNNEST*/

Chapter 3
DDLRULEHINT

3-90

3.46 DDLTABLE
Valid For

GLOBALS

Description

Use the DDLTABLE parameter to specify the name of the DDL history table, if other than
the default of GGS_DDL_HIST. The DDL history table stores a history of DDL operations
processed by Oracle GoldenGate.

The name of the history table must also be specified with the ddl_hist_table
parameter in the params.sql script. This script resides in the root Oracle GoldenGate
installation directory.

This parameter is only valid for an Oracle database in which the capture configuration
uses the Oracle GoldenGate DDL trigger to support DDL replication. For more
information about the Oracle GoldenGate DDL objects, see Installing and Configuring
Oracle GoldenGate for Oracle Database.

Default

GGS_DDL_HIST

Syntax

DDLTABLE table_name

table_name

The fully qualified name of the DDL history table. This can be a two-part name
(schema.table) or a three-part name, if stored in a container database
(container.schema.table).

Example

DDLTABLE GG_DDL_HISTORY

3.47 DECRYPTTRAIL
Valid For

Extract data pump and Replicat

Description

Use the DECRYPTTRAIL parameter to decrypt data in a trail or extract file. This parameter
is required in the following cases:

• If the trail was encrypted with the master key and wallet method, use DECRYPTTRAIL
for a data pump only if you want the data to be decrypted when written to the
output trail of the data pump. Otherwise, this parameter is not needed. If the data-
pump requires further processing of records, it decrypts automatically and then re-
encrypts the data before writing it to the output trail. Replicat always decrypts data
automatically when the master key and wallet method is used.

Chapter 3
DDLTABLE

3-91

• When DECRYPTTRAIL is used for a data pump, use the ENCRYPTTRAIL parameter
before specifying any output trails that must be encrypted.

• If the trail was encrypted with the ENCKEYS method, use DECRYPTTRAIL for Replicat to
decrypt the data before applying it to the target.

Data encryption is controlled by the ENCRYPTTRAIL | NOENCRYPTTRAIL parameters.

For Oracle, if you are using wallet based encryption DECRYPTTRAIL does not require a
cipher because it is recorded in the trail file header.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about trail or file encryption.

Default

None

Syntax

DECRYPTTRAIL [{AES128 | AES192 | AES256}]

DECRYPTTRAIL

Valid without any other options only if the trail or file was encrypted with ENCRYPTTRAIL
without options to use 256-key byte substitution.

{AES128 | AES192 | AES256}

Valid for master key and wallet method and ENCKEYS method. Specify the same AES
cipher that was used in ENCRYPTTRAIL to encrypt the trail or file.

Example

Example 1
The following is an example of the ENCKEYS method.

DECRYPTTRAIL AES192

Example 2
The following is all that is needed to decrypt using the master key and wallet method.

DECRYPTTRAIL

3.48 DEFERAPPLYINTERVAL
Valid For

Replicat

Description

Use the DEFERAPPLYINTERVAL parameter to set an amount of time that Replicat waits
before applying captured transactions to the target database. To determine when to
apply the transaction, Replicat adds the delay value to the commit timestamp of the
source transaction, as recorded in the local GMT time of the source system.

You can use DEFERAPPLYINTERVAL for such purposes as to prevent the propagation of
erroneous changes made to the source data, to control data arrival across different
time zones, and to allow time for other planned events to occur before the data is
applied to the target. Note that by using DEFERAPPLYINTERVAL, you are purposely building

Chapter 3
DEFERAPPLYINTERVAL

3-92

latency into the target data, and it should be used with caution if the target applications
are time-sensitive.

To find out if Replicat is deferring operations, use the SEND REPLICAT command with the
STATUS option and look for a status of Waiting on deferred apply.

Note:

If the TCPSOURCETIMER parameter is in use, it is possible that the timestamps of
the source and target transactions could vary by a few seconds, causing
Replicat to hold its transaction (and hence row locks) open for a few
seconds. This small variance should not have a noticeable affect on
performance.

Default

0 (no delay)

Syntax

DEFERAPPLYINTERVAL n unit

n

A numeric value for the amount of time to delay. The minimum delay time is the value
that is set for the EOFDELAY parameter. The maximum delay time is seven days.

unit

The unit of time for the delay. Can be:

S | SEC | SECS | SECOND | SECONDS | MIN | MINS | MINUTE | MINUTES | HOUR | HOURS |
DAY | DAYS

Example

This example directs Replicat to wait ten hours before posting its transactions.

DEFERAPPLYINTERVAL 10 HOURS

If a transaction completes at 08:00:00 source GMT time, and the delay time is 10
hours, the transaction will be applied to the target at 18:00:00 target GMT time the
same day.

3.49 DEFSFILE
Valid For

DEFGEN

Description

Use the DEFSFILE parameter to identify the name of the file to which DEFGEN will write
data definitions. By default, the data definitions file is written in the character set of the
local operating system. You can change the character set with the CHARSET option.

Chapter 3
DEFSFILE

3-93

For more information about definitions files, see Administering Oracle GoldenGate for
Windows and UNIX.

Default

None

Syntax

DEFSFILE file_name [APPEND | PURGE] [CHARSET character_set] [FORMAT RELEASE
major.minor]

file_name

The relative or fully qualified file name. The file is created when you run DEFGEN.

APPEND

Directs DEFGEN to write new content (from the current run) at the end of any existing
content, if the specified file already exists. If the definitions file already exists, but is of
an older Oracle GoldenGate release version, you can set the FORMAT RELEASE option to
the same version as the existing file to prevent errors. Otherwise, DEFGEN will try to
add newer metadata features and abend. The following are the restrictions when
using APPEND:

• If the existing data definitions file is in a format older than Oracle GoldenGate
11.2.1, DEFGEN appends the table definitions in the old format, where table and
column names with multi-byte and special characters are not supported.

• If the existing data definitions file is in the newer format introduced in version
11.2.1, DEFGEN appends the table definitions in the existing character set of the
file.

• If the existing file is from version 11.2 or earlier, it was written when DEFGEN did
not support three-part object names and will cause an error if the new metadata
contains three-part names. You can specify objects from an Oracle container
database or SQL/MX if you remove the container or catalog portion by using the
NOCATALOG parameter in the DEFGEN parameter file.

PURGE

Directs DEFGEN to purge the specified file before writing new content from the
current run. When using PURGE, you can overwrite an existing definitions file that was
created by an older version of DEFGEN with newer metadata that supports newer
features, such as three-part object names.

CHARSET character_set

Generates the definitions file in the specified character set. Without CHARSET, the
default character set of the operating system is used. If APPEND mode is specified for a
definitions file that is version 11.2.1 or later, CHARSET is ignored, and the character set
of the existing definitions file is used.

FORMAT RELEASE major.minor

Specifies the metadata format of the definitions that are sent by DEFGEN to the
definitions file. The metadata tells the reader process whether the file records are of a
version that it supports. The metadata format depends on the version of the Oracle
GoldenGate process. Older Oracle GoldenGate versions contain different metadata
than newer ones. Use FORMAT when the definitions file will be used by a process that is
of an older Oracle GoldenGate version than the current one.

Chapter 3
DEFSFILE

3-94

• FORMAT is a required keyword.

• RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid
values are 9.0 through the current Oracle GoldenGate X.x version number, for
example 11.2 or 12.1. (If you use an Oracle GoldenGate version that is earlier
than 9.0, specify either 9.0 or 9.5.)

The release version is programmatically mapped back to an appropriate internal
compatibility level. The default is the current version of the process that writes to
this trail. Note that RELEASE versions earlier than 12.1 do not support three-part
object names.

Example

DEFSFILE ./dirdef/orcldef CHARSET ISO-8859-11 FORMAT RELEASE 11.2

3.50 DISCARDFILE | NODISCARDFILE
Valid For

Extract and Replicat

Description

Use the DISCARDFILE parameter to do the following:

• Customize the name, location, size, and write mode of the discard file. By default,
a discard file is generated whenever a process is started with the START command
through GGSCI. To retain the default properties, a DISCARDFILE parameter is not
required.

• Specify the use of a discard file for processing methods where the process starts
from the command line of the operating system and a discard file is not created by
default.

Use the NODISCARDFILE parameter to disable the use of a discard file. If NODISCARDFILE is
used with DISCARDFILE, the process abends.

When using DISCARDFILE, use either the PURGE or APPEND option. Otherwise, you must
specify a different discard file name before starting each process run, because Oracle
GoldenGate will not write to an existing discard file without one of these instructions
and will terminate.

See "DISCARDROLLOVER" for how to control how often the discard file is rolled over
to a new file.

For more information about the discard file, see Administering Oracle GoldenGate for
Windows and UNIX.

Default

If a process is started with the START command in GGSCI, it generates a discard file as
follows:

• The file is named after the process that creates it, with a .dsc extension. If the
process is a coordinated Replicat, it generates one file per thread. Each file name
is appended with the thread ID of the corresponding thread.

Chapter 3
DISCARDFILE | NODISCARDFILE

3-95

• The file is created in the dirrpt sub-directory of the Oracle GoldenGate installation
directory.

• The maximum file size is 50 MB.

• At startup, if a discard file exists, it is purged before new data is written.

• The maximum filename is 250 characters including the directory.

When you start a process from the command line of the operating system, you should
not generate a discard file by default.

Syntax

DISCARDFILE { [file_name]
[, APPEND | PURGE]
[, MAXBYTES n | MEGABYTES n] } |
NODISCARDFILE

DISCARDFILE

Indicates that the name or other attribute of the discard file is being changed.

file_name

The relative or fully qualified name of the discard file, including the actual file name.
For a coordinated Replicat, specify a file name of up to five characters, because each
file name is appended with the thread ID of the thread that writes it. To store the file in
the Oracle GoldenGate directory, a relative path name is sufficient, because Oracle
GoldenGate qualifies the name with the Oracle GoldenGate installation directory.

APPEND

Adds new content to existing content if the file already exists. If neither APPEND nor
PURGE is used, you must specify a different discard file name before starting each
process run.

PURGE

Purges the file before writing new content. If neither PURGE nor APPEND is used, you
must specify a different discard file name before starting each process run.

MAXBYTES n

Sets the maximum size of the file in bytes. The valid range is from 1 to 4096967295.
The default is 3000000. If the specified size is exceeded, the process abends.

MEGABYTES n

Sets the maximum size of the file in megabytes. The valid range is from 1 to 4096.
The default is 3. If the specified size is exceeded, the process abends.

NODISCARDFILE

Prevents the process from creating a discard file.

Example

Example 1
This example specifies a non-default file name and extension, non-default write mode,
and non-default maximum file size. This example shows how you could change the
default properties of a discard file for an online (started through GGSCI) process or
specify the use of a discard file for a process that starts from the command line of the
operating system and has no discard file by default.

DISCARDFILE .dirrpt/discard.txt, APPEND, MEGABYTES 20

Chapter 3
DISCARDFILE | NODISCARDFILE

3-96

Example 2
This example changes only the write mode of the default discard file for an online
process (started through GGSCI).

DISCARDFILE .dirrpt/finance.dsc, APPEND

Example 3
This example disables the use of a discard file for an online process (started through
GGSCI).

NODISCARDFILE

3.51 DISCARDROLLOVER
Valid For

Extract and Replicat

Description

Use the DISCARDROLLOVER parameter to set a schedule for aging discard files. For long
or continuous runs, setting an aging schedule prevents the discard file from filling up
and causing the process to abend, and it provides a predictable set of archives that
can be included in your archiving routine.

When the DISCARDROLLOVER age point is reached, a new discard file is created, and old
files are renamed in the format of GROUPn.extension, where:

• GROUP is the name of the Extract or Replicat group.

• n is a number that gets incremented by one each time a new file is created, for
example: myext0.dsc, myext1.dsc, myext2.dsc, and so forth.

• extension is the file extension, such as .dsc.

You can specify a time of day, a day of the week, or both. Specifying just a time of day
(AT option) without a day of the week (ON option) generates a discard file at the
specified time every day.

Discard files always roll over at the start of a process run, regardless of whether
DISCARDROLLOVER is used or not.

If the NODISCARDFILE parameter is used with the DISCARDROLLOVER parameter, the process
abends.

For more information about the discard file, see Administering Oracle GoldenGate for
Windows and UNIX.

Default

Disabled. By default, discard files are rolled over when a process starts.

Syntax

DISCARDROLLOVER
{AT hh:mi |
ON day |
AT hh:mm ON day}

Chapter 3
DISCARDROLLOVER

3-97

AT hh:mi

The time of day to age the file.
Valid values:

• hh is an hour of the day from 00 through 23.

• mm is minutes from 00 through 59.

ON day

The day of the week to age the file.
Valid values:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

They are not case-sensitive.

Examples

Example 1

DISCARDROLLOVER AT 05:30

Example 2

DISCARDROLLOVER ON friday

Example 3

DISCARDROLLOVER AT 05:30 ON friday

3.52 DOWNREPORT
Valid For

Manager

Description

Use the DOWNREPORTMINUTES or DOWNREPORTHOURS parameter to specify the frequency with
which Manager reports Extract and Replicat processes that are not running. Whenever
a process starts or stops, events are generated to the error log, and those messages
can easily be overlooked if the log is large. DOWNREPORTMINUTES and DOWNREPORTHOURS
report on a periodic basis to ensure that you are aware of stopped processes.

If DOWNREPORT is explicitly indicated and the value of the CHECKMINUTES parameter is
greater than that of DOWNREPORT, then CHECKMINUTES acquires the value of DOWNREPORT.

To report on running processes, use the UPREPORT parameter.

Default

Do not report down processes.

Chapter 3
DOWNREPORT

3-98

Syntax

DOWNREPORTMINUTES minutes | DOWNREPORTHOURS hours

minutes

The frequency, in minutes, to report processes that are not running. The minimum is
0.

hours

The frequency, in hours, to report processes that are not running. The minimum is 0.

Example

The following generates a report every 30 minutes.

DOWNREPORTMINUTES 30

3.53 DSOPTIONS
Valid For

Extract

Description

Use the DSOPTIONS parameter to specify processing options for an Extract that uses a
Teradata Access Module (TAM). For more information about configuring Oracle
GoldenGate for Teradata extraction, see Installing and Configuring Oracle GoldenGate
for Teradata. Use of this parameter is identical to using the TRANLOGOPTIONS parameter
so many of the options are described in "TRANLOGOPTIONS".

Default

None

Syntax

DSOPTIONS
[CHECKOPCOMPLETE]
[CHECKTRANDATA]
[COMMITTEDTRANLOG]
[CREATETRANLOG]
[EXCLUDETRANS]
[EXCLUDEUSER]
[GETMETADATAFROMVAM]
[IGNOREMETADATAFROMVAM]
[NOCHECKPOINTERROR]
[NOCHECKTRANDATA]
[RESTARTAPPEND]
[VAMCOMPATIBILITY]

COMMITTEDTRANLOG

(Maximum performance mode) Specifies that transaction data will not be persisted to
disk. The TAM sends transaction data changes to an Extract process that saves it to a
regular Oracle GoldenGate trail in transaction commit order. The trail can be read by
Replicat or by a data pump Extract group.

Chapter 3
DSOPTIONS

3-99

CREATETRANLOG

(Maximum protection mode) Causes Extract to create a VAM trail, which is a local trail
to which transaction data changes are persisted for further processing by a VAM-sort
Extract. Data is written to the VAM trail in log-style format which interleaves change
records from different transactions. Use this option for the primary Extract process
that interfaces with a Teradata Access Module (TAM) and writes to the VAM trail.
Specify the VAM trail with the ADD EXTTRAIL command in GGSCI.

SORTTRANLOG

(Maximum protection mode) Indicates that Extract needs to perform transaction
sorting functions. Use this option for a VAM-sort Extract group that reads a VAM trail
that is populated by a primary Extract process. The VAM-sort Extract sorts the
interleaved operations into the correct prepare/commit/rollback transactional units
before further processing by Oracle GoldenGate.

RESTARTAPPEND

(Maximum performance mode and maximum protection mode) Directs Extract to
append data to the end of the Oracle GoldenGate trail upon restart, rather than
rewriting data that was written in a previous run. Use this option with the
COMMITTEDTRANLOG or CREATETRANLOG argument.

VAMCOMPATIBILITY 1

(Maximum performance mode and maximum protection mode) A value of 1 means
the original VAM API metadata structure is being used. This structure was originally
created for Teradata, which is a separate implementation from the other databases,
and Teradata still uses this level. To maintain backwards compatibility with Extract, it
may be necessary to manually set VAMCOMPATIBILITY to 1 if running an earlier version
of a TAM module against the later releases of Extract that contain VAM versioning.
Extract abends with a message if VAMCOMPATIBILITY 1 is required and not set. The
range is 2–3.

3.54 DYNAMICPORTLIST
Valid For

Manager

Description

Use the DYNAMICPORTLIST parameter to specify a list of available ports to which the
following local Oracle GoldenGate processes can bind for communication with a
remote Oracle GoldenGate process:

• Collector: to communicate with a remote Extract to receive incoming data.

• Replicat: to communicate with a remote Extract to receive data during an initial
load task.

• Passive Extract: to communicate with a remote Collector

• GGSCI: to issue remote commands

Specify enough ports to accommodate expansion of the number of processes without
having to stop and restart Manager to add them to the list. You can specify an
individual port, a range of ports, or both.

Chapter 3
DYNAMICPORTLIST

3-100

Default

None

Syntax

DYNAMICPORTLIST {port | port-port} [, ...]

port

A port number that can be allocated. The maximum number of port entries is 5000.

• To specify multiple ports, use a comma-delimited list. Example:

7830, 7833

• To specify a range of ports, use a dash (-) to separate the first and last port in the
range. Do not put any spaces before or after the dash. Example:

7830-7835

• To specify a range of ports plus an individual port, place a comma between the
range and the individual port number. Example:

7830-7835, 7839

Example

DYNAMICPORTLIST 7820-7830, 7833, 7835

3.55 DYNAMICRESOLUTION | NODYNAMICRESOLUTION
Valid For

Extract and Replicat

Description

Use the DYNAMICRESOLUTION and NODYNAMICRESOLUTION parameters to control how table
names are resolved.

DYNAMICRESOLUTION, the default, enables fast process startup when there are numerous
tables specified in TABLE or MAP statements. To get metadata for transaction records
that it needs to process, Oracle GoldenGate queries the database and then builds a
record of the tables that are involved. DYNAMICRESOLUTION causes the record to be built
one table at a time, instead of all at once. The metadata of any given table is added
when Extract first encounters the object ID in the transaction log, while record-building
for other tables is deferred until their object IDs are encountered. DYNAMICRESOLUTION is
the same as WILDCARDRESOLVE DYNAMIC.

NODYNAMICRESOLUTION causes the entire object record (for all tables) to be built at
startup, which can be time-consuming if the database is large. This option is not
supported for Teradata. NODYNAMICRESOLUTION is the same as WILDCARDRESOLVE
IMMEDIATE.

See "WILDCARDRESOLVE" for more information.

Default

DYNAMICRESOLUTION

Chapter 3
DYNAMICRESOLUTION | NODYNAMICRESOLUTION

3-101

Syntax

DYNAMICRESOLUTION | NODYNAMICRESOLUTION

3.56 EBCDICTOASCII
Valid For

Extract data pump and Replicat

Description

Use the EBCDICTOASCII parameter to convert character data in the input trail from
EBCDIC to ASCII format when sending it to a DB2 target database on a z/OS system.
This parameter can be specified to request conversion of all EBCDIC columns and
user token data to ASCII. This parameter must precede the SOURCEDB parameter. This
parameter is only needed if the input trail file was created by an Extract version prior to
v10.0. It is ignored for all other cases, because the conversion is done automatically.

As of version 11.2.1, conversion is not allowed by a data pump.

Default

None

Syntax

EBCDICTOASCII

3.57 ENABLECATALOGNAMES
Valid For

GLOBALS

Description

Use the ENABLECATALOGNAMES to enable Oracle GoldenGate support for three-part object
names in SQL/MX databases. A three-part name includes the catalog with the schema
and object name. USEENABLECATALOGNAMES is ignored for all other databases.

Default

Disabled

Syntax

ENABLECATALOGNAMES

3.58 ENABLEMONITORING
Valid For

GLOBALS

Chapter 3
EBCDICTOASCII

3-102

Description

Use the ENABLEMONITORING parameter to enable the monitoring of Oracle GoldenGate
instances from Oracle GoldenGate Monitor and to collect trend data for Performance
Metrics Server. It directs Manager to publish the monitoring points that provide status
and other information to the Oracle GoldenGate Monitor clients.

Before enabling monitoring on any given platform, see the installation guide for your
database to make certain that the operating system is supported. That guide also
contains instructions for installing and configuring Oracle GoldenGate Monitor. For
help with using Oracle GoldenGate Monitor, see the online help.

This parameter is not valid for NonStop or SQL/MX.

Note:

When monitoring is enabled on a UNIX system for a high number of Oracle
GoldenGate processes (approximately 400), the system-imposed limit on the
maximum amount of allowed shared memory may be exceeded. The
message returned by Manager is similar to this:

WARNING OGG-01934 Datastore repair failed" reported during "start...

If this occurs, increase the kernel parameter kernel.shmall by 8 times the
default for the operating system.

Default

Disabled

Syntax

ENABLEMONITORING

3.59 ENABLE_HEARTBEAT_TABLE |
DISABLE_HEARTBEAT_TABLE

Valid For

Extract, Replicat, and GLOBALS

Description

The ENABLE_HEARTBEAT_TABLE and DISABLE_HEARTBEAT_TABLE commands specify whether
the Oracle GoldenGate process will be handling records from GG_HEARTBEAT table or
not. When specified as a GLOBALS, it is true for the entire installation unless overridden
by a specific process.

Default

ENABLE_HEARTBEAT_TABLE

Chapter 3
ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE

3-103

Syntax

ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE

ENABLE_HEARTBEAT_TABLE

Enables Oracle GoldenGate processes to handle records from a GG_HEARTBEAT table.
This is the default.

DISABLE_HEARTBEAT_TABLE

Disables Oracle GoldenGate processes from handing records from a GG_HEARTBEAT
table

3.60 ENCRYPTTRAIL | NOENCRYPTTRAIL
Valid For

Extract

Description

Use the ENCRYPTTRAIL and NOENCRYPTTRAIL parameters to control whether Oracle
GoldenGate encrypts or does not encrypt data that is written to a trail or extract file.

ENCRYPTTRAIL supports the following encryption methods:

• Master key and wallet method: Generate a one-time AES key for each trail file
and uses it to encrypt the contents. Then, the one-time key is encrypted by the
master-key and stored in the trail file header.

• ENCKEYS method: Generate a AES encryption key, store it under a given name
in an ENCKEYS file, and configure Oracle GoldenGate to use that key to directly
encrypt or decrypt the contents of the trail file.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about these encryption methods. ENCRYPTTRAIL requirements are different for these
methods.

You can use encryption for local and remote trails that are specified with the following
parameters in an Extract parameter file:

RMTTRAIL

EXTTRAIL

You can use encryption for local and remote extract files that are specified with the
following parameters in an Extract parameter file:

RMTFILE

EXTFILE

ENCRYPTTRAIL and NOENCRYPTTRAIL are trail or file-specific. One affects all subsequent
trail or extract file specifications in the parameter file until the other parameter is
encountered. The parameter must be placed before the parameter entry for the trail
that it will affect.

ENCRYPTTRAIL and NOENCRYPTTRAIL cannot be used when FORMATASCII is used to write
data to a file in ASCII format. The trail or file must be written in the default Oracle
GoldenGate canonical format.

Chapter 3
ENCRYPTTRAIL | NOENCRYPTTRAIL

3-104

ENCRYPTTRAIL encrypts the trail data across all data links and within the files
themselves. Only the data blocks are encrypted. User tokens are not encrypted.

Default

NOENCRYPTTRAIL

Syntax

ENCRYPTTRAIL [{AES128 | AES192 | AES256}] | NOENCRYPTTRAIL]

ENCRYPTTRAIL

ENCRYPTTRAIL without options specifies 256-key byte substitution AES256 as the default
for all database types except the iSeries, z/OS, and NonStop platforms because
Advanced Encryption Standard (AES) encryption is not supported on those platforms.

{AES128 | AES192 | AES256}

Specifies the AES encryption key length to use. This is a symmetric-key encryption
standard that is used by governments and other organizations that require a high
degree of data security. This option is not supported by the iSeries, z/OS, and
NonStop platforms.
For both the master key and wallet method and the ENCKEYS method, you must specify
one of the AES ciphers to encrypt the file(s):

• AES128 has a 128-bit block size with a key size of 128 bits.

• AES192 has a 128-bit block size with a key size of 192 bits.

• AES256 has a 128-bit block size with a key size of 256 bits.

To use AES encryption for any database other than Oracle on a 32-bit platform, the
path of the lib sub-directory of the Oracle GoldenGate installation directory must be
specified as an environment variable before starting any processes. This is not
required on 64-bit platforms. Set the path as follows:

• UNIX: Specify the path as an entry to the LD_LIBRARY_PATH or SHLIB_PATH variable.
For example:

setenv LD_LIBRARY_PATH ./lib:$LD_LIBRARY_PATH

• Windows: Add the path to the PATH variable.

You can use the SETENV parameter to set it as a session variable for the process.

NOENCRYPTTRAIL

Prevents the trail from being encrypted. This is the default.

Examples

Example 1
In the following example, the master key and wallet method is used. The Extract
process writes to two trails. The data for the emp table is written to trail /home/ggsora/
dirdat/em, which is encrypted with the AES-192 cipher. The data for the stores table is
written to trail /home/ggsora/dirdat/st, which is not encrypted.

ENCRYPTTRAIL AES192
RMTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;
NOENCRYPTTRAIL
RMTTRAIL /home/ggsora/dirdat/st
TABLE ops.stores;

Chapter 3
ENCRYPTTRAIL | NOENCRYPTTRAIL

3-105

Example 2
As an alternative to the preceding example, you can omit NOENCRYPTTRAIL if you list all
non-encrypted trails before the ENCRYPTTRAIL parameter.

RMTTRAIL /home/ggsora/dirdat/st
TABLE ops.stores;
ENCRYPTTRAIL AES192
RMTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;

Example 3
In the following example, the ENCKEYS method is used.

ENCRYPTTRAIL AES192, KEYNAME mykey1
RMTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;
TABLE ops.stores;

3.61 END
Valid For

Replicat

Description

Use the END parameter to terminate Replicat when it encounters the first record in the
data source whose timestamp is the specified point in time.

Without END, the process runs continuously until:

• the end of the transaction log or trail is reached, at which point it will stop
gracefully.

• manually terminated from the command shell.

Use END with the SPECIALRUN parameter to post data as a point-in-time snapshot, rather
than continuously updating the target tables.

Default

Continuous processing

Syntax

END {date [time] | RUNTIME}

date [time]

Causes Replicat to terminate when it reaches a record in the data source whose
timestamp exceeds the one that is specified with this parameter.
Valid values:

• date is a date in the format of yyyy-mm-dd.

• time is the time in the format of hh:mi[:ss[.cccccc]] based on a 24-hour clock.

RUNTIME

Causes Replicat to terminate when it reaches a record in the data source whose
timestamp exceeds the current date and clock time. All unprocessed records with

Chapter 3
END

3-106

timestamps up to this point in time are processed. One advantage of using RUNTIME is
that you do not have to alter the parameter file to change dates and times from run to
run. Instead, you can control the process start time within your batch programming.

Examples

Example 1

SPECIALRUN
END 2010-12-31 17:00:00

Example 2

SPECIALRUN
END RUNTIME

3.62 EOFDELAY | EOFDELAYCSECS
Valid For

Extract and Replicat

Description

Use the EOFDELAY or EOFDELAYCSECS parameter to control how often Extract, a data
pump, or Replicat checks for new data after it has reached the end of the current data
in its data source. You can reduce the system I/O overhead of these reads by
increasing the value of this parameter.

Note:

Large increases can increase the latency of the target data, especially when
the activity on the source database is low

This parameter is not valid when SOURCEISTABLE is used. This parameter cannot be set
to zero (0).

Default

The minimum is 1 second ; the maximum is 60 seconds (6000 centiseconds). The
default is 1 second (100 centiseconds).

Syntax

EOFDELAY seconds | EOFDELAYCSECS centiseconds

seconds

The delay, in seconds, before searching for data to process.

centiseconds

The delay, in centiseconds, before searching for data to process.

Example

EOFDELAY 3

Chapter 3
EOFDELAY | EOFDELAYCSECS

3-107

3.63 EXCLUDEHIDDENCOLUMNS

Valid For

Oracle Integrated Extract Capture; It’s not valid for data pump.

Description

The parameter disables all the Oracle hidden columns including the timestamp
columns created using automatic CDR. The parameter requires Oracle GoldenGate
12c (12.2.01) format trail or higher and must not specify the NO_OBJECTDEFES parameter.
The userexit callback structure has the hidden column attributes and callback
structure version is 5. You can specify the parameter at any location of the parameter
file, as long as it is after the EXTRACT group parameter.

Syntax

EXTRACT ext1...
EXCLUDEHIDDENCOLUMNS
EXTTRAIL ./dirdat/a1
TABLE src.tab1;

3.64 EXCLUDETAG

Valid For

(Oracle) Extract and Replicat or data pump

(All databases) Extract Pump or Replicat

Description

Use EXCLUDETAG tag in your data pump or Replicat parameter file to specify changes to
be excluded from trail files. The limitation for this parameter is that the tag value can
be up to 2000 hexadecimal digits (0-9A-F) or the plus sign (+). You can have multiple
EXCLUDETAG lines, but each EXCLUDETAG should have a single value. By default, Replicat
the individual records every change it applies to the database by 00 in both classic
mode or integrated mode.Compared with older versions, new trail file contains tag
tokens, which would not introduce problems for older trail readers.

Use EXCLUDETAG + to ignore the individual records that are tagged with any redo tag.

Do not use NULL with tag or + because it operates in conflict resulting in errors.

To tag the individual records, use the DBOPTIONS parameter with the SETTAG option in the
Replicat parameter file. Use these parameters to prevent cycling (loop-back) of
Replicat the individual records in a bi-directional configuration or to filter other
transactions from capture. The default SETTAG value is 00. Valid value is any single
Oracle Streams tag. A tag value can be up to 2000 hexadecimal digits (0-9 A-F) long.
For more information about Streams tags, see Oracle Streams Replication
Administrator's Guide.

Chapter 3
EXCLUDEHIDDENCOLUMNS

3-108

Default

None

Syntax

[EXCLUDETAG [tag | NULL] | [+]

Example 1

For Replicat:

excludetag tag

Example 2

For data pumps:

excludetag 00

3.65 EXCLUDEWILDCARDOBJECTSONLY
Valid For

GLOBALS

Description

Use the EXCLUDEWILDCARDOBJECTSONLY parameter to force the inclusion of non-wildcarded
source objects specified in TABLE or MAP parameters when an exclusion parameter
contains a wildcard that otherwise would exclude that object. Exclusion parameters
are CATALOGEXCLUDE, SCHEMAEXCLUDE, MAPEXCLUDE, and TABLEEXCLUDE.

The exclusion parameters get evaluated and satisfied before the TABLE or MAP
statements. Without EXCLUDEWILDCARDOBJECTSONLY, it would be possible for an object in a
TABLE or MAP statement to be wrongly excluded because it satisfies the wildcard in the
exclude specification. For EXCLUDEWILDCARDOBJECTSONLY to work on an object, that object
must be explicitly named without using wildcards in any of the name components.

Default

None

Syntax

EXCLUDEWILDCARDOBJECTSONLY

Example

In this example, schema1.src_table1 is included in processing because the TABLEEXCLUDE
parameter is wildcarded and the TABLE specification is not wildcarded. Without
EXCLUDEWILDCARDOBJECTSONLY, schema1.src_table1 would be excluded because of the
wildcard specification in TABLEEXCLUDE.

TABLEEXCLUDE schema1.src_table*;
 TABLE schema1.src_table1;

Chapter 3
EXCLUDEWILDCARDOBJECTSONLY

3-109

3.66 EXTFILE
Valid For

Extract and Replicat

Description

Use the EXTFILE parameter to specify an extract file, which is a local file that will be
read by a data pump Extract group on the local system, or to specify a local extract file
that Replicat reads when SPECIALRUN is used.

EXTFILE must precede all associated TABLE or MAP statements. Multiple EXTFILE
statements can be used to define different files.

EXTFILE parameter is deprecated and ignored for Data Pump

You can encrypt the data in this file by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

EXTFILE file_name
[, FORMAT RELEASE major.minor]
[, MEGABYTES megabytes]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file_name

Valid for Extract and Replicat. Specifies the relative or fully qualified name of the
extract file.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a
remote task) to another process. The metadata tells the reader process whether the
data records are of a version that it supports. The metadata format depends on the
version of the Oracle GoldenGate process. Older Oracle GoldenGate versions contain
different metadata than newer ones.

• FORMAT is a required keyword.

• RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid
values are 9.0 through the current Oracle GoldenGate X.x version number, for
example 11.2 or 12.1. (If you use an Oracle GoldenGate version that is earlier
than 9.0, specify either 9.0 or 9.5.) The release version is programmatically
mapped back to the appropriate trail format compatibility level. The default is the
current version of the process that writes to this trail. Note that RELEASE versions
earlier than 12.1 do not support three-part object names.

Chapter 3
EXTFILE

3-110

MEGABYTES megabytes

Valid for Extract. The maximum size, in megabytes, of a file in the trail. The default is
2000.

OBJECTDEFS | NO_OBJECTDEFS

Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include the
object definitions in the trail. These two options are applicable only when the output
trail is formatted in Oracle GoldenGate canonical format and the trail format release is
greater than 12.1. Otherwise, both options are ignored because no metadata record
will be added to the trail.
When replicating from an Open Systems database to NonStop, specify format version
below 12.2 to avoid including the object definitions in the trail since NonStop does not
support processing object definitions from the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Sets the byte format of the metadata in the file records. This parameter does not
affect the column data. Valid only for files that have a FORMAT RELEASE version of at
least 12.1. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and
NATIVEENDIAN (default of the local system). The default is BIGENDIAN. See the GLOBALS
version of TRAILBYTEORDER for additional usage instructions.

Examples

Example 1

EXTFILE dirdat/datafile

Example 2

EXTFILE dirdat/extdat, MEGABYTES 2

Example 3

EXTFILE /ggs/dirdat/extdat, FORMAT RELEASE 10.4

3.67 EXTRACT
Valid For

Extract

Description

Use the EXTRACT parameter to specify an Extract group for online (continuous) change
synchronization. This parameter links the current run with previous runs, so that data
continuity is maintained between source and target tables. Unless stopped by a user,
Extract runs continuously and maintains checkpoints in the data source and trail to
ensure data integrity and fault tolerance throughout planned or unplanned process
termination, system outages, or network failure. EXTRACT must be the first entry in the
parameter file.

For more information about implementing change synchronization, see the
Administering Oracle GoldenGate for Windows and UNIX.

Default

None

Chapter 3
EXTRACT

3-111

Syntax

EXTRACT group_name

group_name

The group name as defined with the ADD EXTRACT command.

Example

The following specifies an Extract group named finance.

EXTRACT finance

3.68 EXTTRAIL
Valid For

Extract

Description

Use the EXTTRAIL parameter to specify a trail on the local system that was created with
the ADD EXTTRAIL command. The trail is read by a data pump Extract group or by a
Replicat group on the local system.

EXTTRAIL must precede all associated TABLE statements. Multiple EXTTRAIL statements
can be used to define different trails.

Do not use EXTTRAIL for an Extract that is configured in PASSIVE mode. See
Administering Oracle GoldenGate for Windows and UNIX for more information about
PASSIVE mode, an Oracle GoldenGate security feature.

You can encrypt the data in this trail by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

EXTTRAIL file_name
[, FORMAT RELEASE major.minor]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file_name

The relative or fully qualified name of the trail. Use a maximum of two characters for
the name. As trail files are aged, a six-character sequence number will be added to
this name, for example /ogg/dirdat/rt000001.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a
remote task) to another process. The metadata tells the reader process whether the
data records are of a version that it supports. The metadata format depends on the
version of the Oracle GoldenGate process. Older Oracle GoldenGate versions contain
different metadata than newer ones.

Chapter 3
EXTTRAIL

3-112

• FORMAT is a required keyword.

• RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid
values are 9.0 through the current Oracle GoldenGate X.x version number, for
example 11.2 or 12.1. (If you use an Oracle GoldenGate version that is earlier
than 9.0, specify either 9.0 or 9.5.)

The release version is programmatically mapped back to an appropriate internal
compatibility level. The default is the current version of the process that writes to
this trail. Note that RELEASE versions earlier than 12.1 do not support three-part
object names.

There is a dependency between FORMAT and the RECOVERYOPTIONS parameter. See
"RECOVERYOPTIONS" for more information.
See the Administering Oracle GoldenGate for Windows and UNIX for additional
information about Oracle GoldenGate trail file versioning and recovery modes.

OBJECTDEFS | NO_OBJECTDEFS

Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include the
object definitions in the trail. These two options are applicable only when the output
trail is formatted in Oracle GoldenGate canonical format and the trail format release is
greater than 12.1. Otherwise, both options are ignored because no metadata record
will be added to the trail.
When replicating from an Open Systems database to NonStop, specify format version
below 12.2 to avoid including the object definitions in the trail since NonStop does not
support processing object definitions from the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Sets the byte format of the metadata in the trail records. This parameter does not
affect the column data. Valid only for trails that have a FORMAT RELEASE version of at
least 12.1. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and
NATIVEENDIAN (default of the local system). The default is BIGENDIAN. See the GLOBALS
version of TRAILBYTEORDER for additional usage instructions.

Examples

Example 1

EXTTRAIL dirdat/ny

Example 2

EXTTRAIL /ggs/dirdat/ex, FORMAT RELEASE 10.4

3.69 FETCHOPTIONS
Valid For

Extract

Description

Use the FETCHOPTIONS parameter to control certain aspects of the way that Oracle
GoldenGate fetches data in the following circumstances:

Chapter 3
FETCHOPTIONS

3-113

• When the transaction record does not contain enough information for Extract to
reconstruct an update operation.

• When Oracle GoldenGate must fetch a column value as the result of a FETCHCOLS
clause of a TABLE statement.

FETCHOPTIONS is table-specific. One FETCHOPTIONS statement applies for all subsequent
TABLE statements until a different FETCHOPTIONS statement is encountered.

Default fetch properties are adequate for most installations.

FETCHOPTIONS is not valid for SQL/MX.

Default

Ignore missing rows and continue processing

Syntax

FETCHOPTIONS
[, FETCHPKUPDATECOLS]
[, INCONSISTENTROW action]
[, MAXFETCHSTATEMENTS number]
[, MISSINGROW action]
[, NOFETCH]
[, SUPPRESSDUPLICATES]
[, USEKEY | NOUSEKEY]
[, USELATESTVERSION | NOUSELATESTVERSION]
[, USESNAPSHOT | NOUSESNAPSHOT]
[, USEROWID | NOUSEROWID]

FETCHPKUPDATECOLS

Fetches all unavailable columns when a primary key is updated. This option is off by
default. When off, column fetching is performed according to other FETCHOPTIONS
options that are enabled.
When on, it only takes effect during an update to a primary key column. The results
are the same as using FETCHCOLS (*) in the TABLE statement. LOB columns are included
in the fetch.
Use this parameter when using HANDLECOLLISIONS. When Replicat detects a missing
update, all of the columns will be available to turn the update into an insert.

INCONSISTENTROW action
Indicates that column data was successfully fetched by row ID, but the key did not
match. Either the row ID was recycled or a primary key update occurred after this
operation (and prior to the fetch).
action can be one of the following:

ALLOW

Allow the condition and continue processing.

IGNORE

Ignore the condition and continue processing. This is the default.

REPORT

Report the condition and contents of the row to the discard file, but continue
processing the partial row.

Chapter 3
FETCHOPTIONS

3-114

DISCARD

Discard the data and do not process the partial row.

ABEND

Discard the data and quit processing.

MAXFETCHSTATEMENTS number

Controls the maximum allowable number of prepared queries that can be used by
Extract to fetch row data from a source database. The fetched data is used when not
enough information is available to construct a logical SQL statement from a
transaction log record. Queries are prepared and cached as needed. When the value
set with MAXFETCHSTATEMENTS is reached, the oldest query is replaced by the newest
one. The value of this parameter controls the number of open cursors maintained by
Extract for fetch queries only. Additional cursors may be used by Extract for other
purposes, such as those required for stored procedures. This parameter is only valid
for Oracle databases.The default is 100 statements. Make certain that the database
can support the number of cursors specified, plus cursors used by other applications
and processes.
For Informix Extracts with multiple databases, you must should add FETCHOPTIONS
MAXFETCHSTATEMENTS 1 to your Extract parameter file. This does cause slight
performance degradation for the capture process. This is not necessary for a single
database Extract.

MISSINGROW action

Provides a response when Oracle GoldenGate cannot locate a row to be fetched,
causing only part of the row (the changed values) to be available for processing.
Typically a row cannot be located because it was deleted between the time the
change record was created and when the fetch was triggered, or because the row
image required was older than the undo retention specification.
action can be one of the following:

ALLOW

Allow the condition and continue processing. This is the default.

IGNORE

Ignore the condition and continue processing.

REPORT

Report the condition and contents of the row to the discard file, but continue
processing the partial row.

DISCARD

Discard the data and do not process the partial row.

ABEND

Discard the data and quit processing.

NOFETCH

Prevents Extract from fetching the column from the database. Extract writes the
record to the trail, but inserts a token indicating that the column is missing.

SUPPRESSDUPLICATES

Valid for Oracle. Avoids target tablespaces becoming overly large when updates are
made on LOB columns. For example, after replication a source tablespace of 232MB
becomes a target tablespace of 7.52GB.

Chapter 3
FETCHOPTIONS

3-115

USEKEY | NOUSEKEY

Determines whether or not Oracle GoldenGate uses the primary key to locate the row
to be fetched.
If both USEKEY and USEROWID are specified, ROWID takes priority for faster access to the
record. USEROWID is the default.

USELATESTVERSION | NOUSELATESTVERSION

Valid for Oracle. Use with USESNAPSHOT. The default, USELATESTVERSION, directs Extract
to fetch data from the source table if it cannot fetch from the undo tablespace.
NOUSELATESTVERSION directs Extract to ignore the condition if the snapshot fetch fails,
and continue processing.
To provide an alternate action if a snapshot fetch does not succeed, use the
MISSINGROW option.

USESNAPSHOT | NOUSESNAPSHOT

Valid for Oracle. The default, USESNAPSHOT, causes Extract to use the Oracle Flashback
mechanism to fetch the correct snapshot of data that is needed to reconstruct certain
operations that cannot be fully captured from the redo record. NOUSESNAPSHOT causes
Extract to fetch the needed data from the source table instead of the flashback logs.

USEROWID | NOUSEROWID

Valid for Oracle. Determines whether or not Oracle GoldenGate uses the row ID to
locate the row to be fetched.
If both USEKEY and USEROWID are specified, ROWID takes priority for faster access to the
record. USEROWID is the default.

Examples

Example 1
The following directs Extract to fetch data by using Flashback Query and to ignore the
condition and continue processing the record if the fetch fails.

FETCHOPTIONS USESNAPSHOT, NOUSELATESTVERSION

Example 2

MAXFETCHSTATEMENTS 150

Example 3
The following directs Extract to fetch data by using Flashback Query and causes
Extract to abend if the data is not available.

FETCHOPTIONS USESNAPSHOT, NOUSELATESTVERSION, MISSINGROW ABEND

3.70 FETCHUSERID
Valid For

Integrated primary Extract on Oracle; data pump Extract is not valid

Description

Use the FETCHUSERID parameter to specify the type of authentication for an Oracle
GoldenGate process to use when logging into a database, and to specify password
encryption information. This parameter can be used instead of FETCHUSERIDALIAS when
an Oracle GoldenGate credential store is not being used.

Chapter 3
FETCHUSERID

3-116

Always use FETCHUSERID or FETCHUSERIDALIAS for a primary Extract. Use FETCHUSERID or
FETCHUSERIDALIAS for a data pump Extract.

FETCHUSERID Compared to FETCHUSERIDALIAS

FETCHUSERID requires either specifying the clear-text password in the parameter file or
encrypting it with the ENCRYPT PASSWORD command and, optionally, storing an encryption
key in an ENCKEYS file. FETCHUSERID supports a broad range of the databases that Oracle
GoldenGate supports.

FETCHUSERIDALIAS enables you to specify an alias, rather than a user ID and password,
in the parameter file. The user IDs and encrypted passwords are stored in a credential
store. FETCHUSERIDALIAS supports databases running on Linux, UNIX, and Windows
platforms.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about Oracle GoldenGate security features.

FETCHUSERID Requirements

FETCHUSERID is not always required, nor is PASSWORD always required when FETCHUSERID is
required. In some cases, it is sufficient just to use FETCHUSERID or even just to use the
SOURCEDB or TARGETDB parameter, depending on how authentication for the database is
configured.

See "SOURCEDB" and "TARGETDB" for more information.

Use FETCHUSERID for Oracle GoldenGate processes that connect to an Oracle
database. The purpose of this connection is to offload fetch operations to an Active
Data Guard standby database, which eliminates overhead that would otherwise be
placed on the source database.

• To use an operating system login, use FETCHUSERID with the / argument.

• To use a database user name and password, use FETCHUSERID with PASSWORD.

• Optionally, you can specify the user to log in as sysdba.

• (Oracle Enterprise Edition earlier than 11.2.0.2) Special database privileges are
required for the FETCHUSERID user when Extract is configured to use LOGRETENTION.
These privileges might have been granted when Oracle GoldenGate was installed.
See the Installing and Configuring Oracle GoldenGate for Oracle Database for
more information about LOGRETENTION.

• (Oracle Standard or Enterprise Edition 11.2.0.2 or later) To use FETCHUSERID for an
Extract group that is configured for integrated capture, the user must have the
privileges granted in the dbms_goldengate_auth.grant_admin_privilege.

• To support capture from an Oracle container database, the user that is specified
with FETCHUSERID must log into the root container and must be a common user. A
connect string must be supplied for this user and must include the required C##
prefix of the common user, such as C##GGADMIN@FINANCE. For more information, see
Installing and Configuring Oracle GoldenGate for Oracle.

• The connection specified by FETCHUSERI or FETCHUSERIDALIAS must be to an Active
Data Guard standby database of the source database.

• FETCHUSERID can be specified anywhere in the parameter file. Ordering does not
matter. It can come before or after a TABLE or MAP statement.

Chapter 3
FETCHUSERID

3-117

Default

None

Syntax

FETCHUSERID {/ | user}[, PASSWORD password]
[algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]

/

Directs Oracle GoldenGate to use an operating-system login for Oracle, not a
database user login. Use this argument only if the database allows authentication at
the operating-system level. Bypassing database-level authentication eliminates the
need to update Oracle GoldenGate parameter files if application passwords frequently
change. To use this option, the correct user name must exist in the database, in
relation to the value of the Oracle OS_AUTHENT_PREFIX initialization parameter, as
follows:

• The value set with OS_AUTHENT_PREFIX is concatenated to the beginning of a user's
operating system account name and then compared to the database name.
Those two names must match.

• If OS_AUTHENT_PREFIX is set to ' ' (a null string), the user name must be created
with IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you would
use the following to create the database user:

CREATE USER ogg IDENTIFIED EXTERNALLY;

• If OS_AUTHENT_PREFIX is set to OPS$ or another string, the user name must be
created in the following format:

OS_AUTHENT_PREFIX_value OS_user_name

For example, if the OS user name is ogg, you would use the following to create the
database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user

Specifies the name of a database user or a schema, depending on the database
configuration. A SQL*Net connect string can be used.

password

Use when database authentication is required to specify the password for the
database user. If the password was encrypted by means of the ENCRYPT PASSWORD
command, supply the encrypted password; otherwise, use the clear-text password. If
the password is case-sensitive, type it that way.
If either the user ID or password changes, the change must be made in the Oracle
GoldenGate parameter files, including the re-encryption of the password if necessary.

algorithm

Specifies the encryption algorithm that was used to encrypt the password with ENCRYPT
PASSWORD.
The algorithm can be one of:
AES128

AES192

AES256

BLOWFISH

Chapter 3
FETCHUSERID

3-118

ENCRYPTKEY {key_name | DEFAULT}

Specifies the encryption key that was specified with ENCRYPT PASSWORD.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption key in
the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME
key_name option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA

Specifies that the user logs in as sysdba.

Example

fetchuserid gg_user@adg_inst password pwd

3.71 FETCHUSERIDALIAS
Valid For

Integrated primary Extract on Oracle; data pump Extract is not valid

Description

Use the FETCHUSERIDALIAS parameter to specify authentication for an Oracle
GoldenGate process to use when logging into a database. The use of
FETCHUSERIDALIAS requires the use of an Oracle GoldenGate credential store. Specify
FETCHUSERIDALIAS before any TABLE or MAP entries in the parameter file.

FETCHUSERIDALIAS Compared to FETCHUSERID

FETCHUSERIDALIAS enables you to specify an alias, rather than a user ID and password,
in the parameter file. The user IDs and encrypted passwords are stored in a credential
store. FETCHUSERIDALIAS supports databases running on Linux, UNIX, and Windows
platforms.

FETCHUSERID requires either specifying the clear-text password in the parameter file or
encrypting it with the ENCRYPT PASSWORD command and, optionally, storing an encryption
key in an ENCKEYS file. FETCHUSERID supports a broad range of the databases that Oracle
GoldenGate supports. In addition, it supports the use of an operating system login for
Oracle databases.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about these parameters and Oracle GoldenGate security features.

FETCHUSERID Requirements

Note:

Logins that require a database user and password must be stored in the
Oracle GoldenGate credential store. See Administering Oracle GoldenGate
for Windows and UNIX for more information about the credential store.

Chapter 3
FETCHUSERIDALIAS

3-119

Use FETCHUSERIDALIAS for Oracle GoldenGate processes that connect to an Oracle
database. The purpose of this connection is to offload fetch operations to an Active
Data Guard standby database, which eliminates overhead that would otherwise be
placed on the source database.

• The SOURCEDB or TARGETDB parameter is not required.

• Specify the alias of a database credential that is stored in the Oracle GoldenGate
credential store.

• (Oracle Enterprise Edition earlier than 11.2.0.2) Special database privileges are
required for the FETCHUSERIDALIAS user when Extract is configured to use
LOGRETENTION. These privileges might have been granted when Oracle GoldenGate
was installed. See the Installing and Configuring Oracle GoldenGate for Oracle
Database for more information about LOGRETENTION.

• (Oracle Standard or Enterprise Edition 11.2.0.2 or later) To use FETCHUSERIDALIAS
for an Extract group that is configured for integrated capture, the user must have
the privileges granted in the dbms_goldengate_auth.grant_admin_privilege.

• To support capture from an Oracle container database, the user that is specified
with FETCHUSERID must log on to the root container and must be a common
database user. A connect string must be supplied for this user, for example:
C##GGADM@FINANCE. For more information, see Installing and Configuring Oracle
GoldenGate for Oracle Database.

• The connection specified by FETCHUSERI or FETCHUSERIDALIAS must be to an Active
Data Guard standby database of the source database.

• FETCHUSERID can be specified anywhere in the parameter file. Ordering does not
matter. It can come before or after a TABLE or MAP statement.

Default

None

Syntax

FETCHUSERIDALIAS alias [DOMAIN domain] [SYSDBA]

alias

Specifies the alias of a database user credential that is stored in the Oracle
GoldenGate credential store.

DOMAIN domain

Specifies the credential store domain for the specified alias. A valid domain entry
must exist in the credential store for the specified alias.

SYSDBA

Specifies that the user logs in as sysdba.

Example

fetchuseridalias gg_user@adg_inst password pwd

Chapter 3
FETCHUSERIDALIAS

3-120

3.72 FILTERDUPS | NOFILTERDUPS
Valid For

Replicat

Description

Use the FILTERDUPS and NOFILTERDUPS parameters to handle anomalies that can occur
on a NonStop system when an application performs multiple operations on the same
record within the same transaction. This type of transaction can cause out-of-order
records in the TMF audit trail and will cause Replicat to abend. For example:

• An insert can occur in the audit trail before a delete on the same primary key, even
though the source application performed the delete first, followed by the insert
(resulting in a duplicate-record error when the insert is performed by Replicat).

• An update can occur in the audit trail before an insert on the same primary key
(resulting in a missing-record error when the update is performed by Replicat).

FILTERDUPS prevents Replicat from abending by resolving the conditions as follows:

• In the event of a duplicate insert, Replicat saves the duplicated insert until the end
of the transaction. If a delete with the same primary key is subsequently
encountered, Replicat performs the delete, then the insert.

• In the event of a missing update, Replicat saves the missing update until the end
of the transaction. If an insert with the same primary key is subsequently
encountered, Replicat performs the insert, then the update.

IDX hospital applications and some BASE24 bank applications are the typical, but not
the only, sources of this anomaly. Use FILTERDUPS only if Replicat is abending on
duplicate or missing records and you know they were caused by out-of-order
transactions originating on a NonStop system. The Logdump utility can be used to
diagnose this condition.

FILTERDUPS and NOFILTERDUPS can be used as on-off switches for different groups of MAP
statements to enable or disable the exception processing as needed.

Default

NOFILTERDUPS

Syntax

FILTERDUPS | NOFILTERDUPS

Example

This example turns on FILTERDUPS for ORDERS but disables it for any MAP statements that
are defined later in the same parameter file.

FILTERDUPS
MAP $DATA1.SQLDAT.ORDERS, TARGET MASTER.ORDERS;
NOFILTERDUPS

Chapter 3
FILTERDUPS | NOFILTERDUPS

3-121

3.73 FLUSHSECS | FLUSHCSECS
Valid For

Extract

Description

Use the FLUSHSECS or FLUSHCSECS parameters to control when Oracle GoldenGate
flushes the Extract memory buffer. When sending data to remote systems, Extract
buffers data to optimize network performance. The buffer is flushed to the target
system when it is full or after the amount of time specified with FLUSHSECS or FLUSHCSECS.
Data changes are not available to the target users until the buffer is flushed and the
data is posted. To control the size of the buffer, use the TCPBUFSIZE option of RMTHOST.
See "RMTHOST" for more information.

Increasing the value of FLUSHSECS or FLUSHCSECS could result in slightly more efficient
use of the network, but it could increase the latency of the target data if activity on the
source system is low and the buffer does not fill up. When source tables remain busy,
FLUSHSECS and FLUSHCSECS have little effect.

This parameter cannot be set to zero (0).

Default

The default is 1. The minimum is 0; the maximum is 5000.

Syntax

FLUSHSECS seconds | FLUSHCSECS centiseconds

seconds

The delay, in seconds, before flushing the buffer.

centiseconds

The delay, in centiseconds, before flushing the buffer.

Example

FLUSHSECS 80

3.74 FORMATASCII
Valid For

Extract

Description

Use the FORMATASCII parameter to output data in external ASCII format instead of the
default Oracle GoldenGate canonical format. Using FORMATASCII, you can format output
that is compatible with most database load utilities and other programs that require
ASCII input. This parameter is required by the file-to-database-utility initial load
method.

Chapter 3
FLUSHSECS | FLUSHCSECS

3-122

A FORMATASCII statement affects all extract files or trails that are listed after it in the
parameter file. The relative order of the statements in the parameter file is important. If
listed after a file or trail specification, FORMATASCII will not take effect.

Limitations

• Do not use FORMATASCII if the data will be processed by the Replicat process.
Replicat expects the default canonical format.

• Do not use FORMATASCII if FORMATSQL or FORMATXML is being used.

• Do not use FORMATASCII if the data contains LOBs.

• Do not use FORMATASCII if Extract is connected to a multi-byte DB2 subsystem.

• Do not use FORMATASCII if Oracle GoldenGate DDL support is active.

• Do not use FORMATASCII in pass-through mode in a data pump because there is
no table metadata available to generate trail output in the specified form.

Default Output

Database object names, such as table and column names, and CHAR and VARCHAR data
are written in the default character set of the operating system.

Without specifying any parameter options, FORMATASCII generates records in the
following format.

Line 1 contains the following tab-delimited list:

• The operation-type indicator: I, D, U, V (insert, delete, update, compressed
update).

• A before or after image indicator: B or A.

• The table name in the character set of the operating system.

• A column name, column value, column name, column value, and so forth.

• A newline character (starts a new line).

Line 2 contains the following tab-delimited begin-transaction record:

• The begin transaction indicator, B.

• The timestamp at which the transaction committed.

• The sequence number of the transaction log in which the commit was found.

• The relative byte address (RBA) of the commit record within the transaction log.

Line 3 contains the following tab-delimited commit record:

• The commit character C.

• A newline character.

Every record in a source transaction is contained between the begin and commit
indicators. Each combination of commit timestamp and RBA is unique.

Custom Output

You can customize the output format with optional arguments.

Chapter 3
FORMATASCII

3-123

Default

See "Default Output" for specific defaults.

Syntax

FORMATASCII [, option] [, ...]

option can be one of the following:

BCP

Formats the output for compatibility with SQL Server's BCP, DTS, or SQL Server
Integration Services (SSIS) bulk-load utility.

DATE | TIME | TS

Outputs one of the following:

• DATE outputs the date (year to day).

• TIME outputs the time (year to second).

• TS outputs the transaction timestamp (year to fraction).

CHARSET set

(Oracle SQL*Loader) Specifies the encoding of ASCII characters in Oracle NCHAR
columns. Valid value is UTF8.
CHARSET allows the load to include character-length semantics when the source table
contains NCHAR data and variable-length characters set to UTF-8.

Note:

If both NCHAR and CHAR columns contain 8-bit ASCII characters, the generated
file will contain a mix of operating system-native 8-bit ASCII character
coding and UTF-8 coding, and the load will not succeed.

DELIMITER delimiter

An alternative delimiter character.
Valid values:

• TAB (delimit with tabs). This is the default.

• A character enclosed within single quotes, for example, '/'.

EXTRACOLS number

Includes placeholders for additional columns at the end of each record. Use this
option when a target table has more columns than the source table. The minimum is 0
and the maximum is 99.

NAMES | NONAMES

Includes or excludes column names as part of the output. For updates where only the
changed values are present, column names are included unless you also specify the
PLACEHOLDERS option.

NOHDRFIELDS [IND], [OP]

Suppresses output as follows:

Chapter 3
FORMATASCII

3-124

NOHDRFIELDS

Without options, suppresses everything except the data values themselves.

IND

Suppresses everything except the before or after indicator (B or A) and the data
values.

OP

Suppresses everything except the operation-type indicator (I, D, U, V) and the data
values.

NOQUOTE

Excludes quotation marks from character data. Without NOQUOTE, characters are
enclosed within single-quotes.

NOTRANSTMTS

Excludes transaction information.

NULLISSPACE

Outputs null columns as empty columns. Without NULLISSPACE, null columns are output
as the word NULL.

PLACEHOLDERS

Outputs a placeholder for missing columns. For example, if the second and fourth
columns are missing in a four-column table, the following output is possible:

'ABC',,123,,

SQLLOADER

Produces a fixed-length, ASCII-formatted file that is compatible with the Oracle
SQL*Loader utility or the IBM Load Utility program.

Examples

The following examples are based on a source table named test.customer and a
sample transaction. The examples show how various FORMATASCII options configure
the output.

Table test.customer:

CUSTNAME CHAR(10) Primary key
LOCATION CHAR(10)
BALANCE INTEGER

Transaction:

INSERT INTO CUSTOMER VALUES ('Eric', 'San Fran', 550);
UPDATE CUSTOMER SET BALANCE = 100 WHERE CUSTNAME = 'Eric';
COMMIT;

Example 1
FORMATASCII without options produces the following:

B,2011-01-21:14:09:46.421335,8,1873474,
I,A,TEST.CUSTOMER,CUSTNAME,'Eric',LOCATION,
'San Fran',BALANCE,550,
V,A,TEST.CUSTOMER,CUSTNAME,'Eric',BALANCE,100,
C,

Chapter 3
FORMATASCII

3-125

Example 2
FORMATASCII, NONAMES, DELIMITER '|' produces the following:

B|2011-01-21:14:09:46.421335|8|1873474|
I|A|CUSTOMER|'Eric'|'San Fran'|550|
V|A|CUSTOMER|CUSTNAME|'Eric'|BALANCE|100|
C|

The last record returns column names for the CUSTNAME and BALANCE columns because
the record only contains values for columns that were updated, and PLACEHOLDERS was
not used.

Example 3
FORMATASCII, NOHDRFIELDS, OP, TS, NONAMES, NOQUOTE produces the following:

I,CUSTOMER,2011-01-21:14:09:46.421335,Eric,San Fran,550,
V,CUSTOMER,2011-01-21:14:09:46.421335,Eric,,100,

The absence of a value for the second column is indicated by two consecutive
commas.

3.75 FORMATSQL
Valid For

Extract

Description

Use the FORMATSQL parameter to output data in external SQL format, instead of the
default Oracle GoldenGate canonical format. FORMATSQL generates SQL statements
(INSERT, UPDATE, DELETE) that can be applied to both SQL and Enscribe tables by utilities
other than Oracle GoldenGate Replicat.

Note:

Do not use FORMATSQL if the data will be processed by the Replicat process.
Replicat expects the default canonical format. Do not use FORMATSQL if
FORMATASCII or FORMATXML is being used. Do not use FORMATASCII if Oracle
GoldenGate DDL support is active.

A FORMATSQL statement affects all extract files or trails defined after it.

Do not use FORMATSQL if Extract is connected to a multi-byte DB2 subsystem.

Limitations

• Do not use FORMATSQL if the data will be processed by the Replicat process.
Replicat expects the default canonical format.

• Do not use FORMATSQL if FORMATASCII or FORMATXML is being used.

• Do not use FORMATSQL if Oracle GoldenGate DDL support is active.

• Do not use FORMATSQL in pass-through mode in a data pump because there is
no table metadata available to generate trail output in the specified form.

Chapter 3
FORMATSQL

3-126

Default Output

Database object names, such as table and column names, and CHAR and VARCHAR data
are written in the default character set of the operating system.

Without options, FORMATSQL transactions are output as follows, in comma-delimited
format:

• The begin-transaction indicator, B.

• The timestamp at which the transaction was committed.

• The sequence number of the transaction log in which the commit was found.

• The relative byte address (RBA) of the commit record within the transaction log.

• The SQL statements.

• The commit indicator, C.

• A newline indicator.

Every record in a transaction is contained between the begin and commit indicators.
Each combination of commit timestamp and RBA is unique.

Customized Output

You can customize the output format with optional arguments.

Default

See "Default Output" for specific defaults.

Syntax

FORMATSQL [option] [, ...]

option can be one of the following:

NONAMES

Omits column names for insert operations, because inserts contain all column names.
This option conserves file size.

NOPKUPDATES

Converts UPDATE operations that affect columns in the target primary key to a DELETE
followed by an INSERT. By default (without NOPKUPDATES), the output is a standard UPDATE
operation.

ORACLE

Formats records for compatibility with Oracle databases by converting date and time
columns to a format accepted by SQL*Plus, for example:

TO_DATE('2011-01-01','YYYY-MM-DD')

Example

FORMATSQL ORACLE, NONAMES

Chapter 3
FORMATSQL

3-127

3.76 FORMATXML
Valid For

Extract

Description

Use the FORMATXML parameter to output data in XML format, instead of the default
Oracle GoldenGate canonical format. A FORMATXML statement affects all extract files or
trails that are defined after it. By default, the XML is output in the character set of the
local operating system.

By default, XML stored as CLOB or BLOB is output up to 4000 bytes. To include larger
XML stored as BLOB or CLOB, use the ENCODING option.

XML stored as CLOB is always output in a CDATA section regardless of its size. This is
to avoid the overhead of converting reserved characters such as <, > and & to the
appropriate XML representation.

Binary data including BLOB are encoded as Base64, which represents binary data in
an ASCII string format and allows output to XML.

The XML, the database object names, such as table and column names, and CHAR and
VARCHAR data are written in the default character set of the operating system unless the
ENCODING option is used to output in UTF-8.

Limitations

• Do not use FORMATXML if the data will be processed by the Replicat process.
Replicat expects the default canonical format. Do not use FORMATXML if FORMATASCII
or FORMATSQL is being used.

• Do not use FORMATXML if Extract is connected to a multi-byte DB2 subsystem.

• Do not use FORMATXML if Oracle GoldenGate DDL support is active.

• Do not use FORMATXML in pass-through mode in a data pump because there is no
table metadata available to generate trail output in the specified form.

Default

None

Syntax

FORMATXML
[ENCODING character_set]
[INLINEPROPERTIES | NOINLINEPROPERTIES]
[TRANS | NOTRANS]

ENCODING UTF-8

Outputs the full sized XML to the XML file in UTF-8, but does not output headers.
The XML header tag and root node are included in the XML output. The root node is
output as OracleGoldenGateFormatXML.
Regardless of their size, XML stored as CLOB is output in a CDATA section and binary
data including BLOB is output to Base64 encoding.

Chapter 3
FORMATXML

3-128

INLINEPROPERTIES | NOINLINEPROPERTIES

Controls whether or not properties are included within the XML tag or written
separately. INLINEPROPERTIES is the default.

TRANS | NOTRANS

Controls whether or not transaction boundaries and commit timestamps should be
included in the XML output. TRANS is the default.

Example

FORMATXML NOINLINEPROPERTIES, NOTRANS

3.77 FUNCTIONSTACKSIZE
Valid For

Extract and Replicat

Description

Use the FUNCTIONSTACKSIZE parameter to control the size of the memory stack that is
used for processing Oracle GoldenGate column-conversion functions. The memory
stack holds arguments supplied to and from an Oracle GoldenGate function. You
should not need to use this parameter unless Oracle GoldenGate returns a message
indicating that the size of the stack should be increased. The message is similar to:

Not enough stack space. Specify FUNCTIONSTACKSIZE greater than {0,number,0}

This could happen when you are using a very large number of functions or arguments.

The default without FUNCTIONSTACKSIZE is 200 arguments, which optimizes the
performance of Oracle GoldenGate and its usage of system memory. Increasing this
parameter can adversely affect performance and the use of system memory.

When setting FUNCTIONSTACKSIZE for a coordinated Replicat, take into account that the
specified value is applied to each thread in the configuration, not as an aggregate
threshold for Replicat as a whole. For example, if FUNCTIONSTACKSIZE 400 is specified, it
is possible for each thread to have 399 arguments without any warning or error from
Replicat.

FUNCTIONSTACKSIZE must appear in the parameter file before any parameters that
include functions are listed. FUNCTIONSTACKSIZE is a global parameter. It affects all
clauses in a parameter file.

Default

200 arguments

Syntax

FUNCTIONSTACKSIZE number

number

A value between 0 and 5000 that denotes the number of function arguments to allow
in a parameter clause.

Chapter 3
FUNCTIONSTACKSIZE

3-129

Example

FUNCTIONSTACKSIZE 300

3.78 GENLOADFILES
Valid For

Replicat

Description

Use the GENLOADFILES parameter when using the file-to-database-utility initial load
method to generate run and control files that are compatible with:

• Oracle's SQL*Loader utility

• Microsoft's BCP, DTS, or SQL Server Integration Services (SSIS) utility

• IBM's Load Utility (LOADUTIL).

A run file and a control file are generated for each MAP statement in the Replicat
parameter file. Replicat stops after generating the control and run files and does not
process data.

Use the run and control files with a data file that contains the data to be loaded into the
target. To generate the data file, use the FORMATASCII parameter in the Extract
parameter file. Use the SQLLOADER option of FORMATASCII for the Oracle and DB2 for
z/OS utilities and use the BCP option for the Microsoft utility.

FORMATASCII outputs the table data to an Oracle GoldenGate trail or file in external
ASCII format, which is compatible with the load utility. You can generate multiple data
files by specifying multiple files.

Note:

For IBM's Load Utility, you will need to specify the -E and -d defs_file
Collector parameters with the PARAMS option of the RMTHOST parameter. These
parameters are necessary to convert ASCII to EBCDIC and to specify the
source-definitions file.

By default, GENLOADFILES creates the following file names:

• The SQL*Loader run file is named source_table.run, and the control file is named
source_table.ctl, where source_table is the name of a source table specified in
the MAP statement.

• The BCP/DTS/SSIS run file is named target_table.bat, and the control file is
named target_table.fmt, where target_table is the name of a target table
specified in the MAP statement.

• The Load Utility run file is named target_table.run, and the control file is named
target_table.ctl, where target_table is the name of a target table specified in the
MAP statement.

Chapter 3
GENLOADFILES

3-130

Control Files

The control file contains load parameters that are generated based on a template.
Oracle GoldenGate provides default templates for SQL*Loader, BCP/DTS/SSIS, and
Load Utility. You can modify the templates as needed to change the load rules, or you
can create new templates.

The following are examples of the Oracle GoldenGate templates, which contain
placeholders for the target tables, the data file(s) produced by FORMATASCII, and other
run parameters. Oracle GoldenGate replaces the placeholders with values based on
parameters specified in the Replicat parameter file.

Example 3-1 SQL*Loader Template sqlldr.tpl

File Names
controlfile ?target.ctl
runfile ?target.run
#
Run File Template
sqlldr userid=?pw control=?target log=?target direct=true
#
Control File Template
unrecoverable
load data
infile ?source.dat
truncate
into table ?target

Example 3-2 BCP/DTS/SSIS Template bcpfmt.tpl

Run File Template
Substitute your database name for db
bcp db..?target in ?source.dat -U ?user -P ?pw -f ?target.fmt -e ?target.err
#
Control File Template
The value below must specify the BCP version, not the Sybase Adaptive
Server or Microsoft SQL Server version. "bcp -v" can be used to
determine the correct version number.
12.0

Example 3-3 Load Utility Template db2cntl.tpl

File Names
controlfile ?target.ctl
runfile ?target.run
#
Run File Template
odb2 load
#
Control File Template
LOAD REPLACE INTO TABLE ?target

Run Files

The run files contain the input parameters for starting the load. To execute the files,
issue one of the following commands.

• Execute the SQL*Loader run file from the UNIX command shell.

% table.run

Chapter 3
GENLOADFILES

3-131

• Execute the BCP run file from the DOS shell.

> table.bat

• Execute the Load Utility run file with a JCL script to load the data to the DB2 for
z/OS table. Add other environment-related parameters to the job script as needed.

Note:

A setting of DYNAMIC for the WILDCARDRESOLVE parameter is not compatible with
the GENLOADFILES parameter. Oracle GoldenGate defaults to IMMEDIATE when
GENLOADFILES is specified.

Note that Oracle GoldenGate does not support multi-byte characters when the
operating system and database character set are different, or when fixed length output
format is used.

For step-by-step instructions on configuring Oracle GoldenGate to output the load files
and performing the initial load, see the Administering Oracle GoldenGate for Windows
and UNIX.

Default

None

Syntax

GENLOADFILES [template_file]
[CHARSET value]

template_file

The fully qualified name of the template file. The default template file is sqlldr.tpl for
SQL*Loader, bcpfmt.tpl for BCP, DTS, or SSIS, and db2cntl.tpl for DB2 on z/OS, all
located in the Oracle GoldenGate home directory.

CHARSET set

(Oracle SQL*Loader) Specifies the encoding of ASCII characters in Oracle NCHAR
columns. Valid value is UTF8. Required if using CHARSET option of FORMATASCII.
CHARSET allows the load to include character-length semantics when the source table
contains NCHAR data and variable-length characters set to UTF-8. Currently, Oracle
SQL*Loader uses byte-length semantics and is not compatible with character-length
semantics.

Note:

If both NCHAR and CHAR columns contain 8-bit ASCII characters, the generated
file will contain a mix of operating system-native 8-bit ASCII character
coding and UTF-8 coding, and the load will not succeed.

Example

GENLOADFILES sqlldr.tpl

Chapter 3
GENLOADFILES

3-132

3.79 GETAPPLOPS | IGNOREAPPLOPS
Valid For

Extract (Not valid for Informix.)

Description

Use the GETAPPLOPS or IGNOREAPPLOPS parameter to capture or ignore DML operations
produced by any application except the local Replicat. By default, application data is
captured.

These parameters are useful in conjunction with the GETREPLICATES and
IGNOREREPLICATES parameters for the following:

• To separate data operations performed by a local Replicat from those performed
by the business applications configured for Oracle GoldenGate extraction. Use
IGNOREAPPLOPS and GETREPLICATES for one trail or file to contain just the Replicat
operations, and use GETAPPLOPS and IGNOREREPLICATES for another trail or file to
contain just the operations of the business applications.

• As part of a cascading configuration, where changes applied by Replicat locally
must be captured by a local Extract to be propagated to another system. In this
case, IGNOREAPPLOPS and GETREPLICATES would be used.

• As part of a loop detection scheme when using bidirectional replication. The
default combination of GETAPPLOPS and IGNOREREPLICATES causes Extract to capture
application data while ignoring Replicat operations posted to the same database
objects. In addition to using these parameters, Extract must be configured to
identify Replicat transactions.

See "GETREPLICATES | IGNOREREPLICATES" for more information.

Using GETAPPLOPS for Oracle Sequences

GETAPPLOPS must be enabled to capture sequences that are replicated by Replicat.
Replicat issues sequence updates in an autonomous transaction, so they are not
reflected in the trace table. The sequence update appears as if it is an application
operation.

Using GETAPPLEOPS for DDL Operations

See "DDLOPTIONS" for information on to use GETAPPLOPS or IGNOREAPPLOPS functionality
for DDL operations.

For more information about configuring bidirectional replication, see the Administering
Oracle GoldenGate for Windows and UNIX.

Default

GETAPPLOPS

Syntax

GETAPPLOPS | IGNOREAPPLOPS

Chapter 3
GETAPPLOPS | IGNOREAPPLOPS

3-133

3.80 GETDELETES | IGNOREDELETES
Valid For

Extract and Replicat

Description

Use the GETDELETES and IGNOREDELETES parameters to control whether or not Oracle
GoldenGate processes DELETE operations. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETDELETES threads in one set of MAP statements, and specify the
IGNOREDELETES threads in a different set of MAP statements.

Default

GETDELETES

Syntax

GETDELETES | IGNOREDELETES

Example

This example shows how you can apply GETDELETES and IGNOREDELETES selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

GETDELETES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREDELETES
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.81 GETENV
Use the @GETENV function to return information about the Oracle GoldenGate
environment. You can use the information as input into the following:

• Stored procedures or queries (with SQLEXEC)

• Column maps (with the COLMAP option of TABLE or MAP)

• User tokens (defined with the TOKENS option of TABLE and mapped to target columns
by means of the @TOKEN function)

• The GET_ENV_VALUE user exit function (see "GET_ENV_VALUE")

Chapter 3
GETDELETES | IGNOREDELETES

3-134

Note:

All syntax options must be enclosed within quotes as shown in the
syntax descriptions.

Syntax

@GETENV (
'LAG' , 'unit' |
'LASTERR' , 'error_info' |
'JULIANTIMESTAMP' |
'JULIANTIMESTAMP_PRECISE' |
'RECSOUTPUT' |
{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic' |
'GGENVIRONMENT', 'environment_info' |
'GGFILEHEADER', 'header_info' |
'GGHEADER', 'header_info' |
'RECORD', 'location_info' |
'DBENVIRONMENT', 'database_info'
'TRANSACTION', 'transaction_info' |
'OSVARIABLE', 'variable' |
'TLFKEY', SYSKEY, unique_key
'RECORD_TIMESTAMP_PRECISE',
'TRANSACTION_TIMESTAMP_PRECISE',
'USERNAME',
'OSUSERNAME',
'MACHINENAME',
'PROGRAMNAME',
'CLIENTIDENTIFIER',
)

'LAG' , 'unit'

Valid for Extract and Replicat.

Use the LAG option of @GETENV to return lag information. Lag is the difference between
the time that a record was processed by Extract or Replicat and the timestamp of that
record in the data source.

Syntax

@GETENV ('LAG', {'SEC'|'MSEC'|'MIN'})

'SEC'

Returns the lag in seconds. This is the default when a unit is not explicitly provided for
LAG.

'MSEC'

Returns the lag in milliseconds.

'MIN'

Returns the lag in minutes.

'LASTERR' , 'error_info'

Valid for Replicat.

Chapter 3
GETENV

3-135

Use the LASTERR option of @GETENV to return information about the last failed operation
processed by Replicat.

Syntax

@GETENV ('LASTERR', {'DBERRNUM'|'DBERRMSG'|'OPTYPE'|'ERRTYPE'})

'DBERRNUM'

Returns the database error number associated with the failed operation.

'DBERRMSG'

Returns the database error message associated with the failed operation.

'OPTYPE'

Returns the operation type that was attempted. For a list of Oracle GoldenGate
operation types, see Administering Oracle GoldenGate for Windows and UNIX.

'ERRTYPE'

Returns the type of error. Possible results are:

• DB (for database errors)

• MAP (for errors in mapping)

'JULIANTIMESTAMP' | 'JULIANTIMESTAMP_PRECISE'

Valid for Extract and Replicat.

Use the JULIANTIMESTAMP option of @GETENV to return the current time in Julian format.
The unit is microseconds (one millionth of a second). On a Windows machine, the
value is padded with zeros (0) because the granularity of the Windows timestamp is
milliseconds (one thousandth of a second). For example, the following is a typical
column mapping:

MAP dbo.tab8451, Target targ.tabjts, COLMAP (USEDEFAULTS, &
JTSS = @GETENV ('JULIANTIMESTAMP')
JTSFFFFFF = @date ('yyyy-mm-dd hh:mi:ss.ffffff', 'JTS', &
@getenv ('JULIANTIMESTAMP')))
;

Possible values that the JTSS and JTSFFFFFF columns can have are:

212096320960773000 2010-12-17:16:42:40.773000
212096321536540000 2010-12-17:16:52:16.540000
212096322856385000 2010-12-17:17:14:16.385000
212096323062919000 2010-12-17:17:17:42.919000
212096380852787000 2010-12-18:09:20:52.787000

The last three digits (the microseconds) of the number all contain the padding of 0s .

Optionally, you can use the 'JULIANTIMESTAMP_PRECISE' option to obtain a timestamp
with high precision though this may effect performance.

Syntax

@GETENV ('JULIANTIMESTAMP')
@GETENV ('JULIANTIMESTAMP_PRECISE')

'RECSOUTPUT'

Valid for Extract.

Chapter 3
GETENV

3-136

Use the RECSOUTPUT option of @GETENV to retrieve a current count of the number of
records that Extract has written to the trail file since the process started. The returned
value is not unique to a table or transaction, but instead for the Extract session itself.
The count resets to 1 whenever Extract stops and then is started again.

Syntax

@GETENV ('RECSOUTPUT')

{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic'

Valid for Extract and Replicat.

Use the STATS and DELTASTATS options of @GETENV to return the number of operations
that were processed per table for any or all of the following:

• INSERT operations

• UPDATE operations

• DELETE operations

• TRUNCATE operations

• Total DML operations

• Total DDL operations

• Number of conflicts that occurred, if the Conflict Detection and Resolution (CDR)
feature is used.

• Number of CDR resolutions that succeeded

• Number of CDR resolutions that failed

Any errors in the processing of this function, such as an unresolved table entry or
incorrect syntax, returns a zero (0) for the requested statistics value.

Understanding How Recurring Table Specifications Affect Operation Counts

An Extract that is processing the same source table to multiple output trails returns
statistics based on each localized output trail to which the table linked to @GETENV is
written. For example, if Extract captures 100 inserts for table ABC and writes table ABC
to three trails, the result for the @GETENV is 300

EXTRACT ABC
...
EXTTRAIL c:\ogg\dirdat\aa;
TABLE TEST.ABC;
EXTTRAIL c:\ogg\dirdat\bb;
TABLE TEST.ABC;
TABLE EMI, TOKENS (TOKEN-CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));
EXTTRAIL c:\ogg\dirdat\cc;
TABLE TEST.ABC;

In the case of an Extract that writes a source table multiple times to a single output
trail, or in the case of a Replicat that has multiple MAP statements for the same TARGET
table, the statistics results are based on all matching TARGET entries. For example, if
Replicat filters 20 rows for REGION 'WEST,' 10 rows for REGION 'EAST,' 5 rows for REGION
'NORTH,' and 2 rows for REGION 'SOUTH' (all for table ABC) the result of the @GETENV is 37.

REPLICAT ABC
...

Chapter 3
GETENV

3-137

MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'WEST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'EAST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'NORTH'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'SOUTH'));
MAP TEST.EMI, TARGET TEST.EMI, &
 COLMAP (CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));

Capturing Multiple Statistics

You can execute multiple instances of @GETENV to get counts for different operation
types.

This example returns statistics only for INSERT and UPDATE operations:

REPLICAT TEST
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, IU = @COMPUTE (@GETENV &
 ('STATS', 'TABLE', 'ABC', 'DML') - (@GETENV ('STATS', 'TABLE', &
 'ABC', 'DELETE'));

This example returns statistics for DDL and TRUNCATE operations:

REPLICAT TEST2
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, DDL = @COMPUTE &
(@GETENV ('STATS', 'DDL') + (@GETENV ('STATS', 'TRUNCATE'));

Example Use Case

In the following use case, if all DML from the source is applied successfully to the
target, Replicat suspends by means of EVENTACTIONS with SUSPEND, until resumed from
GGSCI with SEND REPLICAT with RESUME.

GETENV used in Extract parameter file:

TABLE HR1.HR*;
TABLE HR1.STAT, TOKENS ('env_stats' = @GETENV ('STATS', 'TABLE', &
 'HR1.HR*', 'DML'));

GETENV used in Replicat parameter file:

MAP HR1.HR*, TARGET HR2.*;
MAP HR1.STAT, TARGET HR2.STAT, filter (
 @if (
 @token ('stats') =
 @getenv ('STATS', 'TABLE', 'TSSCAT.TCUSTORD', 'DML'), 1, 0)
),
 eventactions (suspend);

Using Statistics in FILTER Clauses

Statistics returned by STATS and DELTASTATS are dynamic values and are incremented
after mapping is performed. Therefore, when using CDR statistics in a FILTER clause in
each of multiple MAP statements, you need to order the MAP statements in descending
order of the statistics values. If the order is not correct, Oracle GoldenGate returns
error OGG-01921. For detailed information about this requirement, see Document
1556241.1 in the Knowledge base of My Oracle Support at http://support.oracle.com.

Chapter 3
GETENV

3-138

http://support.oracle.com

Example 3-4 MAP statements containing statistics in FILTER clauses

In the following example, the MAP statements containing the filter for the CDR_CONFLICTS
statistic are ordered in descending order of the statistic: >3, then =3, then <3.

MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE
ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER (@GETENV ("STATS",
"CDR_CONFLICTS") > 3),EVENTACTIONS (LOG INFO);MAP TEST.GG_HEARTBEAT_TABLE, TARGET
TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,
(DEFAULT, OVERWRITE)),FILTER (@GETENV ("STATS", "CDR_CONFLICTS") = 3),EVENTACTIONS
(LOG WARNING);MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE
COMPARECOLS (ON UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT,
OVERWRITE)),FILTER (@GETENV ("STATS", "CDR_CONFLICTS") < 3),EVENTACTIONS (LOG
WARNING);

Syntax

@GETENV ({'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic')

{'STATS' | 'DELTASTATS'}

STATS returns counts since process startup, whereas DELTASTATS returns counts since
the last execution of a DELTASTATS.
The execution logic is as follows:

• When Extract processes a transaction record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved source tables in the TABLE
statement.

• When Replicat processes a trail record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved target tables in the TARGET
clause of the MAP statement.

'TABLE', 'table'

Executes the STATS or DELTASTATS only for the specified table or tables. Without this
option, counts are returned for all tables that are specified in TABLE (Extract) or MAP
(Replicat) parameters in the parameter file.
Valid table_name values are:

• 'schema.table' specifies a table.

• 'table' specifies a table of the default schema.

• 'schema.*' specifies all tables of a schema.

• '*' specifies all tables of the default schema.

For example, the following counts DML operations only for tables in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.*', 'DML'));

Likewise, the following counts DML operations only for the emp table in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.emp', 'DML'));

Chapter 3
GETENV

3-139

By contrast, because there are no specific tables specified for STATS in the following
example, the function counts all INSERT, UPDATE, and DELETE operations for all tables in
all schemas that are represented in the TARGET clauses of MAP statements:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = &
@GETENV ('STATS', 'DML'));

'statistic'
The type of statistic to return. See Using Statistics in FILTER Clauses for important
information when using statistics in FILTER clauses in multiple TABLE or MAP statements.

'INSERT'

Returns the number of INSERT operations that were processed.

'UPDATE'

Returns the number of UPDATE operations that were processed.

'DELETE'

Returns the number of DELETE operations that were processed.

'DML'

Returns the total of INSERT, UPDATE, and DELETE operations that were processed.

'TRUNCATE'

Returns the number of TRUNCATE operations that were processed. This variable
returns a count only if Oracle GoldenGate DDL replication is not being used. If
DDL replication is being used, this variable returns a zero.

'DDL'

Returns the number of DDL operations that were processed, including TRUNCATEs
and DDL specified in INCLUDE and EXCLUDE clauses of the DDL parameter, all scopes
(MAPPED, UNMAPPED, OTHER). This variable returns a count only if Oracle GoldenGate
DDL replication is being used. This variable is not valid for 'DELTASTATS'.

'CDR_CONFLICTS'

Returns the number of conflicts that Replicat detected when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP','CDR_CONFLICTS')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_CONFLICTS')

'CDR_RESOLUTIONS_SUCCEEDED'

Returns the number of conflicts that Replicat resolved when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_SUCCEEDED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')

Chapter 3
GETENV

3-140

'CDR_RESOLUTIONS_FAILED'

Returns the number of conflicts that Replicat could not resolve when executing
the Conflict Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_FAILED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

'GGENVIRONMENT' , 'environment_info'

Valid for Extract and Replicat.

Use the GGENVIRONMENT option of @GETENV to return information about the Oracle
GoldenGate environment.

Syntax

@GETENV ('GGENVIRONMENT', {'DOMAINNAME'|'GROUPDESCRIPTION'|'GROUPNAME'|

'GROUPTYPE'|'HOSTNAME'|'OSUSERNAME'|'PROCESSID'|'USERNAME'|'MACHINENAME'|'PROGRAMNAME
'|'CLIENTIDENTIFIER'})

'DOMAINNAME'

(Windows only) Returns the domain name associated with the user that started the
process.

'GROUPDESCRIPTION'

Returns the description of the group, taken from the checkpoint file. Requires that a
description was provided with the DESCRIPTION parameter when the group was created
with the ADD command in GGSCI.

'GROUPNAME'

Returns the name of the process group.

'GROUPTYPE'

Returns the type of process, either EXTRACT or REPLICAT.

'HOSTNAME'

Returns the name of the system running the Extract or Replicat process.

'OSUSERNAME'

Returns the operating system user name that started the process.

'PROCESSID'

Returns the process ID that is assigned to the process by the operating system.

‘USERNAME’
Database login user name.

‘MACHINENAME’
Name of the host, machine, or server where database is running

‘PROGRAMNAME’
Name of the program or application that started the transaction or session.

Chapter 3
GETENV

3-141

‘CLIENTIDENTIFIER’
Value set by using DBMS_SESSION_.set_identifier().

'GGHEADER' , 'header_info'

Valid for Extract and Replicat.

Use the GGHEADER option of @GETENV to return information from the header portion of an
Oracle GoldenGate trail record. The header describes the transaction environment of
the record. For more information on record headers and record types, see
Administering Oracle GoldenGate for Windows and UNIX.

Syntax

@GETENV ('GGHEADER', {'BEFOREAFTERINDICATOR'|'COMMITTIMESTAMP'|'LOGPOSITION'|
 'LOGRBA'|'OBJECTNAME'|'TABLENAME'|'OPTYPE'|'RECORDLENGTH'|
 'TRANSACTIONINDICATOR'})

'BEFOREAFTERINDICATOR'

Returns the before or after indicator showing whether the record is a before image or
an after image. Possible results are:

• BEFORE (before image)

• AFTER (after image)

'COMMITTIMESTAMP'

Returns the transaction timestamp (the time when the transaction committed)
expressed in the format of YYYY-MM-DD HH:MI:SS.FFFFFF, for example:

2011-01-24 17:08:59.000000

'LOGPOSITION'

Returns the position of the Extract process in the data source. (See the LOGRBA option.)

'LOGRBA'

LOGRBA and LOGPOSITION store details of the position in the data source of the record.
For transactional log-based products, LOGRBA is the sequence number and LOGPOSITION
is the relative byte address. However, these values will vary depending on the capture
method and database type.

'OBJECTNAME' | 'TABLENAME'

Returns the table name or object name (if a non-table object).

'OPTYPE'

Returns the type of operation. Possible results are:

INSERT
UPDATE
DELETE
ENSCRIBE COMPUPDATE
SQL COMPUPDATE
PK UPDATE
TRUNCATE

If the operation is not one of the above types, then the function returns the word TYPE
with the number assigned to the type.

Chapter 3
GETENV

3-142

'RECORDLENGTH'

Returns the record length in bytes.

'TRANSACTIONINDICATOR'

Returns the transaction indicator. The value corresponds to the TransInd field of the
record header, which can be viewed with the Logdump utility.
Possible results are:

• BEGIN (represents TransInD of 0, the first record of a transaction.)

• MIDDLE (represents TransInD of 1, a record in the middle of a transaction.)

• END (represents TransInD of 2, the last record of a transaction.)

• WHOLE (represents TransInD of 3, the only record in a transaction.)

'GGFILEHEADER' , 'header_info'

Valid for Replicat.

Use the GGFILEHEADER option of @GETENV to return attributes of an Oracle GoldenGate
extract file or trail file. These attributes are stored as tokens in the file header.

Note:

If a given database, operating system, or Oracle GoldenGate version does
not provide information that relates to a given token, a NULL value will be
returned.

Syntax

@GETENV ('GGFILEHEADER', {'COMPATIBILITY'|'CHARSET'|'CREATETIMESTAMP'|
 'FILENAME'|'FILETYPE'|'FILESEQNO'|'FILESIZE'|'FIRSTRECCSN'|
 'LASTRECCSN'|'FIRSTRECIOTIME'|'LASTRECIOTIME'|'URI'|'URIHISTORY'|
 'GROUPNAME'|'DATASOURCE'|'GGMAJORVERSION'|'GGMINORVERSION'|
 'GGVERSIONSTRING'|'GGMAINTENANCELEVEL'|'GGBUGFIXLEVEL'|'GGBUILDNUMBER'|
 'HOSTNAME'|'OSVERSION'|'OSRELEASE'|'OSTYPE'|'HARDWARETYPE'|
 'DBNAME'|'DBINSTANCE'|'DBTYPE'|'DBCHARSET'|'DBMAJORVERSION'|
 'DBMINORVERSION'|'DBVERSIONSTRING'|'DBCLIENTCHARSET'|'DBCLIENTVERSIONSTRING'|
 'LASTCOMPLETECSN'|'LASTCOMPLETEXIDS'|'LASTCSN'|'LASTXID'|
 'LASTCSNTS'})

'COMPATIBILITY'

Returns the Oracle GoldenGate compatibility level of the trail file. The compatibility
level of the current Oracle GoldenGate version must be greater than, or equal to, the
compatibility level of the trail file to be able to read the data records in that file. Current
valid values are 0 or 1.

• 1 means that the trail file is of Oracle GoldenGate version 10.0 or later, which
supports file headers that contain file versioning information.

• 0 means that the trail file is of an Oracle GoldenGate version that is older than
10.0. File headers are not supported in those releases. The 0 value is used for
backward compatibility to those Oracle GoldenGate versions.

'CHARSET'

Returns the global character set of the trail file. For example:

Chapter 3
GETENV

3-143

WCP1252-1

'CREATETIMESTAMP'

Returns the time that the trail was created, in local GMT Julian time in INT64.

'FILENAME'

Returns the name of the trail file. Can be an absolute or relative path, with a forward
or backward slash depending on the file system.

'FILETYPE'

Returns a numerical value indicating whether the trail file is a single file (such as one
created for a batch run) or a sequentially numbered file that is part of a trail for online,
continuous processing. The valid values are:

• 0 - EXTFILE

• 1 - EXTTRAIL

• 2 - UNIFIED and EXTFILE

• 3 - UNIFIED and EXTTRAIL

'FILESEQNO'

Returns the sequence number of the trail file, without any leading zeros. For example,
if a file sequence number is aa000026, FILESEQNO returns 26.

'FILESIZE'

Returns the size of the trail file. It returns NULL on an active file and returns a size
value when the file is full and the trail rolls over.

'FIRSTRECCSN'

Returns the commit sequence number (CSN) of the first record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate for Windows and UNIX.

'LASTRECCSN'

Returns the commit sequence number (CSN) of the last record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate for Windows and UNIX.

'FIRSTRECIOTIME'

Returns the time that the first record was written to the trail file. Value is NULL until the
trail file is completed.

'LASTRECIOTIME'

Returns the time that the last record was written to the trail file. Value is NULL until the
trail file is completed.

'URI'

Returns the universal resource identifier of the process that created the trail file, in the
following format:

host_name:dir:[:dir][:dir_n]group_name

Where:

• host_name is the name of the server that hosts the process

Chapter 3
GETENV

3-144

• dir is a subdirectory of the Oracle GoldenGate installation path.

• group_name is the name of the process group that is linked with the process.

The following example shows where the trail was processed and by which process.
This includes a history of previous runs.

sys1:home:oracle:v9.5:extora

'URIHISTORY'

Returns a list of the URIs of processes that wrote to the trail file before the current
process.

• For a primary Extract, this field is empty.

• For a data pump, this field is URIHistory + URI of the input trail file.

'GROUPNAME'

Returns the name of the group that is associated with the Extract process that created
the trail. The group name is the one that was supplied when the ADD EXTRACT
command was issued.

'DATASOURCE'

Returns the data source that was read by the process. The return value can be one of
the following:

• DS_EXTRACT_TRAILS: The source was an Oracle GoldenGate extract file, populated

with change data.

• DS_DATABASE: The source was a direct select from database table written to a trail,
used for SOURCEISTABLE-driven initial load.

• DS_TRAN_LOGS: The source was the database transaction log.

• DS_INITIAL_DATA_LOAD: The source was a direct select from database tables for

an initial load.

• DS_VAM_EXTRACT: The source was a vendor access module (VAM).

• DS_VAM_TWO_PHASE_COMMIT: The source was a VAM trail.

'GGMAJORVERSION'

Returns the major version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 1.

'GGMINORVERSION'

Returns the minor version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 2.

'GGVERSIONSTRING'

Returns the maintenance (or patch) level of the Extract process that created the trail,
expressed as an integer. For example, if a version is 1.2.3, it returns 3.

'GGMAINTENANCELEVEL'

Returns the maintenance version of the process (xx.xx.xx).

'GGBUGFIXLEVEL'

Returns the patch version of the process (xx.xx.xx.xx).

'GGBUILDNUMBER'

Returns the build number of the process.

Chapter 3
GETENV

3-145

'HOSTNAME'

Returns the DNS name of the machine where the Extract that wrote the trail is
running. For example:

• sysa

• sysb

• paris

• hq25

'OSVERSION'

Returns the major version of the operating system of the machine where the Extract
that wrote the trail is running. For example:

• Version s10_69

• #1 SMP Fri Feb 24 16:56:28 EST 2006

• 5.00.2195 Service Pack 4

'OSRELEASE'

Returns the release version of the operating system of the machine where the Extract
that wrote the trail is running. For example, release versions of the examples given for
OSVERSION could be:

• 5.10

• 2.6.9-34.ELsmp

'OSTYPE'

Returns the type of operating system of the machine where the Extract that wrote the
trail is running. For example:

• SunOS

• Linux

• Microsoft Windows

'HARDWARETYPE'

Returns the type of hardware of the machine where the Extract that wrote the trail is
running. For example:

• sun4u

• x86_64

• x86

'DBNAME'

Returns the name of the database, for example findb.

'DBINSTANCE'

Returns the name of the database instance, if applicable to the database type, for
example ORA1022A.

'DBTYPE'

Returns the type of database that produced the data in the trail file. Can be one of:

Chapter 3
GETENV

3-146

DB2 UDB
DB2 ZOS
CTREE
MSSQL
MYSQL
ORACLE
SQLMX
SYBASE
TERADATA
NONSTOP
ENSCRIBE
ODBC

'DBCHARSET'

Returns the character set that is used by the database that produced the data in the
trail file. (For some databases, this will be empty.)

'DBMAJORVERSION'

Returns the major version of the database that produced the data in the trail file.

'DBMINORVERSION'

Returns the minor version of the database that produced the data in the trail file.

'DBVERSIONSTRING'

Returns the maintenance (patch) level of the database that produced the data in the
trail file.

'DBCLIENTCHARSET'

Returns the character set that is used by the database client.

'DBCLIENTVERSIONSTRING'

Returns the maintenance (patch) level of the database client. (For some databases,
this will be empty.)

'LASTCOMPLETECSN'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCOMPLETEXIDS'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCSN'

Returns recovery information for internal Oracle GoldenGate use.

'LASTXID'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCSNTS'

Returns recovery information for internal Oracle GoldenGate use.

'RECORD' , 'location_info'

Valid for a data-pump Extract or Replicat.

Use the RECORD option of @GETENV to return the location or Oracle rowid of a record in an
Oracle GoldenGate trail file.

Syntax

@GETENV ('RECORD', {'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

Chapter 3
GETENV

3-147

'FILESEQNO'

Returns the sequence number of the trail file without any leading zeros.

'FILERBA'

Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'

(Valid for Oracle) Returns the rowid of the record.

'RSN'

Returns the record sequence number within the transaction.

'TIMESTAMP'

Returns the timestamp of the record.

'RECORD_TIMESTAMP_PRECISE' , 'location_info'

Valid for a data-pump Extract or Replicat.

Use the RECORD_TIMESTAMP_PRECISE option of @GETENV to return the location or Oracle
rowid of a record in an Oracle GoldenGate trail file, with fraction precision.

This option returns the timestamp from YEAR to MICROSECONDS. However,
depending on the database, the value can be in MILLISECONDS with zero
MICROSECONDS.

Syntax

@GETENV ('RECORD_TIMESTAMP_PRECISE',
{'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'FILESEQNO'

Returns the sequence number of the trail file without any leading zeros.

'FILERBA'

Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'

(Valid for Oracle) Returns the rowid of the record.

'RSN'

Returns the record sequence number within the transaction.

'TIMESTAMP'

Returns the timestamp of the record in microseconds or milliseconds, depending on
the database type.

'DBENVIRONMENT' , 'database_info'

Valid for Extract and Replicat.

Use the DBENVIRONMENT option of @GETENV to return global environment information for a
database.

Syntax

@GETENV ('DBENVIRONMENT', {'DBNAME'|'DBVERSION'|'DBUSER'|'SERVERNAME'})

Chapter 3
GETENV

3-148

'DBNAME'

Returns the database name.

'DBVERSION'

Returns the database version.

'DBUSER'

Returns the database login user. Note that SQL Server does not log the user ID.

'SERVERNAME'

Returns the name of the server.

'TRANSACTION' , 'transaction_info

Valid for Extract.

Use the TRANSACTION option of @GETENV to return information about a source transaction.
This option is valid for the Extract process.

Syntax

@GETENV ('TRANSACTION', {'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD')

'TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction
and are stored as tokens in the trail record. For each transaction ID, there is an
associated CSN. Transaction ID tokens have no zero-padding on any platform,
because they never get evaluated as relative values. They only get evaluated for
whether they match or do not match. Note that in the trail, the transaction ID token is
shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when
returned for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other
supported databases, the CSN is zero-padded. In the case of the Sybase CSN, each
substring that is delimited by a dot (.) will be padded to a length that does not change
for that substring.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.
For more information about the CSN, see Administering Oracle GoldenGate for
Windows and UNIX.

'TIMESTAMP'

Returns the commit timestamp of the transaction.

'NAME'

Returns the transaction name, if available.

'USERID'

(Oracle) Returns the Oracle user ID of the database user that committed the last
transaction.

'USERNAME'

(Oracle) Returns the Oracle user name of the database user that committed the last
transaction.

Chapter 3
GETENV

3-149

'PLANNAME'

(DB2 on z/OS) Returns the plan name under which the current transaction was
originally executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the
native sequence number that identifies the beginning of the oldest uncommitted
transaction that is held in Extract memory. For example, given an Oracle database,
the BSN would be expressed as a system change number (SCN). The BSN
corresponds to the current I/O checkpoint value of Extract. This value can be obtained
from the trail by Replicat when @GETENV ('TRANSACTION', 'LOGBSN') is used. This value
also can be obtained by using the INFO REPLICAT command with the DETAIL option. The
purpose of obtaining the BSN from Replicat is to get a recovery point for Extract in the
event that a system failure or file system corruption makes the Extract checkpoint file
unusable. See Administering Oracle GoldenGate for Windows and UNIX for more
information about recovering the Extract position.

'REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the
value is always 1. For data pump and Replicat, the thread id used by Extract capture
of a RAC node is returned; on non-RAC, @GETENV() returns an error. Logdump shows
the token, ORATHREADID, in the token section if the transaction is captured by Extract on
a RAC node.

'TRANSACTION_TIMESTAMP_PRECISE' , 'transaction_info

Valid for Extract.

Use the TRANSACTION_TIMESTAMP_PRECISE option of @GETENV to return information about a
source transaction, but with fraction precision. It returns the timestamp from YEAR to
MICROSECONDS. This option is valid for the Extract process.

Syntax

@GETENV ('TRANSACTION_TIMESTAMP_PRECISE',
{'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD')

'TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction
and are stored as tokens in the trail record. For each transaction ID, there is an
associated CSN. Transaction ID tokens have no zero-padding on any platform,
because they never get evaluated as relative values. They only get evaluated for
whether they match or do not match. Note that in the trail, the transaction ID token is
shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when
returned for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other
supported databases, the CSN is zero-padded. In the case of the Sybase CSN, each
substring that is delimited by a dot (.) will be padded to a length that does not change
for that substring.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.

Chapter 3
GETENV

3-150

For more information about the CSN, see Administering Oracle GoldenGate for
Windows and UNIX.

'TIMESTAMP'

Returns the commit timestamp of the transaction.

'NAME'

Returns the transaction name, if available.

'USERID'

(Oracle) Returns the Oracle user ID of the database user that committed the last
transaction.

'USERNAME'

(Oracle) Returns the Oracle user name of the database user that committed the last
transaction.

'PLANNAME'

(DB2 on z/OS) Returns the plan name under which the current transaction was
originally executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the
native sequence number that identifies the beginning of the oldest uncommitted
transaction that is held in Extract memory. For example, given an Oracle database,
the BSN would be expressed as a system change number (SCN). The BSN
corresponds to the current I/O checkpoint value of Extract. This value can be obtained
from the trail by Replicat when @GETENV ('TRANSACTION', 'LOGBSN') is used. This value
also can be obtained by using the INFO REPLICAT command with the DETAIL option. The
purpose of obtaining the BSN from Replicat is to get a recovery point for Extract in the
event that a system failure or file system corruption makes the Extract checkpoint file
unusable. See Administering Oracle GoldenGate for Windows and UNIX for more
information about recovering the Extract position.

'REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the
value is always 1. For data pump and Replicat, the thread id used by Extract capture
of a RAC node is returned; on non-RAC, @GETENV() returns an error. Logdump shows
the token, ORATHREADID, in the token section if the transaction is captured by Extract on
a RAC node.

'OSVARIABLE' , 'variable'

Valid for Extract and Replicat.

Use the OSVARIABLE option of @GETENV to return the string value of a specified operating-
system environment variable.

Syntax

@GETENV ('OSVARIABLE', 'variable')

'variable'

The name of the variable. The search is an exact match of the supplied variable
name. For example, the UNIX grep command would return all of the following
variables, but @GETENV ('OSVARIABLE', 'HOME') would only return the value for HOME:

Chapter 3
GETENV

3-151

ANT_HOME=/usr/local/ant
JAVA_HOME=/usr/java/j2sdk1.4.2_10
HOME=/home/judyd
ORACLE_HOME=/rdbms/oracle/ora1022i/64

The search is case-sensitive if the operating system supports case-sensitivity.

'TLFKEY' , SYSKEY, 'unique_key'

Valid for Extract and Replicat.

Use the TLFKEY option of @GETENV to associate a unique key with TLF/PTLF records in
ACI's Base24 application. The 64-bit key is composed of the following concatenated
items:

• The number of seconds since 2000.

• The block number of the record in the TLF/PTLF block multiplied by ten.

• The node specified by the user (must be between 0 and 255).

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax
element in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

'USERNAME' ,

Specifies the database login user name.

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax
element in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

3.82 GETINSERTS | IGNOREINSERTS
Valid For

Extract and Replicat

Description

Use the GETINSERTS and IGNOREINSERTS parameters to control whether or not INSERT
operations are processed by Oracle GoldenGate. These parameters are table-specific.
One parameter remains in effect for all subsequent TABLE or MAP statements, until the
other parameter is encountered.

Chapter 3
GETINSERTS | IGNOREINSERTS

3-152

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETINSERTS threads in one set of MAP statements, and specify the
IGNOREINSERTS threads in a different set of MAP statements.

Default

GETINSERTS

Syntax

GETINSERTS | IGNOREINSERTS

Example

This example shows how you can apply GETINSERTS and IGNOREINSERTS selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

GETINSERTS
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREINSERTS
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.83 GETREPLICATES | IGNOREREPLICATES
Valid For

Extract

Description

Use the GETREPLICATES and IGNOREREPLICATES parameters to control whether or not DML
transactions issued by Replicat are captured or ignored by an Extract process that is
processing the same tables on the same system.

These parameters are not valid for Informix.

Ignoring Replicat Transactions

By default, Extract uses a combination of IGNOREREPLICATES and GETAPPLOPS . In this
configuration, Extract captures all application data that is configured for
synchronization by Oracle GoldenGate, and it ignores all Replicat operations. In a bi-
directional configuration, this prevents the data that Replicat applies from looping back
to the original system, which would cause duplicate-record errors.

Capturing Replicat Transactions

Use GETREPLICATES with IGNOREAPPLOPS in a cascading configuration to enable replicated
data to be captured again by Extract on an intermediary system so that it can be
replicated to the final target. For example, if database A replicates to database B, and
database B replicates to database C, you would use GETREPLICATES for the Extract on
database B.

Chapter 3
GETREPLICATES | IGNOREREPLICATES

3-153

Note:

Even with GETREPLICATES in effect, however, you still can exclude specific
replicated data from being captured by using a WHERE or FILTER clause in a
TABLE or MAP statement.

Using GETREPLICATES and IGNOREREPLICATES with Oracle

The GETREPLICATES and IGNOREREPLICATES parameters should not be used if you are not
using a trace table (the TRACETABLE parameter). By default, Extract captures all
transactions including transactions committed by Replicat. If you want to ignore the
Replicat transactions, you should use the TRANLOGOPTIONS EXCLUDEUSER parameter. You
can also use this to ignore transactions by any specific user in addition to Replicat's
user.

If you are using the TRACETABLE parameter or have the default trace table, GGS_TRACE,
created without explicitly using TRACETABLE, then Extract automatically ignores any
transaction that has a TRACETABLE update in it by default. If you want to capture the
Replicat committed transactions, you have to specify GETREPLICATES. In this case,
Oracle does not recommend that you use it with TRANLOGOPTIONS EXCLUDUSER because
Replicat will have unpredictable behavior in transaction filtering.

Default

IGNOREREPLICATES

Syntax

GETREPLICATES | IGNOREREPLICATES

3.84 GETTRUNCATES | IGNORETRUNCATES
Valid For

Extract and Replicat

Description

Use the GETTRUNCATES and IGNORETRUNCATES parameters to control whether or not Oracle
GoldenGate processes table truncate operations. By default, truncate operations are
not captured from the source or replicated to the target.

GETTRUNCATES and IGNORETRUNCATES are table-specific. One parameter remains in effect
for all subsequent TABLE or MAP statements, until the other parameter is encountered.

In a coordinated Replicat configuration, truncates are always processed by the thread
that is responsible for barrier transactions.

Supported Databases

• GETTRUNCATES and IGNORETRUNCATES are not supported for Teradata.

• GETTRUNCATES and IGNORETRUNCATES are supported by Extract for Oracle Database,
MySQL, DB2 LUW, and DB2 for i.

Chapter 3
GETTRUNCATES | IGNORETRUNCATES

3-154

• GETTRUNCATES and IGNORETRUNCATES are supported by Extract and Replicat for DB2
for i.

• GETTRUNCATES and IGNORETRUNCATES are supported by Replicat for Oracle Database,
SQL Server, DB2 LUW, DB2 z/OS, MySQL, and other ODBC targets that support
the TRUNCATE command.

• GETTRUNCATES and IGNORETRUNCATES are supported by Extract for Sybase. However, if
the same table name is present in the include list for two schemas then it is
abended and an error occurs, stating " Found the same table name in multiple
schemas and the table name could not be resolved to process truncate operation."

• Sybase AES 16 is supported from Oracle GoldenGate 12.2.0.2.0

Note:

It is not possible to ignore TRUNCATEs during capture from a DB2 z/OS
database. By default, TRUNCATEs are always captured from a DB2 z/OS
source, but they can be ignored by Replicat if IGNORETRUNCATES is used in the
Replicat parameter file.

DB2 LUW Limitations

• DB2 LUW does not support a TRUNCATE command, so Replicat replicates a truncate
operation by performing an IMPORT REPLACE from a NULL (blank) file.

Oracle Limitations

• Oracle GoldenGate supports the Oracle TRUNCATE TABLE command, but not
TRUNCATE PARTITION. You can replicate TRUNCATE PARTITION as part of the full Oracle
GoldenGate DDL replication support.

• The database does not log truncates against an empty table, so those operations
are not captured by Oracle GoldenGate. The DDL support of Oracle GoldenGate
can be used for this purpose.

• The database does not log truncates for empty partitions, so Oracle GoldenGate
cannot reliably process TRUNCATE TABLE when the table contains any empty
partitions. Do not use GETTRUNCATES on any partitioned table. Oracle GoldenGate
DDL support can be used to capture truncates on tables that might include empty
partitions.

•

Default

IGNORETRUNCATES

Syntax

GETTRUNCATES | IGNORETRUNCATES

Chapter 3
GETTRUNCATES | IGNORETRUNCATES

3-155

3.85 GETUPDATEAFTERS | IGNOREUPDATEAFTERS
Valid For

Extract and Replicat

Description

Use the GETUPDATEAFTERS and IGNOREUPDATEAFTERS parameters to control whether or not
the after images of columns in UPDATE operations are included in the records processed
by Oracle GoldenGate. After images contain the results of the UPDATE.

These parameters are table-specific. One parameter remains in effect for all
subsequent TABLE or MAP statements, until the other parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETUPDATEAFTERS threads in one set of MAP statements, and specify
the IGNOREUPDATEAFTERS threads in a different set of MAP statements.

Default

GETUPDATEAFTERS

Syntax

GETUPDATEAFTERS | IGNOREUPDATEAFTERS

Example

This example shows how you can apply GETUPDATEAFTERS and IGNOREUPDATEAFTERS
selectively to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

GETUPDATEAFTERS
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREUPDATEAFTERS
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.86 GETUPDATEBEFORES | IGNOREUPDATEBEFORES
Valid For

Extract and Replicat

Description

Use the GETUPDATEBEFORES and IGNOREUPDATEBEFORES parameters to control whether or
not the before images of columns in UPDATE operations are included in the records that
are processed by Oracle GoldenGate. Before images contain column details that
existed before a row was updated.

Oracle GoldenGate 12c captures both the pre-change and post-change values for
update operations in a single unified update record by default. In previous releases the
default was to only capture the post-change value. Beginning in this release, custom

Chapter 3
GETUPDATEAFTERS | IGNOREUPDATEAFTERS

3-156

SQL statements (SQLEXEC) now only execute once per update operation with the new
default update format. Prior to this release, custom SQL statements would execute
twice, once when encountering the pre-change value and once when encountering the
post-change value. If you are using the Oracle GoldenGate 12c (12.1.x or 12.2.x) with
the new unified update format, you can explicitly pass the pre or post-value to the
custom SQL statement using the @BEFORE, @AFTER, and @BEFOREAFTER functions. Though
Oracle GoldenGate 12.2.x attempts to use this new update format by default, the old
format cam be preserved if there are conflicting parameters that would have previously
generated two separate pre and post change records. In these cases, an informational
message is logged in the report file.

Use the GETUPDATEBEFORES parameter as follows:

• in the Extract parameter file to extract before images from the data source.

• in the Replicat parameter file to include before images in a Replicat operation.

You can compare before images with after images to identify the net results of a
transaction or perform other delta calculations. For example, if a BALANCE field is $100
before an update and $120 afterward, a comparison would show the difference of $20.
You can use the column-conversion functions of Oracle GoldenGate to perform the
comparisons and calculations.

To reference before images in the parameter file, use the @BEFORE conversion function.
For example:

COLMAP (previous = @BEFORE (balance))

GETUPDATEBEFORES is required when using the Conflict Detection and Resolution (CDR)
feature for a Oracle database on any of the platforms that are supported by Oracle
GoldenGate. See Administering Oracle GoldenGate for Windows and UNIX for more
information about CDR.

The GETUPDATEBEFORES and IGNOREUPDATEBEFORES parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETUPDATEBEFORES threads in one set of MAP statements, and
specify the IGNOREUPDATEBEFORES threads in a different set of MAP statements.

Default

IGNOREUPDATEBEFORES

Syntax

GETUPDATEBEFORES | IGNOREUPDATEBEFORES

Example

This example shows how you can apply GETUPDATEBEFORES and IGNOREUPDATEBEFORES
selectively to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

GETUPDATEBEFORES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

Chapter 3
GETUPDATEBEFORES | IGNOREUPDATEBEFORES

3-157

IGNOREUPDATEBEFORES
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.87 GETUPDATES | IGNOREUPDATES
Valid For

Extract and Replicat

Description

Use the GETUPDATES and IGNOREUPDATES parameters to control whether or not Oracle
GoldenGate processes UPDATE operations. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the GETUPDATES threads in one set of MAP statements, and specify the
IGNOREUPDATES threads in a different set of MAP statements.

Default

GETUPDATES

Syntax

GETUPDATES | IGNOREUPDATES

Example

This example shows how you can apply GETUPDATES and IGNOREUPDATES selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

GETUPDATES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREUPDATES
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.88 GGSCHEMA
Valid For

GLOBALS

Description

Use the GGSCHEMA parameter to specify the name of the schema that contains the
database objects that are owned by Oracle GoldenGate, such as those that support
DDL replication for trigger based replication and those that are part of the heartbeat
table implementation.The schema name specified with GGSCHEMA will be considered an
excluded schema. Tables in this schema can only be captured if explicitly specified
with a non-wildcarded inclusion specification.

Chapter 3
GETUPDATES | IGNOREUPDATES

3-158

See Installing and Configuring Oracle GoldenGate for Oracle Database for more
information about the Oracle GoldenGate database objects.

Default

None

Syntax

GGSCHEMA [container.]schema_name

[container.]schema_name

The fully qualified name of the DDL schema. Use the full three-part name if the
schema is within an Oracle container database.

3.89 GROUPTRANSOPS
Valid For

Replicat

Description

Use the GROUPTRANSOPS parameter to control the number of SQL operations that are
contained in a Replicat transaction when operating in its normal mode (non-BATCHSQL).
Increasing the number of operations in a Replicat transaction improves the
performance of Oracle GoldenGate by:

• Reducing the number of transactions executed by Replicat.

• Reducing I/O activity to the checkpoint file and the checkpoint table, if used.
Replicat issues a checkpoint whenever it applies a transaction to the target, in
addition to its scheduled checkpoints.

Replicat accumulates operations from source transactions, in transaction order, and
applies them as a group within one transaction on the target. GROUPTRANSOPS sets a
minimum value rather than an absolute value, to avoid splitting apart source
transactions. Replicat waits until it receives all operations from the last source
transaction in the group before applying the target transaction.

For example, if transaction 1 contains 200 operations, and transaction 2 contains 400
operations, and transaction 3 contains 500 operations, the Replicat transaction
contains all 1,100 operations even though GROUPTRANSOPS is set to the default of 1,000.
Conversely, Replicat might apply a transaction before reaching the value set by
GROUPTRANSOPS if there is no more data in the trail to process.

Chapter 3
GROUPTRANSOPS

3-159

Table 3-33 Replicat GROUPTRANSOPS

Source Transactions (assumes same table
and column list)

Replicat transaction in normal
(GROUPTRANSOPS) mode

Transaction 1:
INSERT

DELETE

Transaction 2:
INSERT

DELETE

Transaction 3:
INSERT

DELETE

Transaction:
INSERT

DELETE

INSERT

DELETE

INSERT

DELETE

Avoid setting GROUPTRANSOPS to an arbitrarily high number because the difference
between source and target transaction boundaries can increase the latency of the
target data.

(Oracle only) For an integrated Replicat, GROUPTRANSOPS is effective only when the
integrated Replicat parameter PARALLELISM is set to 1.

Default

Nonintegrated Replicat: 1000 operations, Integrated Replicat: 50 operations

Syntax

GROUPTRANSOPS number

number

The minimum number of operations to be applied in a Replicat transaction. A value of
1 executes the operations within the same transaction boundaries as the source
transaction. The value must be at least 1.

Example

GROUPTRANSOPS 2000

3.90 HANDLECOLLISIONS | NOHANDLECOLLISIONS
Valid For

Replicat

Description

Use the HANDLECOLLISIONS and NOHANDLECOLLISIONS parameters to control whether or not
Replicat tries to resolve duplicate-record and missing-record errors when applying
SQL on the target. These errors, called collisions, occur during an initial load, when
data from source tables is being loaded to target tables while Oracle GoldenGate is
replicating transactional changes that are being made to those tables. When Oracle
GoldenGate applies the replicated changes after the load is finished, HANDLECOLLISIONS
provides Replicat with error-handling logic for these collisions.

Chapter 3
HANDLECOLLISIONS | NOHANDLECOLLISIONS

3-160

You can use HANDLECOLLISIONS and NOHANDLECOLLISIONS in the following ways:

• You can enable HANDLECOLLISIONS and NOHANDLECOLLISIONS in a global manner by
specifying them at the root level of the parameter file. One parameter remains
enabled for all subsequent MAP statements in the parameter file, until the opposing
parameter is encountered.

• You can enable HANDLECOLLISIONS or NOHANDLECOLLISIONS within a specific MAP
parameter to enable or disable error handling only for that source-target mapping.

The preceding methods can be combined. You can specify a global collisions-handling
rule and then override that rule with different collisions-handling rules in the MAP
statements. A MAP specification always overrides the global specification.

How HANDLECOLLISIONS Works

The following example explains how HANDLECOLLISIONS works:

• When Replicat encounters an update to a column that Oracle GoldenGate is using
as a key, the handling is as follows:

– If the row with the old key is not found in the target, the change record in the
trail is converted to an insert.

– If a row with the new key exists in the target, Replicat deletes the row that has
the old key (it would not exist if the update had executed successfully), and
then the row with the new key is updated as an overlay where the trail values
replace the current values.

This logic requires all of the columns in the table (not just the ones that changed)
to be logged to the transaction log, either by default or by force, such as by using
the COLS option of ADD TRANDATA for an Oracle database. See Possible Solutions to
Avoid Missing Column Values.

• When Replicat encounters a duplicate-record error, the static record that was
applied by the initial load is overwritten by the change record in the trail.
Overlaying the change is safer from an operational standpoint than ignoring the
duplicate-record error.

• Replicat with HANDLECOLLISIONS doesn't discard the change record in the trail even if
update or delete operation doesn’t affect a key column in the source and Replicat
encounters a missing-record error in the target. These errors happen when a
record is changed on the source system and then the record is deleted before the
table data is extracted by the initial-load process. For example:

1. The application updates record A in source table1.

2. Extract extracts the update.

3. The application deletes record A in source table1.

4. Extract extracts the delete.

5. Oracle GoldenGate extracts initial-load data from source table1, without record
A.

6. Oracle GoldenGate applies the initial load, without record A.

7. Replicat attempts to apply the update of record A.

8. The database returns a "record missing" error.

9. Replicat attempts to apply the delete of record A.

Chapter 3
HANDLECOLLISIONS | NOHANDLECOLLISIONS

3-161

10. The database returns a "record missing" error.

Disable HANDLECOLLLIONS after the transactional changes captured during the initial load
are applied to the target tables, so that Replicat does not automatically handle
subsequent errors. Errors generated after initial synchronization indicate an abnormal
condition and should be evaluated by someone who can determine how to resolve
them. For example, a missing-record error could indicate that a record which exists on
the source system was inadvertently deleted from the target system.

You can turn off HANDLECOLLISIONS in the following ways:

• Stop Replicat and remove HANDLECOLLISIONS from the Replicat parameter file (can
cause target latency). Alternatively, you can edit the parameter file to add
NOHANDLECOLLISIONS before the MAP statements for which you want to disable the
error handling.

• While Replicat is running, run GGSCI and then use the SEND REPLICAT command
with the NOHANDLECOLLISIONS option for the tables that you want to affect.

Note:

If using SEND REPLICAT, make certain to remove HANDLECOLLISIONS from the
parameter file or add a NOHANDLECOLLISIONS parameter before starting
another Replicat run, so that HANDLECOLLISIONS does not activate again.

Possible Solutions to Avoid Missing Column Values

When a database does not log all of the column values of a source table by default,
there can be errors if the target table has NOT NULL constraints when Replicat attempts
to convert a primary-key update to an insert. You can work around this scenario in the
following ways:

• Use the NOCOMPRESSUPDATES parameter in the Extract parameter file to send all of the
columns of the table to the trail, and configure the database to log all column
values. By default, Extract only writes the primary key and the columns that
changed to the trail. This is the safest method, because it writes the current values
at the time when the operation is performed and eliminates the need for fetching.

• Use the FETCHOPTIONS parameter with the FETCHPKUPDATECOLS option in the Extract
parameter file. This configuration causes Extract to fetch unavailable columns
when a key column is updated on the source. A fetch is the current value, not
necessarily the value at the time of a particular update, so there can be data
integrity issues. See "FETCHOPTIONS" for more information and additional fetch
options to handle unsuccessful fetches.

• To avoid fetches, use HANDLECOLLISIONS with _ALLOWPKMISSINGROWCOLLISIONS to skip
the update instead of converting it to an INSERT. This configuration can also cause
data integrity issues under certain conditions. See "Preventing Conversion of Key
Updates to Inserts" for more information.

Preventing Conversion of Key Updates to Inserts

In some cases, it is not appropriate to convert an operation that updates a key column
to an INSERT if the target row does not exist. In these cases, you can use the
_ALLOWPKMISSINGROWCOLLISIONS option to force Replicat to skip the operation, instead of
applying it as an insert.

Chapter 3
HANDLECOLLISIONS | NOHANDLECOLLISIONS

3-162

The following example illustrates such a case. This scenario performs an instantiation
of Oracle GoldenGate replication, using the default HANDLECOLLISIONS logic, to show
what happens if column values are missing when Replicat tries to convert the update
to an insert.

Source and Target tables:

Both tables are named sample.

f1 f2 f3 f4
1 10-01-2011 11:30:45 1 1
2 10-02-2011 14:15:20 2 2
3 10-03-2011 15:12:55 3 3

• All columns are NOT NULL.

• f1 is the primary key.

• f2 is a date field that automatically updates whenever the record is changed.

• KEYCOLS is used in the parameter files to instruct Oracle GoldenGate to use f1 and
f2 as the key.

• ADD TRANDATA was issued accordingly, to log column f2. Column f1 is automatically
logged because it is a primary key.

DML sequence of events:

1. Start Extract to capture ongoing transactions.

2. UPDATE the table as follows:

update sample set f3=3 where f1=2;

In this operation, column f2 updates automatically with the current date and time.
Oracle GoldenGate considers this to be a key update.

The row now looks like this:

2 10-20-2011 08:01:32 3 3

3. DELETE the same row.

delete sample where f1=2;

Now the table contains the following rows:

f1 f2 f3 f4
1 10-01-2011 11:30:45 1 1
3 10-03-2011 15:12:55 3 3

4. Perform an export/import of the source data to the target, using HANDLECOLLISIONS
to handle missing or duplicate rows.

5. The replicated update (update sample, set f3=3 where f1=2) is the first operation to
be applied from the trail by Replicat. It fails because the row was deleted from the
source before the import/export was performed.

6. Replicat converts the UPDATE to an INSERT according to HANDLECOLLISIONS logic for
operations that update a key column (the f2 date-time column).

7. In a case where all of the column values are available in the trail, the new INSERT
succeeds. Moreover, it does not cause inconsistency, even though the row was
deleted on the source, because the replicated delete (delete sample where f1=2)
removes it again. However, in this example, there are two problems:

Chapter 3
HANDLECOLLISIONS | NOHANDLECOLLISIONS

3-163

• Only columns f1 and f2, plus the changed value of f3, are logged. The value
for f4 is not logged and the value is not available for the insert operation.

• All columns have a NOT NULL constraint.

The missing f4 value causes the INSERT to fail. By using _ALLOWPKMISSINGROWCOLLISIONS,
Replicat skips the UPDATE instead of converting it to an INSERT. This causes the
subsequent DELETE to fail because the row does not exist, so Replicat skips the DELETE
record as part of the default HANDLECOLLISIONS logic. The data now is consistent with
that of the source.

Messages from _ALLOWPKMISSINGROWCOLLISIONS

Because of the risk of data loss associated with _ALLOWPKMISSINGROWCOLLISIONS, a
warning is issued when it is used. The warning is similar to the following text:

Using _ALLOWPKMISSINGROWCOLLISIONS may cause data corruption under certain
conditions.

A warning message also is issued for when an UPDATE to a key does not contain a full
after image for conversion to an insert:

A complete after image is not available in SOURCE.x, at RBA 123, in file .\dirdat
\aa00000000, while inserting a row into TARGET.x due to a missing target row for a
key update operation. NOCOMPRESSUPDATES or FETCHOPTIONS FETCHPKUPDATECOLS may be
specified in the EXTRACT parameter file to include a complete image for key update
operations.

Getting More Information about Initial Loads

See Administering Oracle GoldenGate for Windows and UNIX for more information
about Oracle GoldenGate initial load methods.

Default

NOHANDLECOLLISIONS

Syntax

HANDLECOLLISIONS | NOHANDLECOLLISIONS [_ALLOWPKMISSINGROWCOLLISIONS]
[THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

HANDLECOLLISIONS

Enables collision handling.

_ALLOWPKMISSINGROWCOLLISIONS

Use HANDLECOLLISIONS with _ALLOWPKMISSINGROWCOLLISIONS to skip primary-key UPDATE
operations if the corresponding target row does not exist.

Note:

Skipping operations can cause data corruption. See the Description in this
topic.

NOHANDLECOLLISIONS

Turns off collision handling.

Chapter 3
HANDLECOLLISIONS | NOHANDLECOLLISIONS

3-164

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])
Enables HANDLECOLLISIONS for the specified threads. When used in a global
HANDLECOLLISIONS statement at the root level of the parameter file, HANDLECOLLISIONS is
enabled for the specified threads wherever they are in all MAP statements where .
When used in a HANDLECOLLISIONS clause of a MAP statement, HANDLECOLLISIONS is
enabled only for that MAP statement.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1
This example enables HANDLECOLLISIONS for all MAP statements in the parameter file.

HANDLECOLLISIONS
MAP hr.emp, TARGET hr.emp;
MAP hr.job_hist, TARGET hr.job_hist;
MAP hr.dep, TARGET hr.dep;
MAP hr.country, TARGET hr.country;

Example 2
This example enables HANDLECOLLISIONS for some MAP statements while disabling it for
others.

HANDLECOLLISIONS
MAP hr.emp, TARGET hr.emp;
MAP hr.job_hist, TARGET hr.job_hist;
NOHANDLECOLLISIONS
MAP hr.dep, TARGET hr.dep;
MAP hr.country, TARGET hr.country;

Example 3
This example shows the basic use of HANDLECOLLISIONS within a MAP statement.

MAP dbo.tcust, TARGET dbo.tcust, HANDLECOLLISIONS;

Example 4
This example shows a combination of global and MAP-level use. The MAP specification
overrides the global specification for the specified tables.

HANDLECOLLISIONS
MAP hr.emp, TARGET hr.emp;
MAP hr.job_hist, TARGET hr.job_hist;
MAP hr.dep, TARGET hr.dep, NOHANDLECOLLISIONS;
MAP hr.country, TARGET hr.country, NOHANDLECOLLISIONS;

Chapter 3
HANDLECOLLISIONS | NOHANDLECOLLISIONS

3-165

Example 5
In the following example, HANDLECOLLISIONS is enabled globally for all MAP statements,
except for default thread 0 in the first MAP statement and for thread 3 in the second MAP
statement.

HANDLECOLLISIONS
MAP fin.*, TARGET fin.*;
MAP sales.*, TARGET sales.*;
MAP orders.*, TARGET orders.*;
MAP scott.cust, TARGET scott.cust, NOHANDLECOLLISIONS;
MAP amy.cust, TARGET amy.cust, THREAD(3), NOHANDLECOLLISIONS;

Example 6
In this example, HANDLECOLLISIONS is enabled globally, but turned off for thread 3. The
remaining threads 1, 2, and 4 will handle collisions.

HANDLECOLLISIONS
NOHANDLECOLLISIONS THREAD(3)
MAP scott.emplyees, TARGET scott.employees, THREADRANGE(1,4, OID);
MAP scott.inventory, TARGET scott.inventory, THREADRANGE(1,4, OID);
MAP scott.cust, TARGET scott.cust, THREADRANGE(1,4, OID);

Example 7
In this example, HANDLECOLLISIONS is enabled globally, then disabled globally for
threads 5 through 7. In the first map statement, all threads will handle collisions, since
the HANDLECOLLISIONS parameter does not specify a thread or a range. In the second
map statement, only threads 4, 8, and 9 will handle collisions, because the global
NOHANDLECOLLISIONS applies to threads 5-7.

HANDLECOLLISIONS
NOHANDLECOLLISIONS THREADRANGE(5-7)
MAP scott.cust, TARGET scott.cust, THREADRANGE(4,9,OID), HANDLECOLLISIONS;
MAP scott.offices, TARGET scott.offices, THREADRANGE(4,9,OID);
MAP scott.emp, TARGET scott.emp, THREADRANGE(4,9,OID);
MAP scott.ord, TARGET scott.ord, THREADRANGE(4,9,OID);
MAP acct.*, TARGET acct.*;
MAP admin.*, TARGET admin.*;

3.91 HANDLETPKUPDATE
Valid For

Replicat (nonintegrated mode)

Description

Use the HANDLETPKUPDATE parameter to prevent constraint errors when an update to a
primary key results in a transient duplicate. This is an Oracle parameter for
nonintegrated Replicat and is required if the target database is any version earlier than
Oracle version 11.2.0.2. For target Oracle databases that are version 11.2.0.2 or later,
transient primary-key duplicates are handled automatically without requiring
HANDLETPKUPDATE. Integrated Replicat handles this issue automatically so it is not
necessary to set this parameter

A transient primary-key duplicate occurs when an update affects the primary keys of
multiple rows in a transaction. This kind of statement typically uses a SET x = x+n
formula or other manipulation that shifts the values so that a new value is the same as
an existing one.

Chapter 3
HANDLETPKUPDATE

3-166

The following example illustrates a sequence of value changes that can cause this
condition. The example assumes table ITEM where the primary key column is named
CODE and the current key values for the rows in the table are 1, 2, and 3.

update item set code = 2 where code = 1;
update item set code = 3 where code = 2;
update item set code = 4 where code = 3;

In this example, when the first UPDATE is applied to the target, there is an error because
the primary key value of 2 already exists in the target. The target transaction returns
constraint violation errors. By default, Replicat does not detect or handle these
violations and abends.

When using HANDLETPKUPDATE, create the constraints as DEFERRABLE INITIALLY IMMEDIATE
on the target tables. If the target constraints cannot be DEFERRABLE, Replicat handles
the errors according to existing rules specified with the HANDLECOLLISIONS and REPERROR
parameters, or else it abends.

This parameter can be used in a parameter file, and it can be used within a MAP
statement as follows:

MAP ggs.equip_account, TARGET ggs.equip_account, HANDLETPKUPDATE;

Default

Abend on transient primary key updates

Syntax

HANDLETPKUPDATE

3.92 HAVEUDTWITHNCHAR
Valid For

Replicat (Oracle only)

Description

Use the HAVEUDTWITHNCHAR parameter when the source data contains user-defined types
that have an NCHAR, NVARCHAR2, or NCLOB attribute. When this data is encountered in the
trail, HAVEUDTWITHNCHAR causes Replicat to connect to the Oracle target in AL32UTF8,
which is required when a user-defined data type contains one of those attributes.

HAVEUDTWITHNCHAR is not required if the character set of the target is AL32UTF8. However,
it is required if only NLS_LANG is set to AL32UTF8 on the target. By default Replicat ignores
NLS_LANG and connects to an Oracle database in the native character set of the
database. Replicat uses the OCIString object of the Oracle Call Interface, which does
not support NCHAR, NVARCHAR2, or NCLOB attributes, so Replicat must bind them as CHAR.
Connecting to the target in AL32UTF8 prevents data loss in this situation.

HAVEUDTWITHNCHAR must be specified before the USERID or USERIDALIAS parameter in the
parameter file.

Default

None

Chapter 3
HAVEUDTWITHNCHAR

3-167

Syntax

HAVEUDTWITHNCHAR

3.93 HEARTBEATTABLE
Valid For

GLOBALS

Description

Use HEARTBEATTABLE to specify a non-default name of the heartbeat table. The table
name GG_HEARTBEAT is the default. This name used to denote the heartbeat table is
used to create a seed and history table, GG_HEARTBEAT_SEED and GG_HEARTBEAT_HISTORY
respectively. Specifying one name reserves all names used by the heartbeat
infrastructure. If the schema name is not specified, the value in GGSCHEMA is used for
schema name.

For SQL/MX, GGSCHEMA is not used so you must use a two or three part heartbeat table
name.

Default

None

Syntax

 HEARTBEATTABLE schema_name heartbeat_table_name

schema_name

The name of the schema you want to use with the heartbeat table. This is not needed
if you have specified the schema using the GGSCHEMA parameter in your GLOBALS file.

heartbeat_table_name

The heartbeat table name you want to use. The default table name is GG_HEARTBEAT.

3.94 INCLUDE
Valid For

Extract and Replicat

Description

Use the INCLUDE parameter to include a macro library in a parameter file. See
Administering Oracle GoldenGate for Windows and UNIX for more information about
using macros.

Default

None

Syntax

INCLUDE library

Chapter 3
HEARTBEATTABLE

3-168

library

The relative or full path to library file.

Example

The following example includes macro library mdatelib.mac.

INCLUDE /ggs/dirprm/mdatelib.mac

3.95 INSERTALLRECORDS
Valid For

Replicat

Description

Use the INSERTALLRECORDS parameter to keep a record of all operations made to a target
record, instead of maintaining just the current version. INSERTALLRECORDS causes
Replicat to insert every change that is made to a record as a new record in the
database. The initial insert and subsequent updates and deletes are maintained as
point-in-time snapshots.

Some cases for using INSERTALLRECORDS are the following:

• To work within an exceptions MAP statement. In an exceptions MAP statement,
INSERTALLRECORDS causes the values of operations that generated errors to be
inserted as new records in an exceptions table as part of an error-handling
strategy.

• To maintain a transaction history. By inserting every change to a specific row as a
new record in the database, you can maintain a history of all changes made to that
row, instead of maintaining just the current version. Each insert is a point-in-time
snapshot that can be queried as needed for auditing purposes. Combining
historical data with special transaction information provides a way to create a more
useful target reporting database.

INSERTALLRECORDS can be used at the root level of the parameter file to affect all
subsequent MAP statements, and it can be used within a MAP statement to affect a
specific table or multiple tables specified with a wildcard.

Getting More Information about INSERTALLRECORDS

See Administering Oracle GoldenGate for Windows and UNIX for information about
creating a transaction history table.

See Administering Oracle GoldenGate for Windows and UNIX for information about
using an exceptions MAP statement.

See "TABLE | MAP" for MAP syntax.

Default

None

Syntax

INSERTALLRECORDS

Chapter 3
INSERTALLRECORDS

3-169

Examples

Example 1
This example shows INSERTALLRECORDS at the root level of the parameter file as part of
an exceptions handling configuration.

REPLICAT deliv
USERIDALIAS tiger1
ASSUMETARGETDEFS
REPERROR (DEFAULT, EXCEPTION)
MAP ggs.equip_account, TARGET ggs.equip_account2,
COLMAP (USEDEFAULTS);
MAP ggs.equip_account, TARGET ggs.equip_account_exception,
EXCEPTIONSONLY,
INSERTALLRECORDS
COLMAP (USEDEFAULTS,
DML_DATE = @DATENOW(),
OPTYPE = @GETENV('LASTERR', 'OPTYPE'),
DBERRNUM = @GETENV('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV('LASTERR', 'DBERRMSG'));

Example 2
This example shows INSERTALLRECORDS in a MAP statement.

REPLICAT deliv
USERIDALIAS tiger1
SOURCEDEFS /ggs/dirdef/defs
REPERROR DEFAULT, ABEND
MAP fin.accTAB, TARGET fin.custTAB, INSERTALLRECORDS;

3.96 INSERTAPPEND | NOINSERTAPPEND
Valid For

Replicat (Oracle Nonintegrated mode)

Description

Use the INSERTAPPEND and NOINSERTAPPEND parameters to control whether or not a
Replicat operating in nonintegrated mode uses an APPEND hint when it applies INSERT
operations (used for array binding) to Oracle target tables. These parameters are valid
only for Oracle databases and are only compatible with BATCHSQL mode.

INSERTAPPEND causes Replicat to use the APPEND_VALUES hint when it applies INSERT
operations to Oracle target tables. It is appropriate for use as a performance
improvement when the replicated transactions are large and contain multiple inserts
into the same table. If the transactions are small, using INSERTAPPEND can cause a
performance decrease. For more information about when APPEND hints should be used,
consult the Oracle documentation.

The BATCHSQL parameter must be used when using INSERTAPPEND. Replicat will abend if
BATCHSQL is not used.

These parameters can be used in two ways: When used as standalone parameters at
the root of the parameter file, one remains in effect for all subsequent TABLE or MAP
statements, until the other is encountered. When used within a MAP statement, they
override any standalone INSERTAPPEND or NOINSERTAPPEND entry that precedes the MAP
statement.

Chapter 3
INSERTAPPEND | NOINSERTAPPEND

3-170

See "TABLE | MAP" for more information about the MAP parameter.

Default

NOINSERTAPPEND

Syntax

INSERTAPPEND | NOINSERTAPPEND

Examples

Example 1
The following is part of a Replicat parameter file that shows how INSERTAPPEND is used
for all of the tables in the fin schema, except for the inventory table.

BATCHSQL
INSERTAPPEND
MAP fin.*, TARGET fin2.*;
MAPEXCLUDE fin.inventory;
NOINSERTAPPEND
MAP fin.inventory, TARGET fin2.inventory;

Example 2
The following is part of a Replicat parameter file that shows how INSERTAPPEND is used
for all of the tables in the MAP statements, except for the inventory table.

BATCHSQL
MAP fin.orders, TARGET fin.orders;
MAP fin.customers, TARGET fin.customers;
MAP fin.inventory, TARGET fin.inventory, NOINSERTAPPEND;

3.97 INSERTDELETES | NOINSERTDELETES
Valid For

Replicat

Description

Use the INSERTDELETES and NOINSERTDELETES parameters to control whether or not
Oracle GoldenGate converts source delete operations to insert operations on the
target database. The parameters are table-specific. One parameter remains in effect
for all subsequent MAP statements, until the other parameter is encountered.

When using INSERTDELETES, use the NOCOMPRESSDELETES parameter so that Extract does
not compress deletes.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the INSERTDELETES threads in one set of MAP statements, and specify
the NOINSERTDELETES threads in a different set of MAP statements.

Default

NOINSERTDELETES

Chapter 3
INSERTDELETES | NOINSERTDELETES

3-171

Syntax

INSERTDELETES | NOINSERTDELETES

Example

This example shows how you can apply INSERTDELETES and NOINSERTDELETES selectively
to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

INSERTDELETES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOINSERTDELETES
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.98 INSERTMISSINGUPDATES |
NOINSERTMISSINGUPDATES

Valid For

Replicat

Description

Use the INSERTMISSINGUPDATES and NOINSERTMISSINGUPDATES parameters to control
whether or not Oracle GoldenGate inserts a record based on the source record when
the target record does not exist.

INSERTMISSINGUPDATES inserts the missing update but should only be used when the
source database logs all column values, whether or not they changed). It can work
with a database that uses a compressed form of updates (where only the changed
values are logged) if the target database allows NULL to be used for the missing column
values.

When the default of NOINSERTMISSINGUPDATES is in effect, a missing record causes an
error, and the transaction may abend depending on REPERROR settings.

The INSERTMISSINGUPDATES and NOINSERTMISSINGUPDATES parameters are table-specific.
One parameter remains in effect for all subsequent MAP statements, until the other
parameter is encountered.

Default

NOINSERTMISSINGUPDATES

Syntax

INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

3.99 INSERTUPDATES | NOINSERTUPDATES
Valid For

Replicat

Chapter 3
INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

3-172

Description

Use the INSERTUPDATES and NOINSERTUPDATES parameters to control whether or not
Oracle GoldenGate converts update operations to insert operations. For updates to be
converted to inserts, the database must log all column values either by default or by
means of supplemental logging.

The parameters are table-specific. One parameter remains in effect for all subsequent
MAP statements, until the other parameter is encountered.

To ensure that updates are not compressed by Extract when using INSERTUPDATES, use
the NOCOMPRESSUPDATES parameter.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the INSERTUPDATES threads in one set of MAP statements, and specify
the NOINSERTUPDATES threads in a different set of MAP statements.

Default

NOINSERTUPDATES

Syntax

INSERTUPDATES | NOINSERTUPDATES

Example

This example shows how you can apply INSERTUPDATES and NOINSERTUPDATES selectively
to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

INSERTUPDATES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOINSERTUPDATES
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.100 LAGCRITICAL
Valid For

Manager

Description

Use the LAGCRITICALSECONDS, LAGCRITICALMINUTES, or LAGCRITICALHOURS parameter to
specify a lag threshold that is considered critical, and to force a warning message to
the error log when the threshold is reached. This parameter affects Extract and
Replicat processes on the local system.

Default

Do not report lag information

Syntax

LAGCRITICALSECONDS seconds | LAGCRITICALMINUTES minutes | LAGCRITICALHOURS hours

Chapter 3
LAGCRITICAL

3-173

LAGCRITICALSECONDS seconds

Sets the critical lag threshold in seconds. The minimum is 0.

LAGCRITICALMINUTES minutes

Sets the critical lag threshold in minutes. The minimum is 0.

LAGCRITICALHOURS hours

Sets the critical lag threshold in hours. The minimum is 0.

Example

LAGCRITICALSECONDS 60

3.101 LAGINFO
Valid For

Manager

Description

Use the LAGINFOSECONDS, LAGINFOMINUTES, or LAGINFOHOURS parameter to specify a basic
lag threshold; if lag exceeds the specified value, Oracle GoldenGate reports lag
information to the error log. If the lag exceeds the value specified with the LAGCRITICAL
parameter, Manager reports the lag as critical; otherwise, it reports the lag as an
informational message. A value of zero (0) forces a message at the frequency
specified with the LAGREPORTMINUTES or LAGREPORTHOURS parameter.

Default

Do not report lag information

Syntax

LAGINFOSECONDS seconds | LAGINFOMINUTES minutes | LAGINFOHOURS hours

LAGINFOSECONDS seconds

Sets a basic lag threshold in seconds. The minimum is 0.

LAGINFOMINUTES minutes

Sets a basic lag threshold in minutes. The minimum is 0.

LAGINFOHOURS hours

Sets a basic lag threshold in hours. The minimum is 0.

Example

In this example, Oracle GoldenGate reports lag when it exceeds one hour.

LAGINFOHOURS 1

3.102 LAGREPORT
Valid For

Manager

Chapter 3
LAGINFO

3-174

Description

Use the LAGREPORTMINUTES or LAGREPORTHOURS parameter to specify the interval at which
Manager checks for Extract and Replicat lag. Use of this parameter also requires the
use of the LAGINFO and LAGCRITICAL parameters. If LAGREPORT is not specified, lag is not
reported.

If LAGREPORT is used and the value of the CHECKMINUTES parameter is greater than
LAGREPORT, then CHECKMINUTES will acquire the value of LAGREPORT.

Default

None

Syntax

LAGREPORTMINUTES minutes | LAGREPORTHOURS hours

LAGREPORTMINUTES minutes

The frequency, in minutes, to check for lag. The minimum is 0.

LAGREPORTHOURS hours
The frequency, in hours, to check for lag. The minimum is 0.

Example

LAGREPORTHOURS 1

3.103 LIST | NOLIST
Valid For

Extract and Replicat

Description

Use the LIST and NOLIST parameters to control whether or not the macros of a macro
library are listed in the report file. Listing can be turned on and off by placing the LIST
and NOLIST parameters within the parameter file or within the macro library file. Using
NOLIST reduces the size of the report file. For more information about using macros,
see the Administering Oracle GoldenGate for Windows and UNIX.

Default

LIST

Syntax

LIST | NOLIST

Example

In the following example, NOLIST excludes the macros in the hugelib macro library from
being listed in the report. Using LIST after the INCLUDE statement restores normal listing
for subsequent macros.

Chapter 3
LIST | NOLIST

3-175

NOLIST
INCLUDE /ggs/hugelib.mac
LIST

3.104 LOBMEMORY
Valid For

Extract and Replicat for DB2 on z/OS and NonStop SQL/MX

Description

Use the LOBMEMORY parameter to control the amount of memory and temporary disk
space available for caching transactions that contain LOBs. Because Oracle
GoldenGate applies only committed transactions to the target database, it requires
sufficient system memory to store LOB data until either a commit or rollback indicator is
received.

This parameter is for use with a DB2 database on z/OS and for a NonStop SQL/MX
database. For all other databases, use the CACHEMGR parameter.

About Memory Management with LOBMEMORY

LOBMEMORY enables you to tune the cache size of Oracle GoldenGate for LOB
transactions and define a temporary location on disk for storing data that exceeds the
size of the cache. Options are available for defining the total cache size, the per-
transaction memory size, the initial and incremental memory allocation, and disk
storage space.

LOB transactions are added to the memory pool specified by RAM, and each is flushed to
disk when TRANSRAM is reached. An initial amount of memory is allocated to each
transaction based on INITTRANSRAM and is increased by the amount specified by
RAMINCREMENT as needed, up to the maximum set with TRANSRAM. Consequently, the
value for TRANSRAM should be evenly divisible by the sum of (INITTRANSRAM +
RAMINCREMENT).

Default

See option defaults

Syntax

LOBMEMORY
[RAM size]
[TRANSRAM size]
[TRANSALLSOURCES size]
[INITTRANSRAM size]
[RAMINCREMENT size]
[DIRECTORY (directory, max_directory_size, max_file_size)]

RAM size

Specifies the total amount of memory to use for all cached LOB transactions. The
default is 200 megabytes. The value can be specified in bytes or in terms of
gigabytes, megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

Chapter 3
LOBMEMORY

3-176

TRANSRAM size

Specifies the total amount of memory to use for a single LOB transaction. The default is
50 megabytes. The value can be specified in bytes or in terms of gigabytes,
megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

TRANSRAM should be evenly divisible by both INITTRANSRAM and RAMINCREMENT for optimal
results.

TRANSALLSOURCES size

Specifies the total amount of memory and disk space to use for a single LOB
transaction. The default is 50% of total available memory (memory and disk). The
value can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes in
any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

INITTRANSRAM size

Specifies the initial amount of memory to allocate for a LOB transaction. The default is
500 kilobytes. The value can be specified in bytes or in terms of gigabytes,
megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

RAMINCREMENT size

Specifies the amount of memory to increment when a LOB transaction requires more
memory. The default is 500 kilobytes. The value can be specified in bytes or in terms
of gigabytes, megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m |

DIRECTORY (directory, max_directory_size, max_file_size)

Specifies temporary disk storage for LOB transaction data when its size exceeds the
maximum specified with TRANSRAM. You can specify DIRECTORY more than once.

• directory is the fully qualified name of a directory. The default is the dirtmp sub-
directory of the Oracle GoldenGate directory.

• max_directory_size is the maximum size of all files in the directory. The default is
2 gigabytes. If the space specified is not available, then 75% of available disk
space is used.

• max_file_size is the maximum size of each file in the directory. The default is 200
megabytes.

Values can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes in
any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

The directory size and file size must be greater than the size of the memory specified
with RAM.
The file names use the following format.
group_blob_00001.mem

or...
PID_blob_00001.mem

A group name is used for online processes. A system process ID number (PID) is
used for one-time runs specified with the SPECIALRUN parameter.
The format for a threaded Extract is similar to the following, depending on the
database.
group_thread #_00001.mem

Chapter 3
LOBMEMORY

3-177

Examples

Example 1
The following example allows per-transaction memory to be incremented ten times
before data is flushed to disk, once for the initial allocation specified with INITTRANSRAM
and then nine more times as permitted by RAMINCREMENT.

LOBMEMORY DIRECTORY (c:\test\dirtmp, 3000000000, 300000000), &
RAM 8000K, TRANSRAM 1000K, INITTRANSRAM 100K, RAMINCREMENT 100K

Example 2
The following is the same as the preceding example, but with the addition of a second
directory.

LOBMEMORY DIRECTORY (c:\test\dirtmp, 3000000000, 300000000), &
DIRECTORY (c:\test\dirtmp2, 1000000000, 5000000), &
RAM 8000K, TRANSRAM 1000K, INITTRANSRAM 100K, RAMINCREMENT 100K

3.105 LOGALLSUPCOLS
Valid For

Extract

Description

Use the LOGALLSUPCOLS parameter to control the writing of supplementally logged
columns specified with ADD TRANDATA or ADD SCHEMATRANDATA to the trail.

LOGALLSUPCOLS supports integrated Replicat (for Oracle database) and the Oracle
GoldenGateConflict Detection and Resolution feature (CDR). The supplementally
logged columns are a union of the scheduling columns that are required to ensure
data integrity across parallel Replicat threads and the conflict detection and resolution
(CDR) columns. Scheduling columns are primary key, unique index, and foreign key
columns. Including all of these supplementally logged columns satisfies the
requirements of both CDR and dependency computation in parallel Replicat
processing.

LOGALLSUPCOLS causes Extract to do the following with these supplementally logged
columns:

• Automatically includes in the trail record the before image for UPDATE operations.

• Automatically includes in the trail record the before image of all supplementally
logged columns for both UPDATE and DELETE operations.

For Extract versions older than 12c, you can use GETUPDATEBEFORES and
NOCOMPRESSDELETES parameters to satisfy the same requirement. See
GETUPDATEBEFORES | IGNOREUPDATEBEFORES and COMPRESSUPDATES |
NOCOMPRESSUPDATES for more information.

LOGALLSUPCOLS | NOLOGALLSUPCOLS takes precedence over the following parameters, if
used:

• GETUPDATEBEFORES | IGNOREUPDATEBEFORES

• COMPRESSDELETES | NOCOMPRESSDELETES

Chapter 3
LOGALLSUPCOLS

3-178

• COMPRESSUPDATES | NOCOMPRESSUPDATES for before images, but COMPRESSUPDATES |
NOCOMPRESSUPDATES takes precedence over LOGALLSUPCOLS on after images.

Default

LOGALLSUPCOLS

Syntax

LOGALLSUPCOLS

3.106 MACRO
Valid For

Extract and Replicat

Description

Use the MACRO parameter to create an Oracle GoldenGate macro. See Administering
Oracle GoldenGate for Windows and UNIX for more information about using macros,
including how to invoke them properly.

Default

None

Syntax

The following must be used in the order shown:

MACRO #macro_name
PARAMS (#param_name [, ...])
BEGIN
macro_body
END;

MACRO

Starts the macro specification.

#

The macro character. Macro and parameter names must begin with a macro
character. Anything in the parameter file that begins with the macro character is
assumed to be either a macro or a macro parameter.
The default macro character is the pound (#) character, as in the following examples:

MACRO #macro1
PARAMS (#param1, #param2)

You can change the macro character with the MACROCHAR parameter.

macro_name

The name of the macro. Macro names must be one word with alphanumeric
characters (underscores are allowed) and are not case-sensitive. Each macro name
in a parameter file must be unique. Do not use quotes, or else the macro name will be
treated as text and ignored.

Chapter 3
MACRO

3-179

PARAMS

Starts a parameter clause. A parameters clause is optional. The maximum size and
number of parameters is unlimited, assuming sufficient memory is available.

param_name

Describes a parameter to the macro. Parameter names are not case-sensitive. Do not
use quotes, or else the parameter name will be treated as text and ignored.
Every parameter used in a macro must be declared in the PARAMS statement, and when
the macro is invoked, the invocation must include a value for each parameter.

BEGIN

Begins the macro body. Must be specified before the macro body.

macro_body

The body of the macro. The size of the macro body is unlimited, assuming sufficient
available memory. A macro body can include any of the following types of statements:

• Simple parameter statements, as in:

COL1 = COL2

• Complex statements, as in:

COL1 = #val2

• Invocations of other macros, as in:

#colmap(COL1, #sourcecol)

END;

Concludes the macro definition. The semicolon is required to complete the definition.

Examples

Example 1
The following example defines a macro that takes parameters.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE('YYYY-MM-DD', 'CC', @IF(#year < 50, 20, 19),
'YY', #year, 'MM', #month, 'DD', #day)
END;

Example 2
The following example defines a macro that does not require parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

Example 3
The following example defines a macro named #assign_date that calls another macro
named #make_date.

Chapter 3
MACRO

3-180

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

3.107 MACROCHAR
Valid For

Extract and Replicat

Description

Use the MACROCHAR parameter to change the macro character of a macro definition to
something other than the # character. You might need to change the macro character
when, for example, table names include the # character.

The MACROCHAR parameter can only be used once in the parameter file. Place the
MACROCHAR parameter before the first MACRO parameter in the parameter file. Anything in
the parameter file that begins with the specified macro character is assumed to be
either a macro or a macro parameter. All macro definitions in the parameter file must
use the specified character.

MACROCHAR cannot be used with query parameters.

See also "MACRO".

See the Administering Oracle GoldenGate for Windows and UNIX for more information
about using macros.

Default

(pound symbol)

Syntax

MACROCHAR character

character

The character to be used as the macro character. Valid user-defined macro
characters are letters, numbers, and special characters such as the ampersand (&) or
the underscore (_).

Example

In the following example, $ is defined as the macro character.

MACROCHAR $
MACRO $mymac
PARAMS ($p1)
BEGIN
col = $p1
END;

Chapter 3
MACROCHAR

3-181

3.108 MAP for Extract
Valid For

Extract

Description

Use the MAP parameter for Extract when Extract is operating in classic capture mode
and you need to use the ALTID component of this parameter to map an object ID to an
object name. ALTID specifies the correct object ID if Extract is capturing from Oracle
transaction logs that were generated by a database other than the one to which
Extract is connected. This configuration is required when Extract is not permitted to
connect directly to the production (source) database to capture production
transactions.

When Extract cannot connect directly to a source database, it connects to a live
standby or other facsimile database, but it reads transaction logs that are sent from the
source database. By querying the catalog of the alternate database, Extract can get
the metadata that it needs to expand the transaction data into valid SQL statements,
but it cannot use the object ID from this query. The local object ID for a table is
different from the object ID of that table in the source database (and, thus, in the
transaction log). You must manually map each table name to the source object ID by
using a MAP statement with ALTID.

To Use MAP with ALTID

• Create one MAP statement with ALTID for each table that you want to capture.
Wildcarded table names are not allowed for a MAP parameter that contains ALTID.

• To specify other processing for the same table (or tables), such as data filtering or
manipulation, you must also create a TABLE statement for each of those tables.
Wildcarding can be used to specify multiple tables with one TABLE statement, if
appropriate.

• Use a regular Replicat MAP statement in the Replicat parameter file, as usual. MAP
for Extract does not substitute for MAP for Replicat, which is required to map source
tables to target tables.

• DDL capture and replication is not supported when using ALTID.

Default

None

Syntax

MAP [container.]schema.table, ALTID object_ID [, object_ID]

[container.]schema.table

The fully qualified name of the source table.

object_ID

The object ID of the table as it exists in the production (source) database.
If a table is partitioned, you can list the object IDs of the partitions that you want to
replicate, separating each with a comma.

Chapter 3
MAP for Extract

3-182

Examples

Example 1
This example maps a non-partitioned table or just one partition of a partitioned table.

MAP QASOURCE.T2, ALTID 75740;

Example 2
This example maps partitions of a partitioned table.

MAP QASOURCE.T_P1, ALTID 75257,75258;

3.109 MAP
See "TABLE | MAP".

3.110 MAPEXCLUDE
Valid For

Replicat

Description

Use the MAPEXCLUDE parameter with the MAP parameter to explicitly exclude source
tables and sequences from a wildcard specification. MAPEXCLUDE must precede all MAP
statements that contain the source objects that are being excluded. You can use
multiple MAPEXCLUDE statements for specific MAP statements.

MAPEXCLUDE is evaluated before evaluating the associated MAP parameters. Thus, the
order in which they appear does not make a difference.

When using wildcards, be careful not to place them such that all objects are excluded,
leaving nothing to process. For example, the following example captures nothing:

MAP cat1.schema*.tab*, TARGET schema*.tab*;
MAPEXCLUDE cat1.*.*

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

The default for resolving wildcards is WILDCARDRESOLVE DYNAMIC. Therefore, if a table that
is excluded with MAPEXCLUDE is renamed to a name that satisfies a wildcard, the data will
be captured. The DYNAMIC setting enables new table names that satisfy a wildcard to be
resolved as soon as they are encountered and included in the Oracle GoldenGate
configuration immediately. For more information, see WILDCARDRESOLVE.

Default

None

Syntax

MAPEXCLUDE [container. | catalog.]owner.{table | sequence}

Chapter 3
MAP

3-183

container. | catalog.
If the source database requires three-part names, specifies the name or wildcard
specification of the Oracle container or SQL/MX catalog that contains the object to
exclude.

owner

Specifies the name or wildcard specification of the owner, such as the schema, of the
object to exclude.

table | sequence

The name or wildcard specification of the source object to exclude. To specify object
names and wildcards correctly, see Administering Oracle GoldenGate for Windows
and UNIX.

Example

In this example, test.tab* specifies that all tables beginning with tab in schema test
are to be excluded from all trail files. Table fin.acct is excluded from trail ee. Table
fin.sales is excluded from trail ff.

MAPEXCLUDE pdb1.test.tab*
MAP pdb1.*.*, TARGET *.*;
MAPEXCLUDE pdb2.fin.acct
MAP pdb2.*.*, TARGET *.*;

3.111 MAPINVISIBLECOLUMNS |
NOMAPINVISIBLECOLUMNS

Valid For

Replicat on Oracle. Valid as a standalone parameter or as an option to MAP.

Description

Use MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS to control whether or not Replicat
includes invisible columns in Oracle target tables for default column mapping. For
invisible columns in Oracle target tables that use explicit column mapping, they are
always mapped so do not require this option.

MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS can be used in two different ways.
When specified at a global level, one parameter remains in effect for all subsequent
MAP statements, until the other parameter is specified. When used within a MAP
statement, they override the global specifications

Default

NOMAPINVISIBLECOLUMNS

Syntax

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS
[, THREAD (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

Chapter 3
MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

3-184

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Specifies MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS only for the specified thread or
threads of a coordinated Replicat.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1
This example enables MAPINVISIBLECOLUMNS for some MAP statements while disabling it
for others.

MAPINVISIBLECOLUMNS
MAP hr.emp, TARGET hr.emp2;
NOMAPINVISIBLECOLUMNS
MAP hr.dep, TARGET hr.dep2;

Example 2
This example shows a combination of global and MAP-level use of MAPINVISIBLECOLUMNS.
The MAP specification overrides the global specification for the specified table.

NOMAPINVISIBLECOLUMNS
MAP hr.dep, TARGET hr.dep2;
MAP hr.emp, TARGET hr.emp2, MAPINVISIBLECOLUMNS;

Example 3
In this example, MAPINVISIBLECOLUMNS is enabled globally, but turned off for thread 3.
The remaining threads 1, 2, and 4 will include invisible target columns in default
column mapping.

MAPINVISIBLECOLUMNS
NOMAPINVISIBLECOLUMNS THREAD(3)
MAP hr.dep, TARGET hr.dep2, THREADRANGE(1, 4);
MAP hr.emp, TARGET hr.emp2, THREADRANGE(1, 4);

3.112 MARKERTABLE
Valid For

GLOBALS

Description

Use the MARKERTABLE parameter to specify the name of the DDL marker table, if other
than the default of GGS_MARKER. The marker table stores information about DDL
operations.

Chapter 3
MARKERTABLE

3-185

The name of the marker table must also be specified with the marker_table_name
parameter in the params.sql script. This script resides in the root Oracle GoldenGate
installation directory.

This parameter is only valid for an Oracle database in which the capture configuration
uses the Oracle GoldenGate DDL trigger to support DDL replication. For more
information about the Oracle GoldenGate DDL objects, see Installing and Configuring
Oracle GoldenGate for Oracle Database.

Default

GGS_MARKER

Syntax

MARKERTABLE [container.]table_name

[container.]table_name

The fully qualified three-part or two-part name of the marker table. To specify object
names and wildcards correctly, see Administering Oracle GoldenGate for Windows
and UNIX.

3.113 MAXDISCARDRECS
Valid For

Extract and Replicat

Description

Use the MAXDISCARDRECS parameter to limit the number of errors that are reported to the
discard file per MAP statement.

Use this parameter for the following reasons:

• When you expect a large number of errors but do not want them reported.

• To manage the size of the discard file.

More than one instance of MAXDISCARDRECS can be used in a parameter file to specify
different maximums for different sets of MAP statements. An instance of MAXDISCARDRECS
applies to all subsequent MAP statements until the next instance of MAXDISCARDRECS is
encountered. The minimum is 0.

Default

None

Syntax

MAXDISCARDRECS number

number

The maximum number of errors to report.

Example

MAXDISCARDRECS 1000

Chapter 3
MAXDISCARDRECS

3-186

3.114 MAXGROUPS
Valid For

GLOBALS

Description

Use the MAXGROUPS parameter to specify the maximum number of process groups that
can run in an instance of Oracle GoldenGate. The Manager process checks this
parameter to determine its resource allocations. The GGSCI process checks this
parameter to control the maximum number of groups that it allows to be created.

Each Replicat thread in a coordinated Replicat group is considered to be a group in
the context of MAXGROUPS. Therefore, the value of the MAXTHREADS option of COORDINATED in
the ADD REPLICAT command (default is 25), plus the number of other Replicat and
Extract groups in the Oracle GoldenGate instance, cannot exceed the MAXGROUPS value,
or ADD REPLICAT returns an error.

The actual number of processes that can run on a given system depends on the
system resources that are available. If those resources are exceeded, Oracle
GoldenGate returns errors regardless of the setting of MAXGROUPS.

Default

1000 groups

Syntax

MAXGROUPS number

number

The number of groups allowed in one instance of Oracle GoldenGate. Valid values
are from 1000 to 5000.

Example

MAXGROUPS 1500

3.115 MAXSQLSTATEMENTS
Valid For

Replicat

Description

Use the MAXSQLSTATEMENTS parameter to control the number of prepared SQL
statements that can be used by Replicat both in regular processing mode and in
BATCHSQL mode. The value for MAXSQLSTATEMENTS determines the number of open cursors
that Replicat maintains. Make certain that the database can support the specified
number of cursors, plus the cursors that other applications and processes use. Before
changing MAXSQLSTATEMENTS, contact Oracle Support.

When setting MAXSQLSTATEMENTS for a coordinated Replicat, take into account that the
specified maximum number of cursors is applied to each thread in the configuration,

Chapter 3
MAXGROUPS

3-187

not as an aggregate threshold for Replicat as a whole. For example, if
MAXSQLSTATEMENTS 100 is specified, it is possible for each thread to have 99 open
cursors without any warning or error from Replicat.

See "BATCHSQL" for more information about BATCHSQL mode.

Default

250 cursors

Syntax

MAXSQLSTATEMENTS number

number

The maximum number of cursors that Replicat (or each thread in a coordinated
Replicat) can use. Valid values are from 1 to 250.

Example

MAXSQLSTATEMENTS 200

3.116 MAXTRANSOPS
Valid For

Replicat (Not supported in integrated Replicat mode)

Description

Use the MAXTRANSOPS parameter to split large source transactions into smaller ones on
the target system. This parameter can be used when the target database is not
configured to accommodate large transactions. For example, if the Oracle rollback
segments are not large enough on the target to reproduce a source transaction that
performs one million deletes, you could specify MAXTRANSOPS 10000, which forces
Replicat to issue a commit after each group of 10,000 deletes.

To use MAXTRANSOPS is to alter the transactional boundaries that are imposed by the
source application, even though Replicat applies the operations in the correct order.
This can cause errors if Extract fails during that transaction. Extract rewrites the
transaction to the end of the trail, instead of overwriting the old one. Because the trail
is sequential, Replicat starts processing the old transaction and must roll it back when
it receives the recovery marker and the new transaction, and then start applying the
new transaction. If MAXTRANSOPS caused Replicat to split the original transaction into
multiple smaller transactions, Replicat may only be able to roll back the portion that
was not committed to the target. When Replicat processes the committed operations
again, they will result in duplicate-row errors or missing-row errors, depending on the
SQL operation type. The minimum is 1.

Chapter 3
MAXTRANSOPS

3-188

Note:

When troubleshooting Replicat abend errors, Oracle Support may request
GROUPTRANSOPS to be set to 1 and MAXTRANSOPS to be set to 1. This is only a
temporary configuration for troubleshooting purposes and should not be used
permanently in production, or it will cause data integrity errors.

Default

10,000,000

Syntax

MAXTRANSOPS number

number

The number of operations to portion into a single transaction group.

Example

MAXTRANSOPS 10000

3.117 MGRSERVNAME
Valid For

GLOBALS

Description

Use the MGRSERVNAME parameter in a GLOBALS parameter file to specify the name of the
Manager process when it is installed as a Windows service. This parameter is only
required when installing multiple instances of Manager as a service on the same
system, for example when installing multiple Oracle GoldenGate instances or when
also installing the Oracle GoldenGate Veridata Agent, which uses a Manager process.

There must be a GLOBALS file containing MGRSERVNAME for each Manager service that is
installed with the INSTALL utility. The files must be created before the services are
installed, because the installation program refers to MGRSERVNAME when registering the
service name on the system.

Default

None

Syntax

MGRSERVNAME name

name

A one-word name for the Manager service.

Example

MGRSERVNAME Goldengate

Chapter 3
MGRSERVNAME

3-189

3.118 MONITORING_HEARTBEAT_TIMEOUT
Valid For

Manager

Description

Use MONITORING_HEARTBEAT_TIMEOUT to set a process as non-responsive in a specified
number of seconds.

Default

10 seconds.

Syntax

MONITORING_HEARTBEAT_TIMEOUT seconds

seconds

Specifies the time interval, in seconds, for Manager to set processes as non-
responsive. The minimum is 10 seconds and the maximum is 60.

Examples

MONITORING_HEARTBEAT_TIMEOUT 20

3.119 NAMECCSID
Valid for

GLOBALS, Extract, Replicat, DEFGEN for DB2 on IBM i

Description

Use the NAMECCSID parameter to specify the CCSID (coded character set identifier) of
the database object names stored in the SQL catalog tables. The SQL catalog tables
are created with the CCSID of the system, but the actual database object names could
be represented in the catalog with characters from a different CCSID. The catalog
does not indicate this difference when queried, and therefore Oracle GoldenGate
could retrieve the name incorrectly unless NAMECCSID is present to supply the correct
CCSID value.

To set the CCSID for a GGSCI session, use the SET NAMECCSID command.

To view the current CCSID, use the SHOW command. If the CCSID is not set through the
GGSCI session or through the parameter NAMECCSID, the SHOW value will be DEFAULT.

Default

DEFAULT

Syntax

NAMECCSID {CCSID | DEFAULT}

Chapter 3
MONITORING_HEARTBEAT_TIMEOUT

3-190

CCSID

A valid DB2 for i coded character set identifier that is to be used for object names in
catalog queries.

DEFAULT

Indicates that the system CCSID is to be used for object names in catalog queries.

Example

NAMECCSID 1141

3.120 NAMEMATCH parameters
Valid For

GLOBALS

Description

Use the NAMEMATCH parameters to control the behavior of fallback name mapping.
Fallback name mapping is enabled by default when the source database is case-
sensitive and the target database supports both case-sensitive and case-insensitive
object names, such as Oracle, DB2 and SQL/MX.

By default (NAMEMATCHIGNORECASE) fallback name matching works as follows: When a
source table name is case-sensitive, Oracle GoldenGate applies case-sensitive
wildcard mapping on the target database to find an exact match. If the target database
does not contain the exact target table name, including case, fallback name mapping
performs a case-insensitive target table mapping to find a name match.

Default

NAMEMATCHIGNORECASE

Syntax

NAMEMATCHIGNORECASE | NAMEMATCHNOWARNING | NAMEMATCHEXACT

NAMEMATCHIGNORECASE

Performs a case-insensitive target table mapping to find a name match when the
target database does not contain the exact target table name, including case.

NAMEMATCHNOWARNING

Outputs a warning message to the report file when fallback name matching is used.

NAMEMATCHEXACT

Disables fallback name mapping. If an exact, case-sensitive match is not found,
Oracle GoldenGate returns an error and abends.

3.121 NOCATALOG
Valid For

DEFGEN

Chapter 3
NAMEMATCH parameters

3-191

Description

Use NOCATALOG in the DEFGEN parameter file to remove the container name (Oracle)
or the catalog name (SQL/MX) from table names before their definitions are written to
the definitions file. This parameter is valid if the database supports container names or
catalog names and the DEFSFILE parameter includes the FORMAT RELEASE option set to
12.1. Use this parameter if the definitions file is to be used for mapping to a database
that only supports two-part names (owner.object).

DEFGEN abends with an error if duplicate schema.table names are encountered once
the container or catalog names are removed. This prevents the possibility of
processing errors caused by different sets of metadata having the same schema.table
name when there is no catalog name to differentiate them.

Default

None

Syntax

NOCATALOG

3.122 NODUPMSGSUPPRESSION
Valid For

GLOBALS

Description

Use NODUPMSGSUPPRESSION to prevent the automatic suppression of duplicate
informational and warning messages in the report file, the error log, and the system log
files. A message is issued to indicate how many times a message was repeated.

Default

Automatically suppress duplicate messages.

Syntax

NODUPMSGSUPPRESSION

3.123 NUMFILES
Valid For

Extract and Replicat

Description

Use the NUMFILES parameter to control the initial number of memory structures that are
allocated to contain information about tables specified in TABLE or MAP statements.
NUMFILES must occur before any TABLE or MAP entries, and before the SOURCEDEFS or
TARGETDEFS parameter, to have any effect.

Chapter 3
NODUPMSGSUPPRESSION

3-192

When setting NUMFILES for a coordinated Replicat, take into account that the specified
value is applied to each thread in the configuration, not as an aggregate threshold for
Replicat as a whole. For example, if NUMFILES 500 is specified, it is possible for each
thread to have 499 initial memory structures without any warning or error from
Replicat.

To control the number of additional memory structures that are allocated dynamically
once the NUMFILES value is reached, use the ALLOCFILES parameter. See "ALLOCFILES"
for more information. The default values should be sufficient for both NUMFILES and
ALLOCFILES, because memory is allocated by the process as needed, system resources
permitting. The minimum is 1 and the maximum is 20000.

Default

1000

Syntax

NUMFILES number

number

The initial number of memory structures to be allocated. Do not set NUMFILES to an
arbitrarily high number, or memory will be consumed unnecessarily. The memory of
Oracle GoldenGate supports up to two million tables.

Example

NUMFILES 4000

3.124 OBEY
Valid For

Extract and Replicat

Description

Use the OBEY parameter to retrieve parameter settings from a file other than the current
parameter file.

To use OBEY, create and save a parameter file that contains the parameters that you
want to retrieve. This is known as an OBEY file. You can create a library of OBEY files that
contain different, frequently used parameter settings. Then, use the OBEY parameter in
the active parameter file to invoke the parameters in the OBEY file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the OBEY file and then returns to the active parameter
file to process any remaining parameters.

OBEY statements cannot be nested within other OBEY statements.

Instead of using OBEY, or in addition to it, you can use Oracle GoldenGate macros to
retrieve frequently used parameters. For more information about using macros, see
the Administering Oracle GoldenGate for Windows and UNIX.

Default

None

Chapter 3
OBEY

3-193

Syntax

OBEY file

file

The relative or fully qualified name of the file from which to retrieve parameters or
commands.

Example

OBEY /home/ogg/myparams

3.125 OUTPUTFILEUMASK
Valid For

GLOBALS

Description

Use the OUTPUTFILEUMASK parameter to specify an octal umask for Oracle GoldenGate
processes to use when creating all files. OUTPUTFILEUMASK is not valid for Windows
systems.

Default

Umask of 027 (all privileges)

Syntax

OUTPUTFILEUMASK umask

umask

The umask value. Must be between 0 and 077; otherwise there will be an error:
Missing or invalid option for OUTPUTFILEUMASK.

Example

OUTPUTFILEUMASK 066

3.126 OVERRIDEDUPS | NOOVERRIDEDUPS
Valid For

Replicat

Description

Use the OVERRIDEDUPS and NOOVERRIDEDUPS parameters to control whether or not Replicat
overwrites an existing record in the target database with a replicated one if both
records have the same key.

• OVERRIDEDUPS overwrites the existing record. It can be used for initial loads where
you do not want to truncate target tables prior to the load, or for the
resynchronization of a target table with a trusted source. Use the SQLDUPERR
parameter with OVERRIDEUPS to specify the numeric error code that is returned by

Chapter 3
OUTPUTFILEUMASK

3-194

the database for duplicate INSERT operations. See "SQLDUPERR" for more
information.

• NOOVERRIDEDUPS, the default, generates a duplicate-record error instead of
overwriting the existing record. You can use an exceptions MAP statement with a
SQLEXEC clause to initiate a response to the error. Otherwise, the transaction may
abend. For more information about exceptions maps, see Administering Oracle
GoldenGate for Windows and UNIX.

To bypass duplicate records without causing Replicat to abend when an
exceptions map is not available, specify a REPERROR parameter statement similar to
the following, where error is the database error number for primary key constraint
errors.

REPERROR (error, IGNORE)

For example, the statement for an Oracle database would be:

REPERROR (1, IGNORE)

Replicat writes ignored duplicate records to the discard file.

Place OVERRIDEDUPS or NOOVERRIDEDUPS before the TABLE or MAP statements that you want
it to affect. You can create different rules for different groups of TABLE or MAP
statements. The parameters act as toggles: one remains in effect for subsequent TABLE
or MAP statements until the other is encountered.

OVERRIDEDUPS is enabled automatically when HANDLECOLLISIONS is used. See
"HANDLECOLLISIONS | NOHANDLECOLLISIONS" for more information.

WARNING:

When OVERRIDEDUPS is in effect, records might not be processed in
chronological order across multiple Replicat processes.

Default

NOOVERRIDEDUPS

Syntax

OVERRIDEDUPS | NOOVERRIDEDUPS

3.127 PTKCAPTUREPROCSTATS
Valid For

Extract, Replicat, and Manager

Description

Use PTKCAPTUREPROCSTATS enables the capture of process and thread statistics for the
PTK Monitoring.

Chapter 3
PTKCAPTUREPROCSTATS

3-195

Default

true

Syntax

PTKCAPTUREPROCSTATS seconds

capture

Controls whether or not PTK Monitoring statistics are captured with either true or
false.

Examples

PTKCAPTUREPROCSTATS false

3.128 PTKMONITORFREQUENCY
Valid For

Extract, Replicat, and Manager

Description

Use PTKMONITORFREQUENCY to set the monitoring collection frequency interval.

Default

One second.

Syntax

PTKMONITORFREQUENCY seconds

seconds

Specifies the time interval, in seconds, for monitoring collection to occur. The
minimum is 1 seconds and the maximum is 60 seconds.

Examples

PTKMONITORFREQUENCY 10

3.129 PORT
Valid For

Manager

Description

Use the PORT parameter to specify a TCP/IP port number for the Manager process on
which to interact with remote processes that request dynamic services, typically either
an initial-load Replicat or the Collector process. Use the default port number when
possible. The minimum is 1 and the maximum is 65535.

Chapter 3
PTKMONITORFREQUENCY

3-196

Default

Port 7809

Syntax

PORT number

number

An available port number.

Example

PORT 7809

3.130 PRESERVETARGETTIMEZONE
Valid For

Replicat

Description

Use the PRESERVETARGETTIMEZONE parameter to override the default Replicat session
time zone. By default, Replicat sets its session to the time zone of the source
database, as written to the trail by Extract. PRESERVETARGETTIMEZONE causes Replicat to
set its session to the time zone of the target database.

Default

None

Syntax

PRESERVETARGETTIMEZONE

3.131 PROCEDURE
This is an option that can be specified as a stand-alone statement in extract and
replicat parameter file. It indicates which feature group of procedural calls will be
replicated.

Syntax

PROCEDURE [INCLUDE | EXCLUDE] FEATURE [ALL_SUPPORTED | feature_list]

Examples

Example 1
Include all system supplied packages:

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED

Example 2
Include specific packages

Chapter 3
PRESERVETARGETTIMEZONE

3-197

PROCEDURE INCLUDE FEATURE AQ, FGA, DBFS

Example 3
Exclude a specific packages

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
PROCEDURE EXCLUDE FEATURE REDFINITION

3.132 PURGEDDLHISTORY | PURGEDDLHISTORYALT
Valid For

Manager

Description

Use the PURGEDDLHISTORY and PURGEDDLHISTORYALT parameters to control the size of the
DDL history tables that support DDL capture. These tables are created in an Oracle
database to support trigger-based DDL capture.

These parameters cause Manager to purge rows that are not needed any more. You
can specify the maximum and minimum amount of time to keep a row, based on the
last modification date. Both maximum and minimum rules must be specified; otherwise
Manager does not have a complete criteria for when to delete the row. For example,
MINKEEPHOURS 3 used with MAXKEEPHOURS 5 specifies to keep rows that have not been
modified in the past three hours, but to delete them when they have not been modified
for at least five hours.

These parameters require a logon to be specified with the USERID or USERIDALIAS
parameter.

WARNING:

Use caution when purging the history tables. They are critical to the integrity
of the DDL synchronization processes. Premature purges are non-
recoverable through Oracle GoldenGate. To prevent any possibility of
permanent DDL data loss, make regular backups of the Oracle GoldenGate
DDL schema.

Default

Purge every hour

Syntax

PURGEDDLHISTORY | PURGEDDLHISTORYALT
{, max_rule}
[, min_rule]
[, frequency]

PURGEDDLHISTORY

Purges the DDL history table. This table tracks DDL operations. To determine the
name of the history table to purge, Oracle GoldenGate first looks for a name specified

Chapter 3
PURGEDDLHISTORY | PURGEDDLHISTORYALT

3-198

with the DDLTABLE parameter in the GLOBALS file. If that parameter does not exist, Oracle
GoldenGate uses the default name of GGS_DDL_HIST.

PURGEDDLHISTORYALT

Purges the internal DDL history table. This table tracks partitioned object IDs that are
associated with the object ID of a table. To determine the name of the internal history
table to purge, Oracle GoldenGate first looks for a name specified with the DDLTABLE
parameter in the GLOBALS file and appends _ALT to it. If that parameter does not exist,
Oracle GoldenGate uses the default name of GGS_DDL_HIST_ALT.

max_rule

Required. Can be one of the following to set the maximum amount of time to keep
rows.

MAXKEEPHOURS n

Purges if the row has not been modified for n number of hours. The minimum is 1
and the maximum is 1000.

MAXKEEPDAYS n

Purges if the row has not been modified for n number of days. The minimum is 1
and the maximum is 365.

min_rule

Can be one of the following to set the minimum amount of time to keep rows.

MINKEEPHOURS n

Keeps an unmodified row for at least the specified number of hours. The minimum
is 1 and the maximum is 1000.

MINKEEPDAYS n

Keeps an unmodified row for at least the specified number of days. The minimum
is 1 and the maximum is 365.

frequency

Sets the frequency with which to purge DDL history. The default interval at which
Manager evaluates potential maintenance tasks is 10 minutes, as specified with the
CHECKMINUTES parameter. At that interval, Manager evaluates the PURGEDDLHISTORY or
PURGEDDLHISTORYALT frequency and conducts the purge at the specified frequency.
frequency can be one of the following:

FREQUENCYMINUTES n

Sets the frequency, in minutes, with which to purge DDL history. The default
purge frequency is 60 minutes. The minimum is 1 and the maximum is 360.

FREQUENCYHOURS n

Sets the frequency, in hours, at which to purge DDL history.
See "CHECKMINUTES" for more information about controlling the interval
between Manager maintenance checks. The minimum is 1 and the maximum is
24.

Example

The following example keeps all rows that have not been modified in the past three
days and deletes them when they have not been modified for at least five days. The
purge frequency is 30 minutes.

PURGEDDLHISTORY MINKEEPDAYS 3, MAXKEEPDAYS 5, FREQUENCYMINUTES 30

Chapter 3
PURGEDDLHISTORY | PURGEDDLHISTORYALT

3-199

3.133 PURGEMARKERHISTORY
Valid For

Manager

Description

Use the PURGEMARKERHISTORY parameter to control the size of the Oracle GoldenGate
marker table. This parameter purges rows that are not needed any more. You can
purge the marker table at any time. This parameter is only valid for an Oracle
database in which the capture configuration uses the Oracle GoldenGate DDL trigger
to support DDL replication. For more information about the Oracle GoldenGate DDL
objects, see Installing and Configuring Oracle GoldenGate for Oracle Database.

To determine the name of the marker table, Oracle GoldenGate first looks for a name
specified with the MARKERTABLE parameter in the GLOBALS file. If that parameter does not
exist, Oracle GoldenGate uses the default name of GGS_MARKER.

You can specify maximum and minimum lengths of time to keep a row, based on the
last modification date. Both maximum and minimum rules must be specified; otherwise
Manager does not have complete criteria for when to delete the row. For example,
MINKEEPHOURS 3 used with MAXKEEPHOURS 5 specifies to keep rows that have not been
modified in the past three hours, but delete them when they have not been modified
for at least five hours.

PURGEMARKERHISTORY requires a logon to be specified with the USERID or USERIDALIAS
parameter and, depending on the type of database, the SOURCEDB parameter.

Default

Purge every hour

Syntax

PURGEMARKERHISTORY
{, max_rule}
[, min_rule]
[, frequency]

max_rule

Required. Can be one of the following to set the maximum amount of time to keep
rows.

MAXKEEPHOURS n

Purges if the row has not been modified for n number of hours. The minimum is 1
and the maximum is 1000.

MAXKEEPDAYS n

Purges if the row has not been modified for n number of days. The minimum is 1
and the maximum is 365.

min_rule

Can be one of the following to set the minimum amount of time to keep rows.

Chapter 3
PURGEMARKERHISTORY

3-200

MINKEEPHOURS n

Keeps an unmodified row for at least the specified number of hours. The minimum
is 1 and the maximum is 1000.

MINKEEPDAYS n

Keeps an unmodified row for at least the specified number of days. The minimum
is 1 and the maximum is 365.

frequency

Sets the frequency with which to purge marker history. The default interval at which
Manager evaluates potential maintenance tasks is 10 minutes, as specified with the
CHECKMINUTES parameter. At that interval, Manager evaluates the PURGEMARKERHISTORY
frequency and conducts the purge at the specified frequency.
frequency can be one of the following:

FREQUENCYMINUTES n

Sets the frequency, in minutes, with which to purge marker history. The default
purge frequency is 60 minutes. The minimum is 1 and the maximum is 360.

FREQUENCYHOURS n

Sets the frequency, in hours, at which to purge marker history.
See "CHECKMINUTES" for more information about controlling the interval
between Manager maintenance checks. The minimum is 1 and the maximum is
24.

Example

The following example keeps all rows that have not been modified in the past three
days and deletes them when they have not been modified for at least five days. The
purge frequency is 30 minutes.

PURGEMARKERHISTORY MINKEEPDAYS 3, MAXKEEPDAYS 5, FREQUENCYMINUTES 30

3.134 PURGEOLDEXTRACTS for Extract and Replicat
Valid For

Extract and Replicat

Description

Use the PURGEOLDEXTRACTS parameter in an Extract or Replicat parameter file to delete
old trail files whenever Oracle GoldenGate starts processing from a new one.
Preventing the accumulation of trail files conserves disk space. Purges are conducted
after the process is done with the file as indicated by checkpoints.

Purging by Extract is appropriate if the process is a data pump. After the data is sent
to the target system, the files can be purged. Otherwise, purging would ordinarily be
done by Replicat.

PURGEOLDEXTRACTS should only be used in an Extract or Replicat parameter file if there is
only one instance of the process. If multiple groups are reading the same set of trail
files, one process could purge a file before another is finished with it. Instead, use the
Manager version of PURGEOLDEXTRACTS, which is the preferred use of the parameter in all
Oracle GoldenGate configurations because it allows you to manage trail files in a
centralized fashion.

Chapter 3
PURGEOLDEXTRACTS for Extract and Replicat

3-201

Default

Purge the trail file when moving to the next file in the sequence.

Syntax

PURGEOLDEXTRACTS

3.135 PURGEOLDEXTRACTS for Manager
Valid For

Manager

Description

Use the PURGEOLDEXTRACTS parameter in a Manager parameter file to purge trail files
when Oracle GoldenGate has finished processing them. Without using
PURGEOLDEXTRACTS, no purging is performed, and trail files can consume significant disk
space.

Using PURGEOLDEXTRACTS as a Manager parameter is recommended rather than using
the Extract or Replicat version of PURGEOLDEXTRACTS. As a Manager parameter,
PURGEOLDEXTRACTS allows you to manage trail files in a centralized fashion and take into
account multiple processes.

How to Use PURGEOLDEXTRACTS for Manager

To control the purging, follow these rules:

• USECHECKPOINTS triggers a purge when all processes are finished with a file as
indicated by their checkpoints. Basing the purges on checkpoints ensures that
Manager does not delete any data until all processes are finished with it. This is
essential in a production environment to ensure data integrity. USECHECKPOINTS
considers the checkpoints of both Extract and Replicat before purging. Because
USECHECKPOINTS is the default, it need not be specified in the PURGEOLDEXTRACTS
statement. Manager obeys USECHECKPOINTS unless there is an explicit
NOUSECHECKPOINTS entry.

• Use the MINKEEP rules to set a minimum amount of time to keep data:

– Use MINKEEPHOURS or MINKEEPDAYS to keep data for n hours or days.

– Use MINKEEPFILES to keep at least n trail files including the active file. The
default number of files to keep is 1.

Use only one of the MINKEEP options. If more than one is used, Oracle GoldenGate
selects one of them based on the following:

– If both MINKEEPHOURS and MINKEEPDAYS are specified, only the last one is
accepted, and the other is ignored.

– If either MINKEEPHOURS or MINKEEPDAYS is used with MINKEEPFILES, then
MINKEEPHOURS or MINKEEPDAYS is accepted, and MINKEEPFILES is ignored.

Manager evaluates potential maintenance tasks based on the value set for the
CHECKMINUTES parameter. When that value is reached, Manager determines which files
to purge based on the Extract and Replicat processes configured on the local system.
If at least one process reads a trail file, Manager applies the specified rules; otherwise,

Chapter 3
PURGEOLDEXTRACTS for Manager

3-202

the rules do not take effect. The following are possible PURGEOLDEXTRACT rule
combinations and the actions that Manager takes for them:

• USECHECKPOINTS without MINKEEP rules: If checkpoints indicate that a file has been
processed completely, it will be purged unless doing so would violate the default
rule to keep at least one file.

• USECHECKPOINTS with MINKEEP rules: If checkpoints indicate that a file has been
processed completely, it will be purged unless doing so would violate the MINKEEP
rules.

• NOUSECHECKPOINTS without MINKEEP rules: The checkpoints are not considered, and
the file will be purged unless doing so would violate the default rule to keep at
least one file.

• NOUSECHECKPOINTS with MINKEEP rules: A file will be purged unless doing so would
violate the MINKEEP rules.

Additional Guidelines for PURGEOLDEXTRACTS for Manager

• Do not use more than 500 PURGEOLDEXTRACTS parameter statements in the same
Manager parameter file.

• When using this parameter, do not permit trail files to be deleted by any user or
program other than Oracle GoldenGate. It will cause PURGEOLDEXTRACTS to function
improperly.

• When trails are stored on NFS, there is a difference in system time between the
NFS drive and the local system where Manager is running. The trail is created with
the NFS time, but the timestamps of the records in the trail are compared with the
local system time to determine whether to purge them or not. Take into account
any time differences when you create your MINKEEP rules.

Default

USECHECKPOINTS

Syntax

PURGEOLDEXTRACTS trail
[, USECHECKPOINTS | NOUSECHECKPOINTS]
[, MINKEEP_rule]
[, frequency]

trail

The trail to purge. Use a relative or fully qualified name.

USECHECKPOINTS

Allows purging according to any MINKEEP rules after all Extract and Replicat processes
are done with the data as indicated by checkpoints. When using USECHECKPOINTS, you
can use the USERID or USERIDALIAS parameters in the Manager parameter file, so that
Manager can query the Replicat checkpoint table to get checkpoint information though
it is not required.

NOUSECHECKPOINTS

Allows purging without considering checkpoints, based either on the default rule to
keep a minimum of one file (if no MINKEEP rule is used) or the number of files specified
with a MINKEEP rule.

Chapter 3
PURGEOLDEXTRACTS for Manager

3-203

MINKEEP_rule

Can be one of the following to set rules for the minimum amount of time to keep an
inactive file.

MINKEEPHOURS n

Keeps an inactive file for at least the specified number of hours. The minimum is 1
and the maximum is 1000.

MINKEEPDAYS n

Keeps an inactive file for at least the specified number of days. The minimum is 1
and the maximum is 365.

MINKEEPFILES n

Keeps at least n trail files, including the active file. The minimum is 1 and the
maximum is 100. The default is 1.

frequency

Sets the frequency with which to purge inactive trail files. The default time for
Manager to evaluate potential maintenance tasks is 10 minutes, as specified with the
CHECKMINUTES parameter. At that interval, Manager evaluates the PURGEOLDEXTRACTS
frequency and conducts the purge after the specified frequency.
frequency can be one of the following:

FREQUENCYMINUTES n

Sets the frequency in minutes. The default purge frequency is 60 minutes. The
minimum is 1 and the maximum is 360.

FREQUENCYHOURS n

Sets the frequency in hours. The minimum is 1 and the maximum is 24.

See "CHECKMINUTES" for more information about controlling the Manager
maintenance check interval.

Examples

Example 1
Status: Trail files AA000000, AA000001, and AA000002 exist. Replicat has been stopped
for four hours and is not finished processing any of the files. The Manager
parameters include:

PURGEOLDEXTRACTS /ggs/dirdat/AA*, USECHECKPOINTS, MINKEEPHOURS 2

Result: The amount of time that files must be retained was exceeded, but no files will
be purged because checkpoints indicate that Replicat is not finished processing them.

Example 2
Status: Trail files AA000000, AA000001, and AA000002 exist. Replicat has been stopped
for four hours and is not finished processing any of the files. The Manager
parameters include:

PURGEOLDEXTRACTS /ggs/dirdat/AA*, NOUSECHECKPOINTS, MINKEEPHOURS 2

Result: All of the trail files will be purged because the minimum time to keep them
was satisfied, and checkpoints are not considered before purging.

Chapter 3
PURGEOLDEXTRACTS for Manager

3-204

Example 3
Status: Replicat and Extract are finished processing data. There has been no access
to the trail files for the last five hours. Trail files AA000000, AA000001, and AA000002 exist.
The Manager parameters include:

PURGEOLDEXTRACTS /ggs/dirdat/AA*, USECHECKPOINTS, MINKEEPHOURS 4, &
MINKEEPFILES 4

Result: This is an example of why only one of the MINKEEP options should be set.
USECHECKPOINTS requirements were satisfied, so the MINKEEP rules are considered when
determining whether to purge AA000002. Only two files will remain if AA000002 is
purged, and that violates the MINKEEPFILES rule. Because both MINKEEPFILES and
MINKEEPHOURS are specified, however, MINKEEPFILES is ignored. The file will be purged
because it has not been accessed for five hours, and that satisfies the MINKEEPHOURS
requirement of four hours.

3.136 PURGEOLDTASKS
Valid For

Manager

Description

Use the PURGEOLDTASKS parameter to purge Extract and Replicat tasks after a specific
amount of time or after they have stopped gracefully. You can indicate when to delete
a task according to the following rules:

• The task was last started a specific number of days or hours ago. If the task never
was started, its creation time is used as the basis for applying the rules.

• The task stopped gracefully or never was started. This rule takes precedence over
the time the task was last started. Use this rule to prevent abnormally terminated
tasks from being purged.

No more than 300 PURGEOLDTASKS parameter statements may be used in the same
Manager parameter file.

Default

None

Syntax

PURGEOLDTASKS {EXTRACT | REPLICAT | ER} group
{AFTER number {DAYS | HOURS} | USESTOPSTATUS}

EXTRACT | REPLICAT | ER

The process for which you want to purge tasks. Use the ER option to specify both
Extract and Replicat process types.

group

The group name or a wildcard to specify multiple groups.

AFTER number {DAYS | HOURS}

Purges if the task has not been updated for a specified number of days or hours.

Chapter 3
PURGEOLDTASKS

3-205

USESTOPSTATUS

Purges if the task was stopped gracefully or never was started.

Example

The following example deletes all Extract tasks that have not been updated for at least
three days, and it deletes the test_rep Replicat task if it stopped gracefully and has not
been updated for at least two hours.

PURGEOLDTASKS EXTRACT *, AFTER 3 DAYS
PURGEOLDTASKS REP test_rep, AFTER 2 HOURS, USESTOPSTATUS

3.137 RECOVERYOPTIONS
Valid For

Extract

Description

Use the RECOVERYOPTIONS parameter to control how Extract handles the re-writing of
data to the trail after it fails while in the process of writing transaction data.

Parameter Dependencies

There is a dependency between the RECOVERYOPTIONS parameter and the FORMAT option
of EXTFILE, EXTTRAIL, RMTFILE, and RMTTRAIL.

Default

None

Syntax

RECOVERYOPTIONS

Example

RECOVERYOPTIONS

3.138 REPERROR
Valid For

Replicat

Description

Use the REPERROR parameter to control how Replicat responds to errors. The default
response of Replicat to any error is to abend.

You can use one REPERROR statement to handle most errors in a default manner, while
using one or more other REPERROR statements to handle specific errors differently. For
example, you can ignore duplicate-record errors but abend processing in all other
cases.

Chapter 3
RECOVERYOPTIONS

3-206

You can use REPERROR globally (at the root of the parameter file) to affect all MAP
statements that follow it, or you can use it within a MAP statement to affect the tables
specified in that statement. Using REPERROR within a MAP statement gives you the ability
to handle errors in a particular way for each thread of a coordinated Replicat.

Using Record-level Error Handling

All REPERROR options except TRANSDISCARD and TRANSEXCEPTION apply an error-handling
action in response to an individual SQL operation on an individual record. Other, error-
free records in the same transaction are processed as configured in the MAP
statements and other parameters in the parameter file, as applicable.

Using Transaction-level Error Handling

The TRANSDISCARD, TRANSEXCEPTION, and ABEND options apply an error-handling action to
an entire transaction. The triggering error can occur on an individual record in the
transaction or on the commit operation. (Commit errors do not have a particular record
associated with them.) These options can be used to:

• prevent an entire source transaction from being replicated to the target when any
error is associated with it.

• respond to a commit error when deferred constraint checking is enabled on the
target.

TRANSDISCARD and TRANSEXCEPTION are mutually exclusive.

Effect of Other Parameters on Transaction-level Options

TRANSDISCARD and TRANSEXCEPTION honor the boundaries of the source transaction;
however, the presence of BATCHSQL, GROUPTRANSOPS, or MAXTRANSOPS in the parameter file
may affect the error-handling logic or outcome, because they alter transaction
boundaries.

Effect of BATCHSQL and GROUPTRANSOPS

BATCHSQL or GROUPTRANSOPS (the default) both group SQL operations from different
transactions into larger transactions to improve performance, while maintaining
transactional order. When these parameters are in effect and any error occurs,
Replicat first tries to resolve it by entering an alternate processing mode (see the
documentation for those parameters). If the error persists, TRANSDISCARD or
TRANSEXCEPTION comes into effect, and Replicat reverts to source-processing mode as
follows:

1. It rolls back the grouped or arrayed transaction.

2. It replays the offending transaction one SQL operation at a time, using the same
transaction boundaries as the source transaction.

3. It performs the discard logic (TRANSDISCARD) or exceptions-mapping
(TRANSEXCEPTION). (See those option descriptions for more detail.)

4. It resumes BATCHSQL or GROUPTRANSOPS mode after the TRANSDISCARD error handling is
completed.

Effect of MAXTRANSOPS

The integrity of TRANSDISCARD and TRANSEXCEPTION transaction-level error handling can
be adversely affected by the setting of the MAXTRANSOPS parameter. MAXTRANSOPS causes

Chapter 3
REPERROR

3-207

Replicat to split very large replicated source transactions into smaller transactions
when it applies them on the target.

The TRANSDISCARD and TRANSEXCEPTION logic cause Replicat to roll back to the first record
after the last successful commit. This may or may not be the actual beginning of the
offending transaction. It depends on whether that transaction was split up and parts of
it are in the previously committed transactions. If that is the case, Replicat cannot
apply the TRANSDISCARD or TRANSEXCEPTION action to the whole transaction as it was
issued on the source, but only to the part that was rolled back from the target.

If you use MAXTRANSOPS, make certain that it is set to a value that is larger than the
largest transaction that you expect to be handled by TRANSDISCARD and TRANSEXCEPTION.
This will ensure that transactions are not be split apart into smaller ones on the target.

Effect of Transaction-level Options on Statistics

The output of informational commands in GGSCI, such as STATS REPLICAT, will show
the total number of records in the transaction that was processed by TRANSDISCARD or
TRANSEXCEPTION logic. This number may reflect the following:

• Replicat writes all records of the transaction to the discard file, including any
records that were excluded from Oracle GoldenGate processing by means of a
FILTER or WHERE clause in a MAP statement.

• If a source table in the transaction has multiple targets, the discarded transaction
will contain multiple copies of each record, one for each target.

• Replicat ignores any exceptions mapping statements (as specified with
EXCEPTIONSONLY or MAPEXCEPTION in a MAP statement) when discarding the
transaction.

Replicat abends on errors that are caused by the discard processing (TRANSDISCARD) or
exceptions mapping (TRANSEXCEPTION).

Getting More Information about Error Handling

See Administering Oracle GoldenGate for Windows and UNIX for more information
about configuring error handling.

See "TABLE | MAP" for more information about the MAP parameter.

Default

TRANSABORT for deadlocks; ABEND for all others

Syntax

REPERROR {
(
{DEFAULT | DEFAULT2 | SQL_error | user_defined_error},
{ABEND |
DISCARD |
EXCEPTION |
IGNORE |
RETRYOP [MAXRETRIES n] |
TRANSABORT [, MAXRETRIES] [, DELAYSECS n | DELAYCSECS n] |
TRANSDISCARD |
TRANSEXCEPTION
}
) |
RESET }

Chapter 3
REPERROR

3-208

Error Specification Options

DEFAULT

Sets a global response to all errors except those for which explicit REPERROR
statements are specified.

DEFAULT2

Provides a backup default action when the response for DEFAULT is set to EXCEPTION.
Use DEFAULT2 when an exceptions MAP statement is not specified for a MAP statement
for which errors are anticipated.

SQL_error

A SQL error number. This can be a record-level error or a commit-level error if using
TRANSDISCARD and TRANSEXCEPTION.

user_defined_error

A user-defined error that is specified with the RAISEERROR option of a FILTER clause
within a MAP statement.

Error Response Options

ABEND

Rolls back the transaction and terminates processing abnormally. ABEND is the default.

DISCARD

Logs the offending operation to the discard file but continue processing the
transaction and subsequent transactions.

EXCEPTION

Handles the operation that causes an error as an exception, but processes error-free
operations in the transaction normally. Use this option in conjunction with an
exceptions MAP statement or to work with the MAPEXCEPTION option of MAP. For example,
you can map columns from failed update statements into a "missing updates" table. In
the parameter file, specify the exceptions MAP statement after the MAP statement for
which the error is anticipated.
EXCEPTION applies exception handling only to an individual SQL operation on an
individual record. To apply exception handling to the entire transaction, use the
TRANSEXCEPTION option.

Note:

When the Conflict Detection and Resolution (CDR) feature is active, CDR
automatically treats all operations that cause errors as exceptions if an
exceptions MAP statement exists for the affected table. In this case, REPERROR
with EXCEPTION is not necessary, but you should use REPERROR with other
options to handle conflicts that CDR cannot resolve, or for conflicts that you
do not want CDR to handle.

IGNORE

Ignores the error.

Chapter 3
REPERROR

3-209

RETRYOP [MAXRETRIES n]

Retries the offending operation. Use the MAXRETRIES option to control the number of
retries. For example, if a table is out of extents, RETRYOP with MAXRETRIES gives you time
to add extents so the transaction does not fail. Replicat abends after the specified
number of MAXRETRIES.

TRANSABORT [, MAXRETRIES n] [, DELAYSECS n | DELAYCSECS n]

Aborts the transaction and repositions to the beginning of the transaction. This
sequence continues either until the record(s) are processed successfully or
MAXRETRIES expires. If MAXRETRIES is not set, the TRANSABORT action will loop
continuously.
Use one of the DELAY options to delay the retry. DELAYSECS n sets the delay in seconds
and the default is 60 seconds. DELAYCSECS n sets the delay in centiseconds.
The TRANSABORT option is useful for handling timeouts and deadlocks on databases
that support those conditions.

TRANSDISCARD

Discards the entire source transaction if any operation within that transaction,
including the commit operation, causes a Replicat error that is listed in the REPERROR
error specification. Replicat aborts the transaction and, if the error occurred on a
record, writes that record to the discard file. Replicat then replays the transaction and
writes all of the records to the discard file, including the commit record. Replicat
abends on errors that are caused by the discard processing.
If the discarded record has already been data-mapped to a target record, Replicat
writes it to the discard file in the target format; otherwise, it will be written in source
format. The replayed transaction itself is always written in source format.
TRANSDISCARD supports record-level errors as well as commit errors.
Additional information is at the beginning of this topic.

TRANSEXCEPTION

If an error specified with REPERROR occurs on any record in a transaction, performs
exceptions mapping for every record in the transaction according to its corresponding
exceptions-mapping specification, as defined by a MAPEXCEPTION or EXCEPTIONSONLY
clause in an exceptions MAP statement. If any record does not have a corresponding
exceptions mapping specification, or if there is an error writing to the exceptions table,
Replicat abends with an error message.
When an error is encountered and TRANSEXCEPTION is being used, Replicat aborts the
transaction and, if the error occurred on a record, writes that record to the discard file.
Replicat replays the transaction and examines the source records to find the
exceptions-mapping specifications, and then executes them.
TRANSEXCEPTION supports record-level errors as well as commit errors. To handle errors
at the record level (for individual SQL operations), without affecting error-free
operations in the same transaction, use the EXCEPTION option in a MAP statement.

RESET

Use a REPERROR RESET statement to remove error-handling rules specified in previous
REPERROR parameters and apply default error handling to all MAP statements that follow.

Examples of Using REPERROR Globally

These examples show REPERROR as used at the root of the parameter file to set global
error-handling rules. You can override any or all of these rules for any given table or
tables by using REPERROR in a MAP statement. See "Examples of Using REPERROR
Globally and in a MAP Statement".

Chapter 3
REPERROR

3-210

Example 1
The following example demonstrates how to stop processing for most errors, but
ignore duplicate-record errors.

REPERROR (DEFAULT, ABEND)
REPERROR (-1, IGNORE)

Example 2
The following example invokes an exceptions MAP statement created to handle errors
on the account table. Errors on the product table cause Replicat to end abnormally
because an exceptions MAP statement was not defined.

REPERROR (DEFAULT, EXCEPTION)
REPERROR (DEFAULT2, ABEND)
MAP sales.product, TARGET sales.product;
MAP sales.account, TARGET sales.account;
INSERTALLRECORDS
MAP sales.account, TARGET sales.account_exception,
EXCEPTIONSONLY,
COLMAP (account_no = account_no,
optype = @GETENV ('lasterr', 'optype'),
dberr = @GETENV ('lasterr', 'dberrnum'),
dberrmsg = @GETENV ('lasterr', 'dberrmsg'));

Example 3
The following applies error rules for the first MAP statement and then restores the
default of ABEND to the second one.

REPERROR (-1, IGNORE)
MAP sales.product, TARGET sales.product;
REPERROR RESET
MAP sales.account, TARGET sales.account;

Example 4
The following discards the offending record and then replays the entire transaction if
any operation on a record within it generates an error 1403. Other error types cause
Replicat to abend.

REPERROR DEFAULT ABEND
REPERROR 1403 TRANSDISCARD

Example 5
The following discards the offending record and then replays the entire transaction to
search for an exceptions-mapping specification that writes to the exceptions table that
is named tgtexception. Other errors cause Replicat to discard the offending record (if
applicable) and then abend.

REPERROR DEFAULT ABEND
REPERROR 1403 TRANSEXCEPTION
MAP src, TARGET tgt, &
MAPEXCEPTION (TARGET tgtexception, INSERTALLRECORDS, COLMAP (…));

Examples of Using REPERROR Globally and in a MAP Statement

The following examples show different ways that REPERROR can be used in a MAP
statement in conjunction with a global REPERROR statement.

Chapter 3
REPERROR

3-211

Example 1

REPLICAT group_name
REPERROR (error1 , response1)
MAP src1, TARGET tgt1, REPERROR (error1, response2);
MAP src2, TARGET tgt2, REPERROR (error2, response3);

In the preceding example, when error1 occurs for the first MAP statement, the action
should be response2, not response1, because an override was specified. However, if an
error1 occurs for the second MAP statement, the response should be response1, the
global response. The response for error2 would be response3, which is MAP-specific.

Example 2

REPLICAT group_name
REPERROR (error1 , response1)
MAP src1, TARGET tgt1, REPERROR (error2, response2),
REPERROR (error3, response3);

In the preceding example, when replicating from src1 to src2, all errors and actions
(1-3) should apply, because all REPERROR statements address different errors (there are
no MAP-specific overrides).

Example 3

REPLICAT group_name
REPERROR (error1 , response1)
MAP src1, TARGET tgt1, REPERROR (error1, response2);
MAP src2, TARGET tgt2, REPERROR (error2, response3);
REPERROR (error1 , response4)
MAP src2, TARGET tgt2, REPERROR (error3, response3);

In the preceding example, if error1 occurs for the first MAP statement, the action should
be response2. For the second one it would be response1 (the global response), and for
the third one it would be response4 (because of the second REPERROR statement). A
global REPERROR statement applies to all MAP statements that follow it in the parameter
file until another REPERROR statement starts new rules.

Example 4

REPERROR DEFAULT ABEND
REPERROR 1403 TRANSDISCARD.
MAP src, TARGET tgt, REPERROR(600 TRANSDISCARD);

In the preceding example, if error 600 is encountered while applying source table src
to target table tgt, the whole transaction is written to discard file. Encountering error
1403 also results in the same action based on the global REPERROR specification. On
the other errors, the process simply discards only the offending record and then
abends.

3.139 REPFETCHEDCOLOPTIONS
Valid For

Replicat

Chapter 3
REPFETCHEDCOLOPTIONS

3-212

Description

Use the REPFETCHEDCOLOPTIONS parameter to determine how Replicat responds to
operations for which a fetch from the source database was required. The Extract
process fetches column data when the transaction record does not contain enough
information to construct a SQL statement or when a FETCHCOLS clause is used. See
"{FETCHCOLS | FETCHCOLSEXCEPT} (column_list)" for more information.

Default

None

Syntax

REPFETCHEDCOLOPTIONS
[, INCONSISTENTROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, LATESTROWVERSION ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, MISSINGROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, NOFETCH ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, REDUNDANTROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, SNAPSHOTROW ALLOW|IGNORE|REPORT|DISCARD|ABEND]
[, SETIFMISSING string]

INCONSISTENTROW

Determines the action to perform when column data was successfully fetched by row
ID, but the key did not match. Either the row ID was recycled or a primary key update
occurred after this operation (and prior to the fetch). Valid values are

ALLOW

Process the operation unless the record length is zero (0).

IGNORE

Ignore the condition and continue processing.

REPORT

Write the record to the discard file and process the operation.

DISCARD

Discard the data and do not process the row.

ABEND

Discard the data and quit processing.

LATESTROWVERSION action

Provides a response when column data was fetched from the current row in the table.
Valid values are:

ALLOW

Process the operation unless the record length is zero (0).

IGNORE

Ignore the condition and continue processing.

REPORT

Write the record to the discard file and process the operation.

Chapter 3
REPFETCHEDCOLOPTIONS

3-213

DISCARD

Discard the data and do not process the row.

ABEND

Discard the data and quit processing.

NOFETCH action

Prevents fetching. One use for this option is when the database is a standby and
Oracle GoldenGate does not have a database connection. In this case, an attempt to
fetch from the database would result an error. Other scenarios may warrant the use of
this parameter as well.
When Oracle GoldenGate cannot fetch data it normally would fetch, it probably will
cause data integrity issues on the target.
The following are valid actions that can be taken when a NOFETCH is encountered:

ABEND

Write the operation to the discard file and abend the Replicat process. This is the
default.

ALLOW

Process the operation unless the record length is zero (0).

IGNORE

Ignore the operation. If fetch statistics are being reported in the process report
(based on STATOPTIONS settings) they will be updated with this result.

REPORT

Write the record to the discard file and process the operation.

DISCARD

Write the record to the discard file, but do not process the operation. If fetch
statistics are being reported in the process report (based on STATOPTIONS settings)
they will be updated with this result.

MISSINGROW action

Provides a response when only part of a row (the changed values) is available to
Replicat for processing. The column data that is missing from the trail typically could
not be fetched because the row was deleted between the time the change record was
created and when the fetch was triggered, or because the row image required was
older than the undo retention specification.
Valid values are:

ALLOW

Process the operation unless the record length is zero (0).

IGNORE

Ignore the condition and continue processing.

REPORT

Write the record to the discard file and process the operation.

DISCARD

Discard the data and do not process the partial row.

ABEND

Discard the data and quit processing.

Chapter 3
REPFETCHEDCOLOPTIONS

3-214

REDUNDANTROW

Indicates that column data was not fetched because column data was previously
fetched for this record.

SETIFMISSING [string]

Provides a value when a fetch was unsuccessful (and the value is missing from the
trail record) but the target column has a not-null constraint. It takes an optional ASCII
string as a value for CHAR and BINARY data types or defaults to the following.
CHAR, VARCHAR: Single space
BINARY, VARBINARY: A NULL byte
TIMESTAMP: Current date/time
FLOAT, INTEGER: Zero
Besides SETIFMISSING, you can use the COLMAP clause of the MAP statement to map a
value for the target column. See "COLMAP (column_mapping)" for more information.

SNAPSHOTROW

Indicates that column data was fetched from a snapshot. Generally, this option would
only be used for reporting or discarding operations. Valid values are:

ALLOW

Process the operation unless the record length is zero (0).

IGNORE

Ignore the condition and continue processing.

REPORT

Write the record to the discard file and process the operation.

DISCARD

Discard the data and do not process the row.

ABEND

Discard the data and quit processing.

3.140 REPLACEBADCHAR
Valid For

Extract and Replicat

Description

Use the REPLACEBADCHAR parameter to control the response of the process when a valid
code point does not exist for either the source or target character set when mapping
character-type columns. By default, the check for invalid code points is only performed
when the source and target databases have different character sets, and the default
response is to abend. You can use the FORCECHECK option to force the process to check
for invalid code points when the source and target databases have the same character
set. REPLACEBADCHAR applies globally.

Default

ABORT

Chapter 3
REPLACEBADCHAR

3-215

Syntax

REPLACEBADCHAR {ABORT | SKIP | ESCAPE | SUBSTITUTE string | NULL | SPACE}
[FORCECHECK] [NOWARNING]

ABORT

The process abends on an invalid code point. This is the default.

SKIP

The process skips the record that has the invalid code point. Use this option with
caution, because skipping a record can cause data discrepancies on the target.

ESCAPE

The process replaces the data value with an escaped version of the data value.
Depending on the character set of the source database, the value is output as one of
the following:

• If the source data is not UTF-16 (NCHAR/NVARCHAR), the output is hexadecimal (\xXX).

• If the source data is UTF-16, the output is Unicode (\uXXXX).

SUBSTITUTE string
The process replaces the data with a specified string, either Unicode notation or up to
four characters. By default the default substitution character of the target character set
is used for replacement.

NULL

The process replaces an invalid character with the value of NULL if the target column is
nullable or, otherwise, assigns a white space (U+0020).

SPACE

The process replaces an invalid character with a white space (U+0020).

FORCECHECK

The process checks for invalid code points when the source and target databases
have identical character sets. This overrides the default, where the validation is
skipped when the source and target character sets are identical.

NOWARNING

The process suppresses warning messages related to conversion and validation
errors.

Examples

Example 1
The following example replaces invalid code points with the value of NULL.

REPLACEBADCHAR NULL

Example 2
Because ESCAPE is specified, Oracle GoldenGate will replace the Euro symbol in a
source NCHAR column with the escaped version of u20AC, because the target is
ISO-8859-1, which does not support the Euro code point.

REPLACEBADCHAR ESCAPE

Chapter 3
REPLACEBADCHAR

3-216

Example 3
The following substitutes a control character for invalid characters.

REPLACEBADCHAR SUBSTITUTE \u001A

3.141 REPLACEBADNUM
Valid For

Replicat

Description

Use the REPLACEBADNUM parameter to specify a substitution value for invalid numeric
data encountered when mapping number columns. REPLACEBADNUM applies globally.

Default

Replace invalid numbers with NULL.

Syntax

REPLACEBADNUM {number | NULL | UNPRINTABLE}

number

Replace with the specified number.

NULL

Replace with NULL if the target column accepts NULL values; otherwise replace with
zero.

UNPRINTABLE

Reject any column with unprintable data. The process stops and reports the bad
value.

Examples

Example 1

REPLACEBADNUM 1

Example 2

REPLACEBADNUM NULL

3.142 REPLICAT
Valid For

Replicat

Description

Use the REPLICAT parameter to specify a Replicat group for online change
synchronization. This parameter links the current run with previous runs, so that data
changes are continually processed to maintain synchronization between source and
target tables. Replicat will run continuously and maintain checkpoints in the data

Chapter 3
REPLACEBADNUM

3-217

source and trail to ensure data integrity and fault tolerance throughout planned or
unplanned process termination, system outages, or network failure.

Either REPLICAT or SPECIALRUN is required in the Replicat parameter file and must be the
first entry. See "SPECIALRUN" for more information.

Default

None

Syntax

REPLICAT group_name

group_name

The group name as defined with the ADD REPLICAT command. To view the names of
existing Replicat groups, use the INFO REPLICAT * command.

Example

REPLICAT finance

3.143 REPORT
Valid For

Extract and Replicat

Description

Use the REPORT parameter to specify the interval at which Extract or Replicat generates
interim runtime statistics in a process report. The statistics are added to the existing
report. By default, runtime statistics are displayed at the end of a run unless the
process is intentionally killed.

The statistics for REPORT are carried over from the previous report. For example, if the
process performed 10 million inserts one day and 20 million the next, and a report is
generated at 3:00 each day, then the first report would show the first 10 million inserts,
and the second report would show those plus the current day's 20 million inserts,
totalling 30 million. To reset the statistics when a new report is generated, use the
STATOPTIONS parameter with the RESETREPORTSTATS option. See "STATOPTIONS" for
more information.

For more information about the process reports, see Administering Oracle GoldenGate
for Windows and UNIX.

Default

Generate runtime statistics at the end of each run.

Syntax

REPORT
{AT hh:mi |
ON day |
AT hh:mi ON day}

Chapter 3
REPORT

3-218

AT hh:mi

Generates the report at a specific time of the day. Using AT without ON generates a
report at the specified time every day.

ON day

Generates the report on a specific day of the week. Valid values are:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

Examples

Example 1

REPORT AT 17:00

Example 2

REPORT ON SUNDAY AT 1:00

3.144 REPORTCOUNT
Valid For

Extract and Replicat

Description

Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical
database operation that was performed within a transaction that was captured by
Oracle GoldenGate. The record count is printed to the report file and to the screen.

Note:

This count might differ from the number of records that are contained in the
Oracle GoldenGate trail. If an operation affects data that is larger than 4K, it
must be stored in more than one trail record. Hence, a report count might
show 1,000 records (the database operations) but a trail count might show
many more records than that. To obtain a count of the records in a trail, use
the Logdump utility.

You can schedule record counts at regular intervals or after a specific number of
records. Record counts are carried over from one report to the other.

REPORTCOUNT can be used only once in a parameter file. If there are multiple instances
of REPORTCOUNT, Oracle GoldenGate uses the last one.

Chapter 3
REPORTCOUNT

3-219

Default

None

Syntax

REPORTCOUNT [EVERY] count
{RECORD | RECORDS | SECOND | SECONDS | MINUTE | MINUTES | HOUR |HOURS} [, RATE]

count

The interval after which to output a count.

RECORD | RECORDS | SECOND | SECONDS | MINUTE | MINUTES | HOUR |HOURS

The unit of measure for count, in terms of records, seconds, minutes, or hours.

RATE

Reports the number of operations per second and the change in rate, as a
measurement of performance. The Rate statistic is the total number of records divided
by the total time elapsed since the process started. The Delta statistic is the number
of records since the last report divided by the time since the last report.

Note:

The calculations are done using microsecond time granularity. The time
intervals are shown without fractional seconds, and the rate values are
shown as whole numbers.

Examples

Example 1
This example generates a record count every 5,000 records.

REPORTCOUNT EVERY 5000 RECORDS

Example 2
This example generates a record count every ten minutes and also reports processing
statistics.

REPORTCOUNT EVERY 10 MINUTES, RATE

The processing statistics are similar to this:

12000 records processed as of 2011-01-01 12:27:40 (rate 203,delta 308)

3.145 REPORTROLLOVER
Valid For

Extract and Replicat

Description

Use the REPORTROLLOVER parameter to force report files to age on a regular schedule,
instead of when a process starts. For long or continuous runs, setting an aging

Chapter 3
REPORTROLLOVER

3-220

schedule controls the size of the active report file and provides a more predictable set
of archives that can be included in your archiving routine.

Note:

Report statistics are carried over from one report to the other. To reset the
statistics in the new report, use the STATOPTIONS parameter with the
RESETREPORTSTATS option.

You can specify a time of day, a day of the week, or both. Specifying just a time of day
(AT option) without a day of the week (ON option) generates a report at the specified
time every day.

Rollovers caused by this parameter do not generate runtime statistics in the process
report:

• To control when runtime statistics are generated to report files, use the REPORT
parameter.

• To generate new runtime statistics on demand, use the SEND EXTRACT or SEND
REPLICAT command with the REPORT option.

Default

Roll reports at startup

Syntax

REPORTROLLOVER
{AT hh:mi |
ON day |
AT hh:mi ON day}

AT hh:mi

The time of day to age the file.
Valid values:

• hh is based on a 24-hour clock and accepts values of 1 through 23.

• mi accepts values from 00 through 59.

ON day

The day of the week to age the file. Valid values are:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

Chapter 3
REPORTROLLOVER

3-221

Examples

Example 1

REPORTROLLOVER AT 05:30

Example 2

REPORTROLLOVER ON friday

Example 3

REPORTROLLOVER AT 05:30 ON friday

3.146 RESTARTCOLLISIONS | NORESTARTCOLLISIONS
Valid For

Replicat

Description

Use the RESTARTCOLLISIONS and NORESTARTCOLLISIONS parameters to control whether or
not Replicat applies HANDLECOLLISIONS logic after Oracle GoldenGate has stopped
because of a conflict. By default, NORESTARTCOLLISIONS applies. However, there might be
circumstances when you would want Oracle GoldenGate to apply HANDLECOLLISIONS
logic for the first transaction after startup. For example, if the server is forcibly shut
down, the database might have committed the last Replicat transaction, but Oracle
GoldenGate might not have received the acknowledgement. Consequently, Replicat
will retry the transaction upon startup. HANDLECOLLISIONS automatically handles the
resultant errors that occur.

RESTARTCOLLISIONS enables HANDLECOLLISIONS functionality until the first Replicat
checkpoint (transaction) is complete. You need not specify the HANDLECOLLISIONS
parameter in the parameter file. After the first checkpoint, HANDLECOLLISIONS is
automatically turned off.

See "HANDLECOLLISIONS | NOHANDLECOLLISIONS" for more information about
handling collisions.

Default

NORESTARTCOLLISIONS

Syntax

RESTARTCOLLISIONS | NORESTARTCOLLISIONS

3.147 RMTFILE
Valid For

Extract

Chapter 3
RESTARTCOLLISIONS | NORESTARTCOLLISIONS

3-222

Description

Use the RMTFILE parameter to define the name of an extract file on a remote system to
which extracted data will be written. Use this parameter for initial-load configurations.
For online change synchronization, use the RMTTRAIL parameter.

The size of an extract file cannot exceed 2GB .

RMTFILE must be preceded by a RMTHOST statement, and it must precede any TABLE
statements.

You can encrypt the data in this file by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

RMTFILE file_name
[, APPEND]
[, PURGE]
[, MEGABYTES megabytes]
[, FORMAT RELEASE major.minor]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file_name

The relative or fully qualified name of the file.

APPEND

Adds the current data to existing data in the file. If you use APPEND, do not use PURGE.

PURGE

Deletes an existing file before creating a new one. If you use PURGE, do not use APPEND.

MEGABYTES megabytes

Valid for Extract. The maximum size, in megabytes, of a file in the trail. The default is
2000.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to the file. The
metadata tells the reader process whether the data records are of a version that it
supports. The metadata format depends on the version of the Oracle GoldenGate
process. Older Oracle GoldenGate versions contain different metadata than newer
ones.

• FORMAT is a required keyword.

• RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid
values are 9.0 through the current Oracle GoldenGate X.x version number, for
example 11.2 or 12.1. (If you use an Oracle GoldenGate version that is earlier
than 9.0, specify either 9.0 or 9.5.)

Chapter 3
RMTFILE

3-223

The release version is programmatically mapped back to an appropriate internal
compatibility level. The default is the current version of the process that writes to
this trail. Note that RELEASE versions earlier than 12.1 do not support three-part
object names.

There is a dependency between FORMAT and the RECOVERYOPTIONS parameter. When
RECOVERYOPTIONS is set to APPENDMODE, FORMAT must be set to RELEASE 10.0 or greater.
When RECOVERYOPTIONS is set to OVERWRITEMODE, FORMAT must be set to RELEASE 9.5 or
less.

OBJECTDEFS | NO_OBJECTDEFS

Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include the
object definitions in the trail. These two options are applicable only when the output
trail is formatted in Oracle GoldenGate canonical format and the trail format release is
greater than 12.1. Otherwise, both options are ignored because no metadata record
will be added to the trail.
When replicating from an Open Systems database to NonStop, specify format version
below 12.2 to avoid including the object definitions in the trail since NonStop does not
support processing object definitions from the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Sets the byte format of the metadata in the file records. This parameter does not
affect the column data. Valid only for files that have a FORMAT RELEASE version of at
least 12.1. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and
NATIVEENDIAN (default of the local system). The default is BIGENDIAN. See the GLOBALS
version of TRAILBYTEORDER for additional usage instructions.

Examples

Example 1

RMTFILE /ggs/dirdat/salesny, MEGABYTES 2, PURGE

Example 2

RMTFILE /ggs/dirdat/salesny, MEGABYTES 2, FORMAT RELEASE 10.4

3.148 RMTHOST
Valid For

Extract

Description

Use the RMTHOST parameter to:

• Identify a remote system to which the local Extract process connects

• Specify the TCP/IP port number on that system where the Manager process is
running

• Control various attributes of the TCP/IP connections

This parameter controls compression, data encryption, buffer attributes, TCP/IP
streaming, connection timeout threshold, and the wait period for a connection request.
It also can be used to set Collector parameters.

Chapter 3
RMTHOST

3-224

To identify multiple remote systems in a parameter file, use one RMTHOST statement for
each one, followed by the associated trails and table maps, for example:

EXTRACT sales
USERIDALIAS tiger1
RMTHOST ny, MGRPORT 7888, ENCRYPT AES192 KEYNAME mykey
RMTTRAIL /ggs/dirdat/aa
TABLE ora.orders;
RMTHOST la, MGRPORT 7888, ENCRYPT AES192 KEYNAME mykey2
RMTTRAIL /ggs/dirdat/bb
TABLE ora.orders;

Do not use RMTHOST for an Extract created in PASSIVE mode. .

Oracle GoldenGate supports IPv4 and IPv6 protocols. See USEIPV4 for more
information about the selection of internet protocol.

The RMTHOST and RMTHOSTOPTIONS parameters can be specified together; the RMTHOST
parameter is not required for RMTHOSTOPTIONS if the dynamic IP assignment is properly
configured. When RMTHOSTOPTIONS is used, the MGRPORT option is ignored.

Default

None

Syntax

RMTHOST
{ host name | IP address}
[, COMPRESS]
[, COMPRESSTHRESHOLD]
[, ENCRYPT {BLOWFISH KEYNAME key_name | algorithm [KEYNAME key_name]}]
{, MGRPORT port | PORT port}
[, PARAMS collector_parameters]
[, SOCKSPROXY {host_name | IP address} [:port] [PROXYCSALIAS credential_
store_alias [PROXYCSDOMAIN credential_store_domain]]
[, STREAMING | NOSTREAMING]
[, TCPBUFSIZE bytes]
[, TCPFLUSHBYTES bytes]
[, TIMEOUT seconds]
[, DGST SHA1|SHA2]

{host_name | IP_address}

The DNS host name or IP address of the target system. You can use either one to
define the host. If using an IP address, use either an IPv6 or IPv4-mapped address,
depending on the stack of the destination system.

COMPRESS

This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Compresses outgoing blocks of records to reduce
bandwidth requirements. Oracle GoldenGate decompresses the data before writing it
to the trail. COMPRESS typically results in compression ratios of at least 4:1 and
sometimes better. However, compressing data can consume CPU resources.

COMPRESSTHRESHOLD

This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Sets the minimum block size for which
compression is to occur. Valid values are from 0 and through 28000. The default is
1,000 bytes.

Chapter 3
RMTHOST

3-225

ENCRYPT algorithm [KEYNAME key_name]
This option is valid for online or batch Extract processes and all Oracle GoldenGate
initial-load methods. Encrypts the data stream sent over TCP/IP to the target system.
This option supports the following encryption options:

• Master key and wallet method: Generate a session key based on the active
master key and algorithm specified. Not valid for BLOWFISH algorithm. Not valid
for DB2 on z/OS, and DB2 for i.

• ENCKEYS method: Generate an AES encryption key, store it under a given
name in an ENCKEYS file, and configure Oracle GoldenGate to use that key to
encrypt the data.

algorithm

Specifies the encryption algorithm to use:

• AES128 uses the AES-128 cipher, which has a key size of 128 bits. AES128 is
the default if no algorithm is specified.

• AES192 uses the AES-192 cipher, which has a key size of 192 bits.

• AES256 uses the AES-256 cipher, which has a key size of 256 bits.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use BLOWFISH for backward
compatibility with earlier Oracle GoldenGate versions and for Oracle
GoldenGate installations for DB2 z/OS and DB2 for i. On those platforms,
BLOWFISH is the only supported encryption method. Use AES where supported,
because it is more secure than BLOWFISH for those platforms.

KEYNAME key_name

Specifies that the ENCKEYS method of encryption will be used. Not valid for the
master key and wallet method. For key_name, specify the logical name of the user-
defined encryption key. Oracle GoldenGate uses the key name to look up the
actual key in the ENCKEYS lookup file. To use the ENCKEYS method, you must:

• Generate the encryption key.

• Store it in an ENCKEYS lookup file.

• Copy ENCKEYS to every system where encryption or decryption (or both) are
performed.

To use AES encryption for any database other than Oracle on a 32-bit platform, the
path of the lib sub-directory of the Oracle GoldenGate installation directory must be
specified as an environment variable before starting any processes. This is not
required on 64-bit platforms. Set the path as follows:

• UNIX: Specify the path as an entry to the LD_LIBRARY_PATH or SHLIB_PATH variable.
For example:

setenv LD_LIBRARY_PATH ./lib:$LD_LIBRARY_PATH

• Windows: Add the path to the PATH variable.

You can use the SETENV parameter to set the library as a session variable for the
process.
For more information about using encryption, see Administering Oracle GoldenGate
for Windows and UNIX.

Chapter 3
RMTHOST

3-226

MGRPORT port | PORT port
Either MGRPORT or PORT is required. MGRPORT is the port on the remote system where
Manager runs. PORT is the port number of a static Collector process. Either a Manager
port (if using a dynamic Collector) or a static Collector port must be specified. See
"Collector Parameters" for more information about a static Collector. The minimum is
1025 and the maximum is 65535.

SOCKSPROXY {host_name | IP address} [:port] [PROXYCSALIAS credential_store_alias
[PROXYCSDOMAIN credential_store_domain]]
Use the SOCKSPROXY parameter to replicate information using a SOCKS5 proxy server
creating a tunnel for TCP communication between a source Extract and a target
process. The connection is initiated in the source side. You must specify the proxy
address. Optionally you can specify the port or the default for SOCKS protocol will be
used. If a credential store alias is specified, Oracle GoldenGate will use that
information to authenticate with the proxy server. This is an option for RMTHOST
parameter.
If there is no credential store information, no authentication with the proxy is
performed.

host_name | IP_address
Use for an alias Extract. Specifies the DNS host name or IP address of the proxy
server. You can use either one to define the host though you must use the IP
address if your DNS server is unreachable. If you are using an IP address, use
either an IPv6 or IPv4 mapped address, depending on the stack of the destination
system.

port

(Optional) Specifies the port on the remote system where the proxy server
accepts connections. The default value for port is 1080.

PROXYCSALIAS credential_store_alias
Specifies the credential store alias that resolves to the username and password
used to authenticate with the proxy server.

PROXYCSDOMAIN credential_store_domain
(Optional) Specifies the credential store domain used together with the alias.

STREAMING | NOSTREAMING

This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Controls TCP/IP streaming.

STREAMING

Enables the asynchronous internet streaming protocol and is the default. In
STREAMING mode, the receiver (Collector) does not send an acknowledgement to
the sender (primary Extract or data pump) for any data packet unless the packet
contains a flag requesting a response, typically when the sender must checkpoint
or determine a write position. Because this method omits acknowledgements, the
sender or receiver process terminates if there is a network disruption; therefore,
when using STREAMING, use the AUTORESTART parameter in the Manager parameter
file to restart Extract and Collector if they terminate.

NOSTREAMING

Enables the synchronous internet protocol. In NOSTREAMING mode, the sender
sends a packet and then waits for the receiver to acknowledge it, before sending
the next packet. This method is more reliable, because it enables the sender or
receiver process to recover if there is a network disruption.

Chapter 3
RMTHOST

3-227

Extract falls back to the synchronous protocol automatically if the host system of the
receiver process is not configured to use streaming.
Keep the STREAMING default unless you are requested to disable it, because streaming
reduces transmission latency, especially in networks where latency is a problem
already. Streaming is not supported for initial-load tasks where Extract communicates
directly with Replicat.

TCPBUFSIZE bytes

This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Controls the size of the TCP socket buffer, in
bytes, that Extract will try to maintain.
By increasing the size of the buffer, you can send larger packets to the target
system.The actual size of the buffer depends on the TCP stack implementation and
the network. The default is 30,000 bytes, but modern network configurations usually
support higher values. Valid values are from 1000 to 200000000 (two hundred million)
bytes. Work with your network administrator to determine an optimal value. See also
Administering Oracle GoldenGate for Windows and UNIX for more information about
tuning the buffer size and other suggestions for improving the transfer of data across
the network.
Testing has shown that using TCPBUFSIZE for initial loads produces three times faster
throughput than loads performed without it. Do not use this parameter if the target
system is NonStop.

TCPFLUSHBYTES bytes

This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Controls the size of the buffer, in bytes, that
collects data that is ready to be sent across the network.
When either this value or the value of the FLUSHSECS parameter is reached, the data is
flushed to the target. The default is 30,000 bytes. Valid values are from 1000 to
200000000 (two hundred million) bytes, but should be at least the value of TCPBUFSIZE.
Do not use this parameter for an initial load Extract. It is valid only for an online
Extract group. Do not use this parameter if the target system is NonStop.

TIMEOUT seconds

This option is valid for online or batch Extract processes and any Oracle GoldenGate
initial-load method that uses trails. Specifies how long Collector waits to get a
connection from Extract, and how long Collector waits for a heartbeat signal from
Extract before terminating a connection. Valid values are 1 second to 1800 seconds
(30 minutes). The default value is 300 seconds (5 minutes). Setting the timeout to a
very low value is not recommended in a production setting. You might need to
increase the TIMEOUT value if you see a warning in the error log that there was a
TCP/IP error 10054 (existing connection forcibly closed by remote host). This error
typically occurs when the Collector terminates itself after the TIMEOUT value is
exceeded. This parameter does not affect a static Collector.

DGST SHA1|SHA2
This is a new Extract option to specify the AES encryption method. This option is only
valid when the RMTHOST parameter is used with PORT and ENCRYPT AES options using
Oracle wallet. Valid value is either SHA1 or SHA2. SHA1 is default and works with the
previous release of server collector. SHA2 only works with Server Collector 12.3. Both
Extract and Server Collector must specify the same encryption method, otherwise the
connection fails. Here’s an example of using this option:
$ server -p 9050 -encrypt AES128 -dgst SHA2

Chapter 3
RMTHOST

3-228

Examples

Example 1

RMTHOST 20.20.20.17, MGRPORT 7809, ENCRYPT AES192, KEYNAME newyork

Example 2

RMTHOST 20.20.20.17, MGRPORT 7809, ENCRYPT AES192

Example 3

RMTHOST newyork, MGRPORT 7809, COMPRESS, COMPRESSTHRESHOLD 750, NOSTREAMING

Example 4

RMTHOST newyork, MGRPORT 7809, TCPBUFSIZE 100000, TCPFLUSHBYTES 300000

Example 5

RMTHOST newyork, MGRPORT 18819, CPU 1, PRI 140, HOMETERM $ZTN0.#PTJ52A1,
PROCESSNAME $xyz1

Example 6

RMTHOST lc01abc, MGRPORT 7809, SOCKSPROXY 192.111.82.180:3128 PROXYCSALIAS
proxyAlias PROXYCSDOMAIN support

3.149 RMTHOSTOPTIONS
Valid For

Passive Extract

Description

Use the RMTHOSTOPTIONS parameter to control attributes of a TCP/IP connection made
between an Extract group running in PASSIVE mode on a less trusted source to a target
system in a more secure network zone. This parameter controls compression, data
encryption, buffer attributes, streaming, and the wait period for a connection request. It
also can be used to set Collector parameters.

This parameter differs from the RMTHOST parameter because it does not provide the host
information needed to establish a remote connection. When Extract is running in
PASSIVE mode, all connections between source and target are established by an alias
Extract group on the target.

All parameter options must be specified in one RMTHOSTOPTIONS statement. If multiple
RMTHOSTOPTIONS statements are used, the last one in the parameter file is used, and the
others are ignored. RMTHOSTOPTIONS overrides any RMTHOST statements in the file.

See RMTHOST for additional information about supported IP protocols.

The RMTHOST and RMTHOSTOPTIONS parameters can be specified together; the RMTHOST
parameter is not required for RMTHOSTOPTIONS if the dynamic IP assignment is properly
configured. When RMTHOSTOPTIONS is used, the MGRPORT option is ignored.

For more information about using Oracle GoldenGate in a zoned network, see
Administering Oracle GoldenGate for Windows and UNIX.

Chapter 3
RMTHOSTOPTIONS

3-229

Default

None

Syntax

RMTHOSTOPTIONS
[, COMPRESS]
[, COMPRESSTHRESHOLD]
[, ENCRYPT algorithm [KEYNAME key_name]]
[, PARAMS collector_parameters]
[, STREAMING | NOSTREAMING]
[, TCPBUFSIZE bytes]
[, TCPFLUSHBYTES bytes]
[, TIMEOUT seconds]

COMPRESS

Compresses outgoing blocks of records to reduce bandwidth requirements. Oracle
GoldenGate decompresses the data before writing it to the trail. COMPRESS typically
results in compression ratios of at least 4:1 and sometimes better. However,
compressing data can consume CPU resources.

COMPRESSTHRESHOLD

Sets the minimum block size for which compression is to occur. Valid values are from
0 and through 28000. The default is 1,000 bytes.

ENCRYPT algorithm [KEYNAME key_name]
Encrypts the data stream sent over TCP/IP to the target system. This option supports
the following encryption options:

• Master key and wallet method: Generate a one-time AES key to encrypt the
data across the TCP/IP network. Then, the one-time key is encrypted by the
master-key and stored in the trail file header.

• ENCKEYS method: Generate an AES encryption key, store it under a given
name in an ENCKEYS file, and configure Oracle GoldenGate to use that key to
directly encrypt the data across the TCP/IP network.

algorithm

Specifies the encryption algorithm to use:

• AES128 uses the AES-128 cipher, which has a key size of 128 bits. AES128 is
the default if no algorithm is specified.

• AES192 uses the AES-192 cipher, which has a key size of 192 bits.

• AES256 uses the AES-256 cipher, which has a key size of 256 bits.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use BLOWFISH for backward
compatibility with earlier Oracle GoldenGate versions and for Oracle
GoldenGate installations for DB2 on z/OS, DB2 for i, and SQL/MX on
NonStop. On those platforms, BLOWFISH is the only supported encryption
method. Use AES where supported, because it is more secure than BLOWFISH
for those platforms.

Chapter 3
RMTHOSTOPTIONS

3-230

KEYNAME key_name

Specifies that the ENCKEYS method of encryption will be used. Not valid for the
master key and wallet method. For key_name, specify the logical name of the user-
defined encryption key. Oracle GoldenGate uses the key name to look up the
actual key in the ENCKEYS lookup file. To use the ENCKEYS method, you must:

• Generate the encryption key.

• Store it in an ENCKEYS lookup file.

• Copy ENCKEYS to every system where encryption or decryption (or both) are
performed.

To use AES encryption for any database other than Oracle on a 32-bit platform, the
path of the lib sub-directory of the Oracle GoldenGate installation directory must be
specified as an environment variable before starting any processes. This is not
required on 64-bit platforms. Set the path as follows:

• UNIX: Specify the path as an entry to the LD_LIBRARY_PATH or SHLIB_PATH variable.
For example:

setenv LD_LIBRARY_PATH ./lib:$LD_LIBRARY_PATH

• Windows: Add the path to the PATH variable.

You can use the SETENV parameter to set the library as a session variable for the
process.
For more information about using encryption, see the Administering Oracle
GoldenGate for Windows and UNIX.

PARAMS collector_parameters

Specifies Collector parameters on a NonStop target system.

Note:

Do not specify a Collector port (-p argument) if Manager will be starting
Collector dynamically.

For more information about Collector parameters on the NonStop platform, see
Reference Guide for Oracle GoldenGate for HP NonStop (Guardian).

STREAMING | NOSTREAMING

Controls TCP/IP streaming.

STREAMING

Enables the asynchronous internet streaming protocol and is the default. In
STREAMING mode, the receiver (Collector) does not send an acknowledgement to
the sender (primary Extract or data pump) for any data packet unless the packet
contains a flag requesting a response, typically when the sender must checkpoint
or determine a write position. Because this method omits acknowledgements, the
sender or receiver process terminates if there is a network disruption; therefore,
when using STREAMING, use the AUTORESTART parameter in the Manager parameter
file to restart Extract and Collector if they terminate.

Chapter 3
RMTHOSTOPTIONS

3-231

NOSTREAMING

Enables the synchronous internet protocol. In NOSTREAMING mode, the sender
sends a packet and then waits for the receiver to acknowledge it, before sending
the next packet. This method is more reliable, because it enables the sender or
receiver process to recover if there is a network disruption.

Extract falls back to the synchronous protocol automatically if the host system of the
receiver process is not configured to use streaming.
Keep the STREAMING default unless you are requested to disable it, because streaming
reduces transmission latency, especially in networks where latency is a problem
already. Streaming is not supported for initial-load tasks where Extract communicates
directly with Replicat.

TCPFLUSHBYTES bytes

Controls the size of the buffer, in bytes, that collects data that is ready to be sent
across the network. When either this value or the value of the FLUSHSECS parameter is
reached, the data is flushed to the target.
The default is 30,000 bytes. Valid values are from 1000 to 200000000 (two hundred
million) bytes, but should be at least the value of TCPBUFSIZE.
Do not use this parameter for an initial load Extract. It is valid only for an online
Extract group. Do not use this parameter if the target system is NonStop.

TIMEOUT seconds

Specifies how long an Extract running in PASSIVE mode waits to get a connection from
Collector, and how long Extract waits for a heartbeat signal from Collector before
terminating a connection. Valid values are 1 second to 1800 seconds (30 minutes).
The default value is 300 seconds (5 minutes). Setting the timeout to a very low value
is not recommended in a production setting. You might need to increase the TIMEOUT
value if you see a warning in the error log that there was a TCP/IP error 10054
(existing connection forcibly closed by remote host). This error typically occurs when
the Extract terminates itself after the TIMEOUT value is exceeded.

Example

RMTHOSTOPTIONS ENCRYPT AES192, KEYNAME newyork, COMPRESS, COMPRESSTHRESHOLD 750,
TCPBUFSIZE 100000, TCPFLUSHBYTES 300000, NOSTREAMING

3.150 RMTTASK
Valid For

Extract

Description

Use the RMTTASK parameter for an initial-load Extract to initiate a Replicat processing
task during an Oracle GoldenGate direct load or a direct bulk load to SQL*Loader.
RMTTASK directs Extract to communicate directly with Replicat over TCP/IP and
bypasses the use of a Collector process or trail storage. RMTTASK also directs Extract to
request that Manager start Replicat automatically, and then stop Replicat when the run
is finished. Tasks do not use checkpoints.

Dependent parameters are as follows:

• A RMTHOST statement must follow each RMTTASK statement in the initial-load Extract
parameter file.

Chapter 3
RMTTASK

3-232

• EXTRACT must be used in the initial-load Extract parameter file.

• REPLICAT must be used in the initial-load Replicat parameter file.

• SOURCEISTABLE must be used in the ADD EXTRACT command.

• SPECIALRUN must be used in the ADD REPLICAT command.

RMTTASK does not support encryption of any kind. To use encryption, you can use the
initial-load method that writes data to a file, which is read by Replicat to load the data.

RMTTASK supports all Oracle data types, including BLOB, CLOB, NCLOB, LONG, UDT,
and XML.

When using RMTTASK, do not start Replicat with the START REPLICAT command. Replicat
is started automatically during the task.

See the Administering Oracle GoldenGate for Windows and UNIX for more information
about performing initial data loads.

Default

None

Syntax

RMTTASK REPLICAT, GROUP group_name
[FORMAT RELEASE major.minor]

GROUP group_name

The group name of the Initial Load Replicat on the target system.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to Replicat. The
metadata tells Replicat whether the data records are of a version that it supports. The
metadata format depends on the version of the Oracle GoldenGate process. Older
Oracle GoldenGate versions contain different metadata than newer ones.

• FORMAT is a required keyword.

• RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid
values are 9.0 through the current Oracle GoldenGate X.x version number, for
example 11.2 or 12.1. (If you use an Oracle GoldenGate version that is earlier
than 9.0, specify either 9.0 or 9.5.)

The release version is programmatically mapped back to an appropriate internal
compatibility level. The default is the current version of the process that writes to
this trail. Note that RELEASE versions earlier than 12.1 do not support three-part
object names.

There is a dependency between FORMAT and the RECOVERYOPTIONS parameter. When
RECOVERYOPTIONS is set to APPENDMODE, FORMAT must be set to RELEASE 10.0 or greater.
When RECOVERYOPTIONS is set to OVERWRITEMODE, FORMAT must be set to RELEASE 9.5 or
less.
See Administering Oracle GoldenGate for Windows and UNIX for more information
about initial loads.

Example

RMTTASK REPLICAT, GROUP initrep, FORMAT RELEASE 10.0

Chapter 3
RMTTASK

3-233

3.151 RMTTRAIL
Valid For

Extract

Description

Use the RMTTRAIL parameter to specify a remote trail that was created with the ADD
RMTTRAIL command in GGSCI. A trail specified with RMTTRAIL must precede its
associated TABLE statements. Multiple RMTTRAIL statements can be used to specify
different remote trails. RMTTRAIL must be preceded by a RMTHOST parameter.

You can encrypt the data in this trail by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Default

None

Syntax

RMTTRAIL trail_name
[, FORMAT RELEASE major.minor]
[, OBJECTDEFS | NO_OBJECTDEFS]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

name

The relative or fully qualified path name of the trail. Use two characters for the name.
As trail files are aged, a six-character sequence number will be added to this name,
for example /ggs/dirdat/rt000001.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to the trail. The
metadata tells the reader process whether the data records are of a version that it
supports. Older Oracle GoldenGate versions contain different metadata than newer
ones.

• FORMAT is a required keyword.

• RELEASE specifies an Oracle GoldenGate release version. major is the major
version number, and minor is the minor version number. The X.x must reflect a
current or earlier, generally available (GA) release of Oracle GoldenGate. Valid
values are 9.0 through the current Oracle GoldenGate X.x version number, for
example 11.2 or 12.1. (If you use an Oracle GoldenGate version that is earlier
than 9.0, specify either 9.0 or 9.5.)

The release version is programmatically mapped back to an appropriate internal
compatibility level. The default is the current version of the process that writes to
this trail. Note that RELEASE versions earlier than 12.1 do not support three-part
object names.

There is a dependency between FORMAT and the RECOVERYOPTIONS parameter. When
RECOVERYOPTIONS is set to APPENDMODE, FORMAT must be set to RELEASE 10.0 or greater.
When RECOVERYOPTIONS is set to OVERWRITEMODE, FORMAT must be set to RELEASE 9.5 or
less.

Chapter 3
RMTTRAIL

3-234

See Administering Oracle GoldenGate for Windows and UNIX for additional
information about Oracle GoldenGate trail file versioning and recovery modes.

OBJECTDEFS | NO_OBJECTDEFS

Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include the
object definitions in the trail. These two options are applicable only when the output
trail is formatted in Oracle GoldenGate canonical format and the trail format release is
greater than 12.1. Otherwise, both options are ignored because no metadata record
will be added to the trail.
When replicating from an Open Systems database to NonStop, specify format version
below 12.2 to avoid including the object definitions in the trail since NonStop does not
support processing object definitions from the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}
Sets the byte format of the metadata in the trail records. This parameter does not
affect the column data. Valid only for trails that have a FORMAT RELEASE version of at
least 12.1. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and
NATIVEENDIAN (default of the local system). The default is BIGENDIAN. See the GLOBALS
version of TRAILBYTEORDER for additional usage instructions.

Examples

Example 1

RMTTRAIL dirdat/ny

Example 2

RMTTRAIL /ggs/dirdat/ny, FORMAT RELEASE 10.4

Example 3
Two trail formats within the same sets of tables being captured:

FORMAT RELEASE 11.2
TABLE tab1
TABLE tab2
FORMAT RELEASE 12.1
TABLE tab1
TABLE tab2

Example 4
Example of a data pump parameter file that sends an HR schema with object
definitions and an ORD schema without object definitions:

RMTTRAIL $data/ggs12.2/a1, OBJECTDEFS
TABLE hr.*;
RMTTRAIL $data/ggs12.2/a2, NO_OBJECTDEFS
TABLE ord.*;

3.152 ROLLOVER
Valid For

Extract

Chapter 3
ROLLOVER

3-235

Description

Use the ROLLOVER parameter to specify the interval at which trail files are aged and new
ones are created. ROLLOVER is global and applies to all trails defined with RMTTRAIL or
RMTFILE statements in a parameter file.

Use ROLLOVER to create trail files that represent distinct periods of time (for example,
each day). It facilitates continuous processing while providing a means for organizing
the output. It also provides a means for organizing batch runs by deactivating one file
and starting another for the next run.

Files roll over between transactions, not in the middle of one, ensuring data integrity.
Checkpoints are recorded when files roll over to ensure that previous files are no
longer required for processing.

Rollover occurs only if the rollover conditions are satisfied during the run. For example,
if ROLLOVER ON TUESDAY is specified, and data extraction starts on Tuesday, the rollover
does not occur until the next Tuesday (unless more precise ROLLOVER rules are
specified). You can specify up to 30 rollover rules.

Either the AT or ON option is required. Both options can be used together, and in any
order. Using AT without ON creates a new trail file at the specified time every day.

A trail sequence number can be incremented from 000001 through 999999, and then
the sequence numbering starts over at 000000.

Default

Roll over when the default file size is reached or the size specified with the MEGABYTES
option of the ADD RMTTRAIL or ADD EXTTRAIL command is reached.

Syntax

ROLLOVER {AT hh:mi | ON day | AT hh:mi ON day} [REPORT]

AT hh:mi

The time of day to age the file.
Valid values:

• hh is based on a 24-hour clock, with valid values of 1 through 23.

• mi accepts values from 00 through 59.

ON day

The day of the week to age the file.
Valid values:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

Chapter 3
ROLLOVER

3-236

REPORT

Generates a report for the number of records extracted from each table since the last
report was generated. The report represents the number of records output to the
corresponding trail unless other reports are generated by means of the REPORT
parameter.

Examples

Example 1
The following ages trails every day at 3:00 p.m.

ROLLOVER AT 15:00

Example 2
The following ages trails every Sunday at 8:00 a.m.

ROLLOVER AT 08:00 ON SUNDAY

3.153 SCHEMAEXCLUDE
Valid For

Extract, Replicat, DEFGEN

Description

Use the SCHEMAEXCLUDE parameter to exclude source objects that are owned by the
specified source owner (such as a schema) from the Oracle GoldenGate configuration
when wildcards are being used to specify the owners in TABLE or MAP statements. This
parameter is valid for two- and three-part names.

Wildcards can be used for the optional catalog or container specification, as well as
the schema specification. Make certain not to use wildcards such that all objects are
excluded. Follow the rules for using wildcards in Administering Oracle GoldenGate for
Windows and UNIX.

The positioning of SCHEMAEXCLUDE in relation to parameters that specify files or trails
determines its effect. Parameters that specify trails or files are: EXTFILE, RMTFILE,
EXTTRAIL, RMTTRAIL. The parameter works as follows:

• When a SCHEMAEXCLUDE specification is placed before any TABLE or SEQUENCE
parameters, and also before the parameters that specify trails or files, it applies
globally to all trails or files, and to all TABLE and SEQUENCE parameters.

• When a SCHEMAEXCLUDE specification is placed after a parameter that specifies a trail
or file, it is effective only for that trail or file and only for the TABLE or SEQUENCE
parameters that are associated with it. Multiple trail or file specifications can be
made in a parameter file, each followed by a set of TABLE, SEQUENCE, and
TABLEEXCLUDE specifications.

SCHEMAEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE
parameters. Thus, the order in which they appear does not make a difference.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Default

None

Chapter 3
SCHEMAEXCLUDE

3-237

Syntax

SCHEMAEXCLUDE [container. | catalog.]schema

container. | catalog.
If the database requires three-part names, specifies the source Oracle container or
SQL/MX catalog that contains the source owner that is to be excluded. Use if a
qualifier is required to identify the correct owner to exclude.

schema

Specifies the name of the source owner that is to be excluded. For databases that
require three-part names, you can use schema without catalog if the SCHEMAEXCLUDE
specification precedes a set of TABLE or MAP parameters for which the default container
or catalog is specified with the SOURCECATALOG parameter, or if the SQL/MX catalog is
defined by the SOURCEDB or TARGETDB parameter.

Examples

Example 1
This example excludes the source test* schemas. Note that it omits the catalog
specification from the owner name because the catalog is specified with the SOURCEDB
parameter in a SQL/MX configuration.

EXTRACT capt
SOURCEDB catalog1, USERID schema1
RMTHOST sysb, MGRPORT 7809
RMTTRAIL /ggs/dirdat/aa
SCHEMAEXCLUDE test*
TABLE *.*;

Example 2
This Oracle example requires both catalog (container) and schema specifications and
demonstrates how wildcards can be used as part of the specification.

EXTRACT capt
USERIDALIAS alias1
RMTHOST sysb, MGRPORT 7809
RMTTRAIL /ggs/dirdat/aa
SCHEMAEXCLUDE pdbtest.test*
TABLE pdb*.*.*;

Example 3
This example shows how to use SCHEMAEXCLUDE when the database requires only a
two-part name.

TABLE abc*.*;
SCHEMAEXCLUDE abctest*

3.154 SEQUENCE
Valid For

Extract

Chapter 3
SEQUENCE

3-238

Description

Use the SEQUENCE parameter to capture sequence values from the transaction log.
Currently, Oracle GoldenGate supports sequences for the Oracle database.

Note:

DDL support for sequences (CREATE, ALTER, DROP, RENAME) is compatible with,
but not required for, replicating sequence values. To replicate just sequence
values, you do not need to install the Oracle GoldenGate DDL support
environment. You can just use the SEQUENCE parameter.

Oracle GoldenGate ensures that the values of a target sequence are:

• higher than the source values if the increment interval is positive

• lower than the source values if the increment interval is negative

Depending on the increment direction, Replicat applies one of the following formulas
as a test when it performs an insert:

source_highwater_value + (source_cache_size * source_increment_size) =
target_highwater_value

Or...

source_highwater_value + (source_cache_size * source_increment_size) >=
target_highwater_value

If the formula evaluates to FALSE, the target sequence is updated to be higher than the
source value (if sequences are incremented) or lower than the source value (if
sequences are decremented). The target must always be ahead of, or equal to, the
expression in the parentheses in the formula. For example, if the source high water
value is 40, and CACHE is 20, the target high water value should be at least 60:

40 + (20*1) <60

If the target high water value is less than 80, Oracle GoldenGate updates the
sequence to increase the high water value, so that the target remains ahead of the
source. To get the current high water value, perform this query:

SELECT last_number FROM all_sequences WHERE sequence_owner=upper('SEQUENCEOWNER')
AND sequence_name=upper('SEQUENCENAME');

Supported Processing Modes

The processing modes that support the capture of sequences are as follows:

• Oracle GoldenGate supports sequences in an active-passive high-availability
configuration. Oracle GoldenGate does not support the replication of sequence
values in an active-active configuration. An active-passive configuration includes a
primary Extract, a data pump, and a Replicat on both servers, but the processes
are active in only one direction. The Extract process on the failover server must be
inactive, which includes not capturing sequences. See the Administering Oracle
GoldenGate for Windows and UNIX for more information about how to configure
Oracle GoldenGate for high-availability.

Chapter 3
SEQUENCE

3-239

• If using SEQUENCE for a primary Extract that writes to a data pump, you must also
use an identical SEQUENCE parameter in the data pump.

• Oracle GoldenGate initial load methods that contain the SOURCEISTABLE parameter,
either as an Extract parameter or within ADD EXTRACT, do not support the replication
of sequence values.

Guidelines for Using SEQUENCE

• The cache size and the increment interval of the source and target sequences
must be identical.

• The cache can be any size, including 0 (NOCACHE).

• The sequence can be set to cycle or not cycle, but the source and target
databases must be set the same way.

• To add SEQUENCE to a configuration in which DDL support is enabled, you must re-
install the Oracle GoldenGate DDL objects in INITIALSETUP mode.

Error Handling

• If Extract cannot resolve a sequence name, it ignores the operation.

• To enable Replicat error handling for sequences, use the REPERROR parameter. This
parameter is available as an option in the MAP parameter and also as a standalone
parameter. REPERROR can detect if a sequence has been dropped on the target and
can be used to retry a sequence operation until the sequence is recreated.

• REPERROR does not handle missing objects on startup. Use DDLERROR with
IGNOREMISSINGTABLES.

Other Important Information

• Gaps are possible in the values of the sequences that Oracle GoldenGate
replicates because gaps are inherent, and expected, in the way that sequences
are maintained by the database. However, the target values will always be greater
than those of the source.

• If Extract is running in single-threaded mode on a RAC system, and if sequences
are updated on a node that has lag, it might take more time to capture a
sequence. This is normal behavior.

• In a failover, any problem that causes the loss or corruption of data in a
transaction log or Oracle GoldenGate trail file will cause the loss of the replicated
sequence updates.

• The statistics shown by SEND EXTRACT and SEND REPLICAT when used with the REPORT
option will show the sequence operation as an UPDATE.

Default

None

Syntax

SEQUENCE [container.]schema.sequence;

Chapter 3
SEQUENCE

3-240

[container.]schema.sequence

Specifies the fully qualified name of the source sequence. Include the name of the
pluggable database if the source is an Oracle container database. To specify object
names and wildcards correctly, see Administering Oracle GoldenGate for Windows
and UNIX.

;

Terminates the SEQUENCE parameter statement.

Example

SEQUENCE hr.employees_seq;

3.155 SESSIONCHARSET
Valid For

GLOBALS, not valid for MySQL, Sybase, or Teradata

Description

Use the SESSIONCHARSET parameter to set the database session character set for all
database connections that are initiated by Oracle GoldenGate processes in the local
Oracle GoldenGate instance. Processes that log into the database include GGSCI,
DEFGEN, Extract, and Replicat.

This parameter supports Sybase, Teradata and MySQL. The database character set
for other databases is obtained programmatically.

To display the language information in the process report file when using this option
for a Sybase database, make certain that locale.dat is set properly in the Sybase
installation directory. If the character set is not found in the supported Sybase
database character set, then it is validated against the Oracle GoldenGate supported
character set list. The character-set information is displayed with the LOCALE
INFORMATION entry in the report output.

The SESSIONCHARSET option of the DBLOGIN command can be used to override this setting
for any commands issued in the same GGSCI session. The SESSIONCHARSET option of
the SOURCEDB and TARGETDB parameters can be used to override this setting for individual
process logins.

Default

Character set of the operating system

Syntax

SESSIONCHARSET character_set

character_set

The database session character set.

Example

SESSIONCHARSET ISO-8859-11

Chapter 3
SESSIONCHARSET

3-241

3.156 SETENV
Valid For

Extract and Replicat

Description

Use the SETENV parameter to set a value for an environment variable. When Extract or
Replicat starts, it uses the specified value instead of the one that is set in the operating
system environment. A variable set in the SETENV statement overrides any existing
variables set at the operating system level. Use one SETENV statement per variable to
be set.

For integrated extracts, you can set new environment variables if they are available
from the lcr server. The new environment variables are:

• USERNAME: Database login user name

• OSUSERNAME: Operating System user name

• MACHINENAME: Name of the host, machine, or server where the database is running

• PROGRAMNAME: Name of program or application that started the transaction or
session

• CLIENTIDENTIFIER: Value set using DBMS_SESSION.set_identifier()

SETENV cannot be used with query parameters.

Default

None

Syntax

SETENV (
{environment_variable |
 GGS_CacheRetryCount |
 GGS_CacheRetryDelay}
= 'value'
)

environment_variable

The name of the environment variable to be set.

'value'

A value for the specified variable. Enclose the value within single quotes.

GGS_CacheRetryCount

(SQL Server) Oracle GoldenGate environment parameter that controls the number of
times that Extract tries to read the source transaction log files when they are blocked
because of excessive system activity. The default is 10 retries. After trying the
specified number of times, Extract abends with an error that begins as follows:

GGS ERROR 600 [CFileInfo::Read] Timeout expired after 10 retries with 1000 ms delay
waiting to read transaction log or backup files.

Chapter 3
SETENV

3-242

If you continue to see timeout messages in the report file or error log, increase this
parameter to allow more retries.

GGS_CacheRetryDelay

(SQL Server) Oracle GoldenGate environment parameter that controls the number of
milliseconds that Extract waits before trying again to read the transaction logs when
the previous attempt has failed. The default is 1000 milliseconds delay.

Examples

Example 1
Using separate SETENV statements allows a single instance of Oracle GoldenGate to
connect to multiple Oracle database instances without having to change environment
settings. The following parameter statements set a value for ORACLE_HOME and
ORACLE_SID.

SETENV (ORACLE_HOME = '/home/oracle/ora9/product')
SETENV (ORACLE_SID = 'ora9')

Example 2
The following parameter statements set values for Oracle GoldenGate in a SQL
Server environment where Extract tries to read the transaction log for a maximum of
20 times before abending, with a delay of 3000 milliseconds between tries.

SETENV (GGS_CacheRetryCount = 20)
SETENV (GGS_CacheRetryDelay = 3000)

3.157 SHOWSYNTAX
Valid For

Replicat

Description

Use the SHOWSYNTAX parameter to start an interactive session where you can view each
Replicat SQL statement before it is applied. Viewing SQL statements that failed may
help you diagnose the cause of the problem. For example, you could find out that the
WHERE clause is using a non-indexed column.

As long as a data type can be applied with dynamic SQL and the column data is
bound with a SQL statement, Replicat shows some or all of the data in string form,
hexadecimal form, or as a data identifier, depending on the data type. By default,
Replicat does not show LOB data or other data types that are treated as a LOB by the
database or by Oracle GoldenGate, whether or not the data is bound in SQL.
Examples are LOB, XML, and UDT data types. Instead, Replicat shows a data
identifier, for example "<LOB data>." To display this type of data, specify the INCLUDELOB
option of SHOWSYNTAX. If the column data is not bound in a SQL statement, Replicat
does not show the data even when INCLUDELOB is used.

If CHAR/VARCHAR/CLOB or NCHAR/NVARCHAR/NCLOB character data has an unprintable
character (U+0000 to U+001F), the character is escaped and displayed in \xx form,
where xx is a decimal value that ranges from 00 to 31.

The first time that you use SHOWSYNTAX, request guidance from Oracle Support. It is a
debugging parameter and can cause unwanted results if used improperly. It requires
manual intervention, which suspends automated processing and can cause backlogs

Chapter 3
SHOWSYNTAX

3-243

and latency. Use SHOWSYNTAX in a test environment. Create duplicates of your Replicat
groups and target tables so that the production environment is not affected.

SHOWSYNTAX is not supported for a coordinated Replicat group.

If used for an integrated Replicat group, sqltrace is enabled for the associated
database apply process.

If you capture XML column data using Integrated Extract, the column is captured as
updated column even if you do not update the column. As a result of this behavior,
SHOWSYNTAX shows the XML column as updated column. However, if you capture the
table using Classic Extract, the XML column does not appear in the SHOWSYNTAX SQL
statement if the column is not part of the update.

To use SHOWSYNTAX, Replicat must be started from the command shell of the operating
system. Do not use SHOWSYNTAX if Replicat is started through GGSCI.

BATCHSQL processing is suspended when SHOWSYNTAX is running. BATCHSQL mode is
resumed when Replicat is re-started without SHOWSYNTAX.

To use SHOWSYNTAX, do the following:

1. From the Oracle GoldenGate home directory, start Replicat from the command
shell of the operating system using the following syntax. This syntax eliminates the
reportfile option and directs the output to the screen.

replicat paramfile dirprm/Replicat_name.prm

2. The first SQL statement is displayed with some prompts.

• Choose Keep Displaying (the default) to execute the current statement and
display the next one.

• Choose Stop Display to resume normal processing and stop printing SQL
statements to screen.

3. When finished viewing syntax, remove SHOWSYNTAX from the parameter file.

Default

None

Syntax

SHOWSYNTAX [APPLY | NOAPPLY] [INCLUDELOB [max_bytes | ALL]]

APPLY | NOAPPLY

Controls whether or not Replicat applies the data that is displayed with SHOWSYNTAX to
the target database. The default is APPLY (apply the data to the target database).
NOAPPLY prevents the application of the data to the target and does not write the
records to the discard file.

INCLUDELOB [max_bytes] | ALL

Includes LOB, XML, and UDT data in the SHOWSYNTAX output. Without this option, only a
data identifier is displayed, such as "<LOB data>." The default is 2.

max_bytes

Specifies the maximum length of LOB, XML, or UDT data that is displayed. Valid units
are K, M, or G. The default is to display the first 2K bytes.

Chapter 3
SHOWSYNTAX

3-244

ALL

Displays LOB data in its entirety.

Example

SHOWSYNTAX INCLUDELOB 1M

3.158 SOURCECATALOG
Valid For

Extract and Replicat

Description

Use the SOURCECATALOG parameter to specify one of the following for subsequent TABLE
or MAP statements that contain two-part names, where three-part object names are
required to fully identify an object:

• a default source Oracle pluggable database (PDB)

• a default source SQL/MX user catalog

This parameter provides an efficient alternative to specifying the full three-part object
name (container.schema.object or catalog.schema.object) when specifying source
objects from an Oracle consolidated database or a SQL/MX database. Only the two-
part name (schema.object) need be specified in subsequent TABLE or MAP statements
when SOURCECATALOG is used. You can use multiple instances of SOURCECATALOG to
specify different default containers or catalogs for different sets of TABLE statements (or
SEQUENCE statements, if Oracle).

Three-part name specifications encountered after SOURCECATALOG override the
SOURCECATALOG specification in a TABLE statement, MAP statement, or other parameter that
takes object names as input.

Default

None

Syntax

SOURCECATALOG {container | catalog}

container

The name of an Oracle pluggable database that contains the specified objects in the
TABLE of MAP statement.

catalog

The name of a SQL/MX user catalog that contains the specified objects in the TABLE or
MAP statement.

Example

In the following example, SOURCECATALOG is used to specify three different source Oracle
PDBs in an Extract parameter file.

SOURCECATALOG FINANCETABLE SAP.*;
TABLE REPORTS.*;
SOURCECATALOG HRTABLE SIEBEL.*;

Chapter 3
SOURCECATALOG

3-245

TABLE REPORTS.*;
SOURCECATALOG MFG
TABLE CUSTOMER.ORDERS;
TABLE REPORTS.*;
TABLE HQ.LOCATIONS.*;

In this example, Extract captures the following:

• All tables in the SAP and REPORTS schemas in the FINANCE PDB.

• All tables in the SIEBEL and REPORTS schemas in the HR PDB.

• All tables in the CUSTOMER and REPORTS schemas in the MFG PDB.

• For the last TABLE statement, Extract captures all tables in the LOCATIONS schema in
the HQ PDB. This statement is a fully qualified three-part name and overrides the
previous SOURCECATALOG specification.

3.159 SOURCECHARSET
Valid For

Replicat

Description

Use the SOURCECHARSET parameter to control the conversion of data from the source
character set to the target character set by Replicat. Replicat converts character sets
by default for versions 11.2.1 and later, but you may need to intervene in the following
cases:

• To enable accurate conversion of data written by an Extract version earlier than
11.2.1. Extract versions prior to version 11.2.1 do not write information about the
source character set to the trail, so the information must be supplied to Replicat
directly. Extract versions 11.2.1 and later write information about the source
character set to the trail for use by Replicat, and any SOURCECHARSET specification is
ignored.

• To override the source database character set in the trail file. Use SOURCECHARSET
with the OVERRIDE option to specify the character set you want to use. An example
use case is migrating a database to UNICODE or particular character set
database from garbage in, garbage out type of non-character set aware database
by ignoring the source database character set.

Replicat issues a warning message when it uses the SOURCECHARSET character set.

Use the REPLACEBADCHAR parameter to handle validation errors where there are
invalid characters in the source data or the target character set does not support a
source character. It provides options to abend on these errors, skip the record that
caused the error, or specify a substitute value for the character.

Default

None

Syntax

SOURCECHARSET {source_charset | PASSTHRU | OVERRIDE} [DB2ZOS]

Chapter 3
SOURCECHARSET

3-246

source_charset

Specifies the source character set for data that is written by an Extract version that is
earlier than 11.2.1. Replicat uses the specified character set when converting
character-type columns to the target character set.
For source_charset, specify the appropriate character-set identifier that represents the
source database. For a list of supported character sets, see Administering Oracle
GoldenGate for Windows and UNIX.
For Oracle, if SOURCECHARSET is not specified but there is an NLS_LANG environment
variable on the target, Replicat uses the NLS_LANG value as the source database
character set. If neither SOURCECHARSET nor NLS_LANG is present, Replicat abends to
prevent possible data corruption.

PASSTHRU

PASSTHRU

Forces Replicat to apply the data without converting the character set. Character set
differences are ignored as follows:

• If the database is Oracle, the data is applied the way it is stored in the trail.

• If the database is other than Oracle, the data is applied as binary data if the
database supports a bind as binary data. Otherwise, the data is applied as-is.

PASSTHRU is not compatible with the BULKLOAD parameter (direct-bulk load).
If PASSTHRU is specified and a mapping between CHAR/VARCHAR/CLOB and NCHAR/
NVARCHAR/NCLOB exists in the MAP statement, Replicat abends.
If any Oracle GoldenGate column-mapping functions are used for character-based
columns when PASSTHRU mode is specified, Replicat issues a warning message and
converts the results of those functions to the target database character set before
mapping them to the target column.
PASSTHRU should only be used if you are certain the source and target character sets
are compatible. If you are not sure whether PASSTHRU is appropriate in your
environment, contact Oracle Support before using it.

OVERRIDE

Forces Replicat to use the specified character set thus overriding the source database
character set in the trail file. This option overrides character type column character set
except in the following cases:

• The character set is overridden by the CHARSET and COLCHARSET parameters.

• Use of NCHAR, NVARCHAR and NCLOB data types.

• The database overrides the column character set explicitly to a set other than the
database character set.

DB2 for z/OS

Valid for DB2 for z/OS.
Required if the version of a trail that contains DB2 data from the z/OS platform is
Oracle GoldenGate 12.1 or lower. This parameter ensures that Replicat recognizes
that the data is from DB2 for z/OS, which permits a mix of ASCII and EBCDIC
character formats.

Examples

Example 1

SOURCECHARSET ISO-8859-9

Chapter 3
SOURCECHARSET

3-247

Example 2
SOURCECHARSET PASSTHRU

Example 3

SOURCECAHRSET JA16EUC

Example 4

SOURCECHARSET OVERRIDE WE8ISO8859P15

3.160 SOURCEDB
Valid For

Manager, Extract, DEFGEN

Description

Use the SOURCEDB parameter for databases or data sets that require a data source
name or identifier to be specified explicitly as part of the connection information. This
option is required to identify one of the following:

• The source login database for heterogenous databases.

• The data source name (DSN) for supported databases that use ODBC

• The source SQL/MX catalog, valid when Extract will process data from only one
catalog in the SQL/MX database

• The default DB2 for i database.

Tables specified in TABLE statements that follow SOURCEDB are assumed to be from the
specified data source.

You might need to use the USERID or USERIDALIAS parameter in the SOURCEDB parameter
statement, depending on the authentication that is required for the data source.

For databases that allow authentication at the operating-system level, you can specify
SOURCEDB without USERID or USERIDALIAS.

For Manager, use SOURCEDB only when using Oracle GoldenGate parameters that
cause Manager to interact with a source database, such as PURGEOLDEXTRACTS. You can
use SOURCEDB for Manager on the source or target database.

For DB2 LUW, the SOURCEDB statement must refer to the database by its real name,
rather than by any alias.

See USERID | NOUSERID or USERIDALIAS for more information.

Default

None

Syntax

SOURCEDB data_source[, SESSIONCHARSET character_set]

Chapter 3
SOURCEDB

3-248

data_source

The name of the database, catalog, or data source name as applicable for the
database.
For MySQL databases, you can use the format of SOURCEDB database_name@host_name to
avoid connection issues caused by the incorrect configuration of localhost in the local
hosts file. If running MySQL on a port other than the default of 3306, you must specify
the port number in the connect string: SOURCEDB database_name@host_name:port.

SESSIONCHARSET character_set

Supports Sybase, Teradata and MySQL. Sets the database session character set for
the process login session. This parameter overrides any SESSIONCHARSET that is
specified in the GLOBALS file.
To display the language information in the process report file when using this option
for a Sybase database, make certain that locale.dat is set properly in the Sybase
installation directory. If the character set is not found in the supported Sybase
database character set, then it is validated against the Oracle GoldenGate supported
character set list. The character-set information is displayed with the LOCALE
INFORMATION entry in the report output.

Examples

Example 1
This example shows SOURCEDB without the USERIDALIAS parameter.

SOURCEDB mydb

Example 2
This example shows SOURCEDB with the USERIDALIAS parameter.

SOURCEDB mydb, USERIDALIAS tiger1

3.161 SOURCEDEFS
Valid For

Extract data pump and Replicat

Description

Use the SOURCEDEFS parameter to specify the name of a file that contains definitions of
source tables or files. Source definitions are not required, by default, when trail files
with format Oracle GoldenGate release 12.2.x are used because the trail files contains
metadata records with the object definitions. However, source definitions are required
when replicating data between heterogenous source and targets using trail files with
format Oracle GoldenGate release 12.1.x and lower or when trail files with created
with the no_objectdefs option.

Use SOURCEDEFS for one or more of the following processes, depending on your Oracle
GoldenGate configuration:

• A Replicat process on the target system

• A data pump on a source or intermediary system.

To generate the source-definitions file, use the DEFGEN utility. Transfer the file to the
intermediary or target system before starting a data pump or Replicat.

Chapter 3
SOURCEDEFS

3-249

You can have multiple SOURCEDEFS statements in the parameter file if more than one
source-definitions file will be used, for example if each SOURCEDEFS file holds the
definitions for a distinct application.

See "ASSUMETARGETDEFS" for related information. Do not use SOURCEDEFS and
ASSUMETARGETDEFS in the same parameter file.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about using data-definitions files.

Default

None

Syntax

SOURCEDEFS file_name [OVERRIDE]

file_name

The relative or fully qualified name of the file containing the source data definitions.

OVERRIDE

By default, the table definitions from the metadata records override the definitions
from any SOURCEDEFS file.
Specify OVERRIDE to request Replicat to use the definitions from the definitions file
instead of the metadata.

Examples

Example 1

SOURCEDEFS dirdef\tcust.def

Example 2

SOURCEDEFS /ggs/dirdef/source_defs

3.162 SOURCEISTABLE
Valid For

Extract

Description

Use the SOURCEISTABLE parameter to extract complete records directly from source
tables in preparation for loading them into another table or file. SOURCEISTABLE extracts
all column data specified within a TABLE statement.

This parameter applies to the following initial load methods:

• Loading data from file to Replicat.

• Loading data from file to database utility.

Do not use this parameter for the following initial load methods:

• An Oracle GoldenGate direct load, where Extract sends load data directly to the
Replicat process without use of a file.

Chapter 3
SOURCEISTABLE

3-250

• An Oracle GoldenGate direct bulk load to SQL*Loader.

For those processes, SOURCEISTABLE is specified as an ADD EXTRACT argument instead of
being used in the parameter file.

When used, SOURCEISTABLE must be the first parameter statement in the Extract
parameter file.

To use SOURCEISTABLE, disable DDL extraction and replication by omitting the DDL
parameter from the Extract and Replicat parameter files. See "DDL" for more
information.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about configuring initial data loads.

Default

None

Syntax

SOURCEISTABLE

3.163 SOURCETIMEZONE
Valid For

Replicat

Description

Use the SOURCETIMEZONE parameter to specify the time zone of the source database.
Use this parameter for one of the following purposes:

• To override the source time zone that is stored in the trail. By default, Replicat sets
its session to the specified time zone, in both region ID and offset value. This
option applies to Oracle GoldenGate versions 12.1.2 or later, where the source
time zone is written to the trail by Extract. Replicat will set its session to the
specified time zone.

• To supply the time zone of the source database when the trail is written by an
Extract version that is older than 12.1.2. In these versions, Extract does not write
the source time zone to the trail, so it must be supplied by this parameter. Replicat
will set its session to the specified time zone.

To disable the default use of the source time zone by Replicat, use the
PRESERVETARGETTIMEZONE parameter in the Replicat parameter file. See
PRESERVETARGETTIMEZONE for more information.

Default

None

Syntax

SOURCETIMEZONE time_zone

Chapter 3
SOURCETIMEZONE

3-251

time_zone

The time zone of the source database as output by the database for DATE, TIME and
TIMESTAMP data types. It can be specified in the following ways.

• As a region ID that is valid in the IANA Time Zone Database (tz database). (A
region ID is also known as an Olson time zone ID). An adjustment for Daylight
Saving Time can be performed by the target database, if supported.

• As an offset from UTC.

Examples

The following examples show different ways to specify SOURCETIMEZONE.

• These examples specify a region ID.

SOURCETIMEZONE America/New_York

SOURCETIMEZONE US/Pacific

SOURCETIMEZONE Japan

SOURCETIMEZONE UTC

SOURCETIMEZONE Pacific/Guam

• These examples specify an offset from UTC.

SOURCETIMEZONE +09:00

SOURCETIMEZONE -04:30

3.164 SPACESTONULL | NOSPACESTONULL
Valid For

Replicat on Oracle Database only

Description

Use the SPACESTONULL and NOSPACESTONULL parameters to control whether or not a
source column that contains only spaces is converted to NULL in the target column.
SPACESTONULL converts spaces to NULL if the target column accepts NULL values.
NOSPACESTONULL converts spaces to a single space character in the target column.

This parameter is applicable to the follow two scenarios:

• a source column that contains only spaces

• a source column is empty, such as empty CHAR/VARCHAR column data from DB2

Oracle does not distinguish empty and NULL column though other databases do so you
should consult your database documentation to determine how these types of
columns.

The parameters are table specific. One parameter applies to all subsequent MAP
statements, until the other parameter is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated

Chapter 3
SPACESTONULL | NOSPACESTONULL

3-252

Replicat. Specify the SPACESTONULL threads in one set of MAP statements, and specify
the NOSPACESTONULL threads in a different set of MAP statements.

Default

NOSPACESTONULL

Syntax

SPACESTONULL | NOSPACESTONULL

Example

This example shows how you can apply SPACESTONULL and NOSPACESTONULL selectively to
different MAP statements, each of which represents a different thread of a coordinated
Replicat.

SPACESTONULL
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOSPACESTONULL
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.165 SPECIALRUN
Valid For

Replicat

Description

Use the SPECIALRUN parameter in a Replicat parameter file for a one-time processing
run to direct Replicat not to create checkpoints. A one-time run has a beginning and an
end, so checkpoints are not needed. Use SPECIALRUN for certain initial data load
methods.

When Replicat is in SPECIALRUN mode, do not start it with the START REPLICAT command
in GGSCI. It is started automatically during the initial load.

SPECIALRUN requires the use of the END parameter. Either REPLICAT or SPECIALRUN is
required in the Replicat parameter file. See "REPLICAT" for more information.

Default

None

Syntax

SPECIALRUN

3.166 SQLDUPERR
Valid For

Replicat

Chapter 3
SPECIALRUN

3-253

Description

Use the SQLDUPERR parameter to specify the numeric error code returned by the target
database when a duplicate row is encountered. A duplicate-record error indicates that
an INSERT operation was attempted with a primary key that matches the key of an
existing record in the database.

You must use SQLDUPERR when you specify the special handling of duplicate records
with the OVERRIDEDUPS parameter. See "OVERRIDEDUPS | NOOVERRIDEDUPS" for
more information.

Default

None

Syntax

SQLDUPERR error_number

error_number

The numeric error code to return for duplicate records.

Example

SQLDUPERR -2601

3.167 SQLEXEC
Valid For

Extract and Replicat

Description

Use the SQLEXEC parameter to execute a stored procedure, query, or database
command within the context of Oracle GoldenGate processing. SQLEXEC enables Oracle
GoldenGate to communicate directly with the database to perform any work that is
supported by the database. This work can be part of the synchronization process,
such as retrieving values for column conversion, or it can be independent of extracting
or replicating data, such as executing a stored procedure that executes an action
within the database.

Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the capture
parameter file of the source capture, make sure that the client character set
in the source .prm file is either the same or a superset of the source
database character set.

SQLEXEC works as follows:

• As a standalone statement at the root level of a parameter file to execute a SQL
stored procedure or query or to execute a database command. As a standalone
statement, SQLEXEC executes independently of a TABLE or MAP statement during

Chapter 3
SQLEXEC

3-254

Oracle GoldenGate processing. When used in a standalone SQLEXEC parameter, a
query or procedure cannot include parameters. See "Standalone SQLEXEC".

• As part of a TABLE or MAP parameter to execute a stored procedure or query with or
without parameters. When used with parameters, the procedure or query that is
executed can accept input parameters from source or target rows and pass output
parameters. See "SQLEXEC in a TABLE or MAP Parameter".

Caution:

Use caution when executing SQLEXEC procedures against the database,
especially against the production database. Any changes that are committed
by the procedure can result in overwriting existing data.

Note:

The SQLEXECONBEFOREIMAGE parameter supports SQLEXEC execution on Before
Image records.

Standalone SQLEXEC

A standalone SQLEXEC parameter is one that is used at the root level of a parameter file
and acts independently of a TABLE or MAP parameter. The following are guidelines for
using a standalone SQLEXEC parameter.

• A standalone SQLEXEC statement executes in the order in which it appears in the
parameter file relative to other parameters.

• A SQLEXEC procedure or query must contain all exception handling.

• A query or procedure must be structured correctly when executing a SQLEXEC
statement, with legal SQL syntax for the database; otherwise Replicat will abend,
regardless of any error-handling rules that are in place. Refer to the SQL reference
guide provided by the database vendor for permissible SQL syntax.

• A database credential for the Oracle GoldenGate user must precede the SQLEXEC
clause. For Extract, use the SOURCEDB and USERID or USERIDALIAS parameters as
appropriate for the database. For Replicat, use the TARGETDB and USERID or
USERIDALIAS parameters, as appropriate.

• The database credential that the Oracle GoldenGate process uses is the one that
executes the SQL. This credential must have the privilege to execute commands
and stored procedures and call database-supplied procedures.

• A standalone SQLEXEC statement cannot be used to get input parameters from
records or pass output parameters. You can use stored procedures and queries
with parameters by using a SQLEXEC statement within a TABLE or MAP statement.
See "SQLEXEC in a TABLE or MAP Parameter".

• All objects affected by a standalone SQLEXEC statement must exist before the
Oracle GoldenGate processes start. Because of this, DDL support must be
disabled for those objects; otherwise, DDL operations could change the structure
of, or delete an object, before the SQLEXEC procedure or query executes on it.

• Object names must be fully qualified in their two-part or three-part name format.

Chapter 3
SQLEXEC

3-255

• For DB2 on z/OS, Oracle GoldenGate uses the ODBC SQLExecDirect function to
execute a SQL statement dynamically. ODBC prepares the SQL statement every
time that it is executed, at a specified interval. To support this function, the
connected database server must be configured to prepare SQL dynamically. See
the DB2 for z/OS documentation for more information.

Getting More Information about Using Standalone SQLEXEC

See Administering Oracle GoldenGate for Windows and UNIX for more information
about how to use SQLEXEC.

Syntax for Standalone SQLEXEC

SQLEXEC
{'call procedure_name()' | 'SQL_query' | 'database_command'}
[EVERY n {SECONDS | MINUTES | HOURS | DAYS}]
[ONEXIT]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

'call procedure_name ()'

Specifies the name of a stored procedure to execute. Enclose the statement within
single quotes. The call keyword is required. The following is an example of how to
execute a procedure with standalone SQLEXEC:

SQLEXEC 'call prc_job_count ()'

'SQL_query'

Specifies the name of a query to execute. Enclose the query within single quotes.
Specify case-sensitive object names in the same format required by the database.
The following is an example of how to execute a query with standalone SQLEXEC:

SQLEXEC ' select x from dual '

For a multi-line query, use the single quotes on each line. For best results, type a
space after each begin quote and before each end quote (or at least before each end
quote).

'database_command'

Executes a database command. The following is an example of how to execute a
database command with standalone SQLEXEC:

SQLEXEC 'SET TRIGGERS OFF'

EVERY n {SECONDS | MINUTES | HOURS | DAYS}

Causes a standalone stored procedure or query to execute at a defined interval, for
example:

SQLEXEC 'call prc_job_count ()' EVERY 30 SECONDS

The interval must be a whole, positive integer.

ONEXIT

Executes the SQL when the Extract or Replicat process stops gracefully, for example:

SQLEXEC 'call prc_job_count ()' ONEXIT

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Executes SQLEXEC only for the specified thread or threads of a coordinated Replicat.

Chapter 3
SQLEXEC

3-256

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

If no THREADS clause is used, the SQL is executed by all of the threads that were
configured for this Replicat group by the ADD REPLICAT command. However, if the SQL
satisfies the criteria for a barrier transaction, the entire SQLEXEC statement is processed
by thread 0 regardless of the actual thread mapping.

SQLEXEC in a TABLE or MAP Parameter

A SQLEXEC parameter in a TABLE or MAP parameter can be used to execute a stored
procedure or query that does or does not accept parameters. The following are SQLEXEC
dependencies and restrictions when used in a MAP or TABLE statement:

• The SQL is executed by the database user under which the Oracle GoldenGate
process is running. This user must have the privilege to execute stored procedures
and call database-supplied procedures.

• A query or procedure must be structured correctly when executing a SQLEXEC
statement. If Replicat encounters a problem with the query or procedure, the
process abends immediately, despite any error-handling rules that are in place.
Refer to the SQL reference guide provided by the database vendor for permissible
SQL syntax.

• The COMMIT operation of a Replicat transaction to the target database also commits
any DML changes that are made in a SQLEXEC statement within the boundary of the
original source transaction. This is not true for Extract, because Extract does not
perform SQL transactions. When using SQLEXEC for Extract, you can either enable
implicit commits or execute an explicit commit within the SQLEXEC procedure.

• Specify literals in single quotes. Specify case-sensitive object names the same
way they are specified in the database.

• Do not use SQLEXEC to change the value of a primary key column. The primary key
value is passed from Extract to Replicat. Without it, Replicat operations cannot be
completed. If primary key values must be changed with SQLEXEC, you may be able
to avoid errors by mapping the original key value to another column and then
defining that column as a substitute key with the KEYCOLS option of the TABLE and
MAP parameters.

• For DB2 on z/OS, Oracle GoldenGate uses the ODBC SQLExecDirect function to
execute a SQL statement dynamically. ODBC prepares the SQL statement every
time that it is executed, at a specified interval. To support this function, the
connected database server must be configured to prepare SQL dynamically. See
the DB2 for z/OS documentation for more information.

• When using Oracle GoldenGate to replicate DDL, all objects that are affected by a
stored procedure or query must exist with the correct structures prior to the
execution of the SQL. Consequently, DDL on these objects that affects structure
(such as CREATE or ALTER) must execute before the SQLEXEC executes.

Chapter 3
SQLEXEC

3-257

• All object names in a SQLEXEC statement must be fully qualified with their two-part
or three-part names, as appropriate for the database.

• Do not use SQLEXEC for tables being processed in pass-through mode by a data-
pump Extract group.

• The following data types are supported by SQLEXEC for input and output
parameters.

– Numeric data types

– Date data types

– Character data types

• When executed by a coordinated Replicat, SQLEXEC is executed by the thread or
threads that are specified with the THREAD or THREADRANGE option of the MAP
statement. However, if the SQLEXEC is specified in a MAP parameter that contains the
COORDINATED keyword, it is executed as a barrier transaction automatically by the
thread with the lowest ID number, regardless of the actual thread mapping.

Getting More Information About Using SQLEXEC in TABLE and MAP

For more information about how to use SQLEXEC, see Administering Oracle GoldenGate
for Windows and UNIX.

For more information about TABLE and MAP, see "TABLE | MAP".

Syntax for SQLEXEC in TABLE or MAP

SQLEXEC (
{SPNAME procedure_name[, ID logical_name] |
 ID logical_name, QUERY ' SQL_query '}
{, PARAMS [OPTIONAL | REQUIRED] parameter_name = {source_column | OGG_function} |
 NOPARAMS}
[, AFTERFILTER | BEFOREFILTER]
[, ALLPARAMS {OPTIONAL | REQUIRED}]
[, ERROR {IGNORE | REPORT | RAISE | FINAL | FATAL}]
[, EXEC {MAP | ONCE | TRANSACTION | SOURCEROW}][, MAXVARCHARLEN bytes]
[, PARAMBUFSIZE bytes]
[, TRACE]
[, ...]
[, BEFORE_col1 = @BEFORE(col1),
)

SPNAME procedure_name[, ID logical_name]

Executes a stored procedure.

SPNAME procedure_name

Specifies the name of the procedure to execute.
The following example shows a single execution of a stored procedure named
lookup. In this case, the actual name of the procedure is used. A logical name is
not needed.

SQLEXEC (SPNAME lookup), PARAMS (param1 = srccol)), &
COLMAP (targcol = lookup.param1);

ID logical_name

Defines an optional logical name for the procedure. For example, logical names
for a procedure named lookup might be lookup1, lookup2, and so forth. Use this

Chapter 3
SQLEXEC

3-258

option to execute the procedure multiple times within a MAP statement. A
procedure can execute up to 20 times per MAP statement. ID is not required when
executing a procedure once.
The following example shows the use of the ID option to enable multiple
executions of a stored procedure that gets values from a lookup table. The values
are mapped to target columns.

SQLEXEC (SPNAME lookup, ID lookup1, &
 PARAMS (long_name = current_residence_state)), &
SQLEXEC (SPNAME lookup, ID lookup2, &
 PARAMS (long_name = birth_state)), &
COLMAP (custid = custid, current_residence_state_long = lookup1.long_name, &
birth_state_long = lookup2.long_name);

ID logical_name, QUERY ' SQL_query '
Executes a query.

ID logical_name

Defines a logical name for the query. A logical name is required in order to extract
values from the query results. ID logical_name references the column values
returned by the query.

QUERY ' SQL_query '

Specifies the SQL query syntax to execute against the database. The query can
either return results with a SELECT statement or execute an INSERT, UPDATE, or
DELETE statement. A SELECT statement should only return one row. If multiple rows
are returned, only the first row is processed. Do not specify an INTO ... clause for
any SELECT statements.The query must be valid, standard query language for the
database against which it is being executed. Most queries require placeholders
for input parameters. How parameters are specified within the query depends on
the database type, as follows:

• For Oracle, input parameters are specified by using a colon (:) followed by the
parameter name, as in the following example.

'SELECT NAME FROM ACCOUNT WHERE SSN = :SSN AND ACCOUNT = :ACCT'

• For other databases, input parameters are specified by using a question
mark, as in the following example.

'SELECT NAME FROM ACCOUNT WHERE SSN = ? AND ACCOUNT = ?'

The query must be contained on one line, within single quotes. Quotation marks
are not required around a parameter name for any database.
The following examples illustrate the use of a SQLEXEC query for Oracle and SQL
Server queries, respectively.
Oracle example:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (ID lookup, &
 QUERY 'select desc_col into desc_param from lookup_table &
 where code_col = :code_param', &
 PARAMS (code_param = account_code)), &
 COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

SQL Server example:

Chapter 3
SQLEXEC

3-259

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (ID lookup, &
 QUERY 'select desc_col into desc_param from lookup_table &
 where code_col = ?', &
 PARAMS (p1 = account_code)), &
 COLMAP (newacct_id = account_id, &
 newacct_val = lookup.desc_param);

PARAMS [OPTIONAL | REQUIRED] parameter_name = {source_column | OGG_function} |
NOPARAMS

Defines whether or not the procedure or query accepts parameters and, if yes, maps
the parameters to the input source. Either a PARAMS clause or NOPARAMS must be used.

OPTIONAL | REQUIRED

Determines whether or not the procedure or query executes when parameter
values are missing.
OPTIONAL indicates that a parameter value is not required for the SQL to execute. If
a required source column is missing from the database operation, or if a column-
conversion function cannot complete successfully because a source column is
missing, the SQL executes anyway. OPTIONAL is the default for all databases
except Oracle. For Oracle, whether or not a parameter is optional is automatically
determined when retrieving the stored procedure definition.
REQUIRED indicates that a parameter value must be present. If the parameter value
is not present, the SQL will not be executed.

parameter_name = {source_column | OGG_function}

Maps the name of a parameter to a column or function that provides the input.
The following data types are supported by SQLEXEC for input and output
parameters.

• Numeric data types

• Date data types

• Character data types

parameter_name is one of the following:

• For a stored procedure, it is the name of any parameter in the procedure that
can accept input.

• For an Oracle query, it is the name of any input parameter in the query
excluding the leading colon. For example, :vemplid would be specified as
vemplid in the PARAMS clause. Oracle permits naming an input parameter any
logical name.

SQLEXEC (ID appphone, QUERY ' select per_type from ps_personal_data '
 ' where emplid = :vemplid '
 ' and per_status = 'N' and per_type = 'A' ',
 PARAMS (vemplid = emplid)),
TOKENS (applid = @GETVAL(appphone.per_type));

• For a non-Oracle query, it is Pn, where n is the number of the parameter within
the statement, starting from 1. For example, in a query with two parameters,
the parameter_name entries are p1 and p2. Consider whether the database
requires the p to be upper or lower case.

Chapter 3
SQLEXEC

3-260

SQLEXEC (ID appphone, QUERY ' select per_type from ps_personal_data '
 ' where emplid = ? '
 ' and per_status = 'N' and per_type = 'A' ',
 PARAMS (p1 = emplid)),
TOKENS (applid = @GETVAL(appphone.per_type));

source_column is the name of a source column that provides the input. By default,
if the specified column is not present in the log (because the record only contains
the values of columns that were updated) the parameter assumes any default
value specified by the procedure or query for the parameter.
OGG_function is the name of an Oracle GoldenGate column-conversion function
that executes to provide the input. See "Column Conversion Functions".

To pass output values from the stored procedure or query as input to a FILTER or
COLMAP clause, use the following syntax:

{procedure_name | logical_name}.parameter

Where:

• procedure_name is the actual name of a stored procedure, which must match the
value given for SPNAME in the SQLEXEC statement. Use this argument only if
executing a procedure one time during the course of the Oracle GoldenGate run.

• logical_name is the logical name specified with the ID option of SQLEXEC. Use this
argument to pass input values from either a query or an instance of a stored
procedure when the procedure executes multiple times within a MAP statement.

• parameter is the name of a parameter or RETURN_VALUE if extracting returned values.
By default, output values are truncated at 255 bytes per parameter. If output
parameters must be longer, use the MAXVARCHARLEN option.

Note:

As an alternative to the preceding syntax, you can use the @GETVAL function.
See "GETVAL" for more information.

The following examples apply to a set of Oracle source and target tables and a lookup
table. These examples show how parameters for the tables are passed for a single
instance of a stored procedure and multiple instances of a stored procedure.
Source table cust:

custid Number
current_residence_state Char(2)
birth_state Char(2)

Target table cust_extended:

custid Number
current_residence_state_long Varchar(30)
birth_state_long Varchar(30)

Lookup table state_lookup

abbreviation Char(2)
long_name Varchar(30)

Chapter 3
SQLEXEC

3-261

The following example shows the use of a stored procedure that executes once to get
a value from the lookup table. When processing records from the cust table, Oracle
GoldenGate executes the lookup stored procedure before executing the column map.
The long_name parameter in the procedure accepts input from the birth_state source
column.The value is mapped to the target column birth_state_long in the COLMAP
statement.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, &
PARAMS (long_name = birth_state)), &
COLMAP (custid = custid, &
birth_state_long = lookup.long_name);

The following example shows the use of the ID option to enable multiple executions of
a stored procedure that gets values from a lookup table. The values are mapped to
target columns.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, ID lookup1, &
PARAMS (long_name = current_residence_state)), &
SQLEXEC (SPNAME lookup, ID lookup2, &
PARAMS (long_name = birth_state)), &
COLMAP (custid = custid, current_residence_state_long = lookup1.long_name, &
birth_state_long = lookup2.long_name);

AFTERFILTER | BEFOREFILTER

Use AFTERFILTER and BEFOREFILTER to specify when to execute the stored procedure or
query in relation to the FILTER clause of a MAP statement.

AFTERFILTER

Causes the SQL to execute after the FILTER statement. This enables you to skip
the overhead of executing the SQL unless the filter is successful. This is the
default.

BEFOREFILTER

Causes the SQL to execute before the FILTER statement, so the results can be
used in the filter.

The following is an example using BEFOREFILTER.

SQLEXEC (SPNAME check, NOPARAMS, BEFOREFILTER)

ALLPARAMS [OPTIONAL | REQUIRED]

Use ALLPARAMS as a global rule that determines whether or not all of the specified
parameters must be present for the stored procedure or query to execute. Rules for
individual parameters established within the PARAMS clause override the global rule set
with ALLPARAMS.

OPTIONAL

Permits the SQL to execute whether or not all of the parameters are present. This
is the default.

REQUIRED

Requires all of the parameters to be present for the SQL to execute.

The following is an example using OPTIONAL.

Chapter 3
SQLEXEC

3-262

SQLEXEC (SPNAME lookup,
PARAMS (long_name = birth_state, short_name = state),
ALLPARAMS OPTIONAL)

ERROR {IGNORE | REPORT | RAISE | FINAL | FATAL}

Use ERROR to define a response to errors associated with the stored procedure or
query. Without explicit error handling, the Oracle GoldenGate process abends on
errors. Make certain your procedures return errors to the process and specify the
responses with ERROR.

IGNORE

Causes Oracle GoldenGate to ignore all errors associated with the stored
procedure or query and continue processing. Any resulting parameter extraction
results in "column missing" conditions. This is the default.

REPORT

Ensures that all errors associated with the stored procedure or query are reported
to the discard file. The report is useful for tracing the cause of the error. It includes
both an error description and the value of the parameters passed to and from the
procedure or query. Oracle GoldenGate continues processing after reporting the
error.

RAISE

Handles errors according to rules set by a REPERROR parameter. Oracle
GoldenGate continues processing other stored procedures or queries associated
with the current MAP statement before processing the error.

FINAL

Is similar to RAISE except that when an error associated with a procedure or query
is encountered, remaining stored procedures and queries are bypassed. Error
processing is invoked immediately after the error.

FATAL

Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

EXEC {MAP | ONCE | TRANSACTION | SOURCEROW}

Use EXEC to control the frequency with which a stored procedure or query in a MAP
statement executes and how long the results are considered valid, if extracting output
parameters.

MAP

Executes the procedure or query once for each source-target table map for which
it is specified. Using MAP renders the results invalid for any subsequent maps that
have the same source table. MAP is the default.
The following example shows the incorrect use of the default of MAP. Because MAP
is the default, it need not be explicitly listed in the SQLEXEC statement. In this
example, a source table is mapped in separate MAP parameters to two different
target tables. In this case, the results are valid only for the first mapping. The
results of the procedure lookup are expired by the time the second MAP parameter
executes, and the second MAP results in a "column missing" condition. To
implement this correctly so that each MAP returns valid results, SOURCEROW should be
used.

Chapter 3
SQLEXEC

3-263

MAP sales.srctab, TARGET sales.targtab, &
SQLEXEC (SPNAME lookup, PARAMS (param1 = srccol)), &
COLMAP (targcol = lookup.param2);

MAP sales.srctab, TARGET sales.targtab2, &
COLMAP (targcol2 = lookup.param2);

ONCE

Executes the procedure or query once during the course of the Oracle
GoldenGate run, upon the first invocation of the associated MAP statement. The
results remain valid for as long as the process remains running.
The following is an example of using ONCE.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, PARAMS (long_name = birth_state), EXEC ONCE), &
COLMAP (custid = custid, &
birth_state_long = lookup.long_name);

TRANSACTION

Executes the procedure or query once per source transaction. The results remain
valid for all operations of the transaction.
The following is an example of using TRANSACTION.

MAP sales.cust, TARGET sales.cust_extended, &
SQLEXEC (SPNAME lookup, PARAMS (long_name = birth_state), EXEC TRANSACTION), &
COLMAP (custid = custid, &
birth_state_long = lookup.long_name);

SOURCEROW

Executes the procedure or query once per source row operation. Use this option
when you are synchronizing a source table with more than one target table, so
that the results of the procedure or query are invoked for each source-target
mapping.
The following is an example of using SOURCEROW. In this case, the second map
returns a valid value because the procedure executes on every source row
operation.

MAP sales.srctab, TARGET sales.targtab, &
SQLEXEC (SPNAME lookup, PARAMS (param1 = srccol), EXEC SOURCEROW), &
COLMAP (targcol = lookup.param2);

MAP sales.srctab, TARGET sales.targtab2, &
COLMAP (targcol2 = lookup.param2);

MAXVARCHARLEN bytes

Use MAXVARCHARLEN to specify the maximum byte length allocated for the output value
of any parameter in a stored procedure or query. Beyond this maximum, the output
values are truncated. The default is 255 bytes without an explicit MAXVARCHARLEN
clause. The valid range of values is from 50 to 32767 bytes.
The following example limits the byte length of output values to 100.

MAXVARCHARLEN 100

PARAMBUFSIZE bytes

Use PARAMBUFSIZE to specify the maximum number of bytes allowed for the memory
buffer that stores SQLEXEC parameter information, including both input and output
parameters. The default is 10,000 bytes without an explicit PARAMBUFSIZE clause. The
valid range of values is from 1000 to 2000000 bytes. Oracle GoldenGate issues a

Chapter 3
SQLEXEC

3-264

warning whenever the memory allocated for parameters is within 500 bytes of the
maximum.
The following example increases the buffer to 15,000 bytes.

PARAMBUFSIZE 15000

TRACE {ALL | ERROR}

Use TRACE to log SQLEXEC input and output parameters to the report file.
The following is a sample report file with SQLEXEC tracing enabled:

Input parameter values...
LMS_TABLE: INTERACTION_ATTR_VALUES
 KEY1: 2818249
 KEY2: 1
Report File:
From Table MASTER.INTERACTION_ATTR_VALUES to MASTER.INTERACTION_ATTR_VALUES:
 # inserts: 0
 # updates: 0
 # deletes: 0
 # discards: 1

 Stored procedure GGS_INTERACTION_ATTR_VALUES:
 attempts: 2
 successful: 0

ALL

Writes the input and output parameters for each invocation of the procedure or
query to the report file. This is the default.

ERROR

Writes the input and output parameters for each invocation of the procedure or
query to the report file only after a SQL error occurs.

3.168 STARTUPVALIDATIONDELAY[CSECS]
Valid For

Manager

Description

Use the STARTUPVALIDATIONDELAY or STARTUPVALIDATIONDELAYCSECS parameter to set a
delay time after which Manager validates the status of a process that was started with
the START EXTRACT or START REPLICAT command. If a process is not running after the
specified delay time, an error message is displayed at the GGSCI prompt.

These parameters account for processes that fail before they can generate an error
message or report, for example when there is not enough memory to launch the
processes. Startup validation makes Oracle GoldenGate users aware of such failures.
The minimum is 0.

Default

0 seconds (do not validate startup status)

Syntax

STARTUPVALIDATIONDELAY seconds | STARTUPVALIDATIONDELAYCSECS centiseconds

Chapter 3
STARTUPVALIDATIONDELAY[CSECS]

3-265

STARTUPVALIDATIONDELAY seconds

Specifies the delay in seconds.

STARTUPVALIDATIONDELAYCSECS centiseconds

Specifies the delay in centiseconds.

Example

In the following example, Manager waits ten centiseconds after a START command is
issued and then checks the status of the process.

STARTUPVALIDATIONDELAYCSECS 10

3.169 STATOPTIONS
Valid For

Extract and Replicat

Description

Use the STATOPTIONS parameter to specify the information that is to be included in
statistical displays generated by the STATS EXTRACT or STATS REPLICAT command. These
options also can be enabled as needed as arguments to those commands.

Default

See individual options.

Syntax

STATOPTIONS
[, REPORTDETAIL | NOREPORTDETAIL]
[, REPORTFETCH | NOREPORTFETCH]
[, RESETREPORTSTATS | NORESETREPORTSTATS]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

REPORTDETAIL | NOREPORTDETAIL

Valid for Replicat. Controls the reporting of statistics for operations that were not
applied to the target because they were discarded as the result of collision handling.

REPORTDETAIL

Returns statistics for the discarded operations. These operations are reported in
the regular STATS REPLICAT statistics (inserts, updates, and deletes performed) and
as discard statistics if STATS REPLICAT is issued with the DETAIL option. For
example, if 10 records were INSERT operations and they were all ignored due to
duplicate keys, the report would indicate that there were 10 inserts and also 10
discards due to collisions. REPORTDETAIL is the default.

NOREPORTDETAIL

Turns off the reporting of statistics for discarded operations.

REPORTFETCH | NOREPORTFETCH

Valid for Extract. Controls the reporting of statistics for the amount of row fetching
performed by Extract, such as the fetches that are triggered by a FETCHCOLS clause or

Chapter 3
STATOPTIONS

3-266

fetches that must be performed when not enough information is in the transaction
record.

REPORTFETCH

Reports statistics for row fetching. The output is as follows:

• row fetch attempts: The number of times Extract attempted to fetch a column
value from the database when it could not obtain the value from the
transaction log.

• fetch failed: The number of row fetch attempts that failed.

• row fetch by key: (Valid for Oracle) The number of row fetch attempts that
were made by using the primary key.

NOREPORTFETCH

Turns off the reporting of fetch statistics. NOREPORTFETCH is the default.

RESETREPORTSTATS | NORESETREPORTSTATS

Valid for Extract and Replicat. Controls whether or not statistics generated by the
REPORT parameter are reset when a new report is created. RESETREPORTSTATS resets the
statistics from one report to the other. NORESETREPORTSTATS continues the statistics from
one report to another and is the default. See "REPORT". Report rollover is controlled
by the REPORTROLLOVER parameter. See "REPORTROLLOVER".

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Enables the selected STATOPTIONS options for the specified threads of a
coordinated Replicat.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a
comma-delimted list of ranges in the format of threadIDlow-threadIDhigh,
threadIDlow-threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID,
threadIDlow-threadIDhigh.

Examples

Example 1
This example resets the statistics from one report to another for thread 0 of a
coordinated Replicat .

STATOPTIONS RESETREPORTSTATS THREADS 0

Example 2
This example includes fetch details for thread 3 of a coordinated Replicat.

STATOPTIONS REPORTFETCH THREADS 3

Chapter 3
STATOPTIONS

3-267

3.170 SYSLOG
Valid For

GLOBALS, Manager

Description

Use the SYSLOG parameter to control the types of messages that Oracle GoldenGate
sends to the system logs on a Windows or UNIX system, or to the SYSOPR message
queue on an IBM i system. You can:

• include all Oracle GoldenGate messages

• suppress all Oracle GoldenGate messages

• filter to include information, warning, or error messages, or any combination of
those types

You can use SYSLOG as a GLOBALS parameter or as a Manager parameter, or both. When
present in the GLOBALS parameter file, it controls message filtering for all of the Oracle
GoldenGate processes on the system. When present in the Manager parameter file, it
controls message filtering only for the Manager process. If used in both the GLOBALS
and Manager parameter files, the Manager setting overrides the GLOBALS setting for the
Manager process. This enables you to use separate settings for Manager and all of
the other Oracle GoldenGate processes.

Default

Write all Oracle GoldenGate messages to the system logs or SYSOPR message queue,
depending on the platform.

Syntax

SYSLOG {[ALL | NONE] | [, INFO] [, WARN] [, ERROR]}

ALL

Sends all INFO (information), WARN (warning), and ERROR (error) messages to the
system log or SYSOPR message queue. This is the default and is the same as:

SYSLOG INFO, WARN, ERROR

Cannot be combined with other options. By default, INFO messages are not reported in
the SQL/MX Event Management Service.

NONE

Prevents Oracle GoldenGate messages from being written to the system logs or
SYSOPR message queue. Cannot be combined with other options.

INFO

Sends messages that are reported as INFO to the system logs or SYSOPR message
queue. Can be combined with WARN and ERROR in any order.
By default, these messages are not reported in the SQL/MX Event Management
Service.

Chapter 3
SYSLOG

3-268

WARN

Sends messages that are reported as WARN to the system logs or SYSOPR message
queue. Can be combined with INFO and ERROR in any order.

ERROR

Sends messages that are reported as INFO to the system logs or SYSOPR message
queue. Can be combined with INFO and WARN in any order.

Example

Either of the following statements sends warning and error messages to the system
logs or SYSOPR message queue, but does not send informational messages.

SYSLOG WARN, ERROR

or:

SYSLOG ERROR, WARN

3.171 TABLE | MAP
Valid For

TABLE is valid for Extract. MAP is valid for Replicat

Description

The TABLE and MAP parameters control the selection, mapping, and manipulation of the
objects that are to be affected by an Oracle GoldenGate process. These parameters
work as follows:

• Use the TABLE parameter in an Extract parameter file to specify one or more
objects that are to be captured from the data source by the Extract process. TABLE
options specify processing work such as filtering and token definitions that must be
performed before Extract writes the captured data to the Oracle GoldenGate trail.

• Use the MAP parameter in the Replicat parameter file to map the data from the
source objects to the appropriate target objects. MAP options specify processing
work such as filtering, conversion, and error handling that must be performed
before the data is applied to the target objects. Each target object that you want to
synchronize with a source object must be associated with that source object by
means of a MAP parameter. Multiple source-target relationships can be specified by
means of a wildcard.

TABLE and MAP are valid for initial load configurations and for online processes
configured to support the replication of transactional changes.

You can process the following objects with TABLE and MAP:

• Indexes

• Triggers

• Materialized views

• Tables

To specify a sequence for capture by Extract, use the SEQUENCE parameter.

Chapter 3
TABLE | MAP

3-269

Note:

Oracle GoldenGate supports the replication of the actual data values of
Oracle materialized views. Oracle GoldenGate supports the replication of
Oracle and Teradata DDL for indexes and triggers, but not the content of
those objects.

You can use one or more TABLE or MAP statements in a parameter file, with or without
wildcards, to specify all of the objects that you want to process.

You can exclude objects from a wildcarded TABLE or MAP statement with the
TABLEEXCLUDE and MAPEXCLUDE parameters. Additional exclusion parameters
are CATALOGEXCLUDE, SCHEMAEXCLUDE, and
EXCLUDEWILDCARDOBJECTSONLY.

For more information about using TABLE and MAP, see Administering Oracle GoldenGate
for Windows and UNIX.

Default

None

Syntax for TABLE

For tables, you can use all of the TABLE options. For non-table objects, use TABLE only
to specify an object for capture.

TABLE source_table[, TARGET target_table]
[, ATTRCHARSET (charset)]
[, CHARSET character_set]
[, COLCHARSET character_set]
[, COLMAP (column_mapping)]
[, {COLS | COLSEXCEPT} (column_list)]
[, {DEF | TARGETDEF} template]
[, EVENTACTIONS action]
[, EXITPARAM 'parameter']
[, {FETCHCOLS | FETCHCOLSEXCEPT} (column_list)]
[, {FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column_list)]
[, FETCHBEFOREFILTER]
[, FILTER (filter_clause)]
[, GETBEFORECOLS (column_specification)]
[, KEYCOLS (columns)]
[, SQLEXEC (SQL_specification)]
[, SQLPREDICATE 'WHERE where_clause']
[, TOKENS (token_definition)]
[, TRIMSPACES | NOTRIMSPACES]
[, TRIMVARSPACES | NOTRIMVARSPACES]
[, WHERE (clause)]
;

Syntax for MAP

MAP source_table, TARGET target_table
[, COLMAP (column_mapping)]
[, COMPARECOLS (column_specification)]
[, COORDINATED]
[, {DEF | TARGETDEF} template]

Chapter 3
TABLE | MAP

3-270

[, EXCEPTIONSONLY]
[, EXITPARAM 'parameter']
[, EVENTACTIONS (action)]
[, FILTER (filter_clause)]
[, HANDLECOLLISIONS | NOHANDLECOLLISIONS]
[, INSERTALLRECORDS]
[, INSERTAPPEND | NOINSERTAPPEND]
[, KEYCOLS (columns)]
[, MAPEXCEPTION (exceptions_mapping)]
[, MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS]
[, REPERROR (error, response)]
[, RESOLVECONFLICT (conflict_resolution_specification)]
[, SQLEXEC (SQL_specification)]
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
[, TRIMSPACES | NOTRIMSPACES]
[, TRIMVARSPACES | NOTRIMVARSPACES]
[, WHERE (clause)]
;

TABLE and MAP Options

The following table summarizes the options that are available for the TABLE and MAP
parameters. Note that not all options are valid for both parameters.

Table 3-34 Summary of TABLE and MAP Syntax Components

Component Description Valid For

TABLE source_table[, TARGET
taget_table]

Specifies the source object in a TABLE
statement for Extract and an optional
mapping to a target object. Use in the
Extract parameter file.

TABLE

MAP source_table, TARGET
target_table

Specifies the source-target object mapping
for the Replicat process. Use in the Replicat
parameter file.

MAP

ATTRCHARSET (charset) specifies the source character set
information at UDT attribute level.

TABLE

CHARSET character_set Specifies any supported character set. TABLE

COLCHARSET character_set Specifies any supported character set. TABLE

COLMAP (column_mapping)
Maps records between different source and
target columns.

TABLE and
MAP

{COLS | COLSEXCEPT}
(column_list)

Selects or excludes columns for processing. TABLE

COMPARECOLS
(column_specification)

Specifies columns to use for conflict
detection and resolution.

TABLE and
MAP

COORDINATED Forces a transaction to be processed as a
barrier transaction.

MAP

{DEF| TARGETDEF} template
Specifies a source-definitions or target-
definitions template.

TABLE and
MAP

EXCEPTIONSONLY Specifies that the MAP statement is an
exceptions MAP statement.

MAP

Chapter 3
TABLE | MAP

3-271

Table 3-34 (Cont.) Summary of TABLE and MAP Syntax Components

Component Description Valid For

EVENTACTIONS (action)
Triggers an action based on a record that
satisfies a specified filter rule.

TABLE and
MAP

EXITPARAM 'parameter'
Passes a parameter in the form of a literal
string to a user exit.

TABLE and
MAP

FETCHBEFOREFILTER Directs the FETCHCOLS or FETCHCOLSEXCEPT
action to be performed before a filter is
executed.

TABLE

{FETCHCOLS | FETCHCOLSEXCEPT}
(column_list)

Enables the fetching of column values from
the source database when the values are
not in the transaction record.

TABLE

{FETCHMODCOLS |
FETCHMODCOLSEXCEPT}
(column_list)

Forces column values to be fetched from
the database when the columns are present
in the transaction log.

TABLE

FILTER (filter_clause)
Selects records based on a numeric value.
FILTER provides more flexibility than WHERE.

TABLE and
MAP

GETBEFORECOLS
(column_specification)

Forces before images of columns to be
captured and written to the trail.

TABLE

HANDLECOLLISIONS |
NOHANDLECOLLISIONS

Reconciles the results of changes made to
the target table by an initial load process
with those applied by a change-
synchronization group.

MAP

INSERTALLRECORDS
Applies all row changes as inserts. MAP

INSERTAPPEND | NOINSERTAPPEND Controls whether or not Replicat uses an
Oracle APPEND hint for INSERT statements.

MAP

KEYCOLS (columns)
Designates columns that uniquely identify
rows.

TABLE and
MAP

MAPEXCEPTION
(exceptions_mapping)

Specifies that the MAP statement contains
exceptions handling for wildcarded tables.

MAP

MAPINVISIBLECOLUMNS |
NOMAPINVISIBLECOLUMNS

Controls whether or not Replicat includes
invisible columns in Oracle target tables for
default column mapping. For invisible
columns in Oracle target tables that use
explicit column mapping, they are always
mapped so do not require this option.

MAP

REPERROR (error, response)
Controls how Replicat responds to errors
when executing the MAP statement.

MAP

RESOLVECONFLICT
(conflict_resolution_specificat
ion)

Specifies rules for conflict resolution. MAP

Chapter 3
TABLE | MAP

3-272

Table 3-34 (Cont.) Summary of TABLE and MAP Syntax Components

Component Description Valid For

SQLEXEC (SQL_specification)
Executes stored procedures and queries. TABLE and

MAP

SQLPREDICATE 'WHERE
where_clause'

Enables a WHERE clause to select rows for
an initial load.

TABLE

THREAD (thread_ID) Valid for Replicat in coordinated mode.
Specifies that the MAP statement will be
processed by the specified Replicat thread.

MAP

THREADRANGE (thread_range,
column_list)

Valid for Replicat in coordinated mode.
Specifies that the MAP statement will be
processed by the specified range of
Replicat threads.

MAP

TOKENS (token_definition)
Defines user tokens. TABLE

TRIMSPACES | NOTRIMSPACES Controls whether trailing spaces are
trimmed or not when mapping CHAR to
VARCHAR columns.

TABLE and
MAP

TRIMVARSPACES | NOTRIMVARSPACES Controls whether trailing spaces are
trimmed or not when mapping VARCHAR to
CHAR or VARCHAR columns.

TABLE and
MAP

WHERE (clause)
Selects records based on conditional
operators.

TABLE and
MAP

; (Semicolon) Terminates the TABLE or MAP
statement and is required.

TABLE and
MAP

TABLE source_table[, TARGET taget_table]

TABLE is valid in an Extract parameter file.

Use TABLE to specify a source object for which you want Extract to capture data.
Specify the fully qualified two-part or three-part name of the object, such as
schema.table or catalog.schema.table. You can use a wildcard to specify multiple
objects with one TABLE statement. To specify object names and wildcards correctly, see
Administering Oracle GoldenGate for Windows and UNIX.

Use the TARGET option only when Extract must refer to a target definitions file (specified
with the TARGETDEFS parameter) to perform conversions or when the COLMAP option is
used to map columns. Otherwise, it can be omitted from a TABLE parameter. Column
mapping with COLMAP and conversion work usually are performed on the target system
to minimize the impact of replication activities on the source system, but can be
performed on the source system if required. For example, column mapping and
conversion can be performed on the source system in a configuration where there are
multiple sources and one target. In this scenario, it may be easier to manage one
target definitions file rather than managing a definitions file for each source database,
especially if there are frequent application changes that require new definitions files to
be generated.

Using TARGET in a TABLE parameter identifies the metadata of the extracted data based
on the target structure, rather than that of the source, to reflect the structure of the

Chapter 3
TABLE | MAP

3-273

record that is reflected in the definitions file or the column map. Do not use three-part
names if TARGET specifies tables in a target Oracle container database or SQL/MX
database. Replicat can only connect to one container or catalog, so it is assumed that
the container or catalog portion of the name is the same as the one that Replicat logs
into (as specified with USERID, USERIDALIAS, or TARGETDB, depending on the database).

If no other TABLE syntax options are required to process the specified source data, you
can use a simple TABLE statement, making sure to terminate it with a semicolon.

TABLE sales.customers;

The following shows the use of a wildcard to specify multiple tables:

TABLE sales.*;

The preceding TABLE statements direct Extract to capture all supported column data for
the specified objects and write it to the trail without performing any filtering,
conversion, or other manipulation.

MAP source_table, TARGET target_table

MAP is valid in a Replicat parameter file.

Use MAP to specify a source object, and use TARGET to specify the target object to which
Replicat applies the replicated source data. Together, the MAP and TARGET clause
comprise a mapping.

• For MAP source_table, specify the source object. Specify the fully qualified two-part
or three-part name of the object, such as schema.table or catalog.schema.table.
You can use a wildcard to specify multiple source objects.

• For TARGET target_table, specify a two-part name, even if the target is a container
database or SQL/MX database. Replicat can only connect to one container or
catalog, so it is assumed that the container or catalog portion of the name is the
same as the one that Replicat logs into (as specified with USERID, USERIDALIAS, or
TARGETDB, depending on the database). You can use a wildcard to specify multiple
target objects.

The following shows the use of a wildcard to specify multiple tables. Note that the
TARGET clause does not include the tab prefix before the wildcard. That specification
would be invalid, because the wildcard would be resolved as sales.tabtab1,
sales.tabtab2, and so forth.

MAP sales.tab*, TARGET sales.*;

To specify object names and wildcards correctly in the MAP and TARGET clauses, see
Administering Oracle GoldenGate for Windows and UNIX.

If no filtering, mapping, or other work is required for the objects, you can use simple
MAP statements like the following, making sure to terminate each one with a semicolon.

MAP sales.customers, TARGET sales.customers;
MAP fin.*, TARGET fin.*;

ATTRCHARSET (charset)

ATTRCHARSET is valid for TABLE.

Chapter 3
TABLE | MAP

3-274

Use the ATTRCHARSET clause to specify the source character set information at UDT
attribute level. It overrides the character set defined in the trail file or specified by
SOURCECHARSET, CHARSET, or COLCHARSET parameters.

Valid values are character set names and valid UDT attribute names. Wildcard
attribute names are supported. For example:

TABLE SCHEMA.T*,
 ATTRCHARSET(WE8DEC, col*.attr1, col1.attr*.attr3);

CHARSET character_set

CHARSET is valid for TABLE.

Use the CHARSET clause to specify any supported character set. See CHARSET for
more information.

COLCHARSET character_set

COLCHARSET is valid for TABLE.

Use the COLCHARSET clause to specify any supported character set. See COLCHARSET
for more information.

COLMAP (column_mapping)

COLMAP is valid for TABLE and MAP.

Use COLMAP to:

• Map individual source columns to target columns when the source and target
columns have different names.

• Specify default column mapping when the source and target names are identical.

COLMAP provides instructions for selecting, translating, and moving column data from a
source column to a target column.

Note:

To create global rules for column mapping across all tables in subsequent
MAP statements, use the COLMATCH parameter.

Getting More Information About Configuring Column Mapping

See Administering Oracle GoldenGate for Windows and UNIX for more information
about using COLMAP. To use COLMAP, related configuration considerations must be taken
into account, such as whether source and target column structures are identical or
different and whether global column mapping parameters may be sufficient.

Syntax

COLMAP (
[USEDEFAULTS,]
target_column = source_expression [BINARYINPUT]
[, ...]
)

Chapter 3
TABLE | MAP

3-275

USEDEFAULTS

Automatically maps source and target columns that have the same name if they were
not specified in an explicit column mapping. The data types are translated
automatically, as needed, based on the local data-definitions file. USEDEFAULTS
eliminates the need for an explicit column mapping if those columns have the same
name and the data does not require any filtering or conversion.
Specify USEDEFAULTS before explicit column mappings in the COLMAP clause. For
additional information about default column mapping in COLMAP, see Administering
Oracle GoldenGate for Windows and UNIX.

target_column = source_expression

Defines an explicit source-target column mapping.

target_column

Specifies the name of the target column. For supported characters in column
names, see Administering Oracle GoldenGate for Windows and UNIX.

source_expression

Can be any of the following:

• The name of a source column, such as ORD_DATE

• A numeric constant, such as 123

• A string constant within single quotes, such as 'ABCD'

• An expression using an Oracle GoldenGate column-conversion function, such
as @STREXT (COL1, 1, 3). See "Column Conversion Functions" for more
information.

BINARYINPUT

Use BINARYINPUT when the target column is defined as a binary data type, such as RAW
or BLOB, but the source input contains binary zeros in the middle of the data. Use
BINARYINPUT when replicating a full Enscribe record defined as a single column into a
target column. The source input is handled as binary input, and replacement of data
values is suppressed.

Example 1

MAP ggs.tran, TARGET ggs.tran2, COLMAP (loc2 = loc, type2 = type);

Example 2

TABLE ggs.tran, COLMAP (SECTION = @STRCAT('\u00a7', SECTION));

{COLS | COLSEXCEPT} (column_list)

COLS and COLSEXCEPT are valid for TABLE.

Use COLS and COLSEXCEPT to control the columns for which data is captured.

• COLS specifies columns that contain the data that you want to capture. When COLS
is used, all columns that are not in the COLS list are ignored by Oracle GoldenGate.

• COLSEXCEPT specifies columns to exclude from being captured. When COLSEXCEPT is
used, all columns that are not in the COLSEXCEPT list are captured by Oracle
GoldenGate. For tables with numerous columns, COLSEXCEPT may be more efficient
than listing each column with COLS.

Chapter 3
TABLE | MAP

3-276

Caution:

Do not exclude key columns, and do not use COLSEXCEPT to exclude
columns that contain data types that are not supported by Oracle
GoldenGate. COLSEXCEPT does not exclude unsupported data types.

To use COLS, the following is required:

• The table must have one or more key columns, or a substitute key must be
defined with the KEYCOLS option. See "KEYCOLS (columns)".

• The key columns or the columns specified with KEYCOLS must be included in the
column list that is specified with COLS. Otherwise, they will not be captured, and an
error will be generated during processing.

Without a primary key, a unique key, or a KEYCOLS clause in the TABLE statement, Oracle
GoldenGate uses all of the columns in the table, rendering COLS unnecessary.

Note:

Do not use this option for tables that are processed in pass-through mode by
a data-pump Extract group.

Syntax

{COLS | COLSEXCEPT} (column [, ...])

column

The name of a column. To specify multiple columns, create a comma-delimited list, for
example:

COLS (name, city, state, phone)

Note:

If the database only logs values for columns that were changed in an update
operation, a column specified for capture with COLS might not be available. To
make those columns available, use the FETCHCOLS option in the TABLE
statement or enable supplemental logging for the column.

Example

The COLS clause in this example captures only columns 1 and 3, whereas the
COLSEXCEPT clause captures all columns except columns 1 and 3.

TABLE hq.acct, COLS (col1, col3);
TABLE hq.sales, COLSEXCEPT (col1, col3);

COMPARECOLS (column_specification)

COMPARECOLS is valid for MAP.

Chapter 3
TABLE | MAP

3-277

Use COMPARECOLS to specify the columns that Replicat uses to detect and resolve
update or delete conflicts when configured with the RESOLVECONFLICT option of MAP in a
multi-master configuration. A conflict is a mismatch between the before image of a
record in the trail and the current data in the target table.

To use COMPARECOLS, the before image must be available in the trail record by means of
the GETBEFORECOLS parameter in the Extract TABLE statement. The specified columns
must exist in the target database and also be part of the Replicat configuration (satisfy
the TARGET specification with or without a COLMAP clause).

Only scalar data types are supported by COMPARECOLS as comparison columns. A scalar
data type can be used in a WHERE clause, has a single, atomic value and no internal
components. Scalar data types supported by Oracle GoldenGate include the following,
but not LOBs.

• Numeric data types

• Date data types

• Character data types

Some examples of non-scalar data types are spatial data, user-defined data types,
large objects (LOB), XML, reference data types, and RAW. A row being considered for
CDR can include non-scalar data so long as the conflict is not in the non-scalar data
itself.

To specify conflict resolution routines, use the RESOLVECONFLICT option of MAP.
COMPARECOLS and RESOLVECONFLICT can be in any order in the MAP statement.

Getting More Information About Configuring the CDR Feature

See Administering Oracle GoldenGate for Windows and UNIX for more information
about configuring conflict detection and resolution.

Syntax

COMPARECOLS(
{ON UPDATE | ON DELETE}
{ALL | KEY | KEYINCLUDING (col[,...]) | ALLEXCLUDING (col[,...]) }
[,...]
)

{ON UPDATE | ON DELETE}

Specifies whether the before image of the specified columns should be compared for
updates or deletes. You can use ON UPDATE only, ON DELETE only, or both. If using both,
specify them within the same COMPARECOLS clause. See the example for how to use
both.

{ALL | KEY | KEYINCLUDING (col[,...]) | ALLEXCLUDING (col[,...])}

Specifies the columns for which a before image is captured.

ALL

Compares using all columns in the target table. An error is generated if any
corresponding before images are not available in the trail. Using ALL imposes the
highest processing load for Replicat, but allows conflict-detection comparisons to
be performed using all columns for maximum accuracy.

Chapter 3
TABLE | MAP

3-278

KEY

Compares only the primary key columns. This is the fastest option, but does not
permit the most accurate conflict detection, because keys can match but non-key
columns could be different.

KEYINCLUDING

Compares the primary key columns and the specified column or columns. This is
a reasonable compromise between speed and detection accuracy.

ALLEXCLUDING

Compares all columns except the specified columns. For tables with numerous
columns, ALLEXCLUDING may be more efficient than KEYINCLUDING. Do not exclude
key columns.

Example 1
In the following example, the key columns plus the name, address, and salary columns
are compared for conflicts.

MAP src, TARGET tgt
COMPARECOLS (
ON UPDATE KEYINCLUDING (name, address, salary),
ON DELETE KEYINCLUDING (name, address, salary));

Example 2
In the following example, the comment column is ignored and all other columns are
compared for conflicts.

MAP src, TARGET tgt
COMPARECOLS (ON UPDATE ALLEXCLUDING (comment))

COORDINATED

COORDINATED is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use the COORDINATED option to force transactions made on objects in the same MAP
statement to be processed as barrier transactions. It causes all of the threads across
all MAP statements to synchronize to the same trail location. The synchronized position
is the beginning of the transaction that contains a record that satisfies a MAP that
contains the COORDINATED keyword. The transaction is then applied atomically by a
single thread, which is either the thread with the lowest thread ID among the currently
running threads or a dedicated thread with the ID of 0 if
USEDEDICATEDCOORDINATIONTHREAD is specified in the parameter file.

THREAD and THREADRANGE clauses specified in conjunction with COORDINATED are ignored
because the record will not be applied by the designated thread(s). The COORDINATED
keyword results in temporarily suspending parallelism so that the target tables are in a
consistent state before the force-coordinated transaction is applied. After this point,
parallel execution commences again.

Replicat by default coordinates transactions in which the primary key is updated,
transactions that perform DDL, and certain EVENTACTIONS actions. COORDINATED provides
for explicit coordination.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about coordinated Replicat.

Syntax

COORDINATED

Chapter 3
TABLE | MAP

3-279

Example

The following is an example of the use of the COORDINATED option. In this example,
business rules require that the target tables be in a consistent state before Replicat
executes transactions that include SQLEXEC operations on the objects specified in the
MAP statement. Parallelism must be temporarily converted to serial SQL processing in
this case.

Given the following MAP statement, if another thread inserts into t2 a record with a
value of 100 for col_val before the insert to t1 is performed by thread 1, then the
SQLEXEC will delete the row. If other threads are still processing the record that has the
value of 100, the SQLEXEC fails. The results of this MAP statement are, therefore, not
predictable.

MAP u1.t1, TARGET u2.t1 SQLEXEC (ID test2, QUERY ' delete from u2.t2 where col_val
=100 ', NOPARAMS)), THREAD(1);

Conversely, when COORDINATED is used, all of the threads synchronize at a common
point, including the one processing the col_val=100 record, thereby removing the
ambiguity of the results.

MAP u1.t1, TARGET u2.t1 SQLEXEC (ID test2, QUERY ' delete from u2.t2 where col_val
=100 ', NOPARAMS)), THREAD(1), COORDINATED;

{DEF| TARGETDEF} template

DEF and TARGETDEF are valid for TABLE and MAP.

Use DEF and TARGETDEF to specify the name of a definitions template that was created
by the DEFGEN utility.

• DEF specifies a source-definitions template.

• TARGETDEF specifies a target-definitions template.

A template is based on the definitions of a specific table. It enables new tables that
have the same definitions as the original table to be added to the Oracle GoldenGate
configuration without running DEFGEN for them, and without having to stop and start
the Oracle GoldenGate process. The definitions in the template are used for definitions
lookups.

Getting More Information About Creating Definitions Templates

For more information about templates and DEFGEN, see Administering Oracle
GoldenGate for Windows and UNIX.

Syntax

{DEF | TARGETDEF} template

template

The name of one of the following definitions templates generated by the DEFGEN
utility:

• Use DEF to specify a source-definitions template generated by the DEF option of the
TABLE parameter in the DEFGEN parameter file.

Chapter 3
TABLE | MAP

3-280

• Use TARGETDEF to specify a target-definitions template generated by the TARGETDEF
option of the TABLE parameter in the DEFGEN parameter file.

The definitions contained in the template must be identical to the definitions of the
table or tables that are specified in the same TABLE or MAP statement.
Case-sensitivity of the template name is observed when the name is specified the
same way that it is stored in the database. Make certain that the template name is
specified the same way in both the DEF or TARGETDEF clause in this TABLE or MAP
statement, and in the DEFGEN parameter file that created the template.

Example 1
This example shows a case-insensitive template name.

MAP acct.cust*, TARGET acct.cust*, DEF custdef;

Example 2
This example shows a case-sensitive template name when the database requires
quotes to enforce case-sensitivity.

TABLE acct.cust*, DEF "CustDef";

Example 3
This example shows a case where both DEF and TARGETDEF are used.

MAP acct.cust*, TARGET acc.cust*, DEF custdef, TARGETDEF tcustdef;

EXCEPTIONSONLY

EXCEPTIONSONLY is valid for MAP.

Use EXCEPTIONSONLY in an exceptions MAP statement intended for error handling. The
exceptions MAP statement must follow the MAP statement for which errors are
anticipated. The exceptions MAP statement executes only if an error occurs for the last
record processed in the preceding regular MAP statement.

To use EXCEPTIONSONLY, use a REPERROR statement with the EXCEPTION option either within
the regular MAP statement or at the root of the parameter file. See "REPERROR" for
more information.

Note:

If using the Oracle GoldenGate Conflict Detection and Resolution (CDR)
feature, a REPERROR with EXCEPTION is not needed. CDR automatically sends all
operations that cause errors to the exceptions MAP statement.

The exceptions MAP statement must specify the same source table as in the regular MAP
statement, but the target table in the exceptions MAP statement must be an exceptions
table.

Note:

See "MAPEXCEPTION (exceptions_mapping)" to support wildcarded object
names.

Chapter 3
TABLE | MAP

3-281

Getting More Information About Configuring Exceptions Handling

For more information about configuring exceptions handling with an exceptions MAP
statement, see Administering Oracle GoldenGate for Windows and UNIX.

Syntax

EXCEPTIONSONLY

EVENTACTIONS (action)

EVENTACTIONS is valid for TABLE and MAP. Some options apply only to one or the other
parameter and are noted as such in the descriptions.

Use EVENTACTIONS to cause the process to take a defined action based on a record in
the trail, known as the event record, that qualifies for a specific filter rule. You can use
this system, known as the event marker system (or event marker infrastructure) to
customize processing based on database events. For example, you can suspend a
process to perform a transformation or report statistics. The event marker feature is
supported for the replication of data changes, but not for initial loads.

To trigger actions that do not require data to be applied to target tables, you can use
the Replicat TABLE parameter with filtering options that support EVENTACTIONS. See
"TABLE for Replicat" for more information.

Caution:

EVENTACTIONS is not supported if the source database is Teradata and Extract
is configured in maximum performance mode.

You may need to combine two or more actions to achieve your goals. When multiple
actions are combined, the entire EVENTACTIONS statement is parsed first, and then the
specified options execute in order of precedence. The following list shows the order of
precedence. The actions listed before Process the record occur before the record is
written to the trail or applied to the target (depending on the process). Actions listed
after Process the record are executed after the record is processed.

TRACE

LOG

CHECKPOINT BEFORE

DISCARD

SHELL

ROLLOVER

(Process the record)
IGNORE

REPORT

SUSPEND

ABORT

CHECKPOINT AFTER

FORCESTOP

STOP

Chapter 3
TABLE | MAP

3-282

To prevent the event record itself from being processed in the normal manner, use the
IGNORE or DISCARD option. Because IGNORE and DISCARD are evaluated before the record
itself, they prevent the record from being processed. Without those options,
EVENTACTIONS for Extract writes the record to the trail, and EVENTACTIONS for Replicat
applies that operation to the target database.

You should take into account the possibility that a transaction could contain two or
more records that trigger an event action. In such a case, there could be multiple
executions of certain EVENTACTIONS specifications. For example, encountering two
qualifying records that trigger two successive ROLLOVER actions will cause Extract to roll
over the trail twice, leaving one of the two files empty of transaction data.

You should also take into account that when the GETUPDATEBEFORES parameter is in
effect, two records are generated for UPDATE operations: a record that contains the
before image and a record that contains the after image. An event action is triggered
for each of those records when the operation qualifies as an event record. You can
use the BEFOREAFTERINDICATOR token of the GGHEADER column-conversion function as a
filter in a FILTER clause to qualify the records so that the event action triggers only
once, either on the before record or the after record, but not both.

The following example filters on the BEFORE indicator. The EVENTACTION issues the ECHO
shell command to output the string 'Triggered on BEFORE' to the event log when a BEFORE
record is encountered.

TABLE qasource.test, &
FILTER(@STRFIND('BEFORE', @GETENV('GGHEADER' , 'BEFOREAFTERINDICATOR')) > 0), &
EVENTACTIONS (shell ('echo --== Triggered on BEFORE ==-- '), LOG);

The following shows the result of the event action:

013-03-06 17:59:31 INFO OGG-05301 Shell command output: '--== Triggered
on AFTER ==--'

The following example does the same thing, but for the AFTER indicator.

TABLE qasource.test, &
FILTER(@STRFIND('AFTER', @GETENV('GGHEADER' , 'BEFOREAFTERINDICATOR')) > 0), &
EVENTACTIONS (shell ('echo --== Triggered on AFTER ==-- '), LOG);

In a Teradata configuration where Extract is configured in maximum protection mode,
use EVENTACTIONS only in the VAM-sort Extract group. It is not supported by the primary
Extract in this configuration because concurrent changes are not sorted in transaction
order at this point in the processing stream. For more information, see Installing and
Configuring Oracle GoldenGate for Teradata.

Getting More Information About Configuring the Event Marker System

See Administering Oracle GoldenGate for Windows and UNIX for more information
about using EVENTACTIONS and the Event Marker System.

Syntax

EVENTACTIONS (
[STOP | SUSPEND | ABORT | FORCESTOP]
[IGNORE [RECORD | TRANSACTION [INCLUDEVENT]]
[DISCARD]
[LOG [INFO | WARNING]]

Chapter 3
TABLE | MAP

3-283

[REPORT]
[ROLLOVER]
[SHELL 'command' |
 SHELL ('command', VAR variable = {column_name | expression}
 [, ...])]
[TRACE[2] file [TRANSACTION] [DDL[INCLUDE] | DDLONLY] [PURGE | APPEND]]
[CHECKPOINT [BEFORE | AFTER | BOTH]]
[, ...]
)

STOP

Valid in TABLE for Extract and in MAP for Replicat.
Brings the process to a graceful stop when the specified event record is encountered.
The process waits for other operations within event transaction to be completed
before stopping. If the transaction is a Replicat grouped or batched transaction, the
current group of transactions are applied before the process stops gracefully. The
process restarts at the next record after the event record, so long as that record also
signified the end of a transaction.
The process logs a message if it cannot stop immediately because a transaction is
still open. However, if the event record is encountered within a long-running open
transaction, there is no warning message that alerts you to the uncommitted state of
the transaction. Therefore, the process may remain running for a long time despite the
STOP event.
STOP can be combined with other EVENTACTIONS options except for ABORT and FORCESTOP.

SUSPEND

Valid in TABLE for Extract and in MAP for Replicat.
Pauses the process so that it retains the active context of the current run and can still
respond to SEND commands that are issued in GGSCI. When a process is suspended,
the INFO command shows it as RUNNING, and the RBA field shows the last checkpoint
position.
To resume processing, issue the SEND command with the RESUME option.
To use the CHECKPOINT BEFORE option in conjunction with SUSPEND, the event record
must be the start of a transaction for the SUSPEND to take place. That way, if the
process is killed while in the suspended state, the event record with the SUSPEND action
is the first record to be reprocessed upon restart. If both CHECKPOINT BERORE and
SUSPEND are specified, but the event record is not the start of a transaction, the process
abends before SUSPEND can take place.
To use the CHECKPOINT AFTER option in conjunction with SUSPEND, the RESUME command
must be issued before the checkpoint can take place, and the event record must be a
COMMIT record. If the process is killed while in a SUSPEND state, the process reprocesses
the transaction from the last checkpointed position upon restart.
SUSPEND cannot be combined with ABORT but can be combined with all other options.

ABORT

Valid in TABLE for Extract and in MAP for Replicat.
Forces the process to exit immediately when the specified event record is
encountered, whether or not there are open transactions. The event record is not
processed. A fatal error is written to the log, and the event record is written to the
discard file if DISCARD is also specified. The process will undergo recovery on startup.
ABORT can be combined only with CHECKPOINT BEFORE, DISCARD, SHELL, and REPORT.

FORCESTOP

Valid in TABLE for Extract and in MAP for Replicat.

Chapter 3
TABLE | MAP

3-284

Forces the process to stop gracefully when the specified event record is encountered,
but only if the event record is the last operation in the transaction or the only record in
the transaction. The record is written normally.
If the event record is encountered within a long-running open transaction, the process
writes a warning message to the log and exits immediately, as in ABORT. In this case,
recovery may be required on startup. If the FORCESTOP action is triggered in the middle
of a long-running transaction, the process exits without a warning message.
FORCESTOP can be combined with other EVENTACTIONS options except for ABORT, STOP,
CHECKPOINT AFTER, and CHECKPOINT BOTH. If used with ROLLOVER, the rollover only occurs
if the process stops gracefully.

IGNORE [RECORD | TRANSACTION [INCLUDEVENT]]

Valid in TABLE for Extract and in MAP for Replicat.
Ignores some or all of the transaction, depending on the selected action.

• RECORD is the default. It forces the process to ignore only the specified event
record, but not the rest of the transaction. No warning or message is written to the
log, but the Oracle GoldenGate statistics are updated to show that the record was
ignored.

• Use TRANSACTION to ignore the entire transaction that contains the record that
triggered the event. If TRANSACTION is used, the event record must be the first one
in the transaction. When ignoring a transaction, the event record is also ignored
by default. TRANSACTION can be shortened to TRANS.

• Use INCLUDEEVENT with TRANSACTION to propagate the event record to the trail or to
the target, but ignore the rest of the associated transaction.

IGNORE can be combined with all other EVENTACTIONS options except ABORT and DISCARD.
An IGNORE action is processed after all the qualification, filtering, mapping, and user-
exit operations are processed. The record or transaction is ignored in the final output
phase and prevents the record or transaction from being written to the output target
(the trail in the case of Extract or the database in the case of Replicat). Therefore, in
certain expressions, for example those that include SQLEXEC operations, the SQLEXEC
will be executed before the IGNORE is processed. This means that, while the record is
not written to the trail or target database, all of the effects of processing the record
through qualification, filtering, mapping and user-exit will occur.
This action is not valid for DDL records. Because DDL operations are autonomous,
ignoring a record is equivalent to ignoring the entire transaction.

DISCARD

Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to:

• write the specified event record to the discard file.

• update the Oracle GoldenGate statistics to show that the record was discarded.

The process resumes processing with the next record in the trail.
DISCARD can be combined with all other EVENTACTIONS options except IGNORE.

LOG [INFO | WARNING]

Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to log the event when the specified event record is encountered.
The message is written to the report file, to the Oracle GoldenGate error log, and to
the system event log.
Use the following options to specify the severity of the message:

Chapter 3
TABLE | MAP

3-285

• INFO specifies a low-severity informational message. This is the default.

• WARNING specifies a high-severity warning message.

LOG can be combined with all other EVENTACTIONS options except ABORT. If using ABORT,
LOG is not needed because ABORT logs a fatal error before the process exits.

REPORT

Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to generate a report file when the specified event record is
encountered. This is the same as using the SEND command with the REPORT option in
GGSCI.
The REPORT message occurs after the event record is processed (unless DISCARD,
IGNORE, or ABORT are used), so the report data will include the event record.
REPORT can be combined with all other EVENTACTIONS options.

ROLLOVER

Valid in TABLE for Extract.
Causes Extract to roll over the trail to a new file when the specified event record is
encountered. The ROLLOVER action occurs before Extract writes the event record to the
trail file, which causes the record to be the first one in the new file unless DISCARD,
IGNORE or ABORT are also used.
ROLLOVER can be combined with all other EVENTACTIONS options except ABORT. ROLLOVER
cannot be combined with ABORT because ROLLOVER does not cause the process to write
a checkpoint, and ROLLOVER happens before ABORT.
Without a ROLLOVER checkpoint, ABORT causes Extract to go to its previous checkpoint
upon restart, which would be in the previous trail file. In effect, this cancels the
rollover.

SHELL 'command'

Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to execute the specified shell command when the event record is
encountered. SHELL 'command' executes a basic shell command. The command string
is taken at its literal value and sent to the system that way. The command is case-
sensitive. Enclose the command string within single quote marks, for example:

EVENTACTIONS (SHELL 'echo hello world! > output.txt')

If the shell command is successful, the process writes an informational message to
the report file and to the event log. Success is based upon the exit status of the
command in accordance with the UNIX shell language. In that language, zero
indicates success.
If the system call is not successful, the process abends with a fatal error. In the UNIX
shell language, non-zero equals failure. Note that the error message relates only to
the execution of the SHELL command itself, and not the exit status of any subordinate
commands. For example, SHELL can execute a script successfully, but commands in
that script could fail.
SHELL can be combined with all other EVENTACTIONS options.

SHELL ('command', VAR variable = {column_name | expression} [, ...])

Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to execute the specified shell command when the event record is
encountered and supports parameter passing. The command and the parameters are
case-sensitive.
When SHELL is used with arguments, the entire command and argument strings must
be enclosed within parentheses, for example:

Chapter 3
TABLE | MAP

3-286

EVENTACTIONS (SHELL ('Current timestamp: $1 SQLEXEC result is $2 ',VAR $1 =
@GETENV('JULIANTIMESTAMP'),VAR $2 = mytest.description));

The input is as follows:

command

Is the command, which is passed literally to the system.

VAR

Is a required keyword that starts the parameter input.

variable

Is the user-defined name of the placeholder variable where the run-time variable
value will be substituted. Extra variables that are not used in the command are
ignored. Note that any literal in the SHELL command that matches a VAR variable
name is replaced by the substituted VAR value. This may have unintended
consequences, so test your code before putting it into production.

column_name

Can be the before or after (current) image of a column value.

expression

can be the following, depending on whether column data or DDL is being
handled.

• Valid expressions for column data:

– The value from a TOKENS clause in a TABLE statement.

– A return value from any Oracle GoldenGate column-conversion function.

– A return value from a SQLEXEC query or procedure.

• Valid expressions for DDL:

– Return value from @TOKEN function (Replicat only).

– Return value from @GETENV function.

– Return value from other functions that do not reference column data (for
example, @DATENOW).

– Return value from @DDL function.

TRACE[2] file [TRANSACTION] [DDL[INCLUDE] | DDLONLY] [PURGE | APPEND]

Valid in TABLE for Extract and in MAP for Replicat.
Causes process trace information to be written to a trace file when the specified event
record is encountered. TRACE provides step-by-step processing information. TRACE2
identifies the code segments on which the process is spending the most time.
By default (without options), standard DML tracing without consideration of
transaction boundaries is enabled until the process terminates.

• file specifies the name of the trace file and must appear immediately after the
TRACE keyword. You can specify a unique trace file, or use the default trace file
that is specified with the standalone TRACE or TRACE2 parameter.

The same trace file can be used across different TABLE or MAP statements in which
EVENTACTIONS TRACE is used. If multiple TABLE or MAP statements specify the same
trace file name, but the TRACE options are not used consistently, preference is
given to the options in the last resolved TABLE or MAP that contains this trace file.

Chapter 3
TABLE | MAP

3-287

• Use TRANSACTION to enable tracing only until the end of the current transaction,
instead of when the process terminates. For Replicat, transaction boundaries are
based on the source transaction, not the typical Replicat grouped or batched
target transaction. TRANSACTION can be shortened to TRANS. This option is valid only
for DML operations.

• DDL[INCLUDE] traces DDL and also DML transactional data processing. Either DDL
or DDLINCLUDE is valid.

• DDLONLY traces DDL but does not trace DML transactional data.

These options are valid only for Replicat. By default DDL tracing is disabled.

• Use PURGE to truncate the trace file before writing additional trace records, or use
APPEND to write new trace records at the end of the existing records. APPEND is the
default.

TRACE can be combined with all other EVENTACTIONS options except ABORT.
To disable tracing to the specified trace file, issue the GGSCI SEND process command
with the TRACE OFF file_name option.

CHECKPOINT [BEFORE | AFTER | BOTH]

Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to write a checkpoint when the specified event record is
encountered. Checkpoint actions provide a context around the processing that is
defined in TABLE or MAP statements. This context has a begin point and an end point,
thus providing synchronization points for mapping the functions that are performed
with SQLEXEC and user exits.

BEFORE

BEFORE for an Extract process writes a checkpoint before Extract writes the event
record to the trail. BEFORE for a Replicat process writes a checkpoint before
Replicat applies the SQL operation that is contained in the record to the target.
BEFORE requires the event record to be the first record in a transaction. If it is not
the first record, the process will abend. Use BEFORE to ensure that all transactions
prior to the one that begins with the event record are committed.
When using EVENTACTIONS for a DDL record, note that since each DDL record is
autonomous, the DDL record is guaranteed to be the start of a transaction;
therefore the CHECKPOINT BEFORE event action is implied for a DDL record.
CHECKPOINT BEFORE can be combined with all EVENTACTIONS options.

AFTER

AFTER for Extract writes a checkpoint after Extract writes the event record to the
trail. AFTER for Replicat writes a checkpoint after Replicat applies the SQL
operation that is contained in the record to the target.
AFTER flags the checkpoint request as an advisory, meaning that the process will
only issue a checkpoint at the next practical opportunity. For example, in the case
where the event record is one of a multi-record transaction, the checkpoint will
take place at the next transaction boundary, in keeping with the Oracle
GoldenGate data-integrity model.
When using EVENTACTIONS for a DDL record, note that since each DDL record is
autonomous, the DDL record is guaranteed to be the end (boundary) of a
transaction; therefore the CHECKPOINT AFTER event action is implied for a DDL
record.
CHECKPOINT AFTER can be combined with all EVENTACTIONS options except ABORT.

Chapter 3
TABLE | MAP

3-288

BOTH

BOTH combines BEFORE and AFTER. The Extract or Replicat process writes a
checkpoint before and after it processes the event record.
CHECKPOINT BOTH can be combined with all EVENTACTIONS options except ABORT.

CHECKPOINT can be shortened to CP.

Example 1
The following example shows how you can configure a process to ignore certain
records. When Extract processes any trail record that has name = abc, it ignores the
record.

TABLE fin.cust, &
WHERE (name = 'abc'), &
EVENTACTIONS (ignore);

Example 2
Based on the compatibility and precedence rules of EVENTACTIONS options, DISCARD
takes higher precedence than ABORT, so in this example the event record gets written
to the discard file before the process abends.

MAP fin.cust, TARGET fin.cust2, &
WHERE (name = 'abc'), &
EVENTACTIONS (DISCARD, ABORT);

Example 3
The following example executes a SHELL action. It gets the result of a SQLEXEC query
and pairs it with the current timestamp.

TABLE src.tab &
SQLEXEC (id mytest, query 'select description from lookup &
where pop = :mycol2', params (mycol2 = col2)), &
EVENTACTIONS (SHELL ('Current timestamp: $1 SQLEXEC result is $2 ', &
VAR $1 = @GETENV('JULIANTIMESTAMP'), VAR $2 = mytest.description));

The shell command that results from this example could be similar to the following:

'Current timestamp: 212156002704718000 SQLEXEC result is test passed'

Example 4
The following example shows how invalid results can occur if a placeholder name
conflicts with literal text in the command string. In this example, a placeholder
named $1 is associated with a column value, and the SHELL command echoes a literal
string that includes $1.

MAP src.tab1, TARGET targ.tab1 &
EVENTACTIONS (SHELL ('echo Extra charge for $1 is $1', VAR $1 = COL1));

This is the unintended result, assuming the column value is gift wrap:

'Extra charge for gift wrap is gift wrap'

Changing the placeholder variable to $col results in the correct output:

MAP src.tab1, TARGET targ.tab1 &
EVENTACTIONS (SHELL ('echo Extra charge for $col is $1', VAR $col = COL1));
'Extra charge for gift wrap is $1'

The following shows similar potential for unintended results:

Chapter 3
TABLE | MAP

3-289

MAP src.tab1, TARGET targ.tab1 &
EVENTACTIONS (SHELL ('Timestamp: $1 Price is $13 > out.txt ', &
VAR $1 = @GETENV('JULIANTIMESTAMP')));

The redirected output file might contain a string like this (notice the second timestamp
contains an appended value of 3):

'Timestamp: 212156002704718000 Price is 2121560027047180003'

The intended result is this:

'Timestamp: 212156002704718000 Price is $13'

Example 5
These examples show different ways to configure tracing.

MAP tab1, TARGET tab1 EVENTACTIONS (TRACE ./dirrpt/trace1.txt);
MAP tab2, TARGET tab2 EVENTACTIONS (TRACE ./dirrpt/trace2.txt TRANSACTION);

• In the first MAP statement, the trace1.txt trace file is generated just before the first
tab1 event record is applied to the target. It contains all of the tracing information
from that point forward until Replicat terminates or unless tracing is turned off with
the GGSCI SEND REPLICAT command.

• Because the second MAP statement contains the TRANSACTION option, the
trace2.txt file is generated just before the first tab2 event record is applied to the
target, but the tracing stops automatically at the conclusion of the transaction that
contains the tab2 event record.

Example 6
The following shows how EVENTACTIONS with SUSPEND can be used.

• Case 1: You are replicating DDL, and you want to ensure that there is enough
space in the target database to create a new table. Use EVENTACTIONS with SUSPEND
in the MAP statement that maps the CREATE TABLE DDL operation, and then execute
a SQL statement in that MAP statement to query the amount of space remaining in
a tablespace. If there is enough space, use SEND REPLICAT with RESUME to resume
processing immediately; if not, leave Replicat suspended until a DBA can add the
space, and then use SEND REPLICAT with RESUME to resume processing.

• Case 2: You want to fix unique key violations when they occur on any table.
Because Replicat is processing thousands of tables, you do not want to stop the
process each time there is a violation, because this would cause Replicat to
spend time rebuilding the object cache again upon restart. By using EVENTACTIONS
with SUSPEND, you can simply suspend processing until the problem is fixed.

• Case 3: At the end of the day, you suspend Replicat to run daily reports, and then
resume processing immediately without stopping and restarting the process.

EXITPARAM 'parameter'

EXITPARAM is valid for TABLE and MAP.

Use EXITPARAM to pass a parameter to the EXIT_PARAMS function of a user exit routine
whenever a record from the TABLE or MAP statement is encountered.

Getting More Information about User Exits

See Administering Oracle GoldenGate for Windows and UNIX for instructions on how
to configure user exits.

Chapter 3
TABLE | MAP

3-290

See "User Exit Functions" for more information about the syntax for the user exits.

Syntax

EXITPARAM 'parameter string'

'parameter string'

A parameter that is a literal string. Enclose the parameter within single quotes. You
can specify up to 100 characters for the parameter string.

FETCHBEFOREFILTER

FETCHBEFOREFILTER is valid for TABLE.

Use FETCHBEFOREFILTER to fetch columns that are specified with FETCHCOLS or
FETCHCOLSEXCEPT before a FILTER operation is executed. Fetching before the filter
ensures that values required for the filter are available. Without FETCHBEFOREFILTER,
fetches specified with FETCHCOLS or FETCHCOLSEXCEPT are not performed until after filters
are executed. Specify FETCHBEFOREFILTER before FILTER in the parameter file.

Do not use this option for tables being processed in pass-through mode by a data-
pump Extract group.

FETCHBEFOREFILTER is not supported for the SQL/MX database.

Syntax

FETCHBEFOREFILTER

Example

TABLE hr.salary, FETCHCOLS (sal_level),
FETCHBEFOREFILTER,
FILTER (sal_level >= 8)
;

{FETCHCOLS | FETCHCOLSEXCEPT} (column_list)

FETCHCOLS and FETCHCOLSEXCEPT are valid for TABLE. These options are only valid for the
primary extract and cannot be used on data pump.

Use FETCHCOLS and FETCHCOLSEXCEPT to fetch column values from the database when the
values are not present in the transaction log record. Use this option if the database
only logs the values of columns that were changed in an update operation, but you
need to ensure that other column values required for FILTER operations are available.

• FETCHCOLS fetches the specified columns.

• FETCHCOLSEXCEPT fetches all columns except the specified columns. For tables with
numerous columns, FETCHCOLSEXCEPT may be more efficient than listing each
column with FETCHCOLS.

FETCHCOLS and FETCHCOLSEXCEPT are valid for all databases that are supported by Oracle
GoldenGate, except NonStop SQL/MX.

For an Oracle database, Oracle GoldenGate fetches the values from the undo
tablespace through Oracle's Flashback Query mechanism. The query provides a read-
consistent image of the columns as of a specific time or SCN. For more information
about how Oracle GoldenGate uses Flashback Query, see Installing and Configuring
Oracle GoldenGate for Oracle Database.

Chapter 3
TABLE | MAP

3-291

Instead of using FETCHCOLS or FETCHCOLSEXCEPT, it may be more efficient to enable
supplemental logging for the desired columns.

For Sybase, encrypted column data is not supported by these parameters because
Oracle GoldenGate does not support Sybase encrypted data.

To control fetching and enable a response when a column specified for fetching
cannot be located, use the FETCHOPTIONS parameter. To include fetch results in
statistical displays generated by the STATS EXTRACT command, use the STATOPTIONS
parameter.

If values for columns specified with FETCHCOLS or FETCHCOLSEXCEPT are present in the
transaction log, no database fetch is performed. This reduces database overhead.

Syntax

{FETCHCOLS | FETCHCOLSEXCEPT} (column [, ...])

column

Can be one of the following:

• A column name or a comma-delimited list of column names, as in (col1, col2).

• An asterisk wildcard, as in (*).

Example

The FETCHCOLS clause in this example fetches only columns 1 and 3, whereas the
FETCHCOLSEXCEPT clause fetches all columns except columns 1 and 3.

TABLE hq.acct, FETCHCOLS (col1, col3);
TABLE hq.sales, FETCHCOLSEXCEPT (col1, col3);

{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column_list)

FETCHMODCOLS and FETCHMODCOLSEXCEPT are valid for TABLE. These options are only valid
for the primary extract and cannot be used on data pump.

Use FETCHMODCOLS and FETCHMODCOLSEXCEPT to force column values to be fetched from
the database even if the columns are present in the transaction log. These Depending
on the database type, a log record can contain all of the columns of a table or only the
columns that changed in the given transaction operation.

• FETCHMODCOLS fetches the specified columns.

• FETCHMODCOLSEXCEPT fetches all columns that are present in the transaction log,
except the specified columns. For tables with numerous columns,
FETCHMODCOLSEXCEPT might be more efficient than listing each column with
FETCHMODCOLS.

FETCHMODCOLS and FETCHMODCOLSEXCEPT are valid for all databases that are supported by
Oracle GoldenGate, except NonStop SQL/MX.

Observe the following usage guidelines:

• Do not use FETCHMODCOLS and FETCHMODCOLSEXCEPT for key columns.

• (Sybase) Do not use FETCHMODCOLS and FETCHMODCOLSEXCEPT for encrypted column
data. Oracle GoldenGate does not support Sybase encrypted data.

Chapter 3
TABLE | MAP

3-292

Syntax

{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column [, ...])

(column [, ...])

Can be one of the following:

• A column name or a comma-delimited list of column names, as in (col1, col2).

• An asterisk wildcard, as in (*).

Example

The FETCHMODCOLS clause in this example fetches only columns 1 and 3, whereas the
FETCHMODCOLSEXCEPT clause fetches all columns except columns 1 and 3.

TABLE hq.acct, FETCHMODCOLS (col1, col3);
TABLE hq.sales, FETCHMODCOLSEXCEPT (col1, col3);

FILTER (filter_clause)

FILTER is valid for TABLE and MAP.

Use FILTER to select or exclude records based on a numeric value. A filter expression
can use conditional operators, Oracle GoldenGate column-conversion functions, or
both.

Note:

To filter based on a string, use one of the Oracle GoldenGate string
functions. See "Column Conversion Functions" for more information about
these functions. You can also use the WHERE option. See "WHERE (clause)".

Separate all FILTER components with commas. A FILTER clause can include the
following:

• Numbers

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

+ (plus)

- (minus)

* (multiply)

/ (divide)

\ (remainder)

• Comparison operators:

> (greater than)

>= (greater than or equal)

< (less than)

Chapter 3
TABLE | MAP

3-293

<= (less than or equal)

= (equal)

<> (not equal)

Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR

Enclose literals in single quotes. Specify case-sensitive column names as they are
stored in the database, and enclose them in double quotes if the database requires
quotes to enforce case-sensitivity (such as Oracle).

Oracle GoldenGate supports FILTER for columns that have a multi-byte character set.

Getting More Information about Record Filtering

See Administering Oracle GoldenGate for Windows and UNIX for more information
about FILTER and other filtering options.

Syntax

FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter_clause
[, RAISEERROR error_number]
)

filter_clause

Selects records based on an expression, such as:

FILTER ((PRODUCT_PRICE*PRODUCT_AMOUNT) > 10000))

You can use the column-conversion functions of Oracle GoldenGate in a filter clause,
as in:

FILTER (@COMPUTE (PRODUCT_PRICE*PRODUCT_AMOUNT)>10000)

Enclose literals in single quotes. Specify case-sensitive column names as they are
stored in the database, and enclose them in double quotes if the database requires
quotes to enforce case-sensitivity (such as Oracle).
Oracle GoldenGate does not support FILTER for columns that have a multi-byte
character set or a character set that is incompatible with the character set of the local
operating system.
The maximum size of the filter clause is 5,000 bytes.

ON INSERT | ON UPDATE | ON DELETE

Restricts record filtering to the specified operation(s). Separate operations with
commas, for example:

FILTER (ON UPDATE, ON DELETE,
@COMPUTE (PRODUCT_PRICE*PRODUCT_AMOUNT)>10000)

The preceding example executes the filter for UPDATE and DELETE operations, but not
INSERT operations.

Chapter 3
TABLE | MAP

3-294

IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE

Does not apply the filter for the specified operation(s). Separate operations with
commas, for example:

FILTER (IGNORE INSERT, @COMPUTE (PRODUCT_PRICE*PRODUCT_AMOUNT)>10000)

The preceding example executes the filter on UPDATE and DELETE operations, but
ignores INSERT operations.

RAISEERROR error

Raises a user-defined error number if the filter fails. Can be used as input to the
REPERROR parameter to invoke error handling. Make certain that the value for error is
outside the range of error numbers that is used by the database or by Oracle
GoldenGate. For example: RAISEERROR 21000.

GETBEFORECOLS (column_specification)

GETBEFORECOLS is valid for TABLE.

Use GETBEFORECOLS to specify columns for which you want before image to be captured
and written to the trail upon an update or delete operation. Use GETBEFORECOLS when
using the Oracle GoldenGate Conflict Detection and Resolution (CDR) feature in a bi-
directional or multi-master configuration. Also use it when using conversion functions
or other processing features that require the before image of a record.

For updates, the before image of the specified columns is included in the trail whether
or not any given column is modified. In addition to the columns specified in the
GETBEFORECOLS clause, an Oracle database will also log the before image of other
columns that are modified. For other supported databases, you can use the
GETUPDATEBEFORES parameter to force the inclusion of the before values of other
columns that are modified.

Note:

GETUPDATEBEFORES overrides GETBEFORECOLS if both are used in the same
parameter file.

To use this parameter, supplemental logging must be enabled for any database that
does not log before values by default.

GETBEFORECOLS overrides COMPRESSUPDATES and COMPRESSDELETES if used in the same
parameter file.

This parameter is valid for all databases except DB2. For DB2 on all platforms that are
supported by Oracle GoldenGate, use the GETUPDATEBEFORES parameter instead of
GETBEFORECOLS.

Syntax

GETBEFORECOLS(
{ON UPDATE | ON DELETE}
{ALL | KEY | KEYINCLUDING (col[,...]) | KEYANDMOD | | ALLEXCLUDING (col[,...]) }
[,...]
)

Chapter 3
TABLE | MAP

3-295

{ON UPDATE | ON DELETE}

Specifies whether the before image of the specified columns should be captured for
updates or deletes. You can use ON UPDATE only, ON DELETE only, or both. If using both,
specify them within the same GETBEFORECOLS clause. See the example for how to use
both.

{ALL | KEY | KEYINCLUDING (col[,...]) | KEYANDMOD | ALLEXCLUDING (col[,...])}

Specifies the columns for which a before image is captured.

ALL

Captures a before image of all supported data type columns in the target table,
including the primary key; all unsupported columns are skipped and logged in the
Extract or Replicat parameter file as an information message. This imposes the
highest processing load for Extract, but allows conflict-detection comparisons to
be performed using all columns for maximum accuracy.

KEY

Capture before image only for the primary key. This is the fastest option, but does
not permit the most accurate conflict detection, because keys can match but non-
key columns could be different. KEY is the default.

KEYINCLUDING

Capture before image of the primary key and also the specified column or
columns. This is a reasonable compromise between speed and detection
accuracy.

KEYANDMOD

Use this option as an extension of the key option for both Extract and Replicat.
For update DMLs on the source, Extract logs the key and modified columns.
Replicat on the target will use the KEY and MODIFIED columns during conflict
detection in a WHERE clause. With Oracle databases, the modified column is always
used for conflict detection by default and this parameter makes it explicit.

ALLEXCLUDING

Capture before image of all columns except the specified columns. For tables with
numerous columns, ALLEXCLUDING may be more efficient than KEYINCLUDING. Do not
exclude key columns.

Example

In the following example, the before images for the key column(s) plus the name,
address, and salary are always written to the trail file on update and delete operations.

TABLE src,
GETBEFORECOLS (
ON UPDATE KEYINCLUDING (name, address, salary),
ON DELETE KEYINCLUDING (name, address, salary));

HANDLECOLLISIONS | NOHANDLECOLLISIONS

HANDLECOLLISIONS and NOHANDLECOLLISIONS are valid for MAP.

Use HANDLECOLLISIONS and NOHANDLECOLLISIONS to control whether or not Oracle
GoldenGate reconciles the results of an initial load with replicated transactional
changes that are made to the same tables. When Oracle GoldenGate applies
replicated changes after the load is finished, HANDLECOLLISIONS causes Replicat to
overwrite duplicate records in the target tables and provides alternate handling of
errors for missing records.

Chapter 3
TABLE | MAP

3-296

HANDLECOLLISIONS and NOHANDLECOLLISIONS can be used globally for all MAP statements in
the parameter file or as an ON/OFF switch for groups of tables specified with MAP
statements, and they can be used within a MAP statement. When used in a MAP
statement, they override the global specifications.

See "HANDLECOLLISIONS | NOHANDLECOLLISIONS" for syntax and usage.

INSERTALLRECORDS

INSERTALLRECORDS is valid for MAP.

Use the INSERTALLRECORDS parameter to convert all mapped operations to INSERT
operations on the target. INSERTALLRECORDS can be used at the root level of the
parameter file, within a MAP statement, and within a MAPEXCEPTION clause of a MAP
statement.

See "INSERTALLRECORDS" for syntax and usage.

INSERTAPPEND | NOINSERTAPPEND

INSERTAPPEND is valid for MAP.

Use the INSERTAPPEND and NOINSERTAPPEND parameters to control whether or not Replicat
uses an APPEND hint when it applies INSERT operations to Oracle target tables. These
parameters are valid only for Oracle databases.

See "INSERTAPPEND | NOINSERTAPPEND" for syntax and usage.

KEYCOLS (columns)

KEYCOLS is valid for TABLE and MAP.

Use KEYCOLS to define one or more columns of the target table as unique. The primary
use for KEYCOLS is to define a substitute primary key when a primary key or an
appropriate unique index is not available for the table. You can also use KEYCOLS to
specify additional columns to use in the row identifier that Replicat uses. Without the
availability of a key or KEYCOLS clause, Replicat uses all columns of the table to build its
WHERE clause, essentially performing a full table scan.

The columns of a key rendered by KEYCOLS must uniquely identify a row, and they must
match the columns that are used as a key on the source table. The source table must
contain at least as many key or index columns as the KEYCOLS key specified for the
target table. Otherwise, in the event of an update to the source key or index columns,
Replicat will not have the before images for the extra target KEYCOL columns.

When defining a substitute key with KEYCOLS, observe the following guidelines:

• If the source and target tables both lack keys or unique indexes, use a KEYCOLS
clause in the TABLE parameter and in the MAP parameter, and specify matching sets
of columns in each KEYCOLS clause.

• If either of the tables lacks a key or unique index, use KEYCOLS for that table.
Specify columns that match the actual key or index columns of the other table. If a
matching set cannot be defined with KEYCOLS, you must use KEYCOLS for the source
table (TABLE parameter) and for the target table (MAP parameter). Specify matching
sets of columns that contain unique values. KEYCOLS overrides a key or unique
index.

• If the target table has a larger key than the source table does (or if it has more
unique-index columns), use KEYCOLS in the TABLE statement to specify the source

Chapter 3
TABLE | MAP

3-297

columns that match the extra target columns. You must also include the actual
source key or index columns in this KEYCOLS clause. Using KEYCOLS in this way
ensures that before images are available to Replicat in case the non-key columns
are updated on the source.

When using KEYCOLS, make certain that the specified columns are configured for
logging so that they are available to Replicat in the trail records. For an Oracle
database, you can enable the logging by using the COLS option of the ADD TRANDATA
command.

On the target tables, create a unique index on the KEYCOLS-defined key columns. An
index improves the speed with which Oracle GoldenGate locates the target rows that it
needs to process.

Do not use KEYCOLS for tables being processed in pass-through mode by a data-pump
Extract group.

Syntax

KEYCOLS (column [, ...])

column

Defines a column to be used as a substitute primary key. If a primary or unique key
exists, those columns must be included in the KEYCOLS specification. To specify
multiple columns, create a comma-delimited list as in:

KEYCOLS (id, name)

The following column-types are not supported in KEYCOLS:

• Oracle column types not supported by KEYCOLS:

Virtual columns, UDTs, function-based columns, and any columns that are
explicitly excluded from the Oracle GoldenGate configuration.

• SQL Server, DB2 LUW, DB2 z/OS, MySQL, SQL/MX, Teradata, TimesTen
column types not supported by KEYCOLS:

Columns that contain a timestamp or non-materialized computed column, and any
columns excluded from the Oracle GoldenGate configuration. For SQL Server
Oracle GoldenGate enforces the total length of data in rows for target tables
without a primary key to be below 8000 bytes.

• Sybase column types not supported by KEYCOLS:

Computed columns, function-based columns, and any columns that are explicitly
excluded from the GoldenGate configuration.

Example

TABLE hr.emp, KEYCOLS (id, first, last, birthdate);

MAPEXCEPTION (exceptions_mapping)

MAPEXCEPTIONS is valid for MAP.

Use MAPEXCEPTION as part of an exceptions MAP statement intended for error handling.
MAPEXCEPTION maps failed operations that are flagged as exceptions by the REPERROR
parameter to an exceptions table. Replicat writes the values of these operations along
with other information to the exceptions table.

Chapter 3
TABLE | MAP

3-298

You can use MAPEXCEPTION within the same MAP statement that includes the source-
target table mapping and other standard MAP options. The source and target table
names can include wildcards.

When using MAPEXCEPTION, use a REPERROR statement with the EXCEPTION option either
within the same MAP statement or at the root of the Replicat parameter file. See
"EXCEPTIONSONLY" and "REPERROR".

Getting More Information About Exceptions Handling

For more information about configuring exceptions handling with an exceptions MAP
statement, see Administering Oracle GoldenGate for Windows and UNIX.

Syntax

MAPEXCEPTION (TARGET exceptions_table, INSERTALLRECORDS [, exception_MAP_options])

TARGET exceptions_table

The fully qualified name of the exceptions table. Standard Oracle GoldenGate rules
for object names apply to the name of the exceptions table. See Administering Oracle
GoldenGate for Windows and UNIX.

exception_MAP_options

Any valid options of the MAP parameter that you want to apply to the exceptions
handling.

INSERTALLRECORDS

Applies all exceptions to the exceptions table as INSERT operations. This parameter is
required when using MAPEXCEPTION.

Example

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and
TARGET clauses contain wildcarded source and target table names. Exceptions that
occur when processing any table with a name beginning with TRX will be captured to
the fin.trxexceptions table using the specified mapping.

MAP src.trx*, TARGET trg.*,
MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,
COLMAP (USEDEFAULTS,
ACCT_NO = ACCT_NO,
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG')
)
);

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS are valid for MAP.

Use MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS to control whether or not Replicat
includes invisible columns in Oracle target tables for default column mapping. For
invisible columns in Oracle target tables that use explicit column mapping, they are
always mapped so do not require this option.

MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS can be used in two different ways.
When specified at a global level, one parameter remains in effect for all subsequent

Chapter 3
TABLE | MAP

3-299

MAP statements, until the other parameter is specified. When used within
a MAP statement, they override the global specifications

See “MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS” for syntax and
usage.

REPERROR (error, response)

REPERROR is valid for MAP.

Use REPERROR to specify an error and a response that together control how Replicat
responds to the error when executing the MAP statement. You can use REPERROR at the
MAP level to override and supplement global error handling rules set with the REPERROR
parameter at the root level of the parameter file. Multiple REPERROR statements can be
applied to the same MAP statement to enable automatic, comprehensive management
of errors and interruption-free replication processing.

For syntax and descriptions, see "REPERROR".

RESOLVECONFLICT (conflict_resolution_specification)

RESOLVECONFLICT is valid for MAP.

Use RESOLVECONFLICT in a bi-directional or multi-master configuration to specify how
Replicat handles conflicts on operations made to the tables in the MAP statement.

Multiple resolutions can be specified for the same conflict type and are executed in the
order listed in RESOLVECONFLICT. Multiple resolutions are limited to INSERTROWEXISTS and
UPDATEROWEXISTS conflicts only.

RESOLVECONFLICT can be used multiple times in a MAP statement to specify different
resolutions for different conflict types.

The following are the data types and platforms that are supported by RESOLVECONFLICT.

• RESOLVECONFLICT supports all databases that are supported by Oracle GoldenGate
for Windows and UNIX.

• To use RESOLVECONFLICT, the database must reside on a Windows, Linux, or UNIX
system (including those running on NonStop OSS).

• CDR supports data types that can be compared with simple SQL and without
explicit conversion. See the individual parameter options for details.

• Do not use RESOLVECONFLICT for columns that contain LOBs, abstract data types
(ADT), or user-defined types (UDT).

• Do not use RESOLVECONFLICT for BigNum data types in a SQL/MX database.

Getting More Information About Configuring Conflict Resolution

See Administering Oracle GoldenGate for Windows and UNIX for detailed instructions
on configuring bi-directional replication and conflict resolution, including use cases and
examples.

Syntax

RESOLVECONFLICT (
{INSERTROWEXISTS | UPDATEROWEXISTS | UPDATEROWMISSING |
 DELETEROWEXISTS | DELETEROWMISSING}
({DEFAULT | resolution_name},

Chapter 3
TABLE | MAP

3-300

 {USEMAX (resolution_column) | USEMAXEQ (resolution_column) | USEMIN
(resolution_column) | USEMINEQ (resolution_column) | USEDELTA |
 DISCARD | OVERWRITE | IGNORE}
)
[, COLS (column[,...])]
)

INSERTROWEXISTS | UPDATEROWEXISTS | UPDATEROWMISSING |
DELETEROWEXISTS | DELETEROWMISSING

The type of conflict that this resolution handles.

INSERTROWEXISTS

An inserted row violates a uniqueness constraint on the target.

UPDATEROWEXISTS

An updated row exists on the target, but one or more columns have a before
image in the trail that is different from the current value in the database.

UPDATEROWMISSING

An updated row does not exist in the target.

DELETEROWEXISTS

A deleted row exists in the target, but one or more columns have a before image
in the trail that is different from the current value in the database.

DELETEROWMISSING

A deleted row does not exist in the target.

DEFAULT | resolution_name

DEFAULT

The default column group. The resolution that is associated with the DEFAULT
column group is used for all columns that are not in an explicitly named column
group. You must define a DEFAULT column group.

resolution_name

A name for a specific column group that is linked to a specific resolution type.
Supply a name that identifies the resolution type. Valid values are alphanumeric
characters. Avoid spaces and special characters, but underscores are permitted,
for example:

delta_res_method

Use either a named resolution or DEFAULT, but not both.

USEMAX (resolution_column) | USEMAXEQ (resolution_column) | USEMIN
(resolution_column) | USEMINEQ (resolution_column) | USEDELTA |
DISCARD | OVERWRITE | IGNORE

The conflict-handler logic that is used to resolve the conflict. Valid resolutions are:

USEMAX

If the value of resolution_column in the trail record is greater than the value of the
column in the database, the appropriate action is performed.

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

Chapter 3
TABLE | MAP

3-301

• (UPDATEROWEXISTS conflict) Apply the trail record as an update.

USEMAXEQ

If the value of resolution_column in the trail record is greater than or equal to the
value of the column in the database, the appropriate action is performed.

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the trail record as an update.

USEMIN

If the value of resolution_column in the trail record is less than the value of the
column in the database, the appropriate action is performed:

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the update from the trail record.

USEMINEQ

If the value of resolution_column in the trail record is less than or equal to the
value of the column in the database, the appropriate action is performed:

• (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the update from the trail record.

resolution_column

The name of a NOT NULL column that serves as the resolution column. This column
must be part of the column group that is associated with this resolution. The value
of the resolution column compared to the current value in the target database
determines how a resolution should be applied. The after image of the resolution
column is used for the comparison, if available; otherwise the before image value
is used. Use a column that can be compared through simple SQL:

• NUMERIC

• DATE

• TIMESTAMP

• CHAR/NCHAR

• VARCHAR/ NVARCHAR

To use a latest-timestamp resolution, use a timestamp column as the
resolution_column and set the timestamp column to the current time when a row is
inserted or updated. If possible, define the resolution column with the
SYSTIMESTAMP data type, which supports fractional seconds. When comparisons
are performed with sub-second granularity, there is little need for tie-breaking
conflict handlers that resolve cases where the value of the resolution column is
identical in both trail and target. If you ensure that the value of the timestamp
column can only increase or only decrease (depending on the resolution), then
USEMAX and USEMIN does not lead to data divergence.

Chapter 3
TABLE | MAP

3-302

Note:

Do not use a primary key column as the resolution column in a USEMAX
statement for the UPDATEROWEXISTS conflict. Otherwise, Replicat abends with
an error similar to the following:

2013-04-04 10:18:38 ERROR OGG-01922 Missing RESOLUTION COLUMN NAME
while mapping to target table "FIN"."ACCT".

USEDELTA

(UPDATEROWEXISTS conflict only) Add the difference between the before and after
values in the trail record to the current value of the column in the target database.
If any of the values is NULL, an error is raised. Base USEDELTA on columns that
contain NUMERIC data types. USEDELTA is useful in a multi-node configuration when a
row is getting simultaneously updated on multiple nodes. It propagates only the
difference in the column values to the other nodes, so that all nodes become
synchronized.

DISCARD

(Valid for all conflict types) Retain the current value in the target database, and
write the data in the trail record to the discard file.
Use DISCARD with caution, because it can lead to data divergence.

OVERWRITE

(Valid for all conflict types except DELETEROWMISSING) Apply the trail record as
follows:

• (INSERTROWEXISTS conflict) Apply the trail record but change the insert to an
update to avoid a uniqueness violation, and overwrite the existing values.

• (UPDATEROWEXISTS conflict) Apply the update from the trail record.

• (UPDATEROWMISSING conflict) Apply the trail record but convert the missing
UPDATE to an INSERT by using the modified columns from the after image and
the unmodified columns from the before image. To convert an update to an
insert, the before image of all columns of the row must be available in the
trail. Use supplemental logging if the database does not log before images by
default, and specify ALL for the Extract GETBEFORECOLS parameter.

• (DELETEROWEXISTS conflict) Apply the delete from the trail record, but use only
the primary key columns in the WHERE clause.

Use OVERWRITE with caution, because it can lead to data divergence.

IGNORE

(Valid for all conflict types) Retain the current value in the target database, and
ignore the trail record: Do not apply to the target table or a discard file.

COLS (column[, ...])

A non-default column group. This is a list of columns in the target database (after
mapping) that are linked to, and operated upon by, a specific resolution type. If no
column group is specified for a conflict, then all columns are affected by the resolution
that is specified for the given conflict.
Alternatively, you can specify a DEFAULT column group, which includes all columns that
are not listed in another column group. See the DEFAULT option.

Chapter 3
TABLE | MAP

3-303

You can specify multiple column groups, each with a different resolution. For
example, you could use OVERWRITE for col2 and col3, and you could use USEDELTA for
col4. No column in any group can be in any other group. Conflicts for columns in
different column groups are resolved separately according to the specified resolution,
and in the order listed.
Column groups work as follows:

• For INSERTROWEXISTS and UPDATEROWEXISTS conflicts, you can use different column
groups to specify more than one of these conflict types and resolutions per table.
Conflicts for columns in different column groups are resolved separately,
according to the conflict resolution method specified for the column group.

• For UPDATEROWMISSING, DELETEROWEXISTS, and DELETEROWMISSING, you can use only
one column group, and all columns of the table must be in this column group
(considered the default column group).

Examples

The following examples are explained in detail in Administering Oracle GoldenGate for
Windows and UNIX.

Example 1
This example demonstrates all conflict types with USEMAX, OVERWRITE, DISCARD.

MAP fin.src, TARGET fin.tgt,
 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),
 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
);

Example 2
This example demonstrates UPDATEROWEXISTS with USEDELTA and USEMAX.

MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE KEYINCLUDING (address, phone, salary, last_mod_time),
 ON DELETE KEYINCLUDING (address, phone, salary, last_mod_time)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary)),
 (DEFAULT, USEMAX (last_mod_time)));

Example 3
This example demonstrates UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE.

MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE ALLEXCLUDING (comment)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary, balance)),
 (max_res_method, USEMAX (last_mod_time), COLS (address, last_mod_time)),
 (DEFAULT, IGNORE));

SQLEXEC (SQL_specification)

SQLEXEC is valid for TABLE and MAP.

Chapter 3
TABLE | MAP

3-304

Use SQLEXEC to execute a SQL stored procedure or query from within a MAP statement
during Oracle GoldenGate processing. SQLEXEC enables Oracle GoldenGate to
communicate directly with the database to perform any work that is supported by the
database. This work can be part of the synchronization process, such as retrieving
values for column conversion, or it can be independent of extracting or replicating
data, such as executing a stored procedure that executes an action within the
database.

See "SQLEXEC" for syntax and usage.

SQLPREDICATE 'WHERE where_clause'

SQLPREDICATE is valid for TABLE.

Use SQLPREDICATE to include a conventional SQL WHERE clause in the SELECT statement
that Extract uses when selecting data from a table in preparation for an initial load.
SQLPREDICATE forces the records returned by the selection to be ordered by the key
values.

SQLPREDICATE is a faster selection method for initial loads than the WHERE or FILTER
options. It affects the SQL statement directly and does not require Extract to fetch all
records before filtering them.

For Oracle tables, SQLPREDICATE reduces the amount of data that is stored in the undo
segment, which can reduce the incidence of snapshot-too-old errors. This is useful
when loading very large tables.

By using a SQLPREDICATE clause, you can partition the rows of a large table among two
or more parallel Extract processes. This configuration enables you to take advantage
of parallel delivery load processing as well.

SQLPREDICATE also enables you to select data based on a timestamp or other criteria to
filter the rows that are extracted and loaded to the target table. SQLPREDICATE can be
used for ORDER BY clauses or any other type of selection clause.

Make certain that the WHERE clause contains columns that are part of a key or index.
Otherwise, Extract performs a full table scan, which reduces the efficiency of the
SELECT statement.

SQLPREDICATE is valid for Oracle, DB2 LUW, DB2 on z/OS, SQL Server, and Teradata
databases. Do not use SQLPREDICATE for an Extract group that is configured to
synchronize transactional changes. It is only appropriate for an initial load Extract,
because it re quires a SELECT statement that selects records directly from tables.

Syntax

TABLE source_table, SQLPREDICATE 'WHERE where_clause';

WHERE

This is a required keyword.

where_clause

A valid SQL WHERE clause that selects records from the source tables.

Example

TABLE hr.emp, SQLPREDICATE 'WHERE state = 'CO' and city = 'DENVER''

Chapter 3
TABLE | MAP

3-305

THREAD (thread_ID)

THREAD is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use THREAD to specify that all of the object or objects in the same MAP statement are to
be processed by the specified Replicat thread. The specified thread handles filtering,
manipulation, delivery to the target, error handling, and other work that is configured
for those objects. Wildcards can be used in the TARGET clause when THREAD is used.

All tables that have referential dependencies among one another must be mapped in
the same thread. For example, if tables scott.cust and scott.ord have a foreign-key
relationship, the following is a possible mapping:

MAP scott.cust, TARGET scott.cust, THREAD (5);
MAP scott.ord, TARGET scott.ord, THREAD (5);

The thread with the lowest thread ID always processes barrier transactions if the
THREAD or THREADRANGE option is omitted. Additionally, and work that is not explicitly
assigned to a thread is processed through this thread. For example, if there are
threads with IDs ranging from 1 to 10, barrier and non-assigned transactions are
performed by thread 1.

To process a MAP statement among multiple threads, see THREADRANGE (thread_range,
column_list). THREAD and THREADRANGE are mutually exclusive options. Do not use them
together in the same MAP statement.

For more information about Replicat modes, see "Deciding Which Apply Method to
Use" in Installing and Configuring Oracle GoldenGate for Oracle Database and
"BATCHSQL".

Syntax

THREAD (thread_ID)

thread_ID

A numerical identifier for the thread that will process this MAP statement. Valid values
are 1 through the value that was specified with the MAXTHREADS option of the ADD
REPLICAT command that created this group. You can use the INFO REPLICAT command
to verify the maximum number of threads allowed for a Replicat group. When
specifying thread IDs, the following must be true:

• The total number of threads specified across all MAP statements of a Replicat
group cannot exceed the value of MAXTHREADS.

• No single thread_ID value in the Replicat group can be higher than the value of
MAXTHREADS. For example, if MAXTHREADS is 25, there cannot be a thread_ID of 26 or
higher.

If MAXTHREADS was not used, the default maximum number of threads is 25.

Examples

The following examples show some ways to use the THREAD option.

Example 1
In this example, thread 1 processes table cust.

MAP scott.cust, TARGET scott.cust, THREAD (1);

Chapter 3
TABLE | MAP

3-306

Example 2
In this example, thread 1 processes all of the tables in the scott schema.

MAP scott.*, TARGET scott.*, THREAD (1);

Example 3
In this example, the orders table is partitioned among two MAP statements through the
use of FILTER (filter_clause) and the @RANGE function. For more information about
@RANGE, see "RANGE".

MAP scott.orders, TARGET scott.orders, FILTER (@RANGE (1, 2, OID)), THREAD (1);
MAP scott.orders, TARGET scott.orders, FILTER (@RANGE (2, 2, OID)), THREAD (2);

THREADRANGE (thread_range, column_list)

THREADRANGE is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use THREADRANGE to specify that the workload of the target table is to be partitioned
evenly among a range of Replicat threads, based on the value of a specified column or
columns. For example, if the partitioning is based on the value of a column named ID,
and the THREADRANGE value is 1-3, then thread 1 processes rows with ID values from 1
through 10, thread 2 processes rows with ID values from 11 through 20, and thread 3
processes rows with ID values from 21 through 30. The partitioning may not be as
absolutely even as shown in the preceding example, depending on the initial
calculation of the workload, but it is coordinated so that same row is always processed
by the same thread. Each specified thread handles filtering, manipulation, error
handling, delivery to the target, and other work for its range of rows.

Partitioning a table across a range of threads may improve apply performance for very
large tables or tables that frequently incur long-running transactions or heavy volume,
but can be used in other cases, as well. You can process more than one table through
the same range of threads.

A wildcarded TARGET clause can be used when THREADRANGE is used if the optional
column list is omitted. When using a column list, use separate explicit MAP statements
for each table that is using the same thread range.

To process a MAP statement with one specific thread, see THREAD (thread_ID). THREAD
and THREADRANGE are mutually exclusive options. Do not use them together in the same
MAP statement.

Do not specify tables that have referential dependencies among one another in a
thread range. Use the THREAD option and process all of those tables with the same
thread.

Do not use THREADRANGE to partition sequences. If coordination is required, for example
when a sequence is part of a SQLEXEC operation, partition the sequence work to one
thread with the THREAD option.

The thread with the lowest thread ID always processes barrier transactions if the
THREAD or THREADRANGE option is omitted. Additionally, and work that is not explicitly
assigned to a thread is processed through this thread. For example, if there are
threads with IDs ranging from 1 to 10, barrier and non-assigned transactions are
performed by thread 1.

For more information about Replicat modes, see "Deciding Which Apply Method to
Use" in Installing and Configuring Oracle GoldenGate for Oracle Database and
"BATCHSQL".

Chapter 3
TABLE | MAP

3-307

Syntax

THREADRANGE (lowID-highID, [column[, column][, ...]])

lowID

The lowest thread identifier of this range. Valid values are 1 through 500.

highID

The highest thread identifier of this range, which must be a higher number than lowID.
Valid values are lowID+1 through 500. The number of threads in the range cannot
exceed the value that was specified with the MAXTHREADS option of the ADD REPLICAT
command. If MAXTHREADS was not used, the default maximum number of threads is 25.

[column[, column][, ...]]

Optional. Specifies one or more unique columns on which to base the row partitioning.
To specify multiple columns, use a comma-delimited list, such as col1, col2, col3.
When this option is omitted, the partitioning among the threads is based by default on
the following columns, in the order of preference shown:

• Primary key

• KEYCOLS clause in the same MAP statement

• All of the columns of the table that are supported by Oracle GoldenGate for use
as a key.

Example

The following example divides the orders and order_lines tables between the same
two threads, based on the value of the OID column.

MAP scott.orders, TARGET scott.orders, THREADRANGE (1-2, OID);
MAP scott.order_lines, TARGET scott.order_lines, THREADRANGE (1-2, OID);

TOKENS (token_definition)

TOKENS is valid for TABLE.

Use TOKENS to define a user token and associate it with data. Tokens enable you to
extract and store data within the user token area of a trail record header. Token data
can be retrieved and used in many ways to customize the way that Oracle GoldenGate
delivers data. For example, you can use token data in column maps, stored
procedures called by SQLEXEC, or macros.

To use the defined token data in target tables, use the @TOKEN column-conversion
function in the COLMAP clause of a Replicat MAP statement. The @TOKEN function maps the
name of a token to a target column.

Do not use this option for tables being processed in pass-through mode by a data-
pump Extract group.

The character set of token data is not converted. The token must be in the character
set of the source database for Extract and in the character set of the target database
for Replicat.

Do not use this option for source tables that are encoded as EBCDIC on a z/OS
system if the target tables are not EBCDIC.

For more information about using tokens, see Administering Oracle GoldenGate for
Windows and UNIX.

Chapter 3
TABLE | MAP

3-308

Syntax

TOKENS (token_name = token_data [, ...])

token_name

A name of your choice for the token. It can be any number of valid characters and is
not case-sensitive. Multi-byte names are not supported.

token_data

Any valid character string of up to 2000 bytes. The data can be either a literal that is
enclosed within single quotes (or double quotes if NOUSEANSISQLQUOTES is in use) or the
result of an Oracle GoldenGate column-conversion function. See
"USEANSISQLQUOTES | NOUSEANSISQLQUOTES" for more information.

Example

The following creates tokens named TK-OSUSER, TK-GROUP, and TK-HOST and maps them
to token data obtained with the @GETENV function.

TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = @GETENV ('GGENVIRONMENT' , 'HOSTNAME'));

TRIMSPACES | NOTRIMSPACES

TRIMSPACES and NOTRIMSPACES are valid for TABLE and MAP.

Use TRIMSPACES and NOTRIMSPACES at the root level of a parameter file or within a TABLE
or MAP statement to control whether or not trailing spaces in a source CHAR column are
truncated when applied to a target CHAR or VARCHAR column. The default is TRIMSPACES.

See "TRIMSPACES | NOTRIMSPACES" for syntax and usage.

TRIMVARSPACES | NOTRIMVARSPACES

TRIMVARSPACES and NOTRIMVARSPACES are valid for TABLE and MAP.

Use TRIMVARSPACES and NOTRIMVARSPACES at the root level of a parameter file or within a
TABLE or MAP statement to control whether or not trailing spaces in a source VARCHAR
column are truncated when applied to a target CHAR or VARCHAR column. The default is
NOTRIMVARSPACES.

See "TRIMVARSPACES | NOTRIMVARSPACES" for syntax and usage.

WHERE (clause)

WHERE is valid for TABLE and MAP.

Use WHERE to select records based on a conditional statement. WHERE does not support
the following:

• Columns that have a multi-byte character set or a character set that is
incompatible with the character set of the local operating system.

• The evaluation of the before image of a primary key column in the conditional
statement as part of a primary key update operation.

Chapter 3
TABLE | MAP

3-309

Enclose literals in single quotes. Specify case-sensitive column names as they are
stored in the database, and enclose them in double quotes if the database requires
quotes to enforce case-sensitivity (such as Oracle).

Getting More Information about Record Filtering

See Administering Oracle GoldenGate for Windows and UNIX for more information
about WHERE and other filtering options.

Syntax

WHERE (clause)

clause

Selects records based on a condition, such as:

WHERE (branch = 'NY')

Table 3-35 shows permissible WHERE operators.

Table 3-35 Permissible WHERE Operators

Operator Example

Column names
PRODUCT_AMT
"Product_Amt"

Numeric values
-123, 5500.123

Literal strings enclosed in single
quotes

 'AUTO', 'Ca'

Column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent
in the record). These tests are built into Oracle GoldenGate.

Comparison operators
 =, <>, >, <, >=, <=

Conjunctive operators
AND, OR

Grouping parentheses Use open and close parentheses for logical grouping of
multiple elements.

Example

The following WHERE example returns all records when the AMOUNT column is over 10,000
and does not cause a record to be discarded when AMOUNT is absent.

WHERE (amount = @PRESENT AND amount > 10000)

3.172 TABLE for DEFGEN
Valid For

DEFGEN

Chapter 3
TABLE for DEFGEN

3-310

Description

Use the TABLE parameter in a DEFGEN parameter file to identify a source table or
tables for which you want to run the utility.

You can output definitions for objects that are in different containers in an Oracle
container database or from different SQL/MX catalogs to the same definitions file. All
table attributes must be identical, such as case sensitivity, character set, and the use
of the full three-part name. For example, you cannot use two-part names (stripped of
their container or catalog by the NOCATALOG parameter) and three-part names in the
same definitions file.

Default

None

Syntax

TABLE [catalog.]owner.table[, DEF template];

[catalog.]owner.table

The container (Oracle container database) or catalog (SQL/MX) if applicable, and the
owner and name of the table. This parameter accepts wildcards. Oracle GoldenGate
automatically increases the internal storage to track up to 100,000 wildcard entries.
Oracle GoldenGate preserves the case of the table name. Some databases require a
name to be within double quotes to enforce case-sensitivity. Other case-sensitive
databases do not require double quotes to enforce case-sensitivity, but the names
must be specified the way they are stored in the database. See Administering Oracle
GoldenGate for Windows and UNIX for how to specify object names.

DEF template

Creates a definitions template based on the definitions of the specified table. A
template enables new tables that have the same definitions as the specified table to
be added during an Oracle GoldenGate process run, without the need to run
DEFGEN for them first, and without the need to stop and start the Oracle GoldenGate
process to update its definitions cache. To use a template that is generated by
DEFGEN, specify it with the DEF or TARGETDEF option of the TABLE or MAP statement. To
retain case-sensitivity, specify the template name the way you would specify any
case-sensitive object in the database. This option is not supported for initial loads.

;
Terminates the TABLE statement.

Examples

Example 1

TABLE fin.account;

Example 2

TABLE fin.acc*;

Example 3

TABLE fin."acct1", DEF "acctdefs";

Chapter 3
TABLE for DEFGEN

3-311

3.173 TABLE for Replicat
Valid For

Replicat

Description

Use the TABLE parameter in a Replicat parameter file to specify filtering rules that
qualify a data record from the trail to be eligible for an event action that is specified
with EVENTACTIONS.

Caution:

EVENTACTIONS is not supported if the source database is Teradata and Extract
is configured in maximum performance mode.

This form of TABLE statement is similar to that of the Replicat MAP statement, except that
there is no mapping of the source table in the data record to a target table by means of
a TARGET clause. TABLE for Replicat is solely a means of triggering a non-data action to
be taken by Replicat when it encounters an event record. If Replicat is in coordinated
mode, all actions are processed through the thread with the lowest thread ID.

Because a target table is not supplied, the following apply:

• No options are available to enable Replicat to map table names or columns to a
target table, nor are there options to enable Replicat to manipulate data.

• The ASSUMETARGETDEFS parameter cannot be used in the same parameter file as a
Replicat TABLE statement, because ASSUMETARGETDEFS requires the names of target
tables so that Replicat can query for table definitions. You must create a source-
definitions file to provide the definitions of the source tables to Replicat. Transfer
this file to the target system and use the SOURCEDEFS parameter in the Replicat
parameter file to specify the path name of the file. See Administering Oracle
GoldenGate for Windows and UNIX for more information about creating source-
definitions files.

• The event record itself is not applied to the target database by Replicat. You must
specify either IGNORE or DISCARD as one of the EVENTACTIONS options.

See Administering Oracle GoldenGate for Windows and UNIX for information about
how to specify object names in TABLE statements.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about how to use EVENTACTIONS and the Event Marker System.

Syntax

See "TABLE | MAP" for descriptions of the following syntax options.

TABLE table_spec,
[, SQLEXEC (SQL_specification), BEFOREFILTER]
[, FILTER (filter_clause)]
[, WHERE (where_clause)]

Chapter 3
TABLE for Replicat

3-312

{, EVENTACTIONS ({IGNORE | DISCARD} [action])}
;

Example

The following example enables Replicat tracing for an order transaction that contains
an insert operation for a specific order number (order_no = 1). The trace information is
written to the order_1.trc trace file. The MAP parameter specifies the mapping of the
source table to the target table.

MAP sales.order, TARGET rpt.order;
TABLE sales.order,
FILTER (@GETENV ('GGHEADER', 'OPTYPE') = 'INSERT' AND @STREQ (order_no, 1), &
EVENTACTIONS (TRACE order_1.trc TRANSACTION);

3.174 TABLEEXCLUDE
Valid For

Extract

Description

Use the TABLEEXCLUDE parameter with the TABLE and SEQUENCE parameters to explicitly
exclude tables and sequences from a wildcard specification. The positioning of
TABLEEXCLUDE in relation to parameters that specify files or trails determines its effect.
Parameters that specify trails or files are: EXTFILE, RMTFILE, EXTTRAIL, RMTTRAIL. The
parameter works as follows:

• When a TABLEEXCLUDE specification is placed before any TABLE or SEQUENCE
parameters, and also before the parameters that specify trails or files, it applies
globally to all trails or files, and to all TABLE and SEQUENCE parameters.

• When a TABLEEXCLUDE specification is placed after a parameter that specifies a trail
or file, it is effective only for that trail or file and only for the TABLE or SEQUENCE
parameters that are associated with it. Multiple trail or file specifications can be
made in a parameter file, each followed by a set of TABLE, SEQUENCE, and
TABLEEXCLUDE specifications.

TABLEEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE
parameter. Thus, the order in which they appear does not make a difference.

When using wildcards, be careful not to place them such that all objects are excluded,
leaving nothing to capture. For example, the following captures nothing:

TABLE cat1.schema*.tab*;
TABLEEXCLUDE cat1.*.*

The default for resolving wildcards is WILDCARDRESOLVE DYNAMIC. Therefore, if a table that
is excluded with TABLEEXCLUDE is renamed to a name that satisfies a wildcard, the data
will be captured. The DYNAMIC setting enables new table names that satisfy a wildcard
to be resolved as soon as they are encountered and included in the Oracle
GoldenGate configuration immediately. For more information, see
WILDCARDRESOLVE.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Chapter 3
TABLEEXCLUDE

3-313

Default

None

Syntax

TABLEEXCLUDE [container. | catalog.]owner.{table | sequence}

container. | catalog.
If the database requires three-part names, specifies the name or wildcard
specification of the Oracle container or SQL/MX catalog that contains the object to
exclude.

owner

Specifies the name or wildcard specification of the owner, such as the schema, of the
object to exclude.

table | sequence

The name or wildcard specification of the object to exclude. To specify object names
and wildcards correctly, see Administering Oracle GoldenGate for Windows and
UNIX.

Example

In this example, test.tab* specifies that all tables beginning with tab in schema test
are to be excluded from all trail files. Table fin.acct is excluded from trail ee. Table
fin.sales is excluded from trail ff.

TABLEEXCLUDE test.tab*
 EXTTRAIL ./dirdat/ee
TABLE pdb1.*.*;
TABLEEXCLUDE pdb1.fin.acct
 EXTTRAIL ./dirdat/ff
TABLE pdb2.*.*;
TABLEEXCLUDE pdb2.fin.sales

3.175 TARGETDB
Valid For

Replicat

Description

Use the TARGETDB parameter for databases or data sets that require a data source
name or identifier to be specified explicitly as part of the connection information. This
option is required to identify one of the following:

• The target login database for heterogeneous databases.

• The target data source name (DSN) if Replicat uses ODBC to connect to the
database.

• The target SQL/MX catalog

Tables specified in MAP statements that follow TARGETDB are assumed to be from the
specified data source.

Chapter 3
TARGETDB

3-314

You might need to use the USERID or USERIDALIAS parameter in the TARGETDB parameter
statement, depending on the authentication that is required for the data source.

For databases that allow authentication at the operating-system level, you can specify
TARGETDB without USERID or USERIDALIAS.

For DB2 LUW, the TARGETDB statement must refer to the database by its real name,
rather than by any alias.

See USERID | NOUSERID or USERIDALIAS for more information.

See also SOURCEDB to specify a source data source.

Default

None

Syntax

TARGETDB data_source[, SESSIONCHARSET character_set]

data_source

The name of the database, catalog, or data source name.
For MySQL databases, you can use the format of TARGETDB database_name@host_name to
avoid connection issues caused by the incorrect configuration of localhost in the local
hosts file. If running MySQL on a port other than the default of 3306, you must specify
the port number in the connect string: TARGETDB database_name@host_name:port.

SESSIONCHARSET character_set

Supports Sybase, Teradata and MySQL. Sets the database session character set for
the process login session. This parameter overrides any SESSIONCHARSET that is
specified in the GLOBALS file.

Examples

Example 1
This example shows TARGETDB without the USERIDALIAS parameter.

TARGETDB mydb

Example 2
This example shows TARGETDB with the USERIDALIAS parameter.

TARGETDB mydb, USERIDALIAS tiger2

3.176 TARGETDEFS
Valid For

Extract (primary and data pump)

Description

Use the TARGETDEFS parameter to specify a target-definitions file. A target-definitions file
is needed in certain cascading configurations or when the target is an Enscribe file.
TARGETDEFS names a file on the source system or on an intermediary system that
contains data definitions of tables and files that exist on the target system. Specify at

Chapter 3
TARGETDEFS

3-315

least one TARGETDEFS entry before the TABLE statements for which the targets are
Enscribe files.

You can have multiple TARGETDEFS statements in the parameter file if more than one
target-definitions file is needed for different definitions, for example if each TARGETDEFS
file holds the definitions for a specific application.

To generate the target-definitions file, use the DEFGEN utility. Transfer the file to the
source or intermediary system before starting Extract.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about using data-definitions files.

Default

None

Syntax

TARGETDEFS file

file

The relative or fully qualified path name of the target-definitions file.

Examples

Example 1

TARGETDEFS C:\repodbc\sales.def

Example 2

TARGETDEFS /ggs/dirdef/ODBC/tandem_defs

3.177 TCPSOURCETIMER | NOTCPSOURCETIMER
Valid For

Extract

Description

Use the TCPSOURCETIMER and NOTCPSOURCETIMER parameters to manage the timestamps of
replicated operations for reporting purposes within the Oracle GoldenGate
environment.

TCPSOURCETIMER and NOTCPSOURCETIMER are global parameters and apply to all TABLE
statements in the Extract parameter file.

Default

TCPSOURCETIMER

Syntax

TCPSOURCETIMER | NOTCPSOURCETIMER

Chapter 3
TCPSOURCETIMER | NOTCPSOURCETIMER

3-316

TCPSOURCETIMER

Adjusts the timestamp of data records when they are sent to other systems, making it
easier to interpret synchronization lag. This is the default.

NOTCPSOURCETIMER

Retains the original timestamp value. Use NOTCPSOURCETIMER when using timestamp-
based conflict resolution in a bidirectional configuration and when using a user token
that refers to 'GGHEADER', 'COMMITTIMESTAMP' of the @GETENV column-conversion function.

3.178 THREADOPTIONS
Valid For

Extract

Description

Use the THREADOPTIONS parameter to control how a threaded Extract operates.

Stop and restart GGSCI, Manager, and Extract for the change to take effect.

Default

None

Syntax

THREADOPTIONS
[INQUEUESIZE n]
[OUTQUEUESIZE n]
[PROCESSTHREADS SELECT thread_spec | PROCESSTHREADS EXCEPT thread_spec]
[STACKSIZE bytes]

INQUEUESIZE n

Specifies the number of queue entries in the input queue of each producer Extract
thread in an Oracle RAC cluster. Higher values produce better performance for large
amounts of data. Lower values move data more quickly in environments with very little
activity. Valid values are 16 to 65535. The default is 128. The default should be
adequate in most cases, but if you need to increase it, 1000 should be sufficient in
most types of environments. See also OUTQUEUESIZE.
In addition to INQUEUESIZE and OUTQUEUESIZE, AIX users might obtain better
performance by setting the environment variable AIXTHREAD_SCOPE to S (system scope)
which specifies the use of multiple CPUs so that processes can run concurrently. To
use system scope, add the following to the .profile file of the user who starts the
Manager process or else export the variable manually before starting GGSCI.

AIXTHREAD_SCOPE=S
export AIXTHREAD_SCOPE

OUTQUEUESIZE n

Specifies the number of queue entries in the output queue of each producer Extract
thread in an Oracle RAC cluster. Valid values are 8 to 65535. The default is 2048.
The default should be adequate in most cases.

Chapter 3
THREADOPTIONS

3-317

[PROCESSTHREADS SELECT thread_spec | PROCESSTHREADS EXCEPT thread_spec]
Specifies the Extract threads to be processed or to be excluded from processing.
Valid values are:

• A single thread ID, such as 1

• A range, such as 1-5

Extract threads are mapped to redo threads. Caution: Excluding any of the Extract
threads from being processed excludes that data from being synchronized with the
target tables.
Primarily for use when Extract is in Archived Log Only mode (ALO).

[STACKSIZE bytes]
Specifies the stack size of each producer Extract thread in an Oracle RAC cluster.
Valid values are a range of 65536 - 33554432; the default is 1048576.

3.179 TRACE | TRACE2
Valid For

Extract and Replicat

Description

Use the TRACE and TRACE2 parameters to capture Extract or Replicat processing
information to help reveal processing bottlenecks. Both support the tracing of DML and
DDL.

Tracing also can be turned on and off by using the SEND EXTRACT or SEND REPLICAT
command in GGSCI. See "SEND EXTRACT" or "SEND REPLICAT".

Contact Oracle Support for assistance if the trace reveals significant processing
bottlenecks.

Default

No tracing

Syntax

TRACE | TRACE2
[, DDL[INCLUDE] | DDLONLY]
[, [FILE] file_name]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

TRACE

Provides step-by-step processing information.

TRACE2

Identifies the code segments on which Extract or Replicat is spending the most time.

DDL[INCLUDE] | DDLONLY

(Replicat only) Enables DDL tracing and specifies how DDL tracing is included in the
trace report.

Chapter 3
TRACE | TRACE2

3-318

DDL[INCLUDE]

Traces DDL and also traces transactional data processing. This is the default.
Either DDL or DDLINCLUDE is valid.

DDLONLY

Traces DDL but does not trace transactional data.

[FILE] file_name

The relative or fully qualified name of a file to which Oracle GoldenGate logs the trace
information. The FILE keyword is optional, but must be used if other parameter options
will follow the file name, for example:

TRACE FILE file_name DDLINCLUDE

If no other options will follow the file name, the FILE keyword can be omitted, for
example:

TRACE DDLINCLUDE file_name

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Enables tracing only for the specified thread or threads of a coordinated Replicat.
Tracing is only performed for threads that are active at runtime.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.
If the Replicat is in coordinated mode and TRACE is used with a THREADS list or range, a
trace file is created for each currently active thread. Each file name is appended with
its associated thread ID. This method of identifying trace files by thread ID does not
apply when SEND REPLICAT is issued by groupname with threadID (as in SEND REPLICAT
fin003 TRACE...) or when only one thread is specified with THREADS.
Contact Oracle Support for assistance if the trace reveals significant processing
bottlenecks.

Examples

Example 1
The following traces to a file named trace.trc. If this is a coordinated Replicat group,
the tracing applies to all active threads.

TRACE /home/ggs/dirrpt/trace.trc

Example 2
The following enables tracing for only thread 1. In this case, because only one thread
is being traced, the trace file will not have a threadID extension. The file name is
trace.trc.

TRACE THREADS(1) FILE ./dirrpt/trace.trc

Chapter 3
TRACE | TRACE2

3-319

Example 3
The following enables tracing for threads 1,2, and 3. Assuming all threads are active,
the tracing produces files trace001, trace002, and trace003.

TRACE THREADS(1-3) FILE ./dirrpt/trace.trc

3.180 TRACETABLE | NOTRACETABLE
Valid For

Extract and Replicat

Description

Use the TRACETABLE and NOTRACETABLE parameters with Oracle databases to identify a
trace table that was created with the ADD TRACETABLE command. TRACETABLE is required
only if the trace table was created with a name other than the default of GGS_TRACE. If a
trace table named GGS_TRACE exists in the database, trace table functionality is enabled
automatically, and TRACETABLE is not required.

A trace table is not used when Replicat is in integrated mode. TRACETABLE and
NOTRACETABLE are ignored in that mode.

The trace table is used for bidirectional synchronization to identify Replicat
transactions to Extract.

If used, TRACETABLE must appear in both the Extract and Replicat parameter files.

• In the Replicat parameter file, TRACETABLE causes Replicat to write an operation to
the trace table at the beginning of each transaction.

• In the Extract parameter file, TRACETABLE causes Extract to identify as a Replicat
transaction any transaction that begins with an operation on the trace table.

NOTRACETABLE prevents Replicat from writing an operation to the trace table, thus
preventing Extract from recognizing Replicat transactions.

To control whether Replicat transactions are extracted by Extract or ignored, use the
GETREPLICATES and IGNOREREPLICATES parameters. See "GETREPLICATES |
IGNOREREPLICATES" for more information.

For instructions on configuring bidirectional synchronization, see the Administering
Oracle GoldenGate for Windows and UNIX.

Default

GGS_TRACE

Syntax

TRACETABLE [catalog.]owner.table | NOTRACETABLE

[catalog.]owner.table

The catalog (if stored in a consolidation database), owner, and name of the trace
table.

Chapter 3
TRACETABLE | NOTRACETABLE

3-320

Examples

Example 1
This example shows a two-part name.

TRACETABLE ggs.excl_trans

Example 2
This example shows a three-part name.

TRACETABLE user.ggs.excl_trans

3.181 TRAILBYTEORDER
Valid For

GLOBALS

Description

Use the TRAILBYTEORDER parameter in the GLOBALS file to set the byte format of the
metadata in the trails or files created with the EXTFILE, EXTTRAIL, RMTFILE, and RMTTRAIL
parameters. By default, Extract always writes the trail metadata in big endian byte
order, regardless of the byte order of the source or target machine.

This parameter affects only the metadata of the trail records. It does not affect the
column data.

When used in the GLOBALS file, TRAILBYTEORDER affects all of the files or trails in the same
Oracle GoldenGate instance. To specify the byte order of a specific trail or file, use the
TRAILBYTEORDER option of the associated EXTFILE, RMTFILE, EXTTRAIL, or RMTTRAIL
parameter in the Extract parameter file. In cases where Extract writes to multiple trails
or files on different platforms, TRAILBYTEORDER in the Extract parameter file enables the
correct byte ordering of each one. When TRAILBYTEORDER is used as an Extract
parameter, it overrides any TRAILBYTEORDER specification in the GLOBALS file.

TRAILBYTEORDER reduces the overhead of conversion work when the source and target
machines both use little endian. In this case, because the default without
TRAILBYTEORDER is BIGENDIAN, the conversion work must be performed from little endian
to big endian (to write to trail) and then from big endian to little endian to read the trail
on the target. TRAILBYTEORDER prevents unnecessary conversions by allowing you to
specify the byte order that is used by both the source and target machines
(LITTLEENDIAN) as the byte order of the trail.

In the case where the source byte order is big endian and the target is little endian,
where some conversion is required, you can decide whether the conversion takes
place at the source or at the target. To perform the conversion on the source, set
TRAILBYTEORDER to LITTLEENDIAN. The trail is converted to little endian, and no
conversion is needed on the target. To perform the conversion on the target, leave the
default set to BIGENDIAN. If the target system of the trail is big endian, TRAILBYTEORDER is
not needed, because the default is big endian.

Use the NATIVEENDIAN option for a primary Extract or a data pump if the byte order of
the source machine is not known, but you want to keep that format and do not want
conversion performed on the source. If nothing is specified with TRAILBYTEORDER, a data
pump writes the trail using the same byte order as the input trail, which may not be the
desired format.

Chapter 3
TRAILBYTEORDER

3-321

TRAILBYTEORDER is valid for files that have a FORMAT RELEASE version of at least 12.1. For
older versions, this parameter is ignored.

Do not use TRAILBYTEORDER when replicating data to a NonStop system. On the
NonStop platform, Oracle GoldenGate only supports BIGENDIAN, the default.

To identify the byte order of the metadata in a trail, use the ENV command of the
Logdump utility.

Default

BIGENDIAN

Syntax

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}

BIGENDIAN

Formats the trail metadata in big endian.

LITTLEENDIAN

Formats the trail metadata in little endian.

NATIVEENDIAN

Formats the trail metadata in the default byte order of the local system. Enables you
to make certain the output trail is converted to the native format of the source
machine.

Example

TRAILBYTEORDER LITTLEENDIAN

3.182 TRAILCHARSET
Valid For

Replicat

Description

Note:

This parameter has been replaced by the SOURCECHARSET parameter but may
still be retained in existing parameter files for backward compatibility.

Use the TRAILCHARSET parameter to supply a character set for the source data if the trail
is written by an Extract version that is earlier than 11.2.1.0.0. In the earlier versions,
the source character set is not stored in the trail.

When TRAILCHARSET is used, Replicat uses the specified character set as the source
character set when converting character-type columns to the target character set.
Replicat issues a warning message when it uses the TRAILCHARSET character set.

Chapter 3
TRAILCHARSET

3-322

By default, Replicat performs character set conversion. This feature is controlled by
the CHARSETCONVERSION (default) and NOCHARSETCONVERSION parameters. To use
TRAILCHARSET, NOCHARSETCONVERSION cannot be used.

Default

Character set of the operating system

Syntax

TRAILCHARSET source_charset [, REPLACEBADCHAR];

source_charset

The ICU character-set identifier or an Oracle character-set identifier of the source
database. For Oracle databases, Oracle GoldenGate converts an Oracle identifier to
the corresponding ICU identifier for conversion to the character set that is specified
with the NLS_LANG specification in the SETENV parameter in the Replicat parameter file.

REPLACEBADCHAR

Prevents Replicat from abending when a conversion attempt fails. The failed
character is replaced with a replacement character for each target character set. The
replacement character is pre-defined in each character set.

Examples

Example 1

TRAILCHARSET ISO-8859-9;

Example 2

TRAILCHARSET windows-932, REPLACEBADCHAR;

Example 3

TRAILCAHRSET EUC-CN;

3.183 TRAILCHARSETASCII
Valid For

Extract for DB2 on z/OS; not valid for Extract data pump or Replicat.

Description

Use TRAILCHARSETASCII to cause character data to be written to the trail file in the local
ASCII code page of the DB2 subsystem from which data is to be captured.

• Specification of this parameter on a single-byte DB2 z/OS subsystem causes
character data from non-Unicode tables to be written to the trail file in the installed
ASCII single-byte CCSID. Data from EBCDIC tables is converted to this ASCII
CCSID.

• Specification of this parameter on a multi-byte DB2 z/OS subsystem causes
Extract to process only ASCII and Unicode tables. Extract abends with an error if it
encounters EBCDIC tables. Data from ASCII tables is written to the trail file in the
installed ASCII mixed CCSID.

Chapter 3
TRAILCHARSETASCII

3-323

Either TRAILCHARSETASCII or TRAILCHARSETEBCDIC is required if the target is a multi-byte
system. To replicate both ASCII and EBCDIC tables to a multi-byte DB2 z/OS target,
process each character set with an Extract process for the EBCDIC tables.

Default

Character data is written in the character set of the host table.

Syntax

TRAILCHARSETASCII

3.184 TRAILCHARSETUNICODE
Valid For

Extract for DB2 for i

Description

In all prior releases of the DB2 for i, for Extract all text data was converted to Unicode.
Either UTF-8 for single and multi-byte CCSIDs or UTF-16 for double byte CCSIDs. For
SQL that means all non-binary CHAR, VARCHAR and CLOB data would be converted to
UTF-8 and all GRAPHIC, VARGRAPHIC and DBCLOB data would be converted to UTF-16 for
the trail, either for initial loads or "normal" Extracts. This is still true if you are using a
trail format in Extract that is prior to the Oracle GoldenGate 12c (12.2.0.1) release.

The behavior of defgen in prior releases for versions that had a column charset
column, was to indicate -1 to represent that the column characters set was the default
for columns that used character sets. The trail header would then be used to indicate
the character set for the column data that was always set to UTF-8/UTF16.

In this release, the default behavior allows character sets that are supported by Oracle
GoldenGate conversions to pass through unchanged. This automatically reduces the
CPU consumption and increases the throughput rate of Extracts proportional to the
amount of text data in the records being processed. If a CCSID is found in the Extract
that Oracle GoldenGate cannot convert, the Extract defaults to its original behavior
and convert the text data to the appropriate Unicode character set as it did in prior
releases. This ensures that any Replicat that processes a trail from the new Extract is
capable of handling the text data from the Extract.

If you want to use the original behavior of the DB2 for i Extract, then the keyword
TRAILCHARSETUNICODE must be added to the Extract prm file. This causes all text data to
be converted to Unicode as it was in the prior releases.

Alternatively, you can selectively revert to the old conversion behavior at the specific
object or even column level by using the COLCHARSET parameter on the table
definition.

Examples in a typical prm file for a "normal" (non-initial load) Extract:

• All text data in objects included in all table statements is converted to Unicode.

• - if this keyword is not included the extract will not convert text data by default

table schema.table, COLCHARSET(UTF-8, ALL)

or

Chapter 3
TRAILCHARSETUNICODE

3-324

table schema.table, charset(UTF-8)

• All text data in objects that match this specific table statement are converted to
Unicode (double-byte columns are UTF-16).

table schema.table, COLCHARSET(UTF-8, TXTCOL4)

• Only TXTCOL4 is converted to UTF-8; all other text data passes through unchanged.

Note:

Due to how the DB2 for i PASE database layer functions, as well as
Oracle GoldenGate's internal processing, there are certain situations
where Unicode conversion is still required.

• Initial Load Extracts automatically convert all data to Unicode and indicate the
Unicode data in the columns.

• Extracts that use a trail format that is prior to the Oracle GoldenGate 12c
(12.2.0.1) release, these Extracts automatically fall back to converting text data to
Unicode.

• Table specifications that include any column functions, or SQLEXEC, FETCHCOLUMNS, or
FETCHMODCOLS require that either TRAILCHARSETUNICODE is specified or the specific
tables or columns are changed to include the COLCHARSET modifier. This is true if
Replicat is using column functions as well. In such a case, the extract tables that
map to the Replicat tables must be sent as Unicode.

DEFGEN and TRAILCHARSETUNICODE

For DEFGEN, TRAILCHARSETUNICODE is not supported because DEFGEN does not generate a
trail. If you are using TRAILCHARSETUNICODE or overriding the column character sets and
are using a defs file on Replicat, then defgen must also specify the equivalent column
CHARSET overrides as follows:

• table schema.table, COLCHARSET(ALL, UTF-8)

or

table schema.table, CHARSET(UTF-8)

• All text data in objects that match this specific table statement will be converted to
Unicode (double byte columns will be UTF-16).

table schema.table, COLCHARSET(TXTCOL4, UTF-8)

• Only TXTCOL4 is converted to UTF-8; all other text data will pass through
unchanged.

In this release, the default behavior is to have column metadata included in the trail
data inline with the operation data as required. This means that definitions files are no
longer needed by Oracle GoldenGate replication and are ignored.

However, if the Oracle GoldenGate Replicats or pumps indicate that they choose to
override this behavior and use the definitions files, or a prior trail format level is used,
the defgen definitions files must be recreated. In this case, care must be taken to
ensure that the definitions match what extract is writing to the trails. Therefore, any
TRAILCHARSETUNICODE keywords, CHARSET or COLCHARSET modifiers that exist in the extract
prm file must also exist in the defgen prm file that matches the Extract.

Chapter 3
TRAILCHARSETUNICODE

3-325

Any ASSUMETARGETDEFS OVERRIDE in Replicat also require that the Extract use
TRAILCHARSETUNICODE or the equivalent COLCHARSET modifiers on the tables in the Extract
parameter file. This is due to Replicat still connecting to the database with a Unicode
connection so internally treats all text fields as Unicode.

Default

None

Syntax

TRAILCHARSETUNICODE

3.185 TRAILCHARSETEBCDIC
Valid For

Extract for DB2 on z/OS; not valid for Extract data pump or Replicat.

Description

Use TRAILCHARSETEBCDIC to cause character data to be written to the trail file in the local
EBCDIC code page of the DB2 subsystem from which data is to be captured.

• Specification of this parameter causes all character data to be written to the trail
file in the EBCDIC code page of the job in which Extract is running.

• Specification of this parameter on a single-byte DB2 z/OS subsystem causes
character data from non-Unicode tables to be written to the trail file in the installed
EBCDIC single-byte CCSID. Data from ASCII tables is converted to this EBCDIC
CCSID.

• Specification of this parameter on a multi-byte DB2 z/OS subsystem causes
Extract to process only EBCDIC and Unicode tables. Extract abends with an error
if it encounters ASCII tables. Data from EBCDIC tables is written to the trail file in
the installed EBCDIC mixed CCSID.

Either TRAILCHARSETASCII or TRAILCHARSETEBCDIC is required if the target is a multi-byte
system. To replicate both ASCII and EBCDIC tables to a multi-byte DB2 z/OS target,
process each character set with an Extract process for the EBCDIC tables.

Default

Character data is written in the character set of the host table.

Syntax

TRAILCHARSETEBCDIC

3.186 TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D
Valid For

GLOBALS

Chapter 3
TRAILCHARSETEBCDIC

3-326

Description

Use the TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D parameters to control the number of digits
of trail file sequence numbers. TRAIL_SEQLEN_6D produces a six digit sequence number
for trails and TRAIL_SEQLEN_9D produces nine digits.r.

Default

TRAIL_SEQLEN_9D

Syntax

[TRAIL_SEQLEN_9D | TRAIL_SEQLEN_6D]

Example

TRAIL_SEQLEN_9D
TRAIL_SEQLEN_6D

3.187 TRANLOGOPTIONS
Valid For

Extract

Description

Use the TRANLOGOPTIONS parameter to control the way that Extract interacts with the
transaction log or with the API that passes transaction data, depending on the
database or capture mode. You can use multiple TRANLOGOPTIONS statements in the
same parameter file, or you can specify multiple options within the same
TRANLOGOPTIONS statement, if permissible for those options.

Use a given TRANLOGOPTIONS option only for the database or databases for which it is
intended.

Default

None

Syntax

TRANLOGOPTIONS {
[{ACTIVATIONIDPADLEN | DATABASEIDPADLEN | THREADPADLEN | SEQPADLEN |
RESETLOGSIDPADLEN} width]
[ADGTIMEOUT seconds]
[ACTIVESECONDARYTRUNCATIONPOINT | MANAGESECONDARYTRUNCATIONPOINT |
NOMANAGESECONDARYTRUNCATIONPOINT]
[ALLOWTABLECOMPRESSION]
[ALTARCHIVEDLOGFORMAT string] [INSTANCE instance] [THREADID id]
[ALTARCHIVELOGDEST [PRIMARY] [INSTANCE instance] path]
[ALTARCHIVELOGONLY ('path' FILESPEC 'file_pattern']
 [[[NOT] RECURSIVE] [PRIMARY])]
[ALTLOGDEST path]
[ARCHIVEDLOGONLY]
[{ASMBUFSIZE size | DBLOGREADERBUFSIZE size}]
[ASMUSER SYS@ASM_instance, ASMPASSWORD password

Chapter 3
TRANLOGOPTIONS

3-327

 [algorithm ENCRYPTKEY {key_name | DEFAULT}]
[ASMUSERALIAS alias [DOMAIN domain]]
[ASYNCTRANSPROCESSING buffer_size | NOASYNCTRANSPROCESSING]
[BUFSIZE size]
[CHECKPOINTRETENTIONTIME days]
[CHECKTABLELEVELSUPPLOG]
[COMPLETEARCHIVEDLOGONLY]
[COMPLETEARCHIVEDLOGTIMEOUT seconds]
[DBLOGREADER]
[DBLOGREADERBUFSIZE size]
[EXCLUDETAG [tag | NULL] | [EXCLUDETAG +]
[EXCLUDETRANS transaction]
[EXCLUDEUSER user]
[EXCLUDEUSERID Oracle_uid]
[FAILOVERTARGETDESTID n]
[FETCHLOBIFERROR]
[FETCHPARTIALLOB]
[FETCHPARTIALXML]
[FILTERTABLE table]
[FORCEFETCHLOB]
[GETCTASDML | NOGETCTASDML]
[HANDLEDLFAILOVER]
[IGNOREDATACAPTURECHANGES | NOIGNOREDATACAPTURECHANGES]
[IGNOREDIRECTLOADINSERTS]
[INCLUDEAUX (AUX_specification)]
[INCLUDEREGIONID | INCLUDEREGIONIDWITHOFFSET]
[INTEGRATEDPARAMS (parameter [, ...])]
[LOGRETENTION [ENABLED | SR | DISABLED]
[LOGSOURCE platform, [PATHMAP path]]
[MAXREADSIZE records]
[MAXWARNEOF seconds]
[MINEFROMACTIVEDG | NOMINEFROMACTIVEDG]
[MINEFROMSNAPSHOTSTBY | NOMINEFROMSNAPSHOTSTBY]
[MININGUSER {/ | user}[, MININGPASSWORD password]
 [algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]
[MININGUSERALIAS alias [DOMAIN domain]]
[NODDLCHANGEWARNING]
[NOFLUSH]
[PATHMAP NFS_mount_point log_path]
[PREPAREFORUPGRADETOIE | NOPREPAREFORUPGRADETOIE]
[PURGEORPHANEDTRANSACTIONS | NOPURGEORPHANEDTRANSACTIONS]
[QUERYRETRYCOUNT number] |
[READQUEUESIZE size]
[READTIMEOUT milliseconds]
[REQUIRELONGDATACAPTURECHANGES | NOREQUIRELONGDATACAPTURECHANGES]
[TRANSCLEANUPFREQUENCY minutes]
[TSLOOKUPBEGINLRI | TSLOOKUPENDLRI]
[USENATIVEOBJSUPPORT | NOUSENATIVEOBJSUPPORT]
[USEPREVRESETLOGSID | NOUSEPREVRESETLOGSID]
[USE_ROOT_CONTAINER_TIMEZONE]
[VAMCOMPATIBILITY {1 | 2 | 3}]
}
[, ...]

{ACTIVATIONIDPADLEN | DATABASEIDPADLEN | THREADPADLEN | SEQPADLEN |
RESETLOGSIDPADLEN} width

(Oracle) Valid for Extract in classic capture mode
Specifies the minimum default padding length when Extract forms the archive log
name using the format specifiers %A, %D, %T, %S, and %R in the
ALTARCHIVELOGFORMAT parameter. When the corresponding number is smaller than the

Chapter 3
TRANLOGOPTIONS

3-328

field width, it is zero-padded on the left. Table 3-36 shows the specifier that relates to
each option and the default length.

Option Specifier Default padding length

ACTIVATIONIDPADLEN %A 8

DATABASEIDPADLEN %D 8

THREADPADLEN %T 3 on Windows, 4 on other platforms

SEQPADLEN %S 5 on Windows, 10 on other platforms

RESETLOGSIDPADLEN %R 10

ADGTIMEOUT seconds

(Oracle) Valid for Extract in classic capture mode
Sets the interval, in seconds, after which Extract times out if v$database.current_scn
has not moved past the commit SCN associated with the record for which it needs to
process. The default is 30 seconds. Supports Extract in classic capture mode when
capturing in an Oracle Data Guard environment.

ACTIVEMANAGESECONDARYTRUNCATIONPOINT | MANAGESECONDARYTRUNCATIONPOINT |
NOMANAGESECONDARYTRUNCATIONPOINT

(SQL Server and Sybase) Controls the way that the secondary truncation point is
managed.

ACTIVESECONDARYTRUNCATIONPOINT

Valid for SQL Server, not supported for Sybase.
Use ACTIVESECONDARYTRUNCATIONPOINT if Extract will not be running concurrently with
SQL Server transactional replication or any non-Oracle Change Data Capture
(CDC) implementation, and if non-native SQL Server log backups are taken
against the database. It enables Extract to manage the secondary truncation point
by marking transactions as distributed once they have been captured. Unlike
when in MANAGESECONDARYTRUNCATIONPOINT mode, Extract in
ACTIVESECONDARYTRUNCATIONPOINT mode does not read from transaction log
backups. Therefore, you can use any third-party transaction-log backup software.
Because only one Extract manages the secondary truncation point in this
configuration, do not to use ACTIVESECONDARYTRUNCATIONPOINT if there are multiple
Extract groups capturing from the same database.

MANAGESECONDARYTRUNCATIONPOINT

Valid for SQL Server and Sybase.
SQL Server usage: Use MANAGESECONDARYTRUNCATIONPOINT if Extract will not be
running concurrently with SQL Server transactional replication or any non-Oracle
CDC implementation. It enables Oracle GoldenGate to maintain the secondary
truncation point by means of a high-water mark, wherein any transactions older
than this mark are considered distributed.
This method requires that the database transaction logs be available and
readable by Extract. See Installing and Configuring Oracle GoldenGate for SQL
Server for transaction log backup requirements. If using this parameter with at
least one Extract in a multi-Extract configuration for the same database, it must be
used for all of the Extract groups.
Sybase usage: Use MANAGESECONDARYTRUNCATIONPOINT if Extract will not be running
concurrently with Sybase Replication Server. It enables Extract to manage the
secondary truncation point.

Chapter 3
TRANLOGOPTIONS

3-329

NOMANAGESECONDARYTRUNCATIONPOINT

Valid for SQL Server and Sybase.
SQL Server usage: Use NOMANAGESECONDARYTRUNCATIONPOINT if Extract will be
running concurrently with SQL Server transactional replication or any non-Oracle
CDC implementation. Allows SQL Server replication to manage the secondary
truncation point. If using this parameter with at least one Extract in a multi-Extract
configuration for the same database, it must be used for all of the Extract groups.
Sybase usage: Use NOMANAGESECONDARYTRUNCATIONPOINT when you do not want to
truncate the Sybase transaction log. Extract will not manage the secondary
truncation point. You can use this option when Extract must re-read the Sybase
transaction log from a previous log position for debugging purposes.

ALLOWTABLECOMPRESSION

(DB2 LUW version 9.5 and 9.7)
Enables Oracle GoldenGate to support tables created with row compression, as long
as the tables do not contain LOBs. When this parameter is set, LOB columns are not
supported, whether or not the table is compressed. To capture from a source where
some tables have row compression and some do not, process the compression-
enabled tables with one Extract group and the non-compressed tables with another
Extract group.

ALTARCHIVEDLOGFORMAT string [INSTANCE instance] [THREADID id]

(Oracle) Valid for Extract in classic capture mode.
Specifies a string that overrides the archive log format of the source database.
In an Oracle RAC environment, use the ALTARCHIVEDLOGFORMAT parameter on each
node. To ensure that Extract can differentiate between the log streams, use the
INSTANCE or THREADID option. The default log format that is queried from the database
for one RAC thread is assumed for all of the other threads if Extract cannot find a log
format and nothing is specified with INSTANCE or THREADID.
The TRANLOGOPTIONS statement that includes ALTARCHIVEDLOGFORMAT cannot contain any
other TRANLOGOPTIONS options. Use a separate TRANLOGOPTIONS statement to specify
other options.

string

Accepts the same specifier as Oracle's parameter LOG_ARCHIVE_FORMAT. Extract
uses the supplied format specifier to derive the log file name. Example:

arch_%T.arc

INSTANCE instance

For use with Oracle RAC. Applies ALTARCHIVEDLOGFORMAT to a specific Oracle
instance. Extract verifies the supplied input against the database catalog.
Example:

TRANLOGOPTIONS ALTARCHIVEDLOGFORMAT &
INSTANCE rac1 log_%t_%s_%r.arc

THREADID id

For use with Oracle RAC. Specifies the thread number of the instance that has
the specified log format.
Example:

TRANLOGOPTIONS ALTARCHIVEDLOGFORMAT &
THREADID 2 log_%t_%s_%r.arc

Chapter 3
TRANLOGOPTIONS

3-330

ALTARCHIVELOGDEST [PRIMARY] [INSTANCE instance]
[THREADID id] path

(SQL Server) Valid for Extract in classic capture mode.
Points Extract to the archived or backup Oracle transaction logs when they reside
somewhere other than the default location. Extract first checks the specified location
and then checks the default location.

path

Specifies the fully qualified path to the archived logs in the alternate directory.
This directory must be NFS mounted to the node where Oracle GoldenGate is
running. Use that mount point for ALTARCHIVELOGDEST.

PRIMARY

Prevents Extract from checking the default log location if it does not find the log in
the alternate location. Only the ALTARCHIVELOGDEST path is checked. PRIMARY is the
default for an Extract that is running in Archived Log Only (ALO) mode; otherwise,
it is optional.

INSTANCE instance

Applies the specified ALTARCHIVELOGDEST behavior to a specific Oracle instance. On
RAC, if this option is used, you must specify the ALTARCHIVELOGDEST parameter on
each node.

THREADID id

Applies the specified ALTARCHIVELOGDEST behavior to a specific thread number.

ALTARCHIVELOGONLY ("path" [FILESPEC "file_pattern"]
[[NOT] RECURSIVE])

(Oracle)
Extract reads from Oracle transaction log backups out of this location instead of
querying the msdb tables for the log backup location. Use this parameter if the log
backups have been moved from their original destination.
Enclose the parameter arguments within parentheses.

"path"

Specifies the path name, in double quotes, to the log backups. You can use
wildcard symbols after the last backslash (\) delimiter. An asterisk (*) matches
zero or more characters. A question mark (?) matches exactly one character.
Do not use this option if using NOT RECURSIVE.

FILESPEC "file_pattern"

Specifies a file pattern within the backup path specified by "path". Enclose the file
pattern within double quotes. An asterisk (*) matches zero or more characters. A
question mark (?) matches exactly one character.
Do not use a backslash (\) delimiter. A backslash allows another path to be
specified, which is invalid.

[NOT] RECURSIVE

Specifies whether or not the files specified by "path" are searched recursively (all
sub-directories also searched).

ALTARCHIVELOGDEST ("path”
[[NOT] RECURSIVE])

(SQL Server)
By default, Extract queries the MSDB database to determine the name and location
on disk of any needed transaction log backups (not if using

Chapter 3
TRANLOGOPTIONS

3-331

ACTIVESECONDARYTRUNCATIONPOINT). If for some reason the log backups have been
moved from their original location or need to be referenced as a path to a remote
share (for an Extract running on a remote server in ALO mode), use the
ALTARCHIVELOGDEST option to specify a new transaction log naming convention or file
extension if either of those have changed.
Enclose the parameter arguments within parentheses. There can be only one
TRANLOGOPTIONS ALTARCHIVELOGDEST entry in a SQL Server Extract parameter file. If
there are multiple entries, only the last one will be used.

"path"

Specifies the path name, in double quotes, to the log backups. You can use
wildcard symbols after the last backslash (\) delimiter. An asterisk (*) matches
zero or more characters. A question mark (?) matches exactly one character.
Do not use this option if using NOT RECURSIVE.

[NOT] RECURSIVE

Specifies whether or not the files specified by "path" are searched recursively (all
sub-directories also searched).

ALTLOGDEST path

(MySQL)
Specifies the location of the MySQL log index file. Extract looks for the log files in this
location instead of the database default location. ALTLOGDEST can be used when the
database configuration does not include the full path name to the logs or when there
are multiple MySQL installations on the machine. Extract reads the log index file to
find the binary log file that it needs to read. When ALTLOGDEST is used, Extract assumes
that the logs and the index are in the same location.
Supply the full path name to the directory. On Windows, enclose the path within
double quotes if the path contains any spaces, such as in the following example.

TRANLOGOPTIONS ALTLOGDEST "C:\Program Files\MySQL\MySQL Server 5.1\log\test.index"

ARCHIVEDLOGONLY

(SQL Server) Valid for Extract in classic capture mode.
ARCHIVEDLOGONLY causes Extract to read from the transaction log backups exclusively.
This parameter puts Extract into Archived Log Only mode (ALO) and allows the ability
to run the Extract on a different Windows server, other than the database server. ALO
mode is incompatible with the ACTIVESECONDARYTRUNCSTIONPOINT parameter. For more
information about archived-log only mode, see Installing and Configuring Oracle
GoldenGate for SQL Server.
(Oracle) Valid for Extract in classic capture mode.
ARCHIVEDLOGONLY causes Extract to read from the archived logs exclusively, without
querying or validating the logs from system views such as v$log and v$archived_log.
This parameter puts Extract into Archived Log Only mode (ALO). By default, Extract
does not use archived log-only mode even if the database that it connects to is a
physical standby database. For more information about archived-log only mode, see
Installing and Configuring Oracle GoldenGate for Oracle Database.

ASMBUFSIZE size

(Oracle) Valid for Extract in classic capture mode.
Controls the maximum size, in bytes, of a read operation into the internal buffer that
holds the results of each read of the transaction log. Use this option instead of the
DBLOGREADERBUFSIZE option if the source Oracle version is one that is:

• 11g that is earlier than 11.2.0.2

Chapter 3
TRANLOGOPTIONS

3-332

• any Oracle 11g R1 version

These versions do not support the newer API that is available in Oracle versions that
are supported by the DBLOGREADER option. It is recommended that you use the
DBLOGREADER option together with the DBLOGREADERBUFSIZE option if supported by your
Oracle version.
Higher values increase extraction speed but cause Extract to consume more memory.
Low values reduce memory usage but increase I/O because Extract must store data
that exceeds the cache size to disk.
The following are the valid ranges and default sizes, in bytes:

• Minimum: size of one block in the redo log

• Maximum: 4 MB

• Default: 2 MB (2097152)

The value of the BUFSIZE option must always be at least equal to, or greater than, the
value of DBLOGREADERBUFSIZE.

ASMUSER SYS@ASM_instance, ASMPASSWORD password [algorithm
ENCRYPTKEY {key_name | DEFAULT}]

(Oracle) Valid for Extract in classic capture mode.
Specifies credentials for logging in to an ASM instance to read the transaction logs.
Can be used instead of ASMUSERALIAS if an Oracle GoldenGate credential store is not
being used.

SYS@ASM_instance

Specifies the ASM instance for the connection string. The user must be SYS.

password

Is the encrypted password that is copied from the ENCRYPT PASSWORD command
results.

algorithm

Specifies the encryption algorithm that was used to encrypt the password: AES128,
AES192, AES256, or BLOWFISH.

ENCRYPTKEY key_name

Specifies the logical name of a user-created encryption key in the ENCKEYS lookup
file. Use if ENCRYPT PASSWORD was used with the KEYNAME key_name option.

ENCRYPTKEY DEFAULT

Directs Oracle GoldenGate to use a random key. Use if ENCRYPT PASSWORD was
used with the KEYNAME DEFAULT option.

Note:

This parameter does not replace the standard USERID parameter. Both are
required in an ASM environment. ASMUSER is not needed if using the
DBLOGREADER option to read the logs.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about password security features.

Chapter 3
TRANLOGOPTIONS

3-333

ASMUSERALIAS alias [DOMAIN domain]
(Oracle) Valid for Extract in classic capture mode.
Specifies credentials for logging in to an ASM instance to read the transaction logs.
Can be used instead of ASMUSER if an Oracle GoldenGate credential store is being
used.

alias

Specifies the alias of the login credential that will be used to log into the ASM
instance. This credential must exist in the Oracle GoldenGate credential store. If
you are not sure what alias to use, you can inspect the content of the credential
store by issuing the INFO CREDENTIALSTORE command. See "INFO
CREDENTIALSTORE".

DOMAIN domain

Specifies the domain that is assigned to the specified alias in the credential store.
For more information about the credential store, see Administering Oracle
GoldenGate for Windows and UNIX.

Note:

This parameter does not replace the standard USERIDALIAS parameter. Both
are required in an ASM environment. ASMUSERALIAS is not needed if using the
DBLOGREADER option to read the logs.

ASYNCTRANSPROCESSING buffer_size | NOASYNCTRANSPROCESSING

(Oracle) Valid for Extract in integrated capture mode.
Controls whether integrated capture runs in asynchronous or synchronous processing
mode, and controls the buffer size when Extract is in asynchronous mode.

ASYNCTRANSPROCESSING buffer_size

The default. In asynchronous transaction processing mode, there are two threads
of control:

• One thread groups logical change records (LCR) into transactions, does
object-level filtering, and does partial rollback processing,

• The other thread formats committed transactions, performs any user-specified
transformations, and writes to the trail file.

The transaction buffer is the buffer between these two threads and is used to
transfer work from one thread to the other. The default transaction buffer size is
300 committed transactions, but is adjusted downward by the Oracle GoldenGate
memory manager if its cache memory is close to being exhausted.

NOASYNCTRANSPROCESSING

Disables asynchronous processing and causes Extract to operate in synchronous
mode. In this mode, one thread performs all capture work.

BUFSIZE size

(DB2 LUW, DB2 z/OS, Oracle)
Controls the maximum size, in bytes, of the buffers that are allocated to contain the
data that is read from the transaction log.

Chapter 3
TRANLOGOPTIONS

3-334

• For an Oracle source where Extract is processing file-based redo, this parameter
also controls the maximum size, in bytes, of a read operation into the buffer.

• For an Oracle source where Extract is processing ASM redo, TRANLOGOPTIONS with
either ASMBUFSIZE or DBLOGREADERBUFSIZE controls the read size, and in both cases
BUFSIZE controls the buffer size. This parameter must be equal to, or greater than,
the value that is set for ASMBUFSIZE or DBLOGREADERBUFSIZE (depending on which is
in use.)

High values increase capture speed but cause Extract to consume more memory.
Low values reduce memory usage but increase I/O because Extract must store data
that exceeds the cache size to disk.
The following are the valid ranges and default sizes, in bytes:
Oracle:

• Minimum: 8,192

• Maximum: 10,000,000

The default buffer size is determined by the source of the redo data:

• For file-based redo, the default is 1000KB (1024000).

• For ASM redo, the default is 1000KB (1024000).

• For DBLOGREADER redo, the default is 2MB (2097152).

• For Extract in integrated capture mode, the default is 1000KB (1024000).

DB2 LUW:

• Minimum: 40,960

• Maximum: 33,554,432

• Default: 131,072

• The preceding values must be in multiples of the 4096 page size. Extract will
truncate to a multiple if a given value does not meet this requirement.

• Check with the Systems Administrator to make sure that there is enough ECSA
space to support the new buffer size.

CHECKPOINTRETENTIONTIME days

(Oracle) Valid for Extract in integrated mode only.
Controls the number of days that Extract retains checkpoints before they are purged.
Partial days can be specified using decimal values. For example, 8.25 specifies 8
days and 6 hours. When the checkpoint of an Extract in integrated capture mode is
purged, LogMiner data dictionary information for the archived redo log file that
corresponds to the checkpoint is purged, and the first_scn value of the capture
process is reset to the SCN value corresponding to the first change in the next
archived redo log file. The default is seven days. For more information about capture
checkpoints, see Oracle Database XStream Guide.

CHECKTABLELEVELSUPPLOG

(Oracle) Valid for Extract in classic capture mode.
Causes Extract to send a warning to the report file if it encounters a table for which
the ADD TRANDATA command was not issued to create an Oracle GoldenGate
supplemental log group. CHECKTABLELEVELSUPPLOG also verifies whether the key columns
in any user-defined log groups for the table are the same as, or a superset of, the key
columns of the log group that was created with the ADD TRANDATA command. Without

Chapter 3
TRANLOGOPTIONS

3-335

key columns, Extract may abend or try to fetch the missing column or columns. By
default, CHECKTABLELEVELSUPPLOG verification is disabled.

COMPLETEARCHIVEDLOGONLY | NOCOMPLETEARCHIVEDLOGONLY

(Oracle) Valid for Extract in classic capture mode.
Overrides the default Extract processing of archived logs. This parameter applies
when copying production (source) archive logs to a secondary database where they
will serve as the data source. Some Oracle programs do not build the archive log from
the first byte to the last byte in sequential order, but instead may copy the first 500MB,
then the last 500MB, and finally the middle 1000MB, for example. If Extract begins
reading at the first byte, it will abend when it reaches the break in the byte
sequencing. Waiting for the whole file to be written prevents this problem.
Note that Extract starts to read an archive file before it is completely written to disk,
but whether or not it starts to capture data before the file is complete depends on
whether COMPLETEARCHIVEDLOGONLY or NOCOMPLETEARCHIVEDLOGONLY is used.

COMPLETEARCHIVEDLOGONLY

This is the default in ALO (archived log only) mode. It forces Extract to wait for the
archived log to be written to disk completely before starting to process redo data.
In regular mode, use it to override the default of NOCOMPLETEARCHIVEDLOGONLY.

NOCOMPLETEARCHIVEDLOGONLY

This is the default in regular mode. Extract starts processing redo data from an
archived log immediately when it becomes available, without waiting for it to be
written completely to disk. In ALO mode, use it to override the default of
COMPLETEARCHIVEDLOGONLY.

COMPLETEARCHIVEDLOGTIMEOUT seconds

(Oracle) Valid for Extract in classic capture mode.
Controls the number of seconds that Extract waits, when in COMPLETEARCHIVEDLOGONLY
mode, to try again if it cannot validate that a redo log is being completely written to
disk. Use this option in conjunction with the COMPLETEARCHIVEDLOGONLY option of
TRANLOGOPTIONS. This option is disabled by default, and Extract will abend after ten
seconds if it cannot validate that the file is being written to disk. This check is
performed by reading the block header from the last block and verifying against the
expected sequence number to determine if the last block has been written out. For
seconds use any value greater than 0.

DBLOGREADER

(Oracle) Valid for Extract in classic capture mode.
Causes Extract to use a newer API that is available as of Oracle 11.2.0.2 and later
11g R2 versions. This API uses the database server to access the redo and archive
logs. DBLOGREADER can be used to mine logs on regular disks and raw disks, and can
be used instead of connecting directly to an Oracle ASM instance. The database
system must contain the libraries that contain the API modules and must be running.
To use this feature, the Extract database user must have SELECT ANY TRANSACTION
privilege.
When used, DBLOGREADER enables Extract to use a read size of up to 4 MB in size. This
is controlled with the DBLOGREADERBUFSIZE option. The maximum read size when using
the default OCI buffer is 28672 bytes. This is controlled by the ASMBUFSIZE option. A
larger buffer may improve the performance of Extract when redo rate is high.
When using DBLOGREADER with ASM, do not use the ASMUSER or ASMUSERALIAS and
ASMPASSWORD options of TRANLOGOPTIONS. The API uses the user and password specified
with the USERID or USERIDALIAS parameter. For more information about using Oracle

Chapter 3
TRANLOGOPTIONS

3-336

GoldenGate with ASM, see Installing and Configuring Oracle GoldenGate for Oracle
Database.

Note:

DBLOGREADER also can be used when the redo and archive logs are on regular
disk or on a raw device.

DBLOGREADERBUFSIZE size

(Oracle) Valid for Extract in classic capture mode.
Controls the maximum size, in bytes, of a read operation into the internal buffer that
holds the results of each read of the transaction log in ASM. High values increase
capture speed but cause Extract to consume more memory. Low values reduce
memory usage but increase I/O because Extract must store data that exceeds the
cache size to disk.
Use DBLOGREADERBUFSIZE together with the DBLOGREADER option if the source ASM
instance is Oracle 11.2.0.2 and later 11g R2 versions. The newer ASM API in those
versions provides better performance than the older one. If the Oracle version is not
one of those versions, then ASMBUFSIZE must be used.
The following are the valid ranges and default sizes, in bytes:

• Minimum: size of one block in the redo log

• Maximum: 4 MB

On AIX, the maximum buffer size is 1048576; any attempt to read more than this
maximum will result in error.

• Default: 2 MB (2097152)

The default should be sufficient in most cases.
The value of the BUFSIZE option must always be at least equal to, or greater than, the
value of DBLOGREADERBUFSIZE.

[EXCLUDETAG [tag | NULL] | [EXCLUDETAG +]
(Oracle) Valid for Extract in integrated or classic mode; primary or data pump.
Use EXCLUDETAG tag to direct the Extract process to ignore the individual records that
are tagged with the specified redo tag. There is no database release limitation for this
parameter though not all releases of Oracle Database support tagging. Compare with
older versions, new trail file contains tag tokens, which would not introduce problems
for older trail readers.
Use EXCLUDETAG + to direct the Extract process to ignore the individual records that are
tagged with any redo tag.
To tag the individual records, use the DBOPTIONS parameter with the SETTAG option in
the Replicat parameter file. Use these parameters to prevent cycling (loop-back) of
Replicat the individual records in a bi-directional configuration or to filter other
transactions from capture. The default SETTAG value is 00. Valid value is any single
Oracle Streams tag or a plus sign (+). A tag value can be up to 2000 hexadecimal
digits (0-9 A-F) long. The dbms_streams.set_tag operation is supported by
EXCLUDETAG. For more information about Streams tags, see Oracle Streams
Replication Administrator's Guide.

EXCLUDETRANS transaction

(Oracle for Integrated Extract, Sybase, SQL Server)

Chapter 3
TRANLOGOPTIONS

3-337

Specifies the transaction name of the Replicat database user or any other user so that
those transactions are not captured by Extract. Use for bi-directional processing to
prevent data looping between the databases.
The default transaction name used by Replicat is ggs_repl, but any transaction can be
specified with EXCLUDETRANS. For more information about bidirectional synchronization,
see Administering Oracle GoldenGate for Windows and UNIX.

EXCLUDEUSER user

(DB2 LUW, DB2 z/OS, Oracle, Sybase)
Specifies the name of the Replicat database user, or of any other user, to be used as
a filter that identifies transactions that will be subject to the rules of the GETREPLICATES
or IGNOREREPLICATES parameter. Typically, this option is used to identify Replicat
transactions in a bi-directional or cascading processing configuration, for the purpose
of excluding or capturing them. However, it can be used to identify transactions by
any other user, such as those of a specific business application.
You can use EXCLUDEUSER and EXCLUDEUSERID in the same parameter file. Do not use
wildcards in either parameter.
The user name must be valid. Oracle GoldenGate queries the database to get the
associated user ID and maps the numeric identifier back to the user name. For this
reason, if the specified user is dropped and recreated while name resolution is set to
the default of DYNAMICRESOLUTION, EXCLUDEUSER remains valid. If the same transaction is
performed when name resolution is set to NODYNAMICRESOLUTION, EXCLUDEUSER becomes
invalid, and Extract must be stopped and then started to make EXCLUDEUSER take effect.
See "DYNAMICRESOLUTION | NODYNAMICRESOLUTION" for more information.

• DB2 z/OS considerations: In DB2 for z/OS, the user is always the primary
authorization ID of the transaction, which is typically that of the original RACF
user who logged on, but also could be a different authorization ID if changed by a
transaction processor or by DB2 exits.

• Oracle considerations: For an Oracle database, multiple EXCLUDEUSER statements
can be used. All specified users are considered the same as the Replicat user, in
the sense that they are subject to the rules of GETREPLICATES or IGNOREREPLICATES.
You must include the IGNOREAPPLOPS parameter for EXCLUDEUSER to operate correctly
unlike all other supported databases.

EXCLUDEUSERID Database_uid

(Informix, Oracle) Valid for Extract.
Specifies the database user ID (uid) of the Replicat database user, or of any other
user, to be used as a filter that identifies transactions that will be subject to the rules
of the GETREPLICATES or IGNOREREPLICATES parameter. The GETREPLICATES or
IGNOREREPLICATES parameters are not supported on Informix
Usage is the same as that of EXCLUDEUSER.
Oracle_uid is a non-negative integer with a maximum value of 2147483638. There are
several system views that can be queried to get the user ID. The simplest one is the
ALL_USERS view. Oracle GoldenGate does not validate the user ID. If the user that is
associated with the specified user ID is dropped and recreated, a new user ID is
assigned; therefore, EXCLUDEUSERID becomes invalid for that user.

FAILOVERTARGETDESTID n

(Oracle) Valid for Extract.
Identifies which standby database the Oracle GoldenGate Extract process must
remain behind, with regard to not extracting redo data that has not yet been applied to
the Oracle Data Guard standby database. To determine the correct value

Chapter 3
TRANLOGOPTIONS

3-338

for_FAILOVERTARGETDESTID, the archive_log_destdatabase initialization parameter is
used with n being the correct archive log destination identifier.

FETCHLOBIFERROR

(Oracle) Valid for Extract in classic capture mode.
Overrides the Extract default of abending if LOB capture from the redo log results in
an error, such as incomplete data. It forces Extract to fetch the LOB from the
database if there is an error when reading it from the redo log.

Caution:

If a value gets deleted before the fetch occurs, Extract writes a null to the
trail. If a value gets updated before a fetch, Extract writes the updated value.
To prevent these inaccuracies, try to keep Extract latency low. See
Administering Oracle GoldenGate for Windows and UNIX guidelines for
tuning process performance. Also, see "FETCHOPTIONS" for instructions
on setting fetch options.

See also the FORCEFETCHLOB option.

FETCHPARTIALLOB

(Oracle) Valid for Extract in integrated capture mode.
Use this option when replicating to a non-Oracle target or in other conditions where
the full LOB image is required. It causes Extract to fetch the full LOB object, instead of
using the partial change object from the redo record. By default, the database
logmining server sends Extract a whole or partial LOB, depending on whether all or
part of the source LOB was updated. To ensure the correct snapshot of the LOB, the
Oracle Flashback feature must be enabled for the table and Extract must be
configured to use it. The Extract FETCHOPTIONS parameter controls fetching and must
be set to USESNAPSHOT (the default in the absence of NOUSESNAPSHOT). Without a
Flashback snapshot, Extract fetches the LOB from the table, which may be a different
image from the point in time when the redo record was generated.

FETCHPARTIALXML

(Oracle) Valid for Extract in integrated capture mode.
Use this option when replicating to a non-Oracle target or in other conditions where
the full LOB image is required. It causes Extract to fetch the full XML document,
instead of using the partial change image from the redo record. By default, the
database logmining server sends Extract a whole or partial XML document,
depending on whether all or part of the source XML was updated. To ensure the
correct snapshot of the XML, the Oracle Flashback feature must be enabled for the
table and Extract must be configured to use it. The Extract FETCHOPTIONS parameter
controls fetching and must be set to USESNAPSHOT (the default in the absence of
NOUSESNAPSHOT). Without a Flashback snapshot, Extract fetches the XML document
from the table, which may be a different image from the point in time when the redo
record was generated.

ADGAPPLYCHECKFREQ seconds
Valid for Integrated Extract for Oracle. Specifies the number of seconds that Extract
waits between each fetch check for the ADG to catch up. A low number improves
latency though increases the number of queries of current_scn from v$database. The
default is 3 seconds; the maximum is 120 seconds.

Chapter 3
TRANLOGOPTIONS

3-339

ADGCRETRYCOUNT number
Valid for Integrated Extract for Oracle. Specifies the number of times that Extract tries
before it reports ADG progress or the reason for no progress when waiting for the
ADG to catch up. This value is multiplied with FETCHCHECKFREQ to determine
approximately how often the ADG progress is reported.

FILTERTABLE table

(Extract for MySQL and SQL/MX)
Use this option to specify the fully qualified name of the checkpoint table being used
by Replicat. Operations on the checkpoint table will be ignored by the local Extract as
a means of preventing data from looping back to the source. For information about
creating a checkpoint table, see Administering Oracle GoldenGate for Windows and
UNIX. To specify object names and wildcards correctly, see Administering Oracle
GoldenGate for Windows and UNIX.

FORCEFETCHLOB

(Oracle) Valid for Extract in classic and integrated capture modes.
Overrides the default behavior of capturing LOB data from the redo log. Causes LOBs
to be fetched from the database by default.

Caution:

If a value gets deleted before the fetch occurs, Extract writes a null to the
trail. If a value gets updated before a fetch, Extract writes the updated value.
To prevent these inaccuracies, try to keep Extract latency low. The Oracle
GoldenGate documentation provides guidelines for tuning process
performance. Also, see Installing and Configuring Oracle GoldenGate for
Oracle Database for instructions on setting fetch options.

GETCTASDML | NOGETCTASDML

Enables Create Table As Select (CTAS) functionality. When GETCTASDML is enabled,
CTAS DMLs are sent from LogMiner and replicated on the target. Execution of the
CTAS DDL is suppressed on the target. This parameter cannot be enabled while
using the DDL metadata trigger. Trail files produced with the CTAS functionality
enabled cannot be consumed by a Replicat version lower than 12.1.2.1.0.
Use GETCTASDML to allow CTAS to replay the inserts of the CTAS thus preserving OIDs
during replication. This parameter is only supported with Integrated Dictionary and
any downstream Replicat must be 12.1.2.1 or greater to consume the trail otherwise,
there may be divergence.

HANDLEDLFAILOVER

(Oracle) Valid for integrated Extract only.
Controls whether Extract will throttle its writing of trail data based on the apply
progress of the Fast Start Failover standby database. It is intended to keep Extract at
a safe point behind any data loss failover. When using this for data loss in a Data
Guard configuration with Fast Start Failover (FSFO), after a role transition you must
set the FAILOVERTARGETDESTID Extract parameter to identify the archive log destination
ID to where the standby can be connected.

IGNOREDATACAPTURECHANGES | NOIGNOREDATACAPTURECHANGES

(DB2 LUW)
Controls whether or not Extract captures tables for which DATA CAPTURE CHANGES is not
set. IGNOREDATACAPTURECHANGES ignores tables for which DATA CAPTURE CHANGES is not set.

Chapter 3
TRANLOGOPTIONS

3-340

Use if tables were specified with a wildcard to ensure that processing continues for
tables that do have change capture set. A warning is issued to the error log for tables
that were skipped. The default is NOIGNOREDATACAPTURECHANGES.

IGNOREDIRECTLOADINSERTS

(Oracle) Valid for Extract in classic capture mode.
Causes Extract to ignore all Oracle direct-load INSERTs. The default behavior (without
this parameter) is to capture Oracle direct-load INSERTs. This option applies to Oracle
logs with log compatibility of Oracle 10g or later.

INCLUDEAUX (AUX_specification)

Directs the Oracle GoldenGate VAMSERV component to capture only the specified AUX
trails when reading the audit trail. This parameter can improve performance when you
know that some AUX trails will not contain data that is to be captured and can be
ignored. With this parameter, you specify only the AUX trails that are to be captured.
AUX_specification is a number that represents the AUX trails to be captured. To
specify multiple AUX trails, use a comma-delimited list. For example, the following
statement includes AUX trails BB & CC = 1, 2.

TRANLOGOPTIONS INCLUDEAUX (1, 2)

To only include MAT or to exclude all AUX trails, place one space between the
parentheses, for example:

TRANLOGOPTIONS INCLUDEAUX ()

INCLUDEREGIONID | INCLUDEREGIONIDWITHOFFSET

(Oracle) Valid for Extract in either capture mode.
These options support the Oracle data type TIMESTAMP WITH TIME ZONE specified as TZR
(which represents the time zone region, such as US/Pacific). By default, Extract
abends on TIMESTAMP WITH TIME ZONE if it includes a time zone region. These options
enable you to handle this timestamp based on the target database type.
When Extract detects that the source data type is TIMESTAMP and there is a region ID
mapping token, Replicat applies the timestamp as follows:

• A TIMESTAMP WITH TIME ZONE with TZR is applied if the target Oracle version
supports it.

• A timestamp with a UTC offset is applied to a non-Oracle database, or to an
earlier version of Oracle that does not support TIMESTAMP WITH TIME ZONE with TZR.

INCLUDEREGIONID

Use when replicating from an Oracle source to an Oracle target of the same
version or later. When INCLUDEREGIONID is specified, Extract adds a column index
and the two-byte TMZ value as a time-zone mapping token and outputs it to the
trail in the UTC format of YYYY-MM-DD HH:MI.SS.FFFFFF +00:00.

INCLUDEREGIONIDWITHOFFSET

Use when replicating TIMESTAMP WITH TIME ZONE as TZR from an Oracle source
that is v10g or later to an Oracle target that is earlier than 10g, or from an Oracle
source to a target that is not an Oracle database. When
INCLUDEREGIONIDWITHOFFSET is specified, Extract converts the time zone region
value to a time offset that takes Daylight Saving Time into account based on the
date and time. The timestamp data is written to the trail in local time in the format
of YYYY-MM-DD HH:MI.SS.FFFFFF TZH:TZM, where TZH:TZM is the region ID converted
time offset.

Chapter 3
TRANLOGOPTIONS

3-341

INTEGRATEDPARAMS (parameter value [, ...])

(Oracle) Valid for Extract in integrated capture mode (Oracle Standard or Enterprise
Edition 11.2.0.3 or later)
Passes parameters and values to the Oracle database logmining server when Extract
is in integrated capture mode. The input must be in the form of parameter value, as in:

TRANLOGOPTIONS INTEGRATEDPARAMS (downsream_real_time_mine Y)

Valid parameter specifications and their values are the following:

max_sga_size

Specifies the amount of SGA memory that is used by the database logmining
server. Can be a positive integer in megabytes. The default is 1 GB if
streams_pool_size is greater than 1 GB; otherwise, it is 75% of streams_pool_size.

parallelism

Specifies the number of processes supporting the database logmining server.
Can be a positive integer. The default is 2.

downstream_real_time_mine

Specifies whether or not integrated capture mines a downstream mining database
in real-time mode. A value of Y specifies real-time capture and requires standby
redo logs to be configured at the downstream mining database. A value of N
specifies capture from archived logs shipped to the downstream mining database.
The default is N.

LOGRETENTION [ENABLED [DAYS n] | SR | DISABLED]

(Oracle Enterprise Edition) Valid for Extract in classic capture mode.
Specifies whether or not Oracle Recovery Manager (RMAN) retains the log files that
Extract needs for recovery. When you use the REGISTER EXTRACT command, the logs
are retained from the time that the command is issued, based on the current database
SCN. The logs are retained until manually deleted. This parameter does not enable or
disable RMAN within the database itself.
Other information about LOGRETENTION:

• If the Oracle flash recovery storage area is full, RMAN will purge the archive logs
even when needed by Extract. This limitation exists so that the requirements of
Extract (and other Oracle replication components) do not interfere with the
availability of redo to the database.

• The database user that is assigned to Extract and specified with the USERID or
USERIDALIAS parameter must have certain privileges, which are the same as those
required for the DBLOGIN parameter. See "DBLOGIN" for more information.

• LOGRETENTION makes use of an underlying (but non-functioning) Oracle Streams
Capture process; thus, it requires the database to be the Enterprise Edition of
Oracle version 11g or higher. Oracle Standard Edition and Express Edition do not
support this feature. The LOGRETENTION feature can operate concurrently with other
Streams installations.

Chapter 3
TRANLOGOPTIONS

3-342

Note:

To support RMAN log retention on Oracle RAC, you must download and
install the database patch that is provided in BUGFIX 11879974, before you
add the Extract groups.

ENABLED [DAYS n]
Enables the log-retention feature. This is the default, except when Extract for an
Oracle database is in Archived Log Only (ALO) mode. Extract must be registered
with the database by using the REGISTER EXTRACT command with the LOGRETENTION
option.
By default, ENABLED honors the SCN of the Bounded Recovery checkpoint and
retains the logs up to and including that point. This checkpoint represents the log
file of the oldest open non-persisted transaction. In the unlikely event that a
problem with Bounded Recovery affects the persisted data, the logs that are
required to reprocess the oldest open transaction must be available.
You can use the DAYS option to retain the logs for a specific number of days, from
1 to 365 days as a whole number. The default for DAYS is 7 days.
To be more conservative, you can use the SR option instead. See "BR" for more
information about the Bounded Recovery feature.

SR

Enables the log-retention feature, but retains logs up to and including the SCN of
the log that is required for Extract to revert to standard (normal) recovery mode. In
normal mode, Extract needs access to the log that contains the oldest open
transaction that it had in memory. Using SR is a conservative measure that retains
more logs than would be retained in Bounded Recovery mode (the default), but it
ensures data availability in case Bounded Recovery fails. Extract must be
registered with the database by using the REGISTER EXTRACT command with the
LOGRETENTION option.

DISABLED

Disables the log-retention feature. This is the default setting when Extract for an
Oracle source is operating in Archived Log Only (ALO) mode, but you can
override this if needed. If you used the REGISTER EXTRACT command to register
Extract, use the UNREGISTER EXTRACT command to unregister the associated Extract
group from the database after disabling log retention. See "UNREGISTER
EXTRACT" for more information.

LOGSOURCE platform, [PATHMAP path]

(Oracle) Valid for Extract in classic capture mode.
Specifies the operating system and (optionally) the path name when the redo and/or
archived logs are stored on a platform other than the one which is hosting the
database. When LOGSOURCE is used, put the entire TRANLOGOPTIONS statement on one
line. Do not use ampersand (&) line terminators to split it into multiple lines.

platform

Specifies the platform that hosts the redo or archived logs. Valid values are:

• AIX

• HPUX

Chapter 3
TRANLOGOPTIONS

3-343

• LINUX

• MVS

• SOLARIS

• VMS

• WINDOWS

• S390

To maintain correct data alignment, the specified platform and the platform that
Extract is running on must have the same endian order and bit width (as in 32-bit
or 64-bit). The following are compatible endian platforms:

• Big endian: AIX, HPUX, MVS, SOLARIS, S290

• Little endian: LINUX, VMS, WINDOWS

For example when running Extract on HPUX, a LOGSOURCE platform setting of AIX is
valid but LINUX is not.

PATHMAP path

Specifies the path to the logs.

MAXREADSIZE records

Valid for Sybase.
Specifies how many records Extract will read from the transaction log at one time.
Can be used to improve performance. Valid values are integers from 1 through
50000. The default is 256 records. Be careful when adjusting this parameter to very
high values. It will reduce the frequency at which Extract adjusts the secondary
truncation point, and log data can accumulate. Start with 10000 and evaluate
performance before adjusting upward.

MAXWARNEOF seconds

(Oracle) Valid for Extract in classic capture mode.
Specifies the number of seconds that Extract waits for a new log file to become
available before generating a warning message. Extract generates only one warning
message for a given sequence number. If MAXWARNEOF is not specified, Extract waits for
one hour by default. A value of 0 omits the warning no matter how long Extract waits.

MINEFROMACTIVEDG

(Oracle) Valid for Extract in classic capture mode.
Specifies that Extract is allowed to mine redo from an Active Data Guard instance.
Without this parameter set, Extract will abend with an error. Supports Extract in
classic capture mode when capturing in an Oracle Data Guard environment.
MINEFROMACTIVEDG does not support DBLOGREADER, it only supports ASMUSER for reading the
redo logs in the ASM storage.

MININGUSER {/ | user} [, MININGPASSWORD password]
[algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]]

(Oracle) Valid for Extract in integrated capture mode.
Specifies login credentials for Extract to log in to a downstream Oracle mining
database to interact with the logmining server. Can be used instead of the
MININGUSERALIAS option if an Oracle GoldenGate credential store is not being used.
This user must:

• Have the privileges granted in dbms_goldengate_auth.grant_admin_privilege.

Chapter 3
TRANLOGOPTIONS

3-344

• Be the user that issues the MININGDBLOGIN or MININGDBLOGINALIAS and REGISTER
EXTRACT or UNREGISTER EXTRACT commands for the Extract group that is associated
with this MININGUSERALIAS.

• Not be changed while Extract is in integrated capture mode.

/

Directs Oracle GoldenGate to use an operating-system login for Oracle, not a
database user login. Use this argument only if the database allows authentication
at the operating-system level. Bypassing database-level authentication eliminates
the need to update Oracle GoldenGate parameter files if application passwords
frequently change.
To use this option, the correct user name must exist in the database, in relation to
the value of the Oracle OS_AUTHENT_PREFIX initialization parameter. The value set
with OS_AUTHENT_PREFIX is concatenated to the beginning of a user's operating
system account name and then compared to the database name. Those two
names must match.
When OS_AUTHENT_PREFIX is set to ' ' (a null string), the user name must be
created with IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you
would use the following to create the database user:

CREATE USER ogg IDENTIFIED EXTERNALLY;

When OS_AUTHENT_PREFIX is set to OPS$ or another string, the user name must be
created in the format of:

OS_AUTHENT_PREFIX_value OS_user_name

For example, if the OS user name is ogg, you would use the following to create the
database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user

Specifies the name of the mining database user or a SQL*Net connect string.

password

The user's password. Use when database authentication is required to specify the
password for the database user. If the password was encrypted by means of the
ENCRYPT PASSWORD command, supply the encrypted password; otherwise, use the
clear-text password. If the password is case-sensitive, type it that way. If either
the user ID or password changes, the change must be made in the Oracle
GoldenGate parameter files, including the re-encryption of the password if
necessary.

algorithm

Specifies the encryption algorithm that was used to encrypt the password with
ENCRYPT PASSWORD. Can be one of:

AES128
AES192
AES256
BLOWFISH

ENCRYPTKEY {key_name | DEFAULT}

Specifies the encryption key that was specified with ENCRYPT PASSWORD.

Chapter 3
TRANLOGOPTIONS

3-345

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption
key in the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the
KEYNAME key_name option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA

Specifies that the user logs in as sysdba.

For more information about Oracle GoldenGate security options, see Administering
Oracle GoldenGate for Windows and UNIX.

MINEFROMSNAPSHOTSTBY | NOMINEFROMSNAPSHOTSTBY

(Oracle) Controls whether or not Oracle GoldenGate can capture from redo that is
archived by a snapshot standby database. MINEFROMSNAPSHOTSTBY enables Extract to
run on a snapshot standby in classic capture mode or in integrated capture mode in
an upstream configuration; running in a downstream configuration is not supported
because the snapshot standby database does not ship its redo logs to another
database.
The default is NOMINEFROMSNAPSHOTSTBY, which prevents Extract from capturing from a
database that is a snapshot. Extract cannot run on a physical standby database and
will abend if its source snapshot database is converted to a physical database.

MININGUSERALIAS alias

(Oracle) Valid for Extract in integrated capture mode.
Specifies the alias for the login credentials that Extract uses to log in to a downstream
Oracle mining database to interact with the logmining server. Can be used instead of
MININGUSER if an Oracle GoldenGate credential store is being used.
This alias must be:

• Associated with a database user login credential that is stored in the local Oracle
GoldenGate credential store. For more information about the credential store, see
Administering Oracle GoldenGate for Windows and UNIX. This user must have
the privileges granted in dbms_goldengate_auth.grant_admin_privilege.

• The user that issues the MININGDBLOGIN or MININGDBLOGINALIAS and REGISTER
EXTRACT or UNREGISTER EXTRACT commands for the Extract group that is associated
with this MININGUSERALIAS.

This alias and user must not be changed while Extract is in integrated capture mode.

NODDLCHANGEWARNING

(SQL Server)
Forces Extract not to log a warning when a DDL operation is made to a source object
for which Extract is capturing data. The default is to report a warning, so that the
problem can be corrected. Oracle GoldenGate does not support DDL capture and
replication for SQL Server, so it expects source and target metadata to remain
constant. Some DDL changes do not cause Extract to abend, but the warning still will
be logged whenever such changes occur. NODDLCHANGEWARNING prevents those
messages from accumulating in the Oracle GoldenGate log.

NOFLUSH

(DB2 z/OS)
Inhibits the flushing of log buffers.

Chapter 3
TRANLOGOPTIONS

3-346

PATHMAP NFS_mount_point log_path

(Oracle) Valid for Extract in classic capture mode.
Specifies the location of the redo and/or archived logs when they are stored on a
system other than the one which is hosting the database. More than one PATHMAP
statement can be used. When PATHMAP is used, put the entire TRANLOGOPTIONS
statement on one line. Do not use ampersand (&) line terminators to split it into
multiple lines.
PATHMAP can be used with the LOGSOURCE option if the system is a different platform from
the one that hosts the database.

NFS_mount_point

Specifies the NFS mount point of the remote system where the logs are stored.

log_path

The path to the logs on the remote system. The path must follow the mount point
specification.

PREPAREFORUPGRADETOIE | NOPREPAREFORUPGRADETOIE
(Oracle) Valid when upgrading from Classic to Integrated Extract on Oracle RAC.
When upgrading on Oracle RAC from Classic to Integrated Extract, you must set the
PREPAREFORUPGRADETOIE option before stopping Classic Extract for the upgrade then
wait for the information message in the report file that indicates that the parameter
has taken effect before proceeding with the upgrade. For detailed upgrade
instructions, see Upgrading Oracle GoldenGate for Windows and UNIX.

PREPAREFORUPGRADETOIE

Set PREPAREFORUPGRADETOIE in the Extract parameter file, which requires a restart of
Extract, or you can set it dynamically for a running extract from GGSCI using this
command:
SEND EXTRACT extract_name TRANLOGOPTIONS PREPAREFORUPGRADETOIE

NOPREPAREFORUPGRADETOIE

Dynamically turns off the PREPAREFORUPGRADETOIE option if necessary. The default is
NOPREPAREFORUPGRADETOIE.

PURGEORPHANEDTRANSACTIONS | NOPURGEORPHANEDTRANSACTIONS

(Oracle) Valid for Extract in classic capture mode.
Controls the purging of orphaned transactions that occur when an Oracle RAC node
fails and Extract cannot capture the rollback.

PURGEORPHANEDTRANSACTIONS

Purges orphaned transactions. A transaction is verified as orphaned before
purging by comparing its startup time with the node's startup time; if the
transaction started earlier, it is purged.

NOPURGEORPHANEDTRANSACTIONS

The default. Orphaned transactions are not purged.

QUERYRETRYCOUNT number

(Extract for SQL Server)
Specifies how many times to retry a query to obtain table metadata after timeouts.
Timeouts can occur for a long-running transaction that has created any table. The
system tables become locked and prevent Extract's query from completing.
The default is one retry after a 30-second wait, after which the process abends if the
retry fails. QUERYRETRYCOUNT can be specified to retry multiple times at 30-second

Chapter 3
TRANLOGOPTIONS

3-347

intervals, according to the input value that is supplied. If all of the retries fail, Extract
abends with the normal connection error message.
The following example causes Extract to attempt its query four times at 30-second
intervals:

TRANLOGOPTIONS QUERYRETRYCOUNT 4

READQUEUESIZE size

Valid for MySQL and Sybase.
Specifies the internal queue size, in bytes, for transaction data. It can be increased to
improve performance. Valid values are integers from 3 through 1500. The default is
256 bytes; start with the default and evaluate performance before adjusting upward.

REQUIRELONGDATACAPTURECHANGES | NOREQUIRELONGDATACAPTURECHANGES

(DB2 LUW)
Controls the response of Extract when DATA CAPTURE is set to NONE or to CHANGES
without INCLUDE LONGVAR COLUMNS and the parameter file includes any of the following
Oracle GoldenGate parameters that require the presence of before images for some
or all column values: GETBEFOREUPATES, NOCOMPRESSUPDATES, and NOCOMPRESSDELETES. Both
of those DATA CAPTURE settings prevent the logging of before values for LONGVAR
columns. If those columns are not available to Extract, it can affect the integrity of the
target data.

REQUIRELONGDATACAPTURECHANGES

Extract abends with an error.

NOREQUIRELONGDATACAPTURECHANGES

Extract issues a warning but continues processing the data record.

[TSLOOKUPBEGINLRI | TSLOOKUPENDLRI]

(DB2 LUW v10.1 and later)
When you specify an LRI range using these parameters, Extract looks for the
timestamp specified in the ADD or ALTER EXTRACT command within this range. This helps
Extract to optimize the look up process for a particular timestamp in the database
transaction log. The TSLOOKUPBEGINLRI parameter is mandatory while TSLOOKUPENDLRI is
optional. Specifying only TSLOOKUPENDLRI without TSLOOKUPBEGINLRI is invalid. For
example:

TRANLOGOPTIONS TSLOOKUPBEGINLRI 75200.666197, TSLOOKUPENDLRI 75207.666216
TRANLOGOPTIONS TSLOOKUPBEGINLRI 75200.666197

If the provided timestamp falls between the given LRI ranges or the provided
timestamp falls after the TSLOOKUPBEGINLRI LRI timestamp then Extract starts from a
record with timestamp equal to or nearest less than the provided timestamp.
If the provided timestamp falls before TSLOOKUPBEGINLRI LRI timestamp, Extract is
started from the specified TSLOOKUPBEGINLRI LRI. If the provided timestamp falls after
TSLOOKUPENDLRI timestamp, then Extract abends. If you only specify TSLOOKUPENDLRI,
then an informational message is displayed and Extract starts from a record with
timestamp equal or nearest less than the provided timestamp.

TRANSCLEANUPFREQUENCY minutes

(Oracle) Valid for Extract in classic capture mode.
Specifies an interval, in minutes, after which Oracle GoldenGate scans for orphaned
transactions, and then scans again to delete them. The initial scan marks transactions
considered to be orphaned. The second scan confirms they are orphaned, and they
are deleted. Valid values are from 1 to 43200 minutes. Default is 10 minutes.

Chapter 3
TRANLOGOPTIONS

3-348

USENATIVEOBJSUPPORT | NOUSENATIVEOBJSUPPORT

(Oracle) Valid for Extract in integrated capture mode.
Integrated Capture adds redo-based capture for User Defined Type (UDT) and
ANYDATA data types. It is enabled by default and can only be enabled if the source
database version is 12.1.0.1 or greater and the source database compatibility is
12.0.0.0.0 or greater. Replicat from Oracle GoldenGate release 12.1.2.1.0 must be
used. If a source or target database of release 12.1.0.1 is used, the Streams patch for
bug 18038108 must be installed on the database. To use Native Support, all of your
Oracle databases and Oracle GoldenGate instances must be release 12.1.0.1 or
greater to be compatible.
If redo-based capture is enabled but a UDT contains an unsupported attribute,
Integrated Capture retries to capture the UDT using fetch. For limitations of support
for capture, see Installing and Configuring Oracle GoldenGate for Oracle Database. If
you create object tables by using a CREATE TABLE AS SELECT (CTAS) statement,
Integrated Capture must be configured to capture DML from CTAS operation in order
to fully support object tables. For CTAS use information, seeInstalling and Configuring
Oracle GoldenGate for Oracle Database
The default is USENATIVEOBJSUPPORT if supported.

USE_ROOT_CONTAINER_TIMEZONE

This parameter is for a CDB environment. Each PDB in a CDB can use a different
database time zone. If the database time zone is available, Extract tries to get the
time zone of a PDB from Integrated Dictionary. The time zone extraction requires a
patch on the mining database. If the patch is not available, Extract sends a query to
the PDB to get the time zone. If the database patch or a connection to the PDB is not
available, and this parameter is specified, Extract assumes that the PDB database
time zone is the same as the root container database time zone.

USEPREVRESETLOGSID | NOUSEPREVRESETLOGSID
(Oracle) Valid for Extract in classic capture mode.
Specifies that Extract will take the previous RESETLOG id as the current branch. The
default is NOUSEPREVRESETLOGSID. Supports Extract in classic capture mode when
capturing in an Oracle Data Guard environment.

VAMCOMPATIBILITY {3}

(MySQL, SQL M/X, SQL Server, Sybase, Teradata)
Ensures the VAM module and the VAM API are using the same version of the column
metadata structure. As new features are added to the VAM API, the column metadata
needs enhancing with new attributes. When this occurs a new version is created,
adding the new column metadata attributes to the existing ones. All database
implementations other than Teradata are required to update to the latest version after
a new version is added.

1
A value of one means the original VAM API metadata structure is being used.
This structure was originally created for Teradata, which is a separate
implementation from the other databases, and only Teradata still uses this level.
To maintain backwards compatibility with Extract, it may be necessary to
manually set VAMCOMPATIBILITY to 1 if running an earlier version of a TAM module
against later releases of Extract that contain VAM versioning. Extract abends with
a message to the report file if VAMCOMPATIBILITY 1 is required and not set.

Chapter 3
TRANLOGOPTIONS

3-349

2
This VAM version added column metadata attributes for SQL Server. This value is
set internally by the VAM module, so setting it manually with TRANLOGOPTIONS is not
required.

3
This is the current version level. All databases other than Teradata (including SQL
Server) use this level and set it internally in the VAM module, so setting it
manually with TRANLOGOPTIONS is not required.

Examples

Example 1
The following specifies the location of the Oracle archived logs.

TRANLOGOPTIONS ALTARCHIVELOGDEST /fs1/oradata/archive/log2

Example 2
The following Oracle example filters for two users (one by name and one by user ID).
The transactions generated by these users will be handled according to the
GETREPLICATES or IGNOREREPLICATES rules, and a new transaction buffer size is specified.

TRANLOGOPTIONS EXCLUDEUSER ggsrep, EXCLUDEUSERID 90, BUFSIZE 100000

Example 3
The following excludes the Replicat transaction name in a SQL Server or Sybase
environment.

TRANLOGOPTIONS EXCLUDETRANS ggs_repl

Example 4
The following shows how to deal with transaction logs that are on a platform other
than the one which hosts the database.

Note:

The following statement spans multiple lines only because of space
constraints in this documentation.

TRANLOGOPTIONS, LOGSOURCE VMS, PATHMAP DKA200:[RDBMS.ORACLE.ORA9201I.
64.ADMIN.GGS.ARCH]
/net/deltan/uservol1/RDBMS.DIR/ORACLE.DIR/ORA9201I.DIR/
64.DIR/admin.DIR/ggs.DIR/ARCH.dir PATHMAP DKA200:[RDBMS.ORACLE.ORA9201I.
64.ORADATA.GGS]
/net/deltan/uservol1/rdbms.dir/oracle.dir/ora9201I.DIR/
64.dir/oradata.dir/ggs.dir

Example 5
The following example supplies ASM credentials by specifying the alias asm1 in the
asmdomain domain in the Oracle GoldenGate credential store.

TRANLOGOPTIONS ASMUSERALIAS asm1 DOMAIN asmdomain

Chapter 3
TRANLOGOPTIONS

3-350

Example 6
The following is an example of how to specify the padding width when Extract forms
the archive log name using the format specifiers %T, %S, and %R in the
ALTARCHIVELOGFORMAT parameter.

TRANLOGOPTIONS ALTARCHIVELOGFORMAT ARC_%S_%R.%T
TRANLOGOPTIONS SEQPADLEN 12, RESETLOGSIDPADLEN 12, THREADPADLEN 5

Example 7
The following are examples of how to use tag specifiers with EXCLUDETAG.

TRANLOGOPTIONS EXCLUDETAG 00
TRANLOGOPTIONS EXCLUDETAG +
TRANLOGOPTIONS EXCLUDETAG 0952

Example 8
The following is an example of how to use the TRANLOGOPTIONS FAILOVERTARGETDESTID
Extract parameter.
TRANLOGOPTIONS FAILOVERTARGETDESTID 2

SQL> show parameters log_archive_dest

NAME TYPE VA
LUE
------------------------------------ ----------- --

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
valid_for=(ALL_LOGFILES, ALL_ROLES)
.
log_archive_dest_2 string service="ggs2d", ASYNC NOAFFIRM delay=0 optional
compression =disable max_failure=0 max_connections=1 reopen=300
db_unique_name="GGS2D" net_timeout=30,
valid_for=(online_logfile,all_roles)

It would be set to 2 because that is the Standby database Oracle GoldenGate should
stay behind. The first entry (log_archive_dest_1) is for the local archive logs for that
database, and the second is for the standby database.00

Example 9
The following is an example of how to set the transaction log backup path to a
network share for a remote Extract capturing in ALO mode for SQL Server.

TRANLOGOPTIONS ALTARCHIVELOGDEST ("\\RemoteServerName\SQLBackups")

3.188 TRANSACTIONTIMEOUT
Valid For

Replicat

Description

Use the TRANSACTIONTIMEOUT parameter to prevent an uncommitted Replicat target
transaction from holding locks on target tables and consuming database resources
unnecessarily. You can change the value of this parameter so that Replicat can work
within existing application timeouts and other database requirements on the target.

TRANSACTIONTIMEOUT limits the amount of time that Replicat will hold a target transaction
open if it has not received the end-of-transaction record for the last source transaction

Chapter 3
TRANSACTIONTIMEOUT

3-351

in that transaction. By default, Replicat groups multiple source transactions into one
target transaction to improve performance, but it will not commit a partial source
transaction and will wait indefinitely for that last record. The Replicat parameter
GROUPTRANSOPS controls the minimum size of a grouped target transaction. The range is
1–604800.

The following events could last long enough to trigger TRANSACTIONTIMEOUT:

• Network problems prevent trail data from being delivered to the target system.

• Running out of disk space on any system, preventing trail data from being written.

• Collector abends (a rare event).

• Extract abends or is terminated in the middle of writing records for a transaction.

• An Extract data pump abends or is terminated.

• There is a source system failure, such as a power outage or system crash.

How TRANSACTIONTIMEOUT Works

During normal operations, Replicat remembers the position in the trail of the beginning
of the first source transaction in the current target transaction, in case the transaction
must be abended and retried. When TRANSACTIONTIMEOUT is enabled, Replicat also
saves the position of the first record of the current source transaction and will use that
position as the logical end-of-file (EOF) if TRANSACTIONTIMEOUT is triggered.

When triggered, TRANSACTIONTIMEOUT does the following:

1. Aborts the current target transaction

2. Repositions to the beginning of the first source transaction in the aborted target
transaction.

3. Processes all of the trail records up to the logical end-of-file position (the beginning
of the last, incomplete source transaction).

4. Commits the transaction at logical EOF point.

5. Waits for new trail data before processing any more trail records.

TRANSACTIONTIMEOUT can be triggered multiple times for the same source transaction,
depending on the nature of the problem that is causing the trail data to arrive slowly
enough to trigger TRANSACTIONTIMEOUT.

Detecting a TRANSACTIONTIMEOUT Condition

To determine whether or not Replicat is waiting for the rest of a source transaction
when TRANSACTIONTIMEOUT is enabled, issue the SEND REPLICAT command with the STATUS
option. The following statuses indicate this condition:

Performing transaction timeout recovery
Waiting for data at logical EOF after transaction timeout recovery

Default

Disabled

Syntax

TRANSACTIONTIMEOUT n units

Chapter 3
TRANSACTIONTIMEOUT

3-352

n

An integer that specifies the wait interval. Valid values are from one second to one
week (seven days). This value should be greater than that set with the EOFDELAY
parameter in both the primary Extract and any associated data pumps.

units

One of the following: S, SEC, SECS, SECOND, SECONDS, MIN, MINS, MINUTE, MINUTES,
HOUR, HOURS, DAY, DAYS.

Example

TRANSACTIONTIMEOUT 5 S

3.189 TRANSMEMORY
Valid For

Extract for DB2 on z/OS

Description

Use the TRANSMEMORY parameter to control the amount of memory and temporary disk
space available for caching uncommitted transaction data. Because Oracle
GoldenGate sends only committed transactions to the target database, it requires
sufficient system memory to store transaction data on the source system until either a
commit or rollback indicator is received.

This parameter is for use with a DB2 database on z/OS database. For all other
databases, use the CACHEMGR parameter.

About Memory Management With TRANSMEMORY

TRANSMEMORY enables you to tune the Oracle GoldenGate transaction cache size and
define a temporary location on disk for storing data that exceeds the size of the cache.
Options are available for defining the total cache size, the per-transaction memory
size, the initial and incremental memory allocation, and disk storage space.

Transactions are added to the memory pool specified by RAM, and each is flushed to
disk when TRANSRAM is reached. An initial amount of memory is allocated to each
transaction based on INITTRANSRAM and is increased by the amount specified by
RAMINCREMENT as needed, up to the maximum set with TRANSRAM. Consequently, the
value for TRANSRAM should be evenly divisible by the sum of (INITTRANSRAM +
RAMINCREMENT).

To view current TRANSMEMORY settings, use the VIEW REPORT command in GGSCI.

Special z/OS Considerations

On a z/OS system, the RAM option not only controls the total virtual memory allocation
for all cached transactions, but also controls the size of the heap memory that is
allocated during startup. The large default value prevents fragmentation within the
virtual memory pool, but in some installations it could cause virtual memory to be
wasted, especially if the applications primarily generate small transactions. Allocating
a large amount of heap memory also can cause Extract to be unresponsive at startup
until z/OS completes the allocation.

Chapter 3
TRANSMEMORY

3-353

On z/OS, set RAM just large enough to hold enough transaction activity without affecting
the performance of Extract. If set too low, it can cause Extract to write transaction data
to disk, causing Extract to run more slowly and to consume disk space. You might
need to do some testing to determine the optimal value.

Default

None

Syntax

TRANSMEMORY
[RAM size]
[TRANSRAM size]
[TRANSALLSOURCES size]
[INITTRANSRAM size]
[RAMINCREMENT size]
[DIRECTORY (directory, max_size, max_file_size)]

RAM size

Specifies the total amount of memory to use for all cached transactions. On z/OS this
also is the initial amount of memory to allocate per transaction. The default is 200
megabytes. The value can be specified in bytes or in terms of gigabytes, megabytes,
or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

TRANSRAM size

Specifies the total amount of memory to use for a single transaction. The default is 50
megabytes. The value can be specified in bytes or in terms of gigabytes, megabytes,
or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

TRANSRAM should be evenly divisible by both INITTRANSRAM and RAMINCREMENT for optimal
results.

TRANSALLSOURCES size

Specifies the total amount of memory and disk space to use for a single transaction.
The default is 50% of total available memory (memory and disk). The value can be
specified in bytes or in terms of gigabytes, megabytes, or kilobytes in any of the
following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

INITTRANSRAM size

(NonStop system only) Specifies the initial amount of memory to allocate for a
transaction. The default is 500 kilobytes. The value can be specified in bytes or in
terms of gigabytes, megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

RAMINCREMENT size

Specifies the amount of memory to increment when a transaction requires more
memory. The default is 500 kilobytes. The value can be specified in bytes or in terms
of gigabytes, megabytes, or kilobytes in any of the following forms:
GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

DIRECTORY (directory, max_size, max_file_size)

Specifies temporary disk storage for transaction data when its size exceeds the
maximum specified with TRANSRAM. You can specify DIRECTORY more than once.

Chapter 3
TRANSMEMORY

3-354

The directory size specified with max_size and the file size specified with max_file_size
must be greater than the size of the memory specified with RAM.
The names of the files that are created take one of the following formats, depending
on the process type:

• group_trans_00001.mem takes the name of the group and indicates that an online
process created the file.

• PID_trans_00001.mem takes the name of a process ID (PID) and indicates that a
one-time process (specified with the SPECIALRUN parameter) created the file.

• group_thread#_00001.mem takes a group name and a thread number, indicating that
a threaded Extract created the file.

directory

The fully qualified path name of a directory. The default is the dirtmp sub-directory
of the Oracle GoldenGate directory.

max_size

The maximum size of all files in the directory. The default is 2 gigabytes. If the
space specified is not available, then 75% of available disk space is used. Values
can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes in any
of the following forms:

GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

max_file_size

The maximum size of each file in the directory. The default is 200 megabytes.
Values can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes
in any of the following forms:

GB | MB | KB | G | M | K | gb | mb | kb | g | m | k

Examples

Example 1
The following example allows per-transaction memory to be incremented ten times
before data is flushed to disk, once for the initial allocation specified with INITTRANSRAM
and then nine more times as permitted by RAMINCREMENT.

TRANSMEMORY DIRECTORY(c:\test\dirtmp, 3000000000,
300000000), RAM 8000K, TRANSRAM 1000K, INITTRANSRAM 100K,
RAMINCREMENT 100K

Example 2
The following is the same as the preceding example, but with the addition of a second
directory.

TRANSMEMORY DIRECTORY(c:\test\dirtmp, 3000000000,
300000000), DIRECTORY (c:\test\dirtmp2, 1000000000,
5000000), RAM 8000K, TRANSRAM 1000K, INITTRANSRAM 100K,
RAMINCREMENT 100K

Chapter 3
TRANSMEMORY

3-355

Note:

In the previous examples, the parameter specification spans multiple lines
because of space constraints. In an actual parameter file, multi-line
parameter specifications must contain an ampersand (&) at the end of each
line.

3.190 TRIMSPACES | NOTRIMSPACES
Valid For

Extract and Replicat

Description

Use the TRIMSPACES and NOTRIMSPACES parameters to control whether or not trailing
spaces in a source CHAR column are truncated when applied to a target CHAR or VARCHAR
column. TRIMSPACES and NOTRIMSPACES can be used at the root level of the parameter file
as global ON/OFF switches for different sets of TABLE or MAP statements, and they can be
used within an individual TABLE or MAP statement to override any global settings for that
particular MAP or TABLE statement.

Note:

Sybase treats all CHAR types as VARCHAR types, and therefore TRIMSPACES will
have no effect. For Sybase, use the TRIMVARSPACES parameter.

TRIMSPACES is applied only to single-byte white spaces (U+0020). Ideographic spaces
(U+3000) are not supported.

For Extract, TRIMSPACES only has an effect if Extract is performing mapping within the
TABLE statement (by means of a TARGET statement).

Default

TRIMSPACES

Syntax

TRIMSPACES | NOTRIMSPACES

Examples

Example 1
The following example uses TRIMSPACES and NOTRIMSPACES at the root level of the
parameter file. The default of TRIMSPACES is in effect until the last MAP statement, to
which NOTRIMSPACES applies.

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src2, TARGET fin.tgt2;

Chapter 3
TRIMSPACES | NOTRIMSPACES

3-356

MAP fin.src3, TARGET fin.tgt3;
NOTRIMSPACES
MAP fin.src4, TARGET fin.tgt4;

Example 2
The following example uses NOTRIMSPACES within a MAP statement to override the global
default of TRIMSPACES. The default applies to the first two MAP statements, and then
NOTRIMSPACES applies to the last two targets.

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src1, TARGET fin.tgt2;
MAP fin.src1, TARGET fin.tgt3, NOTRIMSPACES;
MAP fin.src1, TARGET fin.tgt4, NOTRIMSPACES;

3.191 TRIMVARSPACES | NOTRIMVARSPACES
Valid For

Extract and Replicat

Description

Use the TRIMVARSPACES and NOTRIMVARSPACES parameters to control whether or not
trailing spaces in a source VARCHAR column are truncated when applied to a target CHAR
or VARCHAR column. TRIMVARSPACES and NOTRIMVARSPACES can be used at the root level of
the parameter file as global ON/OFF switches for different sets of TABLE or MAP
statements, and they can be used within an individual TABLE or MAP statement to
override any global settings for that particular MAP or TABLE statement.

The default is NOTRIMVARSPACES because the spaces in a VARCHAR column can be part of
the data. Before using TRIMVARSPACES, make certain that trailing spaces are not required
as part of the target data.

For Extract, TRIMVARSPACES only has an effect if Extract is performing mapping within
the TABLE statement (by means of a TARGET statement).

Default

NOTRIMVARSPACES

Syntax

TRIMVARSPACES | NOTRIMVARSPACES

Examples

Example 1
The following example uses TRIMVARSPACES and NOTRIMVARSPACES at the root level of the
parameter file. The default of NOTRIMVARSPACES is in effect until the last MAP statement,
to which TRIMVARSPACES applies.

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src2, TARGET fin.tgt2;
MAP fin.src3, TARGET fin.tgt3;
TRIMVARSPACES
MAP fin.src4, TARGET fin.tgt4;

Chapter 3
TRIMVARSPACES | NOTRIMVARSPACES

3-357

Example 2
The following example uses TRIMVARSPACES within a MAP statement to override the
global default of NOTRIMVARSPACES. The default applies to the first two MAP statements,
and then TRIMVARSPACES applies to the last two targets.

MAP fin.src1, TARGET fin.tgt1;
MAP fin.src1, TARGET fin.tgt2;
MAP fin.src1, TARGET fin.tgt3, TRIMVARSPACES;
MAP fin.src1, TARGET fin.tgt4, TRIMVARSPACES;

3.192 UPDATEDELETES | NOUPDATEDELETES
Valid For

Replicat

Description

Use the UPDATEDELETES parameter to convert delete operations to update operations for
all MAP statements that are specified after it in the parameter file. Use NOUPDATEDELETES
to turn off UPDATEDELETES. These parameters are table-specific. One remains in effect
for subsequent MAP statements until the other is encountered.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the UPDATEDELETES threads in one set of MAP statements, and specify
the NOUPDATEDELETES threads in a different set of MAP statements.

When using UPDATEDELETES, use the NOCOMPRESSDELETES parameter. This parameter
causes Extract to write all of the columns to the trail, so that they are available for
updates.

Default

NOUPDATEDELETES

Syntax

UPDATEDELETES | NOUPDATEDELETES

Example

This example shows how you can apply UPDATEDELETES and NOUPDATEDELETES selectively
to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

UPDATEDELETES
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOUPDATEDELETES
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.193 UPDATEINSERTS | NOUPDATEINSERTS
Valid For

Replicat

Chapter 3
UPDATEDELETES | NOUPDATEDELETES

3-358

Description

Use the UPDATEINSERTS parameter to convert insert operations to update operations for
all MAP statements that are specified after it in the parameter file. Use NOUPDATEINSERTS
to turn off UPDATEINSERTS.

Because you can selectively enable or disable these parameters between MAP
statements, you can enable or disable them for different threads of a coordinated
Replicat. Specify the UPDATEINSERTS threads in one set of MAP statements, and specify
the NOUPDATEINSERTS threads in a different set of MAP statements.

Default

NOUPDATEINSERTS

Syntax

UPDATEINSERTS | NOUPDATEINSERTS

Example

This example shows how you can apply UPDATEINSERTS and NOUPDATEINSERTS selectively
to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

UPDATEINSERTS
MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOUPDATEINSERTS
MAP sales.loc, TARGET sales.loc, THREAD (3);

3.194 UPDATERECORDFORMAT
Valid For

Extract for all databases except Teradata.

Description

Use the UPDATERECORDFORMAT parameter to cause Extract to combine the before and
after images of an UPDATE operation into a single record in the trail. It is valid for Extract
in classic and integrated capture modes; it is valid for a master Extract though is not
valid for pump Extract.

Before images are generated when the GETUPDATEBEFORES, GETBEFORECOLS, and
LOGALLSUPCOLS parameters are used. (In the case of an update to a primary key, unique
index, or user-specified KEYCOLS key, the before and after images are stored in the
same record by default. UPDATERECORDFORMAT does not apply in these cases.) The
NOCOMPRESSUPDATES parameter is required for non-Oracle databases.

When two records are generated for an update to a single row, it incurs additional disk
I/O and processing for both Extract and Replicat. If supplemental logging is enabled on
all columns, the unmodified columns may be repeated in both the before and after
records. The overall size of the trail is larger, as well. This overhead is reduced by
using UPDATERECORDFORMAT.

Chapter 3
UPDATERECORDFORMAT

3-359

When UPDATERECORDFORMAT is used, Extract writes the before and after images to a
single record that contains all of the information needed to process an UPDATE
operation. In addition to improving the read performance of downstream processes,
this enables column mapping functions to access the before and after column values
at the same point in time, rather than having to cache the before image column values
while reading the after values.

UPDATERECORDFORMAT takes effect for all TABLE statements in the parameter file.

If you specify both UPDATERECORDFORMAT and FORMAT RELEASE 11.x or earlier, then Extract
will abend.

Note:

Many-columned tables can cause the trail record to reach its maximum size
when UPDATERECORDFORMAT is used. The rest of the record is continued in one
or more additional, chained record fragments. This has a minor effect on
processing performance.

Default

UPDATERECORDFORMAT COMPACT

Syntax

UPDATERECORDFORMAT [FULL | COMPACT]

FULL

Generates one trail record that contains the before and after images of an UPDATE,
where the before image includes all of the columns that are available in the
transaction record for both the before and after images. When viewed in the Logdump
utility, this record appears as GGSUnifiedUpdate.

COMPACT

Generates one trail record that contains the before and after images of an UPDATE,
where the before image includes all of the columns that are available in the
transaction record, but the after image is limited to the primary key columns and the
columns that were modified in the UPDATE. UPDATERECORDFORMAT COMPACT is
recommended for configurations that include an integrated Replicat. This is the
default.
When either FULL or COMPACT are viewed in the Logdump utility, the record appears as
GGSUnifiedUpdate. The record contains the following:

• a header

• the length of the before image

• the before values of each column

• the after values of the primary key, unique index, or KEYCOLS columns

• the after values of the modified columns

• internal token data

Chapter 3
UPDATERECORDFORMAT

3-360

Example

UPDATERECORDFORMAT COMPACT

3.195 UPREPORT
Valid For

Manager

Description

Use the UPREPORTMINUTES or UPREPORTHOURS parameter to specify the frequency with
which Manager reports Extract and Replicat processes that are running. Every time
one of those processes starts or stops, events are generated. Those messages are
easily overlooked in the error log because the log can be so large. UPREPORTMINUTES and
UPREPORTHOURS report on a periodic basis to ensure that you are aware of the process
status.

If UPREPORT is explicitly indicated and the value of the CHECKMINUTES parameter is greater
than that of UPREPORT, then CHECKMINUTES acquires the value of UPREPORT.

To report on stopped processes, use the DOWNREPORT parameter. See "DOWNREPORT"
for more information.

Default

Do not report running processes

Syntax

UPREPORTMINUTES minutes | UPREPORTHOURS hours

UPREPORTMINUTES minutes

Sets the report frequency in minutes. The minimum is 0.

UPREPORTHOURS hours

Sets the report frequency in hours. The minimum is 0.

Example

The following generates a report every 30 minutes.

UPREPORTMINUTES 30

3.196 USE_TRAILDEFS | NO_USE_TRAILDEFS
Valid For

Extract data pump and Replicat when used in a GLOBALS file

Description

Use the USE_TRAILDEFS and NO_USE_TRAILDEFS parameters to control where the data
pump and Replicat processes obtain the table definitions when the trail files contain
full table definitions.

Chapter 3
UPREPORT

3-361

USE_TRAILDEFS forces these processes to use the table definitions from the trail unless
the OVERRIDE keyword is specified with SOURCEDEFS or ASSUMETARGETDEFS.

NO_USE_TRAILDEFS forces these processes to follow the old behavior when resolving the
table definitions. Extract and pump will not generate trail files with full table definition.

Default

USE_TRAILDEFS

Syntax

[USE_TRAILDEFS | NO_USE_TRAILDEFS]

3.197 USEANSISQLQUOTES | NOUSEANSISQLQUOTES
Valid For

GLOBALS

Description

Use the USEANSISQLQUOTES and NOANSISQLQUOTES parameters to control how Oracle
GoldenGate treats column names and literals that are enclosed within single or double
quote marks.

Note:

When capturing and mapping object names, such as table names, Oracle
GoldenGate always recognizes double-quoted strings as case-sensitive
object names, regardless of whether USEANSISQLQUOTES or NOUSEANSISQLQUOTES
is specified.

USEANSISQLQUOTES is the default behavior of Oracle GoldenGate. It directs Oracle
GoldenGate to follow SQL-92 rules for using quotation marks. With USEANSISQLQUOTES
enabled, Oracle GoldenGate treats a string within double quotes as a case-sensitive
column name, and it treats a string within single quotes as a literal. For example,
consider the behavior of the @STRLEN conversion function, which returns a string length.
By default, Oracle GoldenGate interprets the double-quoted "ABC" as an upper-case
column name, and @STRLEN returns the length of whatever the value is for column
"ABC".

COLMAP (TGT1 = @STRLEN("ABC"))

If the double quotes are changed to single quotes in the preceding example, Oracle
GoldenGate interprets 'ABC' as a literal, and @STRLEN returns 3.

COLMAP (TGT1 = @STRLEN('ABC'))

NOUSEANSISQLQUOTES is intended for backward compatibility with the parameter files of
Oracle GoldenGate versions that predate version 12c, where strings in double quotes
are intended to be literals and case-sensitive column names are not supported
(whether or not they are within quotes). For example, consider the behavior of the
@STRLEN conversion function, which returns a string length. With NOUSEANSISQLQUOTES,

Chapter 3
USEANSISQLQUOTES | NOUSEANSISQLQUOTES

3-362

the following @STRLEN specification returns a value of 3 because Oracle GoldenGate
interprets the double-quoted "ABC" as a literal.

• COLMAP (TGT1 = @STRLEN("ABC"))

When used, NOUSEANSISQLQUOTES affects all TABLE and MAP statements in the local Oracle
GoldenGate instance.

Default

USEANSISQLQUOTES

Syntax

USEANSISQLQUOTES | NOUSEANSISQLQUOTES

Examples

Example 1
The following matrix shows the difference in the use of quote marks around input
variables between the default of USEANSIISQLQUOTES and NOUSEANSISQLQUOTES.

Input Variable USEANSISQLQUOTES NOUSEANSISQLQUOT
ES

Literal text 'text string' "text string"

Unquoted column
names in database

COLUMN1 COLUMN1

Quoted column name
(Case is preserved by
Oracle GoldenGate.)

"Column1" Not supported. All
names are converted to
upper case.

Example 2
The following matrix shows how to escape literal single or double quote marks that
are part of literal input.

Input Variable USEANSISQLQUOTES NOUSEANSISQLQUOT
ES

Literal text is:
John's Car

'John''s' car

This example uses two
apostrophes, one as the
literal apostrophe and
the other as the escape
character. (The
apostrophe is the same
character as the single
quote mark.)

"John's car"

No escape character is
needed.

Literal text is:
Double quote (")

'Double quote (")'

No escape character is
needed.

"Double quote ("")"

This example uses two
double quotes, one as
the literal double quote
and the other as the
escape character.

Chapter 3
USEANSISQLQUOTES | NOUSEANSISQLQUOTES

3-363

Input Variable USEANSISQLQUOTES NOUSEANSISQLQUOT
ES

Column name is:
"Column"1

"Column""1"

This example uses two
double quotes, one as
the literal double quote
and the other as the
escape character.

Not supported.

3.198 USEDEDICATEDCOORDINATIONTHREAD
Valid For

Replicat (coordinated mode)

Description

Use USEDEDICATEDCOORDINATIONTHREAD to force Replicat to maintain a dedicated
coordination thread to apply barrier transactions. The thread ID of this thread is always
0.

By default, Replicat uses the thread with the lowest thread ID to apply barrier
transactions, but that thread also includes work that is mapped to it explicitly. By using
a dedicated thread for barrier transactions, you can get an accurate view in Oracle
GoldenGate statistics of the number of barrier events and exposes the amount of work
that is performed serially. Coordinated Replicat statistics are written to the report file
and also can be viewed with the STATS REPLICAT command.

USEDEDICATEDCOORDINATIONTHREAD applies to the Replicat group as a whole, across all MAP
statements.

Syntax

USEDEDICATEDCOORDINATIONTHREAD

Example

USEDEDICATEDCOORDINATIONTHREAD
MAP u1.t1, TARGET u2.t1 SQLEXEC &
(ID test2, QUERY 'delete from u2.t2 where col_val =100 ', &
NOPARAMS)), THREAD(1), COORDINATED;

3.199 USEIPV4
Valid For

GLOBALS

Description

Use the USEIPV4 parameter to force the use of Internet Protocol version 4 (IPv4) by
Oracle GoldenGate for TCP/IP connections. By default, Oracle GoldenGate uses IPv6
in dual-stack mode and this parameter forces the use of IPv4 only.

Chapter 3
USEDEDICATEDCOORDINATIONTHREAD

3-364

When USEIPV4 is used, the entire network in which Oracle GoldenGate operates must
be IPv4 compatible.

Default

Disabled

Syntax

USEIPV4

3.200 USEIPV6
Valid For

GLOBALS

Description

Use the USEIPV6 parameter to force the use of Internet Protocol version 6 (IPv6) by
Oracle GoldenGate for TCP/IP connections. By default, Oracle GoldenGate uses IPv6
in dual-stack mode but falls back to IPv4, and only then to IPv6. USEIPV6 eliminates the
IPv4 fallback step. The order of socket selection becomes:

• IPv6 dual-stack

• IPv6

When USEIPV6 is used, the entire network in which Oracle GoldenGate operates must
be IPv6 compatible.

Default

Disabled

Syntax

USEIPV6

3.201 USERID | NOUSERID
Valid For

Manager, Extract, Replicat, DEFGEN

Supported for

DB2 for i

DB2 LUW

DB2 on z/OS

Oracle

MySQL

SQL/MX

Chapter 3
USEIPV6

3-365

SQL Server

Sybase

Teradata

TimesTen

Description

Use the USERID parameter to specify the type of authentication for an Oracle
GoldenGate process to use when logging into a database, and to specify password
encryption information. This parameter can be used instead of USERIDALIAS when an
Oracle GoldenGate credential store is not being used.00

Always use USERID or USERIDALIAS for a primary Extract and for Replicat. Always use
USERID or USERIDALIAS for Replicat. Use USERID or USERIDALIAS for Manager only if using
parameters that require Manager to log into the source or target database.

USERID Compared to USERIDALIAS

USERID requires either specifying the clear-text password in the parameter file or
encrypting it with the ENCRYPT PASSWORD command and, optionally, storing an encryption
key in an ENCKEYS file. USERID supports a broad range of the databases that Oracle
GoldenGate supports.

USERIDALIAS enables you to specify an alias, rather than a user ID and password, in the
parameter file. The user IDs and encrypted passwords are stored in a credential store.
USERIDALIAS supports databases running on Linux, UNIX, and Windows platforms.

See Administering Oracle GoldenGate for Windows and UNIX for more information
about Oracle GoldenGate security features.

General Requirements for USERID

Specify USERID before any TABLE or MAP entries in an Extract or Replicat parameter file.
Specify USERID in a Manager parameter file if Manager must access the database and
a login is required.

USERID is not always required, nor is PASSWORD always required when USERID is required.
In some cases, it is sufficient just to use USERID or even just to use the SOURCEDB or
TARGETDB parameter, depending on how authentication for the database is configured.

See "SOURCEDB" and "TARGETDB" for more information.

Note:

The privileges that are required for the USERID user vary by database. See the
appropriate Oracle GoldenGate installation guide for your database to
determine the privileges that are required for the Oracle GoldenGate
database users.

USERID Requirements Per Database Type

The usage of USERID varies depending on the database type.

Chapter 3
USERID | NOUSERID

3-366

DB2 for i

Use USERID with PASSWORD to specify the name and password of the user profile
assigned to the Oracle GoldenGate process. Use SOURCEDB or TARGETDB with USERID to
specify the default DB2 for i database that is identified by the system name (in upper
case). See Installing and Configuring Oracle GoldenGate for DB2 for i for more
information.

DB2 for LUW

Use USERID with PASSWORD and preceded by SOURCEDB or TARGETDB for all Oracle
GoldenGate processes that connect to a DB2 LUW database using database
authentication. You can omit USERID and PASSWORD (and only use SOURCEDB or TARGETDB) if
the database is configured allow authentication at the operating-system level.

DB2 for z/OS database

Use USERID with PASSWORD if the user that is assigned to the Oracle GoldenGate process
does not have the DB2 privileges that are required for the process to function properly.

MySQL

Use USERID with PASSWORD for all Oracle GoldenGate processes that connect to a
MySQL database.

Oracle

Use USERID for Oracle GoldenGate processes that connect to an Oracle database as
follows:

• To use an operating system login, use USERID with the / argument.

• To use a database user name and password, use USERID with PASSWORD.

• Optionally, you can specify the user to log in as sysdba.

• (Oracle Enterprise Edition earlier than 11.2.0.2) Special database privileges are
required for the USERID user when Extract is configured to use LOGRETENTION. These
privileges might have been granted when Oracle GoldenGate was installed. See
the Installing and Configuring Oracle GoldenGate for Oracle Database for more
information about LOGRETENTION.

• (Oracle Standard or Enterprise Edition 11.2.0.2 or later) To use USERID for an
Extract group that is configured for integrated capture, the user must have the
privileges granted in the dbms_goldengate_auth.grant_admin_privilege procedure,
and the user must be the same one that issues DBLOGIN and REGISTER EXTRACT or
UNREGISTER EXTRACT for the Extract group that is associated with this USERID.

• To support capture from an Oracle container database, the user that is specified
with USERID must log into the root container and must be a common user. A
connect string must be supplied for this user and must include the required C##
prefix of the common user, such as C##GGADMIN@FINANCE. For more information, see
Installing and Configuring Oracle GoldenGate for Oracle Database.

Use NOUSERID to allow Integrated Extract to run without a connection for fetching or
metadata lookups, or any data dictionary calls. Essentially eliminating the need to
connect to the source database at all. The NOUSERID option requires an Integrated
Dictionary. We should also include that when NOUSERID is used, if the customer has
an Active Data Guard Standby, they can set up fetching from that Standby database

Chapter 3
USERID | NOUSERID

3-367

using the FETCHUSERID parameter. The two can be used in conjunction with
NOUSERID. In the event where you are using downstream integrated extract (same
caveats below) you can use FETCHUSERID to fetch from the ADG Standby database
and NOUSERID to prevent the Extract from making a connection to the source
database. This way, if Extract does need to fetch, it can do so.

SQL/MX

• For Oracle GoldenGate processes that connect to a source SQL/MX database,
use the SOURCEDB or TARGETDB parameter to specify the catalog name, and in the
same parameter statement use USERID without PASSWORD to specify the default
schema.

• For Oracle GoldenGate processes that connect to a target SQL/MX database, use
the TARGETDB parameter to specify the target ODBC data source, and in the same
parameter statement use USERID with PASSWORD. Replicat uses ODBC/MX to
connect to the SQL/MX database.

SQL Server

Use USERID with PASSWORD if the ODBC data source connection that will be used by the
Oracle GoldenGate process is configured to supply database authentication. USERID
can be a specific login that is assigned to the process or any member of an account in
the System Administrators or Server Administrators fixed server role.

• On a source SQL Server system, also use the SOURCEDB parameter to specify the
source ODBC data source.

• On a target SQL Server system, also use the TARGETDB parameter to specify the
target ODBC data source.

Sybase

Use USERID and PASSWORD for Oracle GoldenGate processes that connect to a Sybase
database.

Teradata

Use USERID with PASSWORD for Oracle GoldenGate processes that connect to a Teradata
database.

• On a source Teradata system, also use the SOURCEDB parameter to specify the
source ODBC data source.

• On a target Teradata system, also use the TARGETDB parameter to specify the target
ODBC data source.

TimesTen

Use USERID with PASSWORD if the ODBC data source connection that will be used by
Replicat is configured to supply database authentication. Also use the TARGETDB
parameter to specify the target ODBC data source.

Default

None

Chapter 3
USERID | NOUSERID

3-368

Syntax

USERID {/ | user}[, PASSWORD password]
[algorithm ENCRYPTKEY {key_name | DEFAULT}] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

/

Directs Oracle GoldenGate to use an operating-system login for Oracle, not a
database user login. Use this argument only if the database allows authentication at
the operating-system level. Bypassing database-level authentication eliminates the
need to update Oracle GoldenGate parameter files if application passwords frequently
change. To use this option, the correct user name must exist in the database, in
relation to the value of the Oracle OS_AUTHENT_PREFIX initialization parameter, as
follows:

• The value set with OS_AUTHENT_PREFIX is concatenated to the beginning of a user's
operating system account name and then compared to the database name.
Those two names must match.

• If OS_AUTHENT_PREFIX is set to ' ' (a null string), the user name must be created
with IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you would
use the following to create the database user:

CREATE USER ogg IDENTIFIED EXTERNALLY;

• If OS_AUTHENT_PREFIX is set to OPS$ or another string, the user name must be
created in the following format:

OS_AUTHENT_PREFIX_value OS_user_name

For example, if the OS user name is ogg, you would use the following to create the
database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user

Specifies the name of a database user or a schema, depending on the database
configuration. For Oracle, a SQL*Net connect string can be used. Refer to USERID
Requirements Per Database Type for additional guidelines.

password

Use when database authentication is required to specify the password for the
database user. If the password was encrypted by means of the ENCRYPT PASSWORD
command, supply the encrypted password; otherwise, use the clear-text password. If
the password is case-sensitive, type it that way.
If either the user ID or password changes, the change must be made in the Oracle
GoldenGate parameter files, including the re-encryption of the password if necessary.

algorithm

Specifies the encryption algorithm that was used to encrypt the password with ENCRYPT
PASSWORD.
Password encryption is only supported for SQL/MX using a BLOWFISH algorithm.
The algorithm can be one of:
AES128

AES192

AES256

BLOWFISH

Chapter 3
USERID | NOUSERID

3-369

ENCRYPTKEY {key_name | DEFAULT}

Specifies the encryption key that was specified with ENCRYPT PASSWORD.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption key in
the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME
key_name option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA

(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Valid for Replicat. Links the specified credential to one or more threads of a
coordinated Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1

USERID /

Example 2

USERID ogg

Example 3

USERID ogg@ora1.ora, &
PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC AES128, &
ENCRYPTKEY securekey1

Example 4

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC &
AES128, ENCRYPTKEY securekey1

Example 5

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC &
BLOWFISH, ENCRYPTKEY DEFAULT

Example 6

USERID ogg, &
PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC AES128, &
ENCRYPTKEY securekey1 SYSDBA

Chapter 3
USERID | NOUSERID

3-370

3.202 USERIDALIAS
Valid For

Manager, Extract, Replicat, DEFGEN

Supported for

DB2 for i

DB2 LUW

DB2 on z/OS

Informix

MySQL

Oracle

SQL/MX

SQL Server

Sybase

Teradata

TimesTen

Description

Use the USERIDALIAS parameter to specify authentication for an Oracle GoldenGate
process to use when logging into a database. The use of USERIDALIAS requires the use
of an Oracle GoldenGate credential store. Specify USERIDALIAS before any TABLE or MAP
entries in the parameter file.

Note:

The privileges that are required for the USERIDALIAS user vary by database.
See the appropriate Oracle GoldenGate installation guide for your database
to determine the privileges that are required for the Oracle GoldenGate
database users.

USERIDALIAS Compared to USERID

USERIDALIAS enables you to specify an alias, rather than a user ID and password, in the
parameter file. The user IDs and encrypted passwords are stored in a credential store.
USERIDALIAS supports databases running on Linux, UNIX, and Windows platforms.

USERID requires either specifying the clear-text password in the parameter file or
encrypting it with the ENCRYPT PASSWORD command and, optionally, storing an encryption
key in an ENCKEYS file. USERID supports a broad range of the databases that Oracle
GoldenGate supports. In addition, it supports the use of an operating system login for
Oracle databases.

Chapter 3
USERIDALIAS

3-371

See Administering Oracle GoldenGate for Windows and UNIX for more information
about these parameters and Oracle GoldenGate security features.

USERIDALIAS Requirements Per Database Type

The usage of USERIDALIAS varies depending on the database type.

Note:

Logins that require a database user and password must be stored in the
Oracle GoldenGate credential store. See Administering Oracle GoldenGate
for Windows and UNIX for more information about the credential store.

DB2 for LUW

Use USERIDALIAS with the SOURCEDB or TARGETDB parameter for all Oracle GoldenGate
processes that connect to a DB2 LUW database using database authentication. You
can omit USERIDALIAS and only use SOURCEDB or TARGETDB if the database is configured
allow authentication at the operating-system level. See "SOURCEDB" and
"TARGETDB" for more information.

MySQL

Use USERIDALIAS for all Oracle GoldenGate processes that connect to a MySQL
database. The SOURCEDB or TARGETDB parameter is not required.

Oracle

Use USERIDALIAS for Oracle GoldenGate processes that connect to an Oracle
database.

• The SOURCEDB or TARGETDB parameter is not required.

• Specify the alias of a database credential that is stored in the Oracle GoldenGate
credential store.

• (Oracle Enterprise Edition earlier than 11.2.0.2) Special database privileges are
required for the USERIDALIAS user when Extract is configured to use LOGRETENTION.
These privileges might have been granted when Oracle GoldenGate was installed.
See the Installing and Configuring Oracle GoldenGate for Oracle Database for
more information about LOGRETENTION.

• (Oracle Standard or Enterprise Edition 11.2.0.2 or later) To use USERIDALIAS for an
Extract group that is configured for integrated capture, the user must have the
privileges granted in the dbms_goldengate_auth.grant_admin_privilege procedure,
and the user must be the same one that issues DBLOGIN and REGISTER EXTRACT or
UNREGISTER EXTRACT for the Extract group that is associated with this USERIDALIAS.

• To support capture from an Oracle container database, the user that is specified
with USERID must log on to the root container and must be a common database
user. A connect string must be supplied for this user, for example:
C##GGADM@FINANCE. For more information, see Installing and Configuring Oracle
GoldenGate for Oracle Database.

Chapter 3
USERIDALIAS

3-372

SQL Server

Use USERIDALIAS if the ODBC data source connection that will be used by the Oracle
GoldenGate process is configured to supply database authentication. USERIDALIAS can
be a specific login that is assigned to the process or any member of an account in the
System Administrators or Server Administrators fixed server role.

• On a source SQL Server system, also use the SOURCEDB parameter to specify the
source ODBC data source.

• On a target SQL Server system, also use the TARGETDB parameter to specify the
target ODBC data source.

Sybase

Use USERIDALIAS for Oracle GoldenGate processes that connect to a Sybase database.

Teradata

Use USERIDALIAS for Oracle GoldenGate processes that connect to a Teradata
database.

• On a source Teradata system, also use the SOURCEDB parameter to specify the
source ODBC data source.

• On a target Teradata system, also use the TARGETDB parameter to specify the target
ODBC data source.

TimesTen

Use USERIDALIAS if the ODBC data source connection that will be used by Replicat is
configured to supply database authentication. Also use the TARGETDB parameter to
specify the target ODBC data source.

Default

None

Syntax

USERIDALIAS alias [DOMAIN domain] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])]

alias

Specifies the alias of a database user credential that is stored in the Oracle
GoldenGate credential store. Refer to USERID Requirements Per Database Type for
additional guidelines.

DOMAIN domain

Specifies the credential store domain for the specified alias. A valid domain entry
must exist in the credential store for the specified alias.

SYSDBA

(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread_range[, thread_range][, ...])

Valid for Replicat. Links the specified credential to one or more threads of a
coordinated Replicat. Enables you to specify different logins for different threads.

Chapter 3
USERIDALIAS

3-373

threadID[, threadID][, ...]

Specifies a thread ID or a comma-delimited list of threads in the format of
threadID, threadID, threadID.

[, thread_range[, thread_range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1
The following supplies a credential for the user in the credential store that has the
alias of tiger1 in the domain of east.

Example 2
The following supplies a credential for thread 3 of a coordinated Replicat.

USERIDALIAS tiger1 DOMAIN east THREADS (3)

3.203 VAM
Valid For

Extract

Description

Use the VAM parameter to specify that a Vendor Access Module (VAM) is being used to
perform data capture functions for the Extract process and send it to the Extract API.
This parameter supplies required input for the VAM API.

Default

None

Syntax

VAM library, PARAMS ('param' [, 'param'] [, ...])

library

The name of the library that is supplied by the database vendor as a Windows DLL or
a UNIX shared object. Use the full path name if the library is in a directory other than
the Oracle GoldenGate directory.

Note:

Teradata calls this library the Teradata Access Module (TAM). This program
or library communicates with the Oracle GoldenGate VAM API.

Chapter 3
VAM

3-374

PARAMS 'param'

Any parameter, enclosed within single quotes, that is passed to the Oracle
GoldenGate API. See the following database-specific parameter options.

ARLIBError error, action

Valid for SQL/MX.
Specifies how TMFARLIB errors are handled by the VAM.

• error is an ARLIB error number.

• action can be ABEND | WARN | IGNORE.

The default is ABEND. Errors -1000 and -2000 will always result in ABEND, regardless
of any other action that is specified.
Examples:

Vam Params (arliberror (-16,-14), Warn)
Vam Params (arliberror -2000, Abend)
Vam Params (arliberror -1000, Abend)

ARErrorReportInterval seconds

Valid for SQL/MX.
Sets the interval, in seconds, in which the same TMFARLIB error is reported back
to Extract. This reduces the amount of messages for each type of error that
accumulate. seconds must be greater than, or equal to, zero. The default is 60
seconds.

inifile, ini_file, callbackLib, extract.exe

Required parameter for Teradata.

• inifile indicates that the next parameter specifies the TAM initialization file.

• ini_file is the name of the TAM initialization file. Unless the file resides in the
same directory where the Extract program is installed, specify the fully
qualified path name.

• callbackLib indicates that the next parameter specifies the program that
interfaces with the TAM. This parameter is case-sensitive and must be
entered exactly as shown here.

• extract.exe is the Extract program, which is the callback program for the
TAM.

CDCRECORDSFETCHCOUNT, CDCSESSIONTIMEOUT, CDCRECORDQUEUESIZE
Valid for Informix.

• CDCRECORDSFETCHCOUNT specifies the number of CDC records to be fetched in
one call. For example, the CDC record batch size. The default number of
records is 10. When there are not 10 records to fetch from transaction log the
CDC API fetches old records, which causes duplication that may lead to
either an Extract or Replicat abend. Also, it is possible that the Extract
statistics may show incorrect output. To avoid this condition, use VAM PARAMS
(CDCRECORDSFETCHCOUNT default 10 in the Extract parameter file.

• CDCSESSIONTIMEOUT specifies the CDC session timeout in seconds. The default
is 2 seconds.

Chapter 3
VAM

3-375

• CDCRECORDQUEUESIZE specifies the queue size used to store the transaction log
records. The default is 256 records.

In a distributed environment with a very high number of transactions, you should
configure these VAM parameters for optimum memory performance. For
example, with 800+ tables the Extract memory consumption with the VAM
parameters set to CDCRECORDFETCHCOUNT 32 and CDCRECORDQUEUESIZE 5120) is 760
MB. Alternatively, with the same number tables and these parameters set to
CDCRECORDFETCHCOUNT 32 and CDCRECORDQUEUESIZE 1024 the memory consumption is
300 MB. Configuring these parameters are trade off between Extract memory
consumption and Extract performance rate.

LOGICALLOGWARNINGTHRESHOLD

Valid for Informix.
The input is the usage threshold given by percentage (%) of the current logical log
file used by the Informix Dynamic Server. The default value is 50, so 50%. If
Oracle GoldenGate capture is positioned at the oldest logical log file and the
current logical log file usage exceeds this specified threshold, then a warning
message is written to the report file.

SCANLOGPRIORITY

By default, the priority of reader thread is not set. It runs in medium priority, which
is the default for any connection, but you can reset the priority to HIGH=1,
Medium=2 and Low=3. If this has to be set then the login user, which is used in
the capture process should have SA privileges.

SCANLOGPOLLMODE

By default the capture process runs in flush mode. It can run with poll mode to poll
and get the record instead of waiting.

SCANLOGTIMEOUT

It is used to timeout when the capture process is reading the transaction log
record. If it does not find any record then it times out and wakes up once its given
duration is over, to rescan and get the record from transaction log. By default, it is
not enabled. It can be set to 5 sec or higher. However, if higher values are set
then it may impact the performance.

Examples

VAM tam.dll, PARAMS (inifile, tam.ini, callbackLib, extract.exe)
VAM PARAMS(CDCRECORDSFETCHCOUNT 5)
VAM PARAMS(CDCRECORDSFETCHCOUNT 5 CDCSESSIONTIMEOUT 5)
VAM PARAMS (CDCRECORDQUEUESIZE 512)
VAM PARAMS (LOGICALLOGWARNINGTHRESHOLD 65)
VAM PARAMS (SCANLOGPRIORITY 1)
VAM PARAMS (SCANLOGPOLLMODE)
VAM PARAMS (SCANLOGTIMEOUT 5)

3.204 VARWIDTHNCHAR | NOVARWIDTHNCHAR
Valid For

Extract, Replicat, DEFGEN for Oracle

Chapter 3
VARWIDTHNCHAR | NOVARWIDTHNCHAR

3-376

Description

Use the VARWIDTHNCHAR and NOVARWIDTHNCHAR parameters to control how NCHAR data is
written to the trail and interpreted by Replicat.

• VARWIDTHNCHAR causes an NCHAR, NVARCHAR2, or NCLOB character set to be treated as a
variable-length character set (UTF-8).

• NOVARWIDTHNCHAR causes an NCHAR, NVARCHAR2, or NCLOB character set to be treated as
UTF-16.

• If neither option is specified, the NLS_NCHAR_CHARACTERSET property value from the
database is used to determine how an NCHAR, NVARCHAR2, or NCLOB character set is
treated.

Default

Use NLS_NCHAR_CHARACTERSET property from database

Syntax

VARWIDTHNCHAR | NOVARWIDTHNCHAR

3.205 VERIDATAREPORTAGE
Valid For

Manager

Description

Use the VERIDATAREPORTAGE parameter to purge old Veridata (veriagt)report files when
they have reached the age limit.

Default

7 DAYS

Syntax

VERIDATAREPORTAGE number [time units]

number

A positive integer.

time units

DAYS|DAY|HOURS|HOUR|HRS|MINUTES|MINUTE|MIN|SECONDS|SECOND|SEC

Example

VERIDATAREPORTAGE 5 HOURS

3.206 WALLETLOCATION
Valid For

GLOBALS

Chapter 3
VERIDATAREPORTAGE

3-377

Description

Use the WALLETLOCATION parameter to specify the location of the Oracle GoldenGate
master-key wallet.

Default

The dirwlt subdirectory of the Oracle GoldenGate installation directory.

Syntax

WALLETLOCATION directory_path

directory_path

Specifies the full path name of the wallet location.

Example

WALLETLOCATION /home/ggadmin/walletdir

3.207 WARNLONGTRANS
Valid For

Extract

Description

Use the WARNLONGTRANS parameter to specify a length of time that a transaction can be
open before Extract generates a warning message that the transaction is long-running.
Also use WARNLONGTRANS to control the frequency with which Oracle GoldenGate checks
for long-running transactions.

This parameter is valid for Oracle, SQL/MX, SQL Server, and Sybase.

When WARNLONGTRANS is specified, Oracle GoldenGate checks for transactions that
satisfy the specified threshold, and it reports the first one that it finds to the Oracle
GoldenGate error log, the Extract report file, and the system log. By default, Oracle
GoldenGate repeats this check every five minutes.

To view a list of open transactions on demand, to output transaction details to a file, or
to either cancel those transactions or force them to the trail, use the options of the SEND
EXTRACT command. See "SEND EXTRACT" for more information.

Default

One hour (and check every five minutes using a separate processing thread)

Syntax

WARNLONGTRANS duration
[, CHECKINTERVAL interval]
[, NOUSETHREADS]
[, USELASTREADTIME]

Chapter 3
WARNLONGTRANS

3-378

duration

Sets a length of time after which an open transaction is considered to be long-running.
The duration is specified as a whole number, followed by the unit of time in any of the
following formats to indicate seconds, minutes, or hours. Do not put a space between
the numeric value and the unit of time. The unit is not case-sensitive. The default is
one hour.

S|SEC|SECS|SECOND|SECONDS
M|MIN|MINS|MINUTE|MINUTES
H|HOUR|HOURS
D|DAY|DAYS

The following are examples of valid durations:

WARNLONGTRANS 2HOUR
WARNLONGTRANS 2hours
WARNLONGTRANS 1DAY
WARNLONGTRANS 600sec
WARNLONGTRANS 40s

CHECKINTERVAL interval

Sets the frequency at which Oracle GoldenGate checks for transactions that satisfy
WARNLONGTRANS and reports the longest running one. The interval is specified as a
whole number, followed by the unit of time in any of the following formats to indicate
seconds, minutes, or hours. Do not put a space between the numeric value and the
unit of time. The unit is not case-sensitive. The default is five minutes, which is also
the minimum valid value. The minimum value is 300 and the maximum is 20000000.

S|SEC|SECS|SECOND|SECONDS
M|MIN|MINS|MINUTE|MINUTES
H|HOUR|HOURS
D|DAY|DAYS

The following are examples of valid interval specifications:

CHECKINTERVAL 2h
CHECKINTERVAL 2HOURS
CHECKINTERVAL 1day
CHECKINTERVAL 600SEC
CHECKINTERVAL 2m

NOUSETHREADS

Valid for Oracle.
Specifies that the monitoring will be done by the main process thread. By default, it is
done with a separate thread for performance reasons. NOUSETHREADS should only be
used if the system does not support multi-threading.

USELASTREADTIME

Valid for Oracle.
Forces Extract to always use the time that it last read the Oracle redo log to determine
whether a transaction is long-running or not. By default, Extract uses the timestamp of
the last record that it read from the redo log. This applies to an Extract that is running
in archive log only mode, as configured with TRANLOGOPTIONS using the ARCHIVEDLOGONLY
option.

Example

WARNLONGTRANS 2h, CHECKINTERVAL 3m, NOUSETHREADS

Chapter 3
WARNLONGTRANS

3-379

3.208 WARNRATE
Valid For

Replicat

Description

Use the WARNRATE parameter to set a threshold for the number of SQL errors that can
be tolerated on any target table before being reported to the process report and to the
error log. The errors are reported as a warning. If your environment can tolerate a
large number of these errors, increasing WARNRATE helps to minimize the size of those
files.

When setting WARNRATE for a coordinated Replicat, take into account that the specified
WARNRATE threshold is applied to each thread in the configuration, not as an aggregate
threshold for Replicat as a whole. For example, if WARNRATE 100 is specified, it is
possible for each thread to return 99 errors without a warning from Replicat.

For Replicat running in an Oracle environment, this parameter is valid for
nonintegrated mode only.

Default

100 errors

Syntax

WARNRATE number_of_errors

number_of_errors

The number of SQL errors after which a warning is issued.

Example

WARNRATE 1000

3.209 WILDCARDRESOLVE
Valid For

Extract and Replicat

Description

Use the WILDCARDRESOLVE parameter to alter the rules for processing wildcarded table
specifications in a TABLE, SEQUENCE, or MAP statement. WILDCARDRESOLVE must precede the
associated TABLE, SEQUENCE, or MAP statements in the parameter file.

The target objects must already exist in the target database when wildcard resolution
is attempted. If a target object does not exist, Replicat abends.

Default

DYNAMIC

Chapter 3
WARNRATE

3-380

Syntax

WILDCARDRESOLVE {DYNAMIC | IMMEDIATE}

DYNAMIC

Source objects that satisfy the wildcard definition are resolved each time the wildcard
rule is satisfied. The newly resolved object is included in the Oracle GoldenGate
configuration upon resolution. This is the default. This is the required setting for
Teradata.
Do not use this option when SOURCEISTABLE or GENLOADFILES is specified.
WILDCARDRESOLVE will always be implicitly set to IMMEDIATE for these parameters.
DYNAMIC must be used when using wildcards to replicate Oracle sequences with the
SEQUENCE parameter.
To keep the default of DYNAMIC, an explicit WILDCARDRESOLVE parameter is optional, but
its presence helps make it clear to someone who is reviewing the parameter file which
method is being used.

IMMEDIATE

Source objects that satisfy the wildcard definition are processed at startup. This option
is not supported for Teradata. This is the forced default for SOURCEISTABLE.
This option does not support the Oracle interval partitioning feature. Dynamic
resolution is required so that new partitions are found by Oracle GoldenGate.

Example

The following example resolves wildcards at startup.

WILDCARDRESOLVE IMMEDIATE
TABLE hq.acct_*;

3.210 XAGENABLE
Valid For

GLOBALS

Description

Use XAGENABLE to enable the Oracle GoldenGate Transparent Integration with
Clusterware feature that allows you to continue using GGSCI to start and stop
manager when GoldenGate instance is under the management of Oracle Grid
Infrastructure Bundled Agents (XAG). You must set one of the following environment
variables when using XAGENABLE:

CRS_HOME
ORA_CRS_HOME
GRID_HOME

You can use INFO ALL to view XAG related information.

Default

Disabled.

Syntax

XAGENABLE

Chapter 3
XAGENABLE

3-381

3.211 Y2KCENTURYADJUSTMENT |
NOY2KCENTURYADJUSTMENT

Valid For

Extract and Replicat

Description

Use the Y2KCENTURYADJUSTMENT and NOY2KCENTURYADJUSTMENT parameters to control the
conversion of year values when the century portion consists of zeroes (such as 0055)
or is not specified (such as in a two-digit, year-only specification).

With Y2KCENTURYADJUSTMENT enabled (the default), a two-digit year value that is greater
than or equal to 50 is converted to a four-digit year in the 20th century (19xx). If a two-
digit year value is less than 50, it is converted to a four-digit year in the 21st century
(20xx).If the century portion of the year is non-zero, or if NOY2KCENTURYADJUSTMENT is
specified, no conversion is performed.

Default

Y2KCENTURYADJUSTMENT

Syntax

Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

Chapter 3
Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

3-382

4
Collector Parameters

This chapter describes the parameters for the Collector process and includes the
following topics:

• "Overview of the Collector Process"

• "Summary of Collector Parameters"

The Collector process operates on the target system to receive incoming data and
write it to the trail. For more information about Collector, see Administering Oracle
GoldenGate for Windows and UNIX.

4.1 Overview of the Collector Process
Typically, Oracle GoldenGate users do not interact with the Collector process. This is
known as a dynamic collector. It is started dynamically by the Manager process, but
parameters may be sent to Collector as options of certain Extract or Replicat
parameters.

As an alternative to allowing Manager to run Collector, you can run a static Collector
manually by running the SERVER program at the command line with the following syntax
and input parameters as shown:

server parameter [parameter] [...]

Collector parameters are case-sensitive and must be preceded by a dash. For
example, -e and -E are two different parameters, with entirely different results.

4.2 Summary of Collector Parameters
The following is a summary of available Collector parameters.

Table 4-1 Collector Parameters

Parameter Description

-B Directs the Collector to buffer files.

-b Specifies the default the file buffer size.

-cp Specifies the name of the checkpoint file that Collector
maintains for an alias Extract group.

-d Specifies the name of a local definitions file that was
generated by the DEFGEN utility.

-E Converts incoming header and data to EBCDIC format from
ASCII.

-e Directs Collector to respond to specific formatting error
conditions in custom ways.

4-1

Table 4-1 (Cont.) Collector Parameters

Parameter Description

-ENCRYPT Specifies the type of encryption being passed from the
Extract process, as specified with the RMTHOST parameter in
the Extract parameter file.

-f Forces all file writes to be flushed to disk before returning a
success status to the Extract process.

-g Supports files that are larger than 2GB (Solaris only).

-h Specifies the name or IP address of the source system.

-k Directs Collector to terminate when the Extract process that it
is serving disconnects.

-KEYNAME Specifies the name of a key that is defined in the local
ENCKEYS lookup file.

-l Logs output to the specified file.

-m Specifies the Manager port

-P Specifies a local file that contains Collector parameters.

-p Specifies a TCP/IP port number.

-R Replaces invalid numeric ASCII data with an alternate value.

-x Specifies a discard file to store records that could not be
processed by Oracle GoldenGate.

4.3 -B
Specifies the default file buffer size.

Syntax

-Bsize

There is no space between -B and the size value.

If size is not specified, then the default size is your C library default file buffer size
(BUFSIZ). The minimum value is 16384 (16K) and the max is 16777216 (16MB).

Example

-B16384

4.4 -b
Specifies the default file buffer size.

Syntax:

-B size

If size is not specified, then the default size is your C library default file buffer size
(BUFSIZ). The minimum value is 16 KB and the maximum is 16 MB; zero (0) indicates
unbuffered.

Chapter 4
-B

4-2

4.5 -cp
Specifies the name of the checkpoint file that Collector maintains for an alias Extract
group. The checkpoint file is used to determine whether the passive Extract is running
or not. It is running when the checkpoint file is locked by Collector (shown as the
server program in the Oracle GoldenGate installation directory).

-cp must be used with the -h and -p parameters.

For more information about using passive and alias Extract groups, see Administering
Oracle GoldenGate for Windows and UNIX.

Syntax

-cp checkpoint_file

cp

Must be lower case.

checkpoint_file

The name of the file to which the passive Extract group writes its checkpoints. The
name of the passive Extract group and the name of the checkpoint file are identical.

4.6 -d
Specifies the name of a local definitions file that was generated by the DEFGEN utility.
The file contains the definitions of tables that reside on a remote system. For more
information about definitions files, see Administering Oracle GoldenGate for Windows
and UNIX.

Syntax

-d definitions_file

d

Must be lower case.

definitions_file

The name of the definitions file, exactly as specified when DEFGEN was run.

4.7 -E
Converts incoming header and data to EBCDIC format from ASCII. By default, Oracle
GoldenGate does not convert the data.

Syntax

-E

E

Must be upper case.

Chapter 4
-cp

4-3

4.8 -e
Directs Collector to respond to specific formatting error conditions in custom ways.
Default values are almost always sufficient. To specify more than one error type, use -
e multiple times. For example:

-e OLD CONTINUE -e NEW DISCARD.

Syntax

-e type action

e

Must be lower case.

type

Specifies the type of error that generates the response and can be one of the
following:

NEW

Checks for records that contain more data than anticipated (more columns than
the current definition). The Collector process may need an updated version of the
source table (that is, DEFGEN must be run again). The default action is ABEND.

OLD

Checks for records that contain less data than anticipated. This usually indicates
that a record has fewer columns than the table's current definition, which is
considered a normal condition. The default action is CONTINUE.

OUTOFSYNC

Checks for records that cannot be converted according to the definition provided.
The default action is ABEND.

action

Specifies the response to the error and can be one of the following:

ABEND

Discards the record and directs the Extract process to end immediately.

CONTINUE

Processes the record (if possible) regardless of the conversion error encountered.

DISCARD

Outputs the record to a discard file (if one is specified with –x). Collector sends a
warning to the error file for the first discarded record and continues to process
records.

4.9 -ENCRYPT
Specifies the type of encryption being passed from the Extract process, as specified
with the RMTHOST parameter in the Extract parameter file. For more information about
Oracle GoldenGate security, see Administering Oracle GoldenGate for Windows and
UNIX.

Chapter 4
-e

4-4

Syntax

-ENCRYPT {NONE | BLOWFISH}

ENCRYPT

Must be upper case.

NONE

Specifies that the data will not be encrypted.

BLOWFISH

Specifies BLOWFISH encryption. If using BLOWFISH, also specify the -KEYNAME option.

4.10 -f
Forces all file writes to be flushed to disk before returning a success status to the
Extract process. By default, the file system buffers the I/O because it is more efficient
than flushing to disk with every operation. Generally, the performance benefits
outweigh the small risk that data could be lost if the system fails after an I/O is
confirmed successful, but before the buffer actually is flushed to disk. Use -f if this risk
is unacceptable, with the understanding that it can compromise the performance of
Oracle GoldenGate

Syntax

-f

f

Must be lower case.

4.11 -g
Supports files that are larger than 2GB (Solaris only).

Syntax

-g

g

Must be lower case.

4.12 -h
Specifies the name or IP address of the source system. Use this option when using an
alias Extract on the target that is associated with an Extract running in PASSIVE mode
on the source. It causes Collector to operate in connection mode. In this mode, it
initiates a TCP/IP connection to the source Extract, instead of waiting for a connection
request from Extract. Must be used with the -p Collector option. For more information
about PASSIVE mode and Oracle GoldenGate security, see Administering Oracle
GoldenGate for Windows and UNIX.

Syntax

-h {host_name | IP_address}

Chapter 4
-f

4-5

h

Must be lower case.

host_name

Specifies the source system by its DNS host name.

IP_address

Specifies the source system by its IP address.

4.13 -k
Directs Collector to terminate when the Extract process that it is serving disconnects.
This option is used by the Manager process when starting the Collector process.

Syntax

-k

k

Must be lower case.

4.14 -KEYNAME
Specifies the name of a key that is defined in the local ENCKEYS lookup file. Use if
BLOWFISH is specified for -ENCRYPT. For more information about the ENCKEYS file and
Oracle GoldenGate security, see Administering Oracle GoldenGate for Windows and
UNIX.

Syntax

-KEYNAME key_name

KEYNAME

Must be upper case.

key_name

The name of the key as it appears in the ENCKEYS file.

4.15 -l
Logs output to the specified file.

Syntax

-l file_name

l

Must be lower case.

file_name

The fully qualified name of the output file.

4.16 -m
Specifies the Manager port number.

Chapter 4
-k

4-6

Syntax

-m number

m

Must be lower case.

number

The Manager port number.

4.17 -P
Specifies a local file that contains Collector parameters. Parameters in this file override
parameters sent from the Extract process.

Syntax

-P file_name

P

Must be upper case.

file_name

The fully qualified name of the parameter file.

4.18 -p
Specifies a TCP/IP port number as follows:

• For a regular Extract or regular data pump: the port on which the Collector process
listens for connection requests from Extract.

• For an Extract or data pump running in PASSIVE mode: the port on which Extract or
the data pump listens for connection requests from Collector. Must be used with
the -h host parameter in this case. For more information about PASSIVE mode and
Oracle GoldenGate security, see Administering Oracle GoldenGate for Windows
and UNIX.

Syntax

-p port

p

Must be lower case.

port

The port number. The default is port 7819.

4.19 -R
Replaces invalid numeric ASCII data with an alternate value.

Syntax

-R value

Chapter 4
-P

4-7

R
Must be upper case.

value

The replacement value. The default is to replace with 0. Specify one of the following
alternate values:

number

Replaces invalid data with the specified number.

NULL

Replaces invalid data with NULL if the target column accepts NULL values.
Otherwise, replaces with 0.

UNPRINTABLE

Rejects any column with unprintable data. The process stops and reports the bad
value.

NONE

Does not replace numeric data. Oracle GoldenGate attempts to replicate the data
as-is.

4.20 -x
Specifies a discard file to store records that could not be processed by Oracle
GoldenGate.

Syntax

-x discard_file

x

Must be lower case.

discard_file

The fully qualified name of the discard file.

Chapter 4
-x

4-8

5
Column Conversion Functions

The column conversion functions of Oracle GoldenGate enable you to manipulate
source values into the appropriate format for target columns.You can manipulate
numbers and characters, perform tests, extract parameter values, return environment
information, and more. For more information about using these functions, see
Administering Oracle GoldenGate for Windows and UNIX.

5.1 Summary of Column-Conversion Functions
This summary is organized according to the types of processing that can be performed
with the Oracle GoldenGate functions.

Table 5-1 Performing Tests

Function Description

CASE
Selects a value depending on a series of value tests.

EVAL
Selects a value based on a series of independent tests.

IF
Selects one of two values depending on whether a conditional statement
returns TRUE or FALSE.

Table 5-2 Handling Missing Columns

Function Description

COLSTAT
Returns an indicator that a column is MISSING, NULL, or INVALID.

COLTEST
Performs conditional calculations to test whether a column is PRESENT,
MISSING, NULL, or INVALID.

Table 5-3 Working with Dates

Function Description

DATE
Returns a date and time based on the format passed into the source column.

DATEDIFF
Returns the difference between two dates or datetimes.

DATENOW
Returns the current date and time.

5-1

Table 5-4 Performing Arithmetic Calculations

Function Description

COMPUTE
Returns the result of an arithmetic expression.

Table 5-5 Working with Strings

Function Description

NUMBIN
Converts a binary string into a number.

NUMSTR
Converts a string into a number.

STRCAT
Concatenates one or more strings.

STRCMP
Compares two strings.

STREXT
Extracts a portion of a string.

STREQ
Determines whether or not two strings are equal.

STRFIND
Finds the occurrence of a string within a string.

STRLEN
Returns the length of a string.

STRLTRIM
Trims leading spaces.

STRNCAT
Concatenates one or more strings to a maximum length.

STRNCMP
Compares two strings based on a specified number of characters.

STRNUM
Converts a number into a string.

STRRTRIM
Trims trailing spaces.

STRSUB
Substitutes one string for another.

STRTRIM
Trims leading and trailing spaces.

STRUP
Changes a string to uppercase.

VALONEOF
Compares a string or string column to a list of values.

Chapter 5
Summary of Column-Conversion Functions

5-2

Table 5-6 Other Functions

Function Description

AFTER
Returns the after image of the specified column.

BEFORE
Returns the before image of the specified column.

BEFOREAFTER
Returns the before image of the specified column, if available, otherwise
returns the after image.

BINARY
Maintains source binary data as binary data in the target column when the
source column is defined as a character column.

BINTOHEX
Converts a binary string to a hexadecimal string.

GETENV
Returns environmental information.

GETVAL
Extracts parameters from a stored procedure as input to a FILTER or
COLMAP clause.

HEXTOBIN
Converts a hexadecimal string to a binary string.

HIGHVAL | LOWVAL
Constrains a value to a high or low value.

RANGE
Divides rows into multiple groups of data for parallel processing.

TOKEN
Retrieves token data from a trail record header.

OGG_SHA1 Hashes some fields while replicating them to Operational Data Store.

5.2 AFTER
Use the @AFTER function to return the after image of the specified source column. This
is the default behavior.

Syntax

@AFTER (column)

column

The name of the source column for which to return the after image.

Example

@AFTER (quantity)

5.3 BEFORE
Use the @BEFORE function to return the before image of the specified source column.

Chapter 5
AFTER

5-3

When using this parameter, use the GETUPDATEBEFORES parameter in the Extract
parameter file to capture before images from the transaction record, or use it in the
Replicat parameter file to use the before image in a column mapping or filter. If using
the Conflict Resolution and Detection (CDR) feature, you can use the GETBEFORECOLS
option of TABLE. To use these parameters, the specified column must be present in the
transaction log.

If the database only logs values for changed columns, make certain the required
column values are available by enabling supplemental logging for those columns.
Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE
parameter. The fetch option involves additional processing overhead.

Syntax

@BEFORE (column)

column

The name of the source column for which to return the before image.

Example

@BEFORE (quantity)

5.4 BEFOREAFTER
Use the @BEFOREAFTER function to return the before image if available, or otherwise the
after image.

When using this parameter, use the GETUPDATEBEFORES parameter in the Extract
parameter file to capture before images from the transaction record, or use it in the
Replicat parameter file to use the before image in a column mapping or filter. If using
the Conflict Resolution and Detection (CDR) feature, you can use the GETBEFORECOLS
option of TABLE. To use these parameters, all columns must be present in the
transaction log.

If the database only logs values for changed columns, make certain the required
column values are available by enabling supplemental logging for those columns.
Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE
parameter. The fetch option involves additional processing overhead.

Syntax

@BEFOREAFTER (column)

column

The name of the source column for which to return the before image, if available, or
otherwise the after image.

Example

@BEFOREAFTER (quantity)

5.5 BINARY
Use the @BINARY function when a source column referenced by a column-conversion
function is defined as a character column but contains binary data that must remain
binary on the target. By default, binary data in a character column is converted (if

Chapter 5
BEFOREAFTER

5-4

necessary) to ASCII and assumed to be a null-terminated string. The @BINARY function
copies arbitrary binary data to the target column.

Syntax

@BINARY (column)

column

The name of the target column to which the data will be copied.

Example

The following shows how @BINARY can be used to copy the data from the source
column ACCT_CREATE_DATE to the target column ACCT_COMPLAINT.

ACCT_COMPLAINT =
@IF (@NUMBIN (ACCT_CREATE_DATE) < 48633, 'xxxxxx',
@BINARY (ACCT_COMPLAINT))

5.6 BINTOHEX
Use the @BINTOHEX function to convert supplied binary data into its hexadecimal
equivalent.

Syntax

@BINTOHEX (data)

data

Can be one of the following:

• The name of the source column that contains the data

• An expression

• A literal string that is enclosed within single quote marks

Example

@BINTOHEX ('12345') converts to 3132333435.

5.7 CASE
Use the @CASE function to select a value depending on a series of value tests. There is
no limit to the number of cases you can test with @CASE. If the number of cases is large,
list the most frequently encountered conditions first for the best performance.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@CASE (value, test_value1, test_result1
[, test_value2, test_result2] [, ...]
[, default_result]

Chapter 5
BINTOHEX

5-5

value

A value to test, for example, a column name. Enclose literals within single quote
marks.

test_value

A valid result for value. Enclose literals within single quote marks.

test_result

A value to return based on the value of test_value. Enclose literals within single quote
marks.

default_result

A default value to return if value results in none of the test_value values. Enclose
literals within single quote marks.

Examples

Example 1
The following returns A car if PRODUCT_CODE is CAR and A truck if PRODUCT_CODE is TRUCK. If
PRODUCT_CODE fits neither of the first two cases, a FIELD_MISSING indication is returned
because a default value was not specified.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

Example 2
The following is similar to the previous example, except that it provides for a default
value. If PRODUCT_CODE is neither CAR nor TRUCK, the function returns A vehicle.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck', 'A vehicle')

5.8 COLSTAT
Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is
missing, null, or invalid. The indicator can be used as part of a larger manipulation
formula that uses additional conversion functions.

Syntax

@COLSTAT ({MISSING | NULL | INVALID})

Examples

Example 1
The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

Example 2
The following @IF calculation uses @COLSTAT to return NULL to the target column if PRICE
and QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF (PRICE < 0 AND QUANTITY < 0, @COLSTAT(NULL))

Chapter 5
COLSTAT

5-6

5.9 COLTEST
Use the @COLTEST function to enable conditional calculations by testing for one or more
column conditions. If a condition is satisfied, @COLTEST returns TRUE. To perform the
conditional calculation, use the @IF function.

Syntax

@COLTEST (source_column, test_condition [, test_condition] [, ...])

source_column

The name of a source column.

test_condition

Valid values:

PRESENT

Indicates a column is present in the source record and not NULL. Column values
can be missing if the database does not log values for columns that do not
change, but that is not the same as NULL.

NULL

Indicates a column is present in the source record and NULL.

MISSING

Indicates a column is not present in the source record.

INVALID

Indicates a column is present in the source record but contains invalid data.

Examples

Example 1
The following example uses @IF to map a value to the HIGH_SALARY column only if the
BASE_SALARY column in the source record was both present (and not NULL) and greater
than 250000. Otherwise, NULL is returned.

HIGH_SALARY =
@IF (@COLTEST (BASE_SALARY, PRESENT) AND
BASE_SALARY > 250000,
BASE_SALARY, @COLSTAT (NULL))

Example 2
In the following example, 0 is returned when the AMT column is missing or invalid;
otherwise a value for AMT is returned.

AMOUNT = @IF (@COLTEST (AMT, MISSING, INVALID), 0, AMT)

5.10 COMPUTE
Use the @COMPUTE function to return the value of an arithmetic expression to a target
column. The value returned from the function is in the form of a string.

You can omit the @COMPUTE phrase when returning the value of an arithmetic expression
to another Oracle GoldenGate function, as in:

Chapter 5
COLTEST

5-7

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The preceding returns the same result as:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

Arithmetic expressions can be combinations of the following elements.

• Numbers

• The names of columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

+ (plus)

- (minus)

* (multiply)

/ (divide)

\ (remainder)

• Comparison operators:

> (greater than)

>= (greater than or equal)

< (less than)

<= (less than or equal)

= (equal)

<> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-
zero (indicating TRUE).

• Parentheses (for grouping results in the expression)

• The conjunction operators AND, OR. Oracle GoldenGate only evaluates the
necessary part of a conjunction expression. Once a statement is FALSE, the rest of
the expression is ignored. This can be valuable when evaluating fields that may be
missing or null. For example, if the value of COL1 is 25 and the value of COL2 is 10,
then the following are possible:

@COMPUTE (COL1 > 0 AND COL2 < 3) returns 0.

@COMPUTE (COL1 < 0 AND COL2 < 3) returns 0. COL2 < 3 is never evaluated.

@COMPUTE ((COL1 + COL2)/5) returns 7.

Syntax

@COMPUTE (expression)

expression

A valid arithmetic expression. The numeric value plus the precision cannot be greater
than 17 digits. If this limit is exceeded, @COMPUTE returns an error similar to the
following.

Chapter 5
COMPUTE

5-8

2013-08-01 01:54:22 ERROR OGG-01334 Error mapping data from column to column in
function COMPUTE.

Examples

Example 1

AMOUNT_TOTAL = @COMPUTE (AMT + AMT2)

Example 2

AMOUNT_TOTAL = @IF (AMT >= 0, AMT * 100, 0)

Example 3

ANNUAL_SALARY = @COMPUTE (MONTHLY_SALARY * 12)

5.11 DATE
Use the @DATE function to return dates and times in a variety of formats to the target
column based on the format passed into the source column. @DATE converts virtually
any type of input into a valid SQL date. @DATE also can be used to extract portions of a
date column or to compute a numeric timestamp column based on a date.

Syntax

@DATE ('output_descriptor', 'input_descriptor', source_column
[, 'input_descriptor', source_column] [, ...])

'output_descriptor'

The output of the function. The valid value is a string that is composed of date
descriptors and optional literal values, such as spaces or colons, that are required by
the target column. Date descriptors can be strung together as needed. See Table 5-7
for descriptions of date descriptors. The format descriptor must match the date/time/
timestamp format for the target. Oracle GoldenGate overrides the specified format to
make it correct, if necessary.

'input_descriptor'

The source input. The valid value is a string that is composed of date descriptors and
optional literal values, such as spaces or colons. Date descriptors can be strung
together as needed. The following are examples:

• Descriptor string 'YYYYMMDD' indicates that the source column specified with
source_column contains (in order) a four-digit year (YYYY), month (MM), and day (DD).

• Descriptor string 'DD/MM/YY' indicates that the source column specified with
source_column contains the day, a slash, the month, a slash, and the two digit
year.

See Table 5-7 for date descriptions.

source_column

The name of the numeric or character source column that supplies the input specified
with input_descriptor.

Chapter 5
DATE

5-9

Table 5-7 Date Descriptors

Descripto
r

Description Valid for...

CC
Century Input/Output

YY
Two-digit year Input/Output

YYYY
Four-digit year Input/Output

MM
Numeric month Input/Output

MMM
Alphanumeric month, such as APR, OCT Input/Output

DD
Numeric day of month Input/Output

DDD
Numeric day of the year, such as 001 or 365 Input/Output

DOW0
Numeric day of the week (Sunday = 0) Input/Output

DOW1
Numeric day of the week (Sunday = 1) Input/Output

DOWA
Alphanumeric day of the week, such as SUN, MON, TUE Input/Output

HH
Hour Input/Output

MI
Minute Input/Output

SS
Seconds Input/Output

JTSLCT
Use for a Julian timestamp that is already local time, or to keep
local time when converting to a Julian timestamp.

Input/Output

JTSGMT
Julian timestamp, the same as JTS. Input/Output

JTS
Julian timestamp. JUL and JTS produce numbers you can use in
numeric expressions. The unit is microseconds. On a Windows
machine, the value will be padded with zeros (0) because the
granularity of the Windows timestamp is milliseconds.

Input/Output

JUL
Julian day. JUL and JTS produce numbers you can use in numeric
expressions.

Input/Output

TTS
NonStop 48-bit timestamp Input

PHAMIS
PHAMIS application date format Input

Chapter 5
DATE

5-10

Table 5-7 (Cont.) Date Descriptors

Descripto
r

Description Valid for...

FFFFFF
Fraction (up to microseconds) Input/Output

STRATUS
STRATUS application timestamp Input/Output

CDATE
C timestamp in seconds since the Epoch Input/Output

Examples

Example 1
In an instance where a two-digit year is supplied, but a four-digit year is required in
the output, several options exist to obtain the correct century.

• The century can be hard coded, as in:

'CC', 19 or 'CC', 20

• The @IF function can be used to set a condition, as in:

'CC', @IF (YY > 70, 19, 20)

This causes the century to be set to 19 when the year is greater than 70;
otherwise the century is set to 20.

• The system can calculate the century automatically. If the year is less than 50, the
system calculates a century of 20; otherwise, a century of 19 is calculated.

Example 2
The following converts year, month and day columns into a date.

date_col = @DATE ('YYYY-MM-DD', 'YY', date1_yy, 'MM', date1_mm, 'DD', date1_dd)

Example 3
The following converts a date and time, defaulting seconds to zero.

date_col = @DATE ('YYYY-MM-DD HH:MI:00', 'YYMMDD', date1, 'HHMI', time1)

Example 4
The following converts a numeric column stored as YYYYMMDDHHMISS to a SQL date.

datetime_col = @DATE ('YYYY-MM-DD HH:MI:SS', 'YYYYMMDDHHMISS', numeric_date)

Example 5
The following converts a numeric column stored as YYYYMMDDHHMISS to a Julian
timestamp.

julian_ts_col = @DATE ('JTS', 'YYYYMMDDHHMISS', numeric_date)

Example 6
The following converts a Julian timestamp column to two separate columns: a
datetime column in the format YYYY-MM-DD HH:MI:SS and a fraction column that holds
the microseconds portion of the timestamp.

Chapter 5
DATE

5-11

datetime_col = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS', jts_field), fraction_col =
@DATE ('FFFFFF', 'JTS', jts_field)

Example 7
The following produces the time at which an order is filled. The inner @DATE expression
changes the order_taken column into a Julian timestamp, then adds the order_minutes
column converted into microseconds to this timestamp. The expression is passed
back as a new Julian timestamp to the outer @DATE expression, which converts it back
to a more readable date and time.

order_filled = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS', @DATE ('JTS',
'YYMMDDHHMISS', order_taken) + order_minutes * 60 * 1000000)

Example 8
The following does a full calculation of times. It goes from a source date column
named dt to a target column named dt5 that is to be converted to the date + 5 hours.
The calculation also goes from a source timestamp column named ts to a target
column named ts5 that is to be converted to the timestamp + 5 hours.

MAP scratch.t4, TARGET scratch.t4_copy,
COLMAP (USEDEFAULTS,
dt5 = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS',
@COMPUTE (@DATE ('JTS', 'YYYY-MM-DD HH:MI:SS', dt) + 18000000000)),
ts5 = @DATE ('YYYY-MM-DD HH:MI:SS.FFFFFF', 'JTS',
@COMPUTE (@DATE ('JTS', 'YYYY-MM-DD HH:MI:SS.FFFFFF', ts) + 18000000000))
) ;

5.12 DATEDIFF
Use the @DATEDIFF function to calculate the difference between two dates or datetimes,
in days or seconds.

Syntax

@DATEDIFF ('difference', 'date', 'date')

difference

The difference between the specified dates. Valid values can be:

• DD, which computes the difference in days.

• SS, which computes the difference in seconds.

date

A string within single quote marks, in the format of 'YYYY-MM-DD[*HH:MI[:SS]]', where *
can be a colon (:) or a blank space, or the @DATENOW function without quotes to return
the current date.

Examples

Example 1
The following calculates the number of days since the beginning of the year 2011.

YTD = @DATEDIFF ('DD', '2011-01-01', @DATENOW ())

Example 2
The following calculates the numerical day of the year. (@DATEDIFF returns 0 for
2011-01-01):

Chapter 5
DATEDIFF

5-12

todays_day = @COMPUTE (@DATEDIFF ('DD', '2011-01-01', @DATENOW ()) +1)

5.13 DATENOW
Use the @DATENOW function to return the current date and time in the format YYYY-MM-DD
HH:MI:SS. The date and time are returned in local time, including adjustments for
Daylight Saving Time. @DATENOW takes no arguments.

Syntax

@DATENOW ()

5.14 DDL
Use the @DDL function to return information about a DDL operation.

Syntax

@DDL ({TEXT | OPTYPE | OBJNAME | OBJTYPE | OBJOWNER})

OBJNAME

Returns the name of the object that is affected by the DDL.

OBJOWNER

Returns the name of the owner of the object that is affected by the DDL.

OBJTYPE

Returns the type of object that is affected by the DDL, such as TABLE or INDEX)

OPTYPE

Returns the operation type of the DDL, such as CREATE or ALTER.

TEXT

Returns the first 200 characters of the text of the DDL statement.

Example

The following example uses the output from @DDL in an EVENTACTIONS shell command.

DDL INCLUDE OBJNAME src.t* &
EVENTACTIONS (SHELL ('echo The DDL text is var1> out.txt ', &
VAR var1 = @DDL (TEXT)));

The redirected output file might contain a string like this:

The DDL text is CREATE TABLE src.test_tab (col1 int);

5.15 EVAL
Use the @EVAL function to select a value based on a series of independent tests. There
is no limit to the number of conditions you can test. If the number of cases is large, list
the most frequently encountered conditions first for best performance.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding

Chapter 5
DATENOW

5-13

of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Syntax

@EVAL (condition, result
[condition, result] [,]
[, default_result])

condition

A conditional test using standard conditional operators. More than one condition can
be specified.

result

A value or string to return based on the results of the conditional test. Enclose literals
within single quote marks. Specify a result for each condition that is used.

default_result

A default result to return if none of the conditions is satisfied. A default result is
optional.

Examples

Example 1
In the following example, if the AMOUNT column is greater than 10000, a result of high
amount is returned. If AMOUNT is greater than 5000 (and less than or equal to 10000), a
result of somewhat high is returned (unless the prior condition was satisfied). If neither
condition is satisfied, a COLUMN_MISSING indication is returned because a default result
is not specified.

AMOUNT_DESC = @EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

Example 2
The following is a modification of the preceding example. It returns the same results,
except that a default value is specified, and a result of lower is returned if AMOUNT is
less than or equal to 5000.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high', 'lower')

5.16 GETENV
Use the @GETENV function to return information about the Oracle GoldenGate
environment. You can use the information as input into the following:

• Stored procedures or queries (with SQLEXEC)

• Column maps (with the COLMAP option of TABLE or MAP)

• User tokens (defined with the TOKENS option of TABLE and mapped to target columns
by means of the @TOKEN function)

• The GET_ENV_VALUE user exit function (see "GET_ENV_VALUE")

Chapter 5
GETENV

5-14

Note:

All syntax options must be enclosed within quotes as shown in the
syntax descriptions.

Syntax

@GETENV (
'LAG' , 'unit' |
'LASTERR' , 'error_info' |
'JULIANTIMESTAMP' |
'JULIANTIMESTAMP_PRECISE' |
'RECSOUTPUT' |
{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic' |
'GGENVIRONMENT', 'environment_info' |
'GGFILEHEADER', 'header_info' |
'GGHEADER', 'header_info' |
'RECORD', 'location_info' |
'DBENVIRONMENT', 'database_info'
'TRANSACTION', 'transaction_info' |
'OSVARIABLE', 'variable' |
'TLFKEY', SYSKEY, unique_key
'RECORD_TIMESTAMP_PRECISE',
'TRANSACTION_TIMESTAMP_PRECISE',
'USERNAME',
'OSUSERNAME',
'MACHINENAME',
'PROGRAMNAME',
'CLIENTIDENTIFIER',
)

'LAG' , 'unit'

Valid for Extract and Replicat.

Use the LAG option of @GETENV to return lag information. Lag is the difference between
the time that a record was processed by Extract or Replicat and the timestamp of that
record in the data source.

Syntax

@GETENV ('LAG', {'SEC'|'MSEC'|'MIN'})

'SEC'

Returns the lag in seconds. This is the default when a unit is not explicitly provided for
LAG.

'MSEC'

Returns the lag in milliseconds.

'MIN'

Returns the lag in minutes.

'LASTERR' , 'error_info'

Valid for Replicat.

Chapter 5
GETENV

5-15

Use the LASTERR option of @GETENV to return information about the last failed operation
processed by Replicat.

Syntax

@GETENV ('LASTERR', {'DBERRNUM'|'DBERRMSG'|'OPTYPE'|'ERRTYPE'})

'DBERRNUM'

Returns the database error number associated with the failed operation.

'DBERRMSG'

Returns the database error message associated with the failed operation.

'OPTYPE'

Returns the operation type that was attempted. For a list of Oracle GoldenGate
operation types, see Administering Oracle GoldenGate for Windows and UNIX.

'ERRTYPE'

Returns the type of error. Possible results are:

• DB (for database errors)

• MAP (for errors in mapping)

'JULIANTIMESTAMP' | 'JULIANTIMESTAMP_PRECISE'

Valid for Extract and Replicat.

Use the JULIANTIMESTAMP option of @GETENV to return the current time in Julian format.
The unit is microseconds (one millionth of a second). On a Windows machine, the
value is padded with zeros (0) because the granularity of the Windows timestamp is
milliseconds (one thousandth of a second). For example, the following is a typical
column mapping:

MAP dbo.tab8451, Target targ.tabjts, COLMAP (USEDEFAULTS, &
JTSS = @GETENV ('JULIANTIMESTAMP')
JTSFFFFFF = @date ('yyyy-mm-dd hh:mi:ss.ffffff', 'JTS', &
@getenv ('JULIANTIMESTAMP')))
;

Possible values that the JTSS and JTSFFFFFF columns can have are:

212096320960773000 2010-12-17:16:42:40.773000
212096321536540000 2010-12-17:16:52:16.540000
212096322856385000 2010-12-17:17:14:16.385000
212096323062919000 2010-12-17:17:17:42.919000
212096380852787000 2010-12-18:09:20:52.787000

The last three digits (the microseconds) of the number all contain the padding of 0s .

Optionally, you can use the 'JULIANTIMESTAMP_PRECISE' option to obtain a timestamp
with high precision though this may effect performance.

Syntax

@GETENV ('JULIANTIMESTAMP')
@GETENV ('JULIANTIMESTAMP_PRECISE')

'RECSOUTPUT'

Valid for Extract.

Chapter 5
GETENV

5-16

Use the RECSOUTPUT option of @GETENV to retrieve a current count of the number of
records that Extract has written to the trail file since the process started. The returned
value is not unique to a table or transaction, but instead for the Extract session itself.
The count resets to 1 whenever Extract stops and then is started again.

Syntax

@GETENV ('RECSOUTPUT')

{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic'

Valid for Extract and Replicat.

Use the STATS and DELTASTATS options of @GETENV to return the number of operations
that were processed per table for any or all of the following:

• INSERT operations

• UPDATE operations

• DELETE operations

• TRUNCATE operations

• Total DML operations

• Total DDL operations

• Number of conflicts that occurred, if the Conflict Detection and Resolution (CDR)
feature is used.

• Number of CDR resolutions that succeeded

• Number of CDR resolutions that failed

Any errors in the processing of this function, such as an unresolved table entry or
incorrect syntax, returns a zero (0) for the requested statistics value.

Understanding How Recurring Table Specifications Affect Operation Counts

An Extract that is processing the same source table to multiple output trails returns
statistics based on each localized output trail to which the table linked to @GETENV is
written. For example, if Extract captures 100 inserts for table ABC and writes table ABC
to three trails, the result for the @GETENV is 300

EXTRACT ABC
...
EXTTRAIL c:\ogg\dirdat\aa;
TABLE TEST.ABC;
EXTTRAIL c:\ogg\dirdat\bb;
TABLE TEST.ABC;
TABLE EMI, TOKENS (TOKEN-CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));
EXTTRAIL c:\ogg\dirdat\cc;
TABLE TEST.ABC;

In the case of an Extract that writes a source table multiple times to a single output
trail, or in the case of a Replicat that has multiple MAP statements for the same TARGET
table, the statistics results are based on all matching TARGET entries. For example, if
Replicat filters 20 rows for REGION 'WEST,' 10 rows for REGION 'EAST,' 5 rows for REGION
'NORTH,' and 2 rows for REGION 'SOUTH' (all for table ABC) the result of the @GETENV is 37.

REPLICAT ABC
...

Chapter 5
GETENV

5-17

MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'WEST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'EAST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'NORTH'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'SOUTH'));
MAP TEST.EMI, TARGET TEST.EMI, &
 COLMAP (CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));

Capturing Multiple Statistics

You can execute multiple instances of @GETENV to get counts for different operation
types.

This example returns statistics only for INSERT and UPDATE operations:

REPLICAT TEST
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, IU = @COMPUTE (@GETENV &
 ('STATS', 'TABLE', 'ABC', 'DML') - (@GETENV ('STATS', 'TABLE', &
 'ABC', 'DELETE'));

This example returns statistics for DDL and TRUNCATE operations:

REPLICAT TEST2
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, DDL = @COMPUTE &
(@GETENV ('STATS', 'DDL') + (@GETENV ('STATS', 'TRUNCATE'));

Example Use Case

In the following use case, if all DML from the source is applied successfully to the
target, Replicat suspends by means of EVENTACTIONS with SUSPEND, until resumed from
GGSCI with SEND REPLICAT with RESUME.

GETENV used in Extract parameter file:

TABLE HR1.HR*;
TABLE HR1.STAT, TOKENS ('env_stats' = @GETENV ('STATS', 'TABLE', &
 'HR1.HR*', 'DML'));

GETENV used in Replicat parameter file:

MAP HR1.HR*, TARGET HR2.*;
MAP HR1.STAT, TARGET HR2.STAT, filter (
 @if (
 @token ('stats') =
 @getenv ('STATS', 'TABLE', 'TSSCAT.TCUSTORD', 'DML'), 1, 0)
),
 eventactions (suspend);

Using Statistics in FILTER Clauses

Statistics returned by STATS and DELTASTATS are dynamic values and are incremented
after mapping is performed. Therefore, when using CDR statistics in a FILTER clause in
each of multiple MAP statements, you need to order the MAP statements in descending
order of the statistics values. If the order is not correct, Oracle GoldenGate returns
error OGG-01921. For detailed information about this requirement, see Document
1556241.1 in the Knowledge base of My Oracle Support at http://support.oracle.com.

Chapter 5
GETENV

5-18

http://support.oracle.com

Example 5-1 MAP statements containing statistics in FILTER clauses

In the following example, the MAP statements containing the filter for the CDR_CONFLICTS
statistic are ordered in descending order of the statistic: >3, then =3, then <3.

MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE
ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER (@GETENV ("STATS",
"CDR_CONFLICTS") > 3),EVENTACTIONS (LOG INFO);MAP TEST.GG_HEARTBEAT_TABLE, TARGET
TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,
(DEFAULT, OVERWRITE)),FILTER (@GETENV ("STATS", "CDR_CONFLICTS") = 3),EVENTACTIONS
(LOG WARNING);MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE
COMPARECOLS (ON UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT,
OVERWRITE)),FILTER (@GETENV ("STATS", "CDR_CONFLICTS") < 3),EVENTACTIONS (LOG
WARNING);

Syntax

@GETENV ({'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic')

{'STATS' | 'DELTASTATS'}

STATS returns counts since process startup, whereas DELTASTATS returns counts since
the last execution of a DELTASTATS.
The execution logic is as follows:

• When Extract processes a transaction record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved source tables in the TABLE
statement.

• When Replicat processes a trail record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved target tables in the TARGET
clause of the MAP statement.

'TABLE', 'table'

Executes the STATS or DELTASTATS only for the specified table or tables. Without this
option, counts are returned for all tables that are specified in TABLE (Extract) or MAP
(Replicat) parameters in the parameter file.
Valid table_name values are:

• 'schema.table' specifies a table.

• 'table' specifies a table of the default schema.

• 'schema.*' specifies all tables of a schema.

• '*' specifies all tables of the default schema.

For example, the following counts DML operations only for tables in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.*', 'DML'));

Likewise, the following counts DML operations only for the emp table in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.emp', 'DML'));

Chapter 5
GETENV

5-19

By contrast, because there are no specific tables specified for STATS in the following
example, the function counts all INSERT, UPDATE, and DELETE operations for all tables in
all schemas that are represented in the TARGET clauses of MAP statements:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = &
@GETENV ('STATS', 'DML'));

'statistic'
The type of statistic to return. See Using Statistics in FILTER Clauses for important
information when using statistics in FILTER clauses in multiple TABLE or MAP statements.

'INSERT'

Returns the number of INSERT operations that were processed.

'UPDATE'

Returns the number of UPDATE operations that were processed.

'DELETE'

Returns the number of DELETE operations that were processed.

'DML'

Returns the total of INSERT, UPDATE, and DELETE operations that were processed.

'TRUNCATE'

Returns the number of TRUNCATE operations that were processed. This variable
returns a count only if Oracle GoldenGate DDL replication is not being used. If
DDL replication is being used, this variable returns a zero.

'DDL'

Returns the number of DDL operations that were processed, including TRUNCATEs
and DDL specified in INCLUDE and EXCLUDE clauses of the DDL parameter, all scopes
(MAPPED, UNMAPPED, OTHER). This variable returns a count only if Oracle GoldenGate
DDL replication is being used. This variable is not valid for 'DELTASTATS'.

'CDR_CONFLICTS'

Returns the number of conflicts that Replicat detected when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP','CDR_CONFLICTS')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_CONFLICTS')

'CDR_RESOLUTIONS_SUCCEEDED'

Returns the number of conflicts that Replicat resolved when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_SUCCEEDED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')

Chapter 5
GETENV

5-20

'CDR_RESOLUTIONS_FAILED'

Returns the number of conflicts that Replicat could not resolve when executing
the Conflict Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_FAILED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

'GGENVIRONMENT' , 'environment_info'

Valid for Extract and Replicat.

Use the GGENVIRONMENT option of @GETENV to return information about the Oracle
GoldenGate environment.

Syntax

@GETENV ('GGENVIRONMENT', {'DOMAINNAME'|'GROUPDESCRIPTION'|'GROUPNAME'|

'GROUPTYPE'|'HOSTNAME'|'OSUSERNAME'|'PROCESSID'|'USERNAME'|'MACHINENAME'|'PROGRAMNAME
'|'CLIENTIDENTIFIER'})

'DOMAINNAME'

(Windows only) Returns the domain name associated with the user that started the
process.

'GROUPDESCRIPTION'

Returns the description of the group, taken from the checkpoint file. Requires that a
description was provided with the DESCRIPTION parameter when the group was created
with the ADD command in GGSCI.

'GROUPNAME'

Returns the name of the process group.

'GROUPTYPE'

Returns the type of process, either EXTRACT or REPLICAT.

'HOSTNAME'

Returns the name of the system running the Extract or Replicat process.

'OSUSERNAME'

Returns the operating system user name that started the process.

'PROCESSID'

Returns the process ID that is assigned to the process by the operating system.

‘USERNAME’
Database login user name.

‘MACHINENAME’
Name of the host, machine, or server where database is running

‘PROGRAMNAME’
Name of the program or application that started the transaction or session.

Chapter 5
GETENV

5-21

‘CLIENTIDENTIFIER’
Value set by using DBMS_SESSION_.set_identifier().

'GGHEADER' , 'header_info'

Valid for Extract and Replicat.

Use the GGHEADER option of @GETENV to return information from the header portion of an
Oracle GoldenGate trail record. The header describes the transaction environment of
the record. For more information on record headers and record types, see
Administering Oracle GoldenGate for Windows and UNIX.

Syntax

@GETENV ('GGHEADER', {'BEFOREAFTERINDICATOR'|'COMMITTIMESTAMP'|'LOGPOSITION'|
 'LOGRBA'|'OBJECTNAME'|'TABLENAME'|'OPTYPE'|'RECORDLENGTH'|
 'TRANSACTIONINDICATOR'})

'BEFOREAFTERINDICATOR'

Returns the before or after indicator showing whether the record is a before image or
an after image. Possible results are:

• BEFORE (before image)

• AFTER (after image)

'COMMITTIMESTAMP'

Returns the transaction timestamp (the time when the transaction committed)
expressed in the format of YYYY-MM-DD HH:MI:SS.FFFFFF, for example:

2011-01-24 17:08:59.000000

'LOGPOSITION'

Returns the position of the Extract process in the data source. (See the LOGRBA option.)

'LOGRBA'

LOGRBA and LOGPOSITION store details of the position in the data source of the record.
For transactional log-based products, LOGRBA is the sequence number and LOGPOSITION
is the relative byte address. However, these values will vary depending on the capture
method and database type.

'OBJECTNAME' | 'TABLENAME'

Returns the table name or object name (if a non-table object).

'OPTYPE'

Returns the type of operation. Possible results are:

INSERT
UPDATE
DELETE
ENSCRIBE COMPUPDATE
SQL COMPUPDATE
PK UPDATE
TRUNCATE

If the operation is not one of the above types, then the function returns the word TYPE
with the number assigned to the type.

Chapter 5
GETENV

5-22

'RECORDLENGTH'

Returns the record length in bytes.

'TRANSACTIONINDICATOR'

Returns the transaction indicator. The value corresponds to the TransInd field of the
record header, which can be viewed with the Logdump utility.
Possible results are:

• BEGIN (represents TransInD of 0, the first record of a transaction.)

• MIDDLE (represents TransInD of 1, a record in the middle of a transaction.)

• END (represents TransInD of 2, the last record of a transaction.)

• WHOLE (represents TransInD of 3, the only record in a transaction.)

'GGFILEHEADER' , 'header_info'

Valid for Replicat.

Use the GGFILEHEADER option of @GETENV to return attributes of an Oracle GoldenGate
extract file or trail file. These attributes are stored as tokens in the file header.

Note:

If a given database, operating system, or Oracle GoldenGate version does
not provide information that relates to a given token, a NULL value will be
returned.

Syntax

@GETENV ('GGFILEHEADER', {'COMPATIBILITY'|'CHARSET'|'CREATETIMESTAMP'|
 'FILENAME'|'FILETYPE'|'FILESEQNO'|'FILESIZE'|'FIRSTRECCSN'|
 'LASTRECCSN'|'FIRSTRECIOTIME'|'LASTRECIOTIME'|'URI'|'URIHISTORY'|
 'GROUPNAME'|'DATASOURCE'|'GGMAJORVERSION'|'GGMINORVERSION'|
 'GGVERSIONSTRING'|'GGMAINTENANCELEVEL'|'GGBUGFIXLEVEL'|'GGBUILDNUMBER'|
 'HOSTNAME'|'OSVERSION'|'OSRELEASE'|'OSTYPE'|'HARDWARETYPE'|
 'DBNAME'|'DBINSTANCE'|'DBTYPE'|'DBCHARSET'|'DBMAJORVERSION'|
 'DBMINORVERSION'|'DBVERSIONSTRING'|'DBCLIENTCHARSET'|'DBCLIENTVERSIONSTRING'|
 'LASTCOMPLETECSN'|'LASTCOMPLETEXIDS'|'LASTCSN'|'LASTXID'|
 'LASTCSNTS'})

'COMPATIBILITY'

Returns the Oracle GoldenGate compatibility level of the trail file. The compatibility
level of the current Oracle GoldenGate version must be greater than, or equal to, the
compatibility level of the trail file to be able to read the data records in that file. Current
valid values are 0 or 1.

• 1 means that the trail file is of Oracle GoldenGate version 10.0 or later, which
supports file headers that contain file versioning information.

• 0 means that the trail file is of an Oracle GoldenGate version that is older than
10.0. File headers are not supported in those releases. The 0 value is used for
backward compatibility to those Oracle GoldenGate versions.

'CHARSET'

Returns the global character set of the trail file. For example:

Chapter 5
GETENV

5-23

WCP1252-1

'CREATETIMESTAMP'

Returns the time that the trail was created, in local GMT Julian time in INT64.

'FILENAME'

Returns the name of the trail file. Can be an absolute or relative path, with a forward
or backward slash depending on the file system.

'FILETYPE'

Returns a numerical value indicating whether the trail file is a single file (such as one
created for a batch run) or a sequentially numbered file that is part of a trail for online,
continuous processing. The valid values are:

• 0 - EXTFILE

• 1 - EXTTRAIL

• 2 - UNIFIED and EXTFILE

• 3 - UNIFIED and EXTTRAIL

'FILESEQNO'

Returns the sequence number of the trail file, without any leading zeros. For example,
if a file sequence number is aa000026, FILESEQNO returns 26.

'FILESIZE'

Returns the size of the trail file. It returns NULL on an active file and returns a size
value when the file is full and the trail rolls over.

'FIRSTRECCSN'

Returns the commit sequence number (CSN) of the first record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate for Windows and UNIX.

'LASTRECCSN'

Returns the commit sequence number (CSN) of the last record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate for Windows and UNIX.

'FIRSTRECIOTIME'

Returns the time that the first record was written to the trail file. Value is NULL until the
trail file is completed.

'LASTRECIOTIME'

Returns the time that the last record was written to the trail file. Value is NULL until the
trail file is completed.

'URI'

Returns the universal resource identifier of the process that created the trail file, in the
following format:

host_name:dir:[:dir][:dir_n]group_name

Where:

• host_name is the name of the server that hosts the process

Chapter 5
GETENV

5-24

• dir is a subdirectory of the Oracle GoldenGate installation path.

• group_name is the name of the process group that is linked with the process.

The following example shows where the trail was processed and by which process.
This includes a history of previous runs.

sys1:home:oracle:v9.5:extora

'URIHISTORY'

Returns a list of the URIs of processes that wrote to the trail file before the current
process.

• For a primary Extract, this field is empty.

• For a data pump, this field is URIHistory + URI of the input trail file.

'GROUPNAME'

Returns the name of the group that is associated with the Extract process that created
the trail. The group name is the one that was supplied when the ADD EXTRACT
command was issued.

'DATASOURCE'

Returns the data source that was read by the process. The return value can be one of
the following:

• DS_EXTRACT_TRAILS: The source was an Oracle GoldenGate extract file, populated

with change data.

• DS_DATABASE: The source was a direct select from database table written to a trail,
used for SOURCEISTABLE-driven initial load.

• DS_TRAN_LOGS: The source was the database transaction log.

• DS_INITIAL_DATA_LOAD: The source was a direct select from database tables for

an initial load.

• DS_VAM_EXTRACT: The source was a vendor access module (VAM).

• DS_VAM_TWO_PHASE_COMMIT: The source was a VAM trail.

'GGMAJORVERSION'

Returns the major version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 1.

'GGMINORVERSION'

Returns the minor version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 2.

'GGVERSIONSTRING'

Returns the maintenance (or patch) level of the Extract process that created the trail,
expressed as an integer. For example, if a version is 1.2.3, it returns 3.

'GGMAINTENANCELEVEL'

Returns the maintenance version of the process (xx.xx.xx).

'GGBUGFIXLEVEL'

Returns the patch version of the process (xx.xx.xx.xx).

'GGBUILDNUMBER'

Returns the build number of the process.

Chapter 5
GETENV

5-25

'HOSTNAME'

Returns the DNS name of the machine where the Extract that wrote the trail is
running. For example:

• sysa

• sysb

• paris

• hq25

'OSVERSION'

Returns the major version of the operating system of the machine where the Extract
that wrote the trail is running. For example:

• Version s10_69

• #1 SMP Fri Feb 24 16:56:28 EST 2006

• 5.00.2195 Service Pack 4

'OSRELEASE'

Returns the release version of the operating system of the machine where the Extract
that wrote the trail is running. For example, release versions of the examples given for
OSVERSION could be:

• 5.10

• 2.6.9-34.ELsmp

'OSTYPE'

Returns the type of operating system of the machine where the Extract that wrote the
trail is running. For example:

• SunOS

• Linux

• Microsoft Windows

'HARDWARETYPE'

Returns the type of hardware of the machine where the Extract that wrote the trail is
running. For example:

• sun4u

• x86_64

• x86

'DBNAME'

Returns the name of the database, for example findb.

'DBINSTANCE'

Returns the name of the database instance, if applicable to the database type, for
example ORA1022A.

'DBTYPE'

Returns the type of database that produced the data in the trail file. Can be one of:

Chapter 5
GETENV

5-26

DB2 UDB
DB2 ZOS
CTREE
MSSQL
MYSQL
ORACLE
SQLMX
SYBASE
TERADATA
NONSTOP
ENSCRIBE
ODBC

'DBCHARSET'

Returns the character set that is used by the database that produced the data in the
trail file. (For some databases, this will be empty.)

'DBMAJORVERSION'

Returns the major version of the database that produced the data in the trail file.

'DBMINORVERSION'

Returns the minor version of the database that produced the data in the trail file.

'DBVERSIONSTRING'

Returns the maintenance (patch) level of the database that produced the data in the
trail file.

'DBCLIENTCHARSET'

Returns the character set that is used by the database client.

'DBCLIENTVERSIONSTRING'

Returns the maintenance (patch) level of the database client. (For some databases,
this will be empty.)

'LASTCOMPLETECSN'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCOMPLETEXIDS'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCSN'

Returns recovery information for internal Oracle GoldenGate use.

'LASTXID'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCSNTS'

Returns recovery information for internal Oracle GoldenGate use.

'RECORD' , 'location_info'

Valid for a data-pump Extract or Replicat.

Use the RECORD option of @GETENV to return the location or Oracle rowid of a record in an
Oracle GoldenGate trail file.

Syntax

@GETENV ('RECORD', {'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

Chapter 5
GETENV

5-27

'FILESEQNO'

Returns the sequence number of the trail file without any leading zeros.

'FILERBA'

Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'

(Valid for Oracle) Returns the rowid of the record.

'RSN'

Returns the record sequence number within the transaction.

'TIMESTAMP'

Returns the timestamp of the record.

'RECORD_TIMESTAMP_PRECISE' , 'location_info'

Valid for a data-pump Extract or Replicat.

Use the RECORD_TIMESTAMP_PRECISE option of @GETENV to return the location or Oracle
rowid of a record in an Oracle GoldenGate trail file, with fraction precision.

This option returns the timestamp from YEAR to MICROSECONDS. However,
depending on the database, the value can be in MILLISECONDS with zero
MICROSECONDS.

Syntax

@GETENV ('RECORD_TIMESTAMP_PRECISE',
{'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'FILESEQNO'

Returns the sequence number of the trail file without any leading zeros.

'FILERBA'

Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'

(Valid for Oracle) Returns the rowid of the record.

'RSN'

Returns the record sequence number within the transaction.

'TIMESTAMP'

Returns the timestamp of the record in microseconds or milliseconds, depending on
the database type.

'DBENVIRONMENT' , 'database_info'

Valid for Extract and Replicat.

Use the DBENVIRONMENT option of @GETENV to return global environment information for a
database.

Syntax

@GETENV ('DBENVIRONMENT', {'DBNAME'|'DBVERSION'|'DBUSER'|'SERVERNAME'})

Chapter 5
GETENV

5-28

'DBNAME'

Returns the database name.

'DBVERSION'

Returns the database version.

'DBUSER'

Returns the database login user. Note that SQL Server does not log the user ID.

'SERVERNAME'

Returns the name of the server.

'TRANSACTION' , 'transaction_info

Valid for Extract.

Use the TRANSACTION option of @GETENV to return information about a source transaction.
This option is valid for the Extract process.

Syntax

@GETENV ('TRANSACTION', {'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD')

'TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction
and are stored as tokens in the trail record. For each transaction ID, there is an
associated CSN. Transaction ID tokens have no zero-padding on any platform,
because they never get evaluated as relative values. They only get evaluated for
whether they match or do not match. Note that in the trail, the transaction ID token is
shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when
returned for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other
supported databases, the CSN is zero-padded. In the case of the Sybase CSN, each
substring that is delimited by a dot (.) will be padded to a length that does not change
for that substring.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.
For more information about the CSN, see Administering Oracle GoldenGate for
Windows and UNIX.

'TIMESTAMP'

Returns the commit timestamp of the transaction.

'NAME'

Returns the transaction name, if available.

'USERID'

(Oracle) Returns the Oracle user ID of the database user that committed the last
transaction.

'USERNAME'

(Oracle) Returns the Oracle user name of the database user that committed the last
transaction.

Chapter 5
GETENV

5-29

'PLANNAME'

(DB2 on z/OS) Returns the plan name under which the current transaction was
originally executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the
native sequence number that identifies the beginning of the oldest uncommitted
transaction that is held in Extract memory. For example, given an Oracle database,
the BSN would be expressed as a system change number (SCN). The BSN
corresponds to the current I/O checkpoint value of Extract. This value can be obtained
from the trail by Replicat when @GETENV ('TRANSACTION', 'LOGBSN') is used. This value
also can be obtained by using the INFO REPLICAT command with the DETAIL option. The
purpose of obtaining the BSN from Replicat is to get a recovery point for Extract in the
event that a system failure or file system corruption makes the Extract checkpoint file
unusable. See Administering Oracle GoldenGate for Windows and UNIX for more
information about recovering the Extract position.

'REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the
value is always 1. For data pump and Replicat, the thread id used by Extract capture
of a RAC node is returned; on non-RAC, @GETENV() returns an error. Logdump shows
the token, ORATHREADID, in the token section if the transaction is captured by Extract on
a RAC node.

'TRANSACTION_TIMESTAMP_PRECISE' , 'transaction_info

Valid for Extract.

Use the TRANSACTION_TIMESTAMP_PRECISE option of @GETENV to return information about a
source transaction, but with fraction precision. It returns the timestamp from YEAR to
MICROSECONDS. This option is valid for the Extract process.

Syntax

@GETENV ('TRANSACTION_TIMESTAMP_PRECISE',
{'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD')

'TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction
and are stored as tokens in the trail record. For each transaction ID, there is an
associated CSN. Transaction ID tokens have no zero-padding on any platform,
because they never get evaluated as relative values. They only get evaluated for
whether they match or do not match. Note that in the trail, the transaction ID token is
shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when
returned for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other
supported databases, the CSN is zero-padded. In the case of the Sybase CSN, each
substring that is delimited by a dot (.) will be padded to a length that does not change
for that substring.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.

Chapter 5
GETENV

5-30

For more information about the CSN, see Administering Oracle GoldenGate for
Windows and UNIX.

'TIMESTAMP'

Returns the commit timestamp of the transaction.

'NAME'

Returns the transaction name, if available.

'USERID'

(Oracle) Returns the Oracle user ID of the database user that committed the last
transaction.

'USERNAME'

(Oracle) Returns the Oracle user name of the database user that committed the last
transaction.

'PLANNAME'

(DB2 on z/OS) Returns the plan name under which the current transaction was
originally executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the
native sequence number that identifies the beginning of the oldest uncommitted
transaction that is held in Extract memory. For example, given an Oracle database,
the BSN would be expressed as a system change number (SCN). The BSN
corresponds to the current I/O checkpoint value of Extract. This value can be obtained
from the trail by Replicat when @GETENV ('TRANSACTION', 'LOGBSN') is used. This value
also can be obtained by using the INFO REPLICAT command with the DETAIL option. The
purpose of obtaining the BSN from Replicat is to get a recovery point for Extract in the
event that a system failure or file system corruption makes the Extract checkpoint file
unusable. See Administering Oracle GoldenGate for Windows and UNIX for more
information about recovering the Extract position.

'REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the
value is always 1. For data pump and Replicat, the thread id used by Extract capture
of a RAC node is returned; on non-RAC, @GETENV() returns an error. Logdump shows
the token, ORATHREADID, in the token section if the transaction is captured by Extract on
a RAC node.

'OSVARIABLE' , 'variable'

Valid for Extract and Replicat.

Use the OSVARIABLE option of @GETENV to return the string value of a specified operating-
system environment variable.

Syntax

@GETENV ('OSVARIABLE', 'variable')

'variable'

The name of the variable. The search is an exact match of the supplied variable
name. For example, the UNIX grep command would return all of the following
variables, but @GETENV ('OSVARIABLE', 'HOME') would only return the value for HOME:

Chapter 5
GETENV

5-31

ANT_HOME=/usr/local/ant
JAVA_HOME=/usr/java/j2sdk1.4.2_10
HOME=/home/judyd
ORACLE_HOME=/rdbms/oracle/ora1022i/64

The search is case-sensitive if the operating system supports case-sensitivity.

'TLFKEY' , SYSKEY, 'unique_key'

Valid for Extract and Replicat.

Use the TLFKEY option of @GETENV to associate a unique key with TLF/PTLF records in
ACI's Base24 application. The 64-bit key is composed of the following concatenated
items:

• The number of seconds since 2000.

• The block number of the record in the TLF/PTLF block multiplied by ten.

• The node specified by the user (must be between 0 and 255).

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax
element in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

'USERNAME' ,

Specifies the database login user name.

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax
element in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

5.17 GETVAL
Use the @GETVAL function to extract values from a stored procedure or query so that
they can be used as input to a FILTER or COLMAP clause of a MAP or TABLE statement.

Whether or not a parameter value can be extracted with @GETVAL depends upon the
following:

1. Whether or not the stored procedure or query executed successfully.

2. Whether or not the stored procedure or query results have expired.

Chapter 5
GETVAL

5-32

When a value cannot be extracted, the @GETVAL function results in a "column missing"
condition. Typically, this occurs for update operations if the database only logs values
for columns that were changed.

Usually this means that the column cannot be mapped. To test for missing column
values, use the @COLTEST function to test the result of @GETVAL, and then map an
alternative value for the column to compensate for missing values, if desired. Or, to
ensure that column values are available, you can use the FETCHCOLS or FETCHCOLSEXCEPT
option of the TABLE or MAP parameter to fetch the values from the database if they are
not present in the log. Enabling supplemental logging for the necessary columns also
would work.

Syntax

@GETVAL (name.parameter)

name

The name of the stored procedure or query. When using SQLEXEC to execute the
procedure or query, valid values are as follows:
For queries, use the logical name specified with the ID option of the SQLEXEC clause. ID
is a required SQLEXEC argument for queries.
For stored procedures, use one of the following, depending on how many times the
procedure is to be executed within a TABLE or MAP statement:

• For multiple executions, use the logical name defined by the ID clause of the
SQLEXEC statement. ID is required for multiple executions of a procedure.

• For a single execution, use the actual stored procedure name.

parameter

Valid values are one of the following.

• The name of the parameter in the stored procedure or query from which the data
will be extracted and passed to the column map.

• RETURN_VALUE, if extracting values returned by a stored procedure or query.

Alternate Syntax

With SQLEXEC, you can capture parameter results without explicitly using the @GETVAL
keyword. Simply refer to the procedure name (or logical name if using a query or
multiple instances of a procedure) and parameter in the following format:

{procedure_name | logical_name}.parameter

Examples, Standard Syntax

Example 1
The following enables each map statement to call the stored procedure lookup by
referencing the logical names lookup1 and lookup2 within the @GETVAL function and
refer appropriately to each set of results.

MAP schema.srctab, TARGET schema.targtab,
SQLEXEC (SPNAME lookup, ID lookup1, PARAMS (param1 = srccol)),
COLMAP (targcol1 = @GETVAL (lookup1.param2));
MAP schema.srctab, TARGET schema.targtab2,
SQLEXEC (SPNAME lookup, ID lookup2, PARAMS (param1 = srccol)),
COLMAP (targcol2= @GETVAL (lookup2.param2));

Chapter 5
GETVAL

5-33

Example 2
The following shows a single execution of the stored procedure lookup. In this case,
the actual name of the procedure is used. A logical name is not needed.

MAP schema.tab1, TARGET schema.tab2,
SQLEXEC (SPNAME lookup, PARAMS (param1 = srccol)),
COLMAP (targcol = @GETVAL (lookup.param1));

Example 3
The following shows the execution of a query from which values are mapped with
@GETVAL.

MAP sales.account, TARGET sales.newacct,
SQLEXEC (ID lookup,
QUERY ' select desc_col into desc_param from lookup_table '
' where code_col = :code_param ',
PARAMS (code_param = account_code)),
COLMAP (newacct_id = account_id, newacct_val = @GETVAL (lookup.desc_param));

Examples, Alternate Syntax

Example 1
In the following example, @GETVAL is called implicitly for the phrase proc1.p2 without the
@GETVAL keyword.

MAP test.tab1, TARGET test.tab2,
SQLEXEC (SPNAME proc1, ID myproc, PARAMS (p1 = sourcecol1)),
COLMAP (targcol1 = proc1.p2);

Example 2
In the following example, the @GETVAL function is called implicitly for the phrase
lookup.desc_param without the @GETVAL keyword.

MAP sales.account, TARGET sales.newacct,
SQLEXEC (ID lookup,
QUERY ' select desc_col into desc_param from lookup_table '
' where code_col = :code_param ',
PARAMS (code_param = account_code)),
COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

5.18 HEXTOBIN
Use the @HEXTOBIN function to convert a supplied string of hexadecimal data into raw
format.

Syntax

@HEXTOBIN (data)

data

The name of the source column, an expression, or a literal string that is enclosed
within double quote marks.

Example

@HEXTOBIN ('414243') converts to three bytes: 0x41 0x42 0x43.

Chapter 5
HEXTOBIN

5-34

5.19 HIGHVAL | LOWVAL
Use the @HIGHVAL and @LOWVAL functions when you need to generate a value, but you
want to constrain it within an upper or lower limit. These functions emulate the COBOL
functions of the same names.

Use @HIGHVAL and @LOWVAL only with string and binary data types. When using them with
strings, only @STRNCMP is valid. Using them with decimal or date data types or with
SQLEXEC operations can cause errors. DOUBLE data types result in -1 or 0 (Oracle NUMBER,
no precision, no scale).

Syntax

@HIGHVAL ([length]) | @LOWVAL ([length])

length

Optional. Specifies the binary output length in bytes. The maximum value of length is
the length of the target column.

Example

The following example assumes that the size of the group_level column is 5 bytes.

Function statement Result

group_level = @HIGHVAL () {0xFF, 0xFF, 0xFF, 0xFF, 0xFF}

group_level = @LOWVAL () {0x00, 0x00, 0x00, 0x00, 0x00}

group_level = @HIGHVAL (3) {0xFF, 0xFF, 0xFF}

group_level = @LOWVAL (3) {0x00, 0x00, 0x00}

5.20 IF
Use the @IF function to return one of two values, based on a condition. You can use
the @IF function with other Oracle GoldenGate functions to begin a conditional
argument that tests for one or more exception conditions. You can direct processing
based on the results of the test. You can nest @IF statements, if needed.

Syntax

@IF (condition, value_if_non-zero, value_if-zero)

condition

A valid conditional expression or Oracle GoldenGate function. Use numeric operators
(such as =, > or <) only for numeric comparisons. For character comparisons, use one
of the character-comparison functions.

value_if_non-zero

Non-zero is considered true.

Chapter 5
HIGHVAL | LOWVAL

5-35

value_if_zero

Zero (0) is considered false.

Examples

Example 1
The following returns an amount only if the AMT column is greater than zero; otherwise
zero is returned.

AMOUNT_COL = @IF (AMT > 0, AMT, 0)

Example 2
The following returns WEST if the STATE column is CA, AZ or NV; otherwise it returns EAST.

REGION = @IF (@VALONEOF (STATE, 'CA', 'AZ', 'NV'), 'WEST', 'EAST')

Example 3
The following returns the result of the PRICE column multiplied by the QUANTITY column
if both columns are greater than 0. Otherwise, the @COLSTAT (NULL) function creates a
NULL value in the target column.

ORDER_TOTAL = @IF (PRICE > 0 AND QUANTITY > 0, PRICE * QUANTITY,
@COLSTAT (NULL))

5.21 NUMBIN
Use the @NUMBIN function to convert a binary string of eight or fewer bytes into a
number. Use this function when the source column defines a byte stream that actually
is a number represented as a string.

Syntax

@NUMBIN (source_column)

source_column

The name of the source column that contains the string to be converted.

Example

The following combines @NUMBIN and @DATE to transform a 48-bit column to a 64-bit
Julian value for local time.

DATE = @DATE ('JTSLCT', 'TTS' @NUMBIN (DATE))

5.22 NUMSTR
Use the @NUMSTR function to convert a string (character) column or value into a number.
Use @NUMSTR to do either of the following:

• Map a string (character) to a number.

• Use a string column that contains only numbers in an arithmetic expression.

Syntax

@NUMSTR (input)

Chapter 5
NUMBIN

5-36

input

Can be either of the following:

• The name of a character column.

• A literal string that is enclosed within single quote marks.

Example

PAGE_NUM = @NUMSTR (ALPHA_PAGE_NO)

5.23 OGG_SHA1
Use the OGG_SHA1 function to return the SHA-1 160 bit / 20 bytes hash value.

Syntax

OGG_SHA1(expression)

expression

The name of a column, literal string, other column mapping function.

Example

OGG_SHA1(col_name)

5.24 RANGE
Use the @RANGE function to divide the rows of any table across two or more Oracle
GoldenGate processes. It can be used to increase the throughput of large and heavily
accessed tables and also can be used to divide data into sets for distribution to
different destinations. Specify each range in a FILTER clause in a TABLE or MAP
statement.

@RANGE is safe and scalable. It preserves data integrity by guaranteeing that the same
row will always be processed by the same process group. To ensure that rows do not
shift partitions to another process group and that the DML is performed in the correct
order, the column on which you base the @RANGE partitioning must not ever change
during a process run. Updates to the partition column may result in "row not found"
errors or unique-constraint errors.

@RANGE computes a hash value of the columns specified in the input. If no columns are
specified, the KEYCOLS clause of the TABLE or MAP statement is used to determine the
columns to hash, if a KEYCOLS clause exists. Otherwise, the primary key columns are
used.

Oracle GoldenGate adjusts the total number of ranges to optimize the even distribution
across the number of ranges specified.

Because any columns can be specified for this function, rows in tables with relational
constraints to one another must be grouped together into the same process or trail to
preserve referential integrity.

Chapter 5
OGG_SHA1

5-37

Note:

Using Extract to calculate the ranges is more efficient than using Replicat.
Calculating ranges on the target side requires Replicat to read through the
entire trail to find the data that meets each range specification.

Syntax

@RANGE (range, total_ranges [, column] [, column] [, ...])

range

The range assigned to the specified process or trail. Valid values are 1, 2, 3, and so
forth, with the maximum value being the value defined by total_ranges.

total_ranges

The total number of ranges allocated. For example, to divide data into three groups,
use the value 3.

column

The name of a column on which to base the range allocation. This argument is
optional. If not used, Oracle GoldenGate allocates ranges based on the table's
primary key.

Examples

Example 1
In the following example, the replication workload is split into three ranges (between
three Replicat processes) based on the ID column of the source acct table.
(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 3, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 3, ID));

(Replicat group 3 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (3, 3, ID));

Example 2
In the following example, one Extract process splits the processing load into two trails.
Since no columns were defined on which to base the range calculation, Oracle
GoldenGate will use the primary key columns.

RMTTRAIL /ggs/dirdat/aa
TABLE fin.account, FILTER (@RANGE (1, 2));
RMTTRAIL /ggs/dirdat/bb
TABLE fin.account, FILTER (@RANGE (2, 2));

Example 3
In the following example, two tables have relative operations based on an order_ID
column. The order_master table has a key of order_ID, and the order_detail table has
a key of order_ID and item_number. Because the key order_ID establishes relativity, it is

Chapter 5
RANGE

5-38

used in @RANGE filters for both tables to preserve referential integrity. The load is split
into two ranges.
(Parameter file #1)

MAP sales.order_master, TARGET sales.order_master,
FILTER (@RANGE (1, 2, order_ID));
MAP sales.order_detail, TARGET sales.order_detail,
FILTER (@RANGE (1, 2, order_ID));

(Parameter file #2)

MAP sales.order_master, TARGET sales.order_master,
FILTER (@RANGE (2, 2, order_ID));
MAP sales.order_detail, TARGET sales.order_detail,
FILTER (@RANGE (2, 2, order_ID));

5.25 STRCAT
Use the @STRCAT function to concatenate one or more strings or string (character)
columns. Enclose literal strings within single quote marks.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Syntax

@STRCAT (string1, string2 [, ...])

string1

The first column or literal string to be concatenated.

string2

The next column or literal string to be concatenated.

Example

The following creates a phone number from three columns and includes the literal
formatting values.

PHONE_NO = @STRCAT (AREA_CODE, PREFIX, '-', PHONE)

5.26 STRCMP
Use the @STRCMP function to compare two character columns or literal strings. Enclose
literals within single quote marks.

@STRCMP returns the following:

• –1 if the first string is less than the second.

• 0 if the strings are equal.

• 1 if the first string is greater than the second.

Trailing spaces are truncated before comparing the strings.

Chapter 5
STRCAT

5-39

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRCMP (string1, string2)

string1

The first column or literal string to be compared.

string2

The second column or literal string to be compared.

Example

The following example compares two literal strings and returns 1 because the first
string is greater than the second one.

@STRCMP ('JOHNSON', 'JONES')

5.27 STREQ
Use the @STREQ function to determine whether or not two string (character) columns or
literal strings are equal. Enclose literals within single quote marks. @STREQ returns the
following:

• 1 (true) if the strings are equal.

• 0 (false) if the strings are not equal.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems.

Trailing spaces are truncated before comparing the strings.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STREQ (string1, string2)

string1

The first column or literal string to be compared.

string2

The second column or literal string to be compared.

Example

The following compares the value of the region column to the literal value EAST. If
region = EAST, the record passes the filter.

FILTER (@STREQ (region, 'EAST'))

Chapter 5
STREQ

5-40

You could use @STREQ in a comparison to determine a result, as shown in the following
example. If the state is NY, the expression returns East Coast. Otherwise, it returns
Other.

@IF (@STREQ (state, 'NY'), 'East Coast', 'Other')

5.28 STREXT
Use the @STREXT function to extract a portion of a string.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STREXT (string, begin_position, end_position)

string

The string from which to extract. The string can be either the name of a character
column or a literal string. Enclose literals within single quote marks.

begin_position

The character position at which to begin extraction.

end_position

The character position at which to end extraction. The end position is included in the
extraction.

Example

The following example uses three @STREXT functions to extract a phone number into
three different columns.

AREA_CODE = @STREXT (PHONE, 1, 3),
PREFIX = @STREXT (PHONE, 4, 6),
PHONE_NO = @STREXT (PHONE, 7, 10)

5.29 STRFIND
Use the @STRFIND function to determine the position of a string within a string column or
else return zero if the string is not found. Optionally, @STRFIND can accept a starting
position within the string.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRFIND (string, 'search_string' [, begin_position])

Chapter 5
STREXT

5-41

string

The string in which to search. This can be either the name of a character column or a
literal string that is within single quote marks.

'search_string'

The string for which to search. Enclose the search string within single quote marks.

begin_position

The byte position at which to begin searching.

Example

Assuming the string for the ACCT column is ABC123ABC, the following are possible results.

Function statement Result

@STRFIND (ACCT, '23')
5

@STRFIND (ACCT, 'ZZ')
0

@STRFIND (ACCT, 'ABC', 2)
7 (because the search started at the second byte)

5.30 STRLEN
Use the @STRLEN function to return the length of a string, expressed as the number of
characters.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRLEN (string)

string

The name of a string (character) column or a literal string. Enclose literals within
single quote marks.

Examples

@STRLEN (ID_NO)

@STRLEN ('abcd')

5.31 STRLTRIM
Use the @STRLTRIM function to trim leading spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding

Chapter 5
STRLEN

5-42

of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Syntax

@STRLTRIM (string)

string

The name of a character column or a literal string that is enclosed within single quote
marks.

Example

birth_state = @strltrim (state)

5.32 STRNCAT
Use the @STRNCAT function to concatenate one or more strings to a maximum length.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRNCAT (string, max_length [, string, max_length] [, ...])

string

The name of a string (character) column or a literal string that is enclosed within
single quote marks.

max_length

The maximum string length, in characters.

Example

The following concatenates two strings and results in ABC123.

PHONE_NO = @STRNCAT ('ABCDEF', 3, '123456', 3)

5.33 STRNCMP
Use the @STRNCMP function to compare two strings based on a specific number of bytes.
The string can be either the name of a string (character) column or a literal string that
is enclosed within single quote marks. The comparison starts at the first byte in the
string.

@STRNCMP returns the following:

• –1 if the first string is less than the second.

• 0 if the strings are equal.

• 1 if the first string is greater than the second.

This function does not support NCHAR or NVARCHAR data types.

Chapter 5
STRNCAT

5-43

Syntax

@STRNCMP (string1, string2, max_length)

string1

The first string to be compared.

string2

The second string to be compared.

max_length

The maximum number of bytes in the string to compare.

Example

The following example compares the first two bytes of each string, as specified by a
max_length of 2, and it returns 0 because both sets are the same.

@STRNCMP ('JOHNSON', 'JONES', 2)

5.34 STRNUM
Use the @STRNUM function to convert a number into a string and specify the output
format and padding.

Syntax

@STRNUM (column, {LEFT | LEFTSPACE, | RIGHT | RIGHTZERO} [length])

column

The name of a source numeric column.

LEFT

Left justify, without padding.

LEFTSPACE

Left justify, fill the rest of the target column with spaces.

RIGHT

Right justify, fill the rest of the target column with spaces. If the value of a column is a
negative value, the spaces are added before the minus sign. For example,
strnum(Col1, right) used for a column value of -1.27 becomes ###-1.27, assuming
the target column allows 7 digits. The minus sign is not counted as a digit, but the
decimal is.

RIGHTZERO

Right justify, fill the rest of the target column with zeros. If the value of a column is a
negative value, the zeros are added after the minus sign and before the numbers. For
example, strnum(Col1, rightzero) used for a column value of -1.27 becomes
-0001.27, assuming the target column allows 7 digits. The minus sign is not counted
as a digit, but the decimal is.

length

Specifies the output length, when any of the options are used that specify padding (all
but LEFT). For example:

Chapter 5
STRNUM

5-44

• strnum(Col1, right, 6) used for a column value of -1.27 becomes ##-1.27. The
minus sign is not counted as a digit, but the decimal is.

• strnum(Col1, rightzero, 6) used for a column value of -1.27 becomes -001.27.
The minus sign is not counted as a digit, but the decimal is.

Example

Assuming a source column named NUM has a value of 15 and the target column's
maximum length is 5 characters, the following examples show the different types of
results obtained with formatting options.

Function statement Result (# denotes a space)

CHAR1 = @STRNUM (NUM, LEFT) 15

CHAR1 = @STRNUM (NUM, LEFTSPACE) 15###

CHAR1 = @STRNUM (NUM, RIGHTZERO) 00015

CHAR1 = @STRNUM (NUM, RIGHT) ###15

If an output length of 4 is specified in the preceding example, the following shows the
different types of results.

Function statement Result (# denotes a space)

CHAR1 = @STRNUM (NUM, LEFTSPACE, 4) 15##

CHAR1 = @STRNUM (NUM, RIGHTZERO, 4) 0015

CHAR1 = @STRNUM (NUM, RIGHT, 4) ##15

5.35 STRRTRIM
Use the @STRRTRIM function to trim trailing spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Syntax

@STRRTRIM (string)

string

The name of a character column or a literal string that is enclosed within single quote
marks.

Chapter 5
STRRTRIM

5-45

Example

street_address = @strrtrim (address)

5.36 STRSUB
Use the @STRSUB function to substitute strings within a string (character) column or
constant. Enclose literal strings within single quote marks.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Any single byte code value 1 to 255 can be used in hexadecimal or octal format for the
string arguments. Hex values A to F are case insensitive and the leading 'x' must be
lower case. Value zero (0) (\x00 and \000) is not allowed because it is a string
terminator. No multibyte character set value or UNICODE values are supported.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRSUB
(source_string, search_string, substitute_string
[, search_string, substitute_string] [, ...])

source_string

A source string, within single quotes, or the name of a source column that contains
the characters for which substitution is to occur.

search_string

The string, within single quotes, for which substitution is to occur.

substitute_string

The string, within single quotes, that will be substituted for the search string.

Examples

Example 1
The following returns xxABCxx.

@STRSUB ('123ABC123', '123', 'xx')

Example 2
The following returns 023zBC023.

@STRSUB ('123ABC123', 'A', 'z', '1', '0')

Example 3
The following is an example of replacing ^Z, using a hexadecimal string argument,
with a space.

@strsub (col1,'\x1A',' '));

Chapter 5
STRSUB

5-46

5.37 STRTRIM
Use the @STRTRIM function to trim leading and trailing spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

Syntax

@STRTRIM (string)

string

The name of a character column or a literal string that is enclosed within single quote
marks.

Example

pin_no = @strtrim (custpin)

5.38 STRUP
Use the @STRUP function to change an alphanumeric string or string (character) column
to upper case.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRUP (string)

string

The name of a character column or a literal string that is enclosed within single quote
marks.

Example

The following returns SALESPERSON.

@STRUP ('salesperson')

5.39 TOKEN
Use the @TOKEN function to retrieve token data that is stored in the user token area of
the Oracle GoldenGate record header. You can map token data to a target column by
using @TOKEN in the source expression of a COLMAP clause. As an alternative, you can
use @TOKEN within a SQLEXEC statement, an Oracle GoldenGate macro, or a user exit.

Chapter 5
STRTRIM

5-47

To define token data, use the TOKENS clause of the TABLE parameter in the Extract
parameter file. For more information about using tokens, see Administering Oracle
GoldenGate for Windows and UNIX.

Syntax

@TOKEN ('token')

'token'

The name, enclosed within single quote marks, of the token for which data is to be
retrieved.

Example

In the following example, 10 tokens are mapped to target columns.

MAP ora.oratest, TARGET ora.rpt,
COLMAP (
host = @token ('tk_host'),
gg_group = @token ('tk_group'),
osuser = @token ('tk_osuser'),
domain = @token ('tk_domain'),
ba_ind = @token ('tk_ba_ind'),
commit_ts = @token ('tk_commit_ts'),
pos = @token ('tk_pos'),
rba = @token ('tk_rba'),
tablename = @token ('tk_table'),
optype = @token ('tk_optype')
);

5.40 VALONEOF
Use the @VALONEOF function to compare a string or string (character) column to a list of
values. If the value or column is in the list, 1 is returned; otherwise 0 is returned. This
function trims trailing spaces before the comparison.

For this function, Oracle GoldenGate supports the use of an escape sequence to
represent characters in a string column in Unicode or in the native character encoding
of the Microsoft Windows, UNIX, and Linux operating systems. The target column
must be a SQL Unicode data type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@VALONEOF (expression, value [, value] [, ...])

expression

The name of a character column or a literal enclosed within single quote marks.

value

A criteria value.

Example

In the following example, if STATE is CA or NY, the expression returns COAST, which is the
response returned by @IF when the value is non-zero (true). Otherwise, the expression
returns MIDDLE.

Chapter 5
VALONEOF

5-48

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

Chapter 5
VALONEOF

5-49

6
User Exit Functions

This chapter describes the Oracle GoldenGate user exit functions and their syntax and
includes the following topics:

• Calling a User Exit

• Summary of User Exit Functions

• Using EXIT_CALL_TYPE

• Using EXIT_CALL_RESULT

• Using EXIT_PARAMS

• Using ERCALLBACK

• Function Codes

For more information about using Oracle GoldenGate user exits, see Administering
Oracle GoldenGate for Windows and UNIX.

6.1 Calling a User Exit
Write the user exit routine in C programming code. Use the CUSEREXIT parameter to call
the user exit from a Windows DLL or UNIX shared object at a defined exit point within
Oracle GoldenGate processing. Your user exit routine must be able to accept different
events and information from the Extract and Replicat processes, process the
information as desired, and return a response and information to the caller (the Oracle
GoldenGate process that called it). For more information and syntax for the CUSEREXIT
parameter, see "CUSEREXIT".

6.2 Summary of User Exit Functions

Parameter Description

EXIT_CALL_TYPE Indicates when, during processing, the routine is called.

EXIT_CALL_RESULT Provides a response to the routine.

EXIT_PARAMS Supplies information to the routine.

ERCALLBACK Implements a callback routine. Callback routines retrieve record and
Oracle GoldenGate context information, and they modify the contents of
data records.

6.3 Using EXIT_CALL_TYPE
Use EXIT_CALL_TYPE to indicate when, during processing, the Extract or Replicat
process (the caller) calls a user exit routine. A process can call a routine with the
following calls.

6-1

Table 6-1 User Exit Calls

Call type Processing point

EXIT_CALL_ABORT_TRANS Valid when the RECOVERYOPTIONS mode is APPEND (the default). Called
when a data pump or Replicat reads a RESTART ABEND record from the trail,
placed there by a writer process that abended. (The writer process can be
the primary Extract writing to a local trail read by a data pump, or a data
pump writing to a remote trail read by Replicat.) This call type enables the
user exit to abort or discard the transaction that was left incomplete when
the writer process stopped, and then to recover and resume processing at
the start of the previous completed transaction.

EXIT_CALL_BEGIN_TRANS Called just before either of the following:

• a BEGIN record of a transaction that is read by a data pump
• the start of a Replicat transaction

EXIT_CALL_CHECKPOINT Called just before an Extract or Replicat checkpoint is written.

EXIT_CALL_DISCARD_ASCII_RECORD Called during Extract processing before an ASCII input record is written to
the discard file. The associated ASCII buffer can be retrieved and
manipulated by the user exit using callback routines.

This call type is not applicable for use with the Replicat process.

EXIT_CALL_DISCARD_RECORD Called during Replicat processing before a record is written to the discard
file. Records can be discarded for several reasons, such as when a value
in the Oracle GoldenGate change record is different from the current
version in the target table.The associated discard buffer can be retrieved
and manipulated by the user exit using callback routines.

This call type is not applicable for use with the Extract process.

EXIT_CALL_END_TRANS Called just after either of the following:

• an END record of a transaction that is read by a data pump
• the last record in a Replicat transaction

EXIT_CALL_FATAL_ERROR Called during Extract or Replicat processing just before Oracle GoldenGate
terminates after a fatal error.

EXIT_CALL_PROCESS_MARKER Called during Replicat processing when a marker from a NonStop server is
read from the trail, and before writing to the marker history file.

EXIT_CALL_PROCESS_RECORD • For Extract, called before a record buffer is output to the trail.
• For Replicat, called just before a replicated operation is performed.
This call is the basis of most user exit processing. When
EXIT_CALL_PROCESS_RECORD is called, the record buffer and other record
information are available to the user exit through callback routines. If
source-target mapping is specified in the parameter file, the mapping is
performed before the EXIT_CALL_PROCESS_RECORD event takes place. The
user exit can map, transform, clean, or perform virtually any other operation
with the record. The user exit can return a status indicating whether the
caller should process or ignore the record.

EXIT_CALL_START Called at the start of processing. The user exit can perform initialization
work, such as opening files and initializing variables.

EXIT_CALL_STOP Called before the process stops gracefully or ends abnormally. The user
exit can perform completion work, such as closing files or outputting totals.

EXIT_CALL_RESULT Set by the user exit routines to instruct the caller how to respond when
each exit call completes.

Chapter 6
Using EXIT_CALL_TYPE

6-2

6.4 Using EXIT_CALL_RESULT
Use EXIT_CALL_RESULT to provide a response to the routine.

Table 6-2 User Exit Responses

Call result Description

EXIT_ABEND_VAL Instructs the caller to terminate immediately.

EXIT_IGNORE_VAL Rejects records for further processing. EXIT_IGNORE_VAL is
appropriate when the user exit performs all the required
processing for a record and there is no need to output or
replicate the data record.

EXIT_OK_VAL If the routine does nothing to respond to an event, EXIT_OK_VAL
is assumed. If the exit call type is any of the following...

• EXIT_CALL_PROCESS_RECORD

• EXIT_CALL_DISCARD_RECORD

• EXIT_CALL_DISCARD_ASCII_RECORD

... and EXIT_OK_VAL is returned, then Oracle GoldenGate
processes the record buffer that was returned by the user exit.

EXIT_PROCESSED_REC_VAL Instructs Extract or Replicat to skip the record, but update the
statistics that are printed to the report file for that table and for
that operation type.

EXIT_STOP_VAL Instructs the caller to stop processing gracefully. EXIT_STOP_VAL
or EXIT_ABEND_VAL may be appropriate when an error condition
occurs in the user exit.

6.5 Using EXIT_PARAMS
Use EXIT_PARAMS to supply information to the user exit routine, such as the program
name and user-defined parameters. You can process a single data record multiple
times.

Table 6-3 User Exit Input

Exit parameter Description

PROGRAM_NAME
Specifies the full path and name of the calling process, for example \ggs\extract or
\ggs\replicat. Use this parameter when loading an Oracle GoldenGate callback
routine using the Windows API or to identify the calling program when user exits are
used with both Extract and Replicat processing.

FUNCTION_PARAM
• Allows you to pass a parameter that is a literal string to the user exit. Specify the

parameter with the EXITPARAM option of the TABLE or MAP statement from which the
parameter will be passed. See "EXITPARAM 'parameter'". This is only valid during
the exit call to process a specific record.

• FUNCTION_PARAM can also be used at the exit call startup event to pass the
parameters that are specified in the PARAMS option of the CUSEREXIT parameter.
(See "CUSEREXIT".) This is only valid to supply a global parameter at exit startup.

Chapter 6
Using EXIT_CALL_RESULT

6-3

Table 6-3 (Cont.) User Exit Input

Exit parameter Description

MORE_RECS_IND
Set on return from an exit. For database records, determines whether Extract or
Replicat processes the record again. This allows the user exit to output many records
per record processed by Extract, a common function when converting Enscribe to SQL
(data normalization). To request the same record again, set MORE_RECS_IND to
CHAR_NO_VAL or CHAR_YES_VAL.

6.6 Using ERCALLBACK
Use ERCALLBACK to execute a callback routine. A user callback routine retrieves context
information from the Extract or Replicat process and sets context values, including the
record itself, when the call type is one of the following:

• EXIT_CALL_PROCESS_RECORD

• EXIT_CALL_DISCARD_RECORD

• EXIT_CALL_DISCARD_ASCII_RECORD

Syntax

ERCALLBACK (function_code, buffer, result_code);

function_code

The function to be executed by the callback routine. The user callback routine
behaves differently based on the function code passed to the callback routine. While
some functions can be used for both Extract and Replicat, the validity of the function
in one process or the other is dependent on the input parameters that are set for that
function during the callback routine. See Function Codes for a full description of
available function codes.

buffer

A void pointer to a buffer containing a predefined structure associated with the
specified function code.

result_code

The status of the function executed by the callback routine. The result code returned
by the callback routine indicates whether or not the callback function was successful.
A result code can be one of the values in Table 6-4.

Table 6-4 Result Codes

Code Description

EXIT_FN_RET_BAD_COLUMN_DATA Invalid data was encountered when retrieving or setting column data.

EXIT_FN_RET_BAD_DATE_TIME A date, timestamp, or interval type of column contains an invalid
date or time value.

EXIT_FN_RET_BAD_NUMERIC_VALUE A numeric type of column contains an invalid numeric value.

EXIT_FN_RET_COLUMN_NOT_FOUND The column was not found in a compressed update record (update
by a database that only logs the values that were changed).

EXIT_FN_RET_ENV_NOT_FOUND The specified environment value could not be found in the record.

Chapter 6
Using ERCALLBACK

6-4

Table 6-4 (Cont.) Result Codes

Code Description

EXIT_FN_RET_EXCEEDED_MAX_LENGTH The metadata could not be retrieved because the name of the table
or column did not fit in the allocated buffer.

EXIT_FN_RET_FETCH_ERROR The record could not be fetched. View the error message to see the
reason.

EXIT_FN_RET_INCOMPLETE_DDL_REC An internal error occurred when processing the DDL record. The
record is probably incomplete.

EXIT_FN_RET_INVALID_CALLBACK_FNC_CD An invalid callback function code was passed to the callback routine.

EXIT_FN_RET_INVALID_COLUMN A non-existent column was referred to in the function call.

EXIT_FN_RET_INVALID_COLUMN_TYPE The routine is trying to manipulate a data type that is not supported
by Oracle GoldenGate for that purpose.

EXIT_FN_RET_INVALID_CONTEXT The callback function was called at an improper time.

EXIT_FN_RET_INVALID_PARAM An invalid parameter was passed to the callback function.

EXIT_FN_RET_NO_SRCDB_INSTANCE The source database instance could not be found.

EXIT_FN_RET_NO_TGTDB_INSTANCE The target database instance could not be found.

EXIT_FN_RET_NOT_SUPPORTED This function is not supported for this process.

EXIT_FN_RET_OK The callback function succeeded.

EXIT_FN_RET_SESSION_CS_CNV_ERR A ULIB_ERR_INVALID_CHAR_FOUND error was returned to the
character-set conversion routine. The conversion failed.

EXIT_FN_RET_TABLE_NOT_FOUND An invalid table name was specified.

EXIT_FN_RET_TOKEN_NOT_FOUND The specified user token could not be found in the record.

6.7 Function Codes
Function codes determine the output of the callback routine. The callback routine
expects the contents of the data buffer to match the structure of the specified function
code. The callback routine function codes and their data buffers are described in the
following sections. The following is a summary of available functions.

Table 6-5 Summary of Oracle GoldenGate Function Codes

Function code Description

COMPRESS_RECORD Use the COMPRESS_RECORD function when some, but not all, of a target table's
columns are present after mapping and the entire record must be
manipulated, rather than individual column values.

DECOMPRESS_RECORD Use the DECOMPRESS_RECORD function when some, but not all, of a target
table's columns are present after mapping and the entire record must be
manipulated, rather than individual column values.

GET_BASE_OBJECT_NAME Use the GET_BASE_OBJECT_NAME function to retrieve the fully qualified name
of the base object of an object in a record.

GET_BASE_OBJECT_NAME_ONLY Use the GET_BASE_OBJECT_NAME_ONLY function to retrieve only the name of
the base object of an object in a record.

Chapter 6
Function Codes

6-5

Table 6-5 (Cont.) Summary of Oracle GoldenGate Function Codes

Function code Description

GET_BASE_SCHEMA_NAME_ONLY Use the GET_BASE_SCHEMA_NAME_ONLY function to retrieve only the name of
the schema of the base object of an object in a record.

GET_BEFORE_AFTER_IND Use the GET_BEFORE_AFTER_IND function to determine whether a record is a
before image or an after image of the database operation.

GET_CATALOG_NAME_ONLY Use the GET_CATALOG_NAME_ONLY function to return the name of the
database catalog.

GET_COL_METADATA_FROM_INDEX Use the GET_COL_METADATA_FROM_INDEX function to determine the column
metadata that is associated with a specified column index.

GET_COL_METADATA_FROM_NAME Use the GET_COL_METADATA_FROM_NAME function to determine the column
metadata that is associated with a specified column name.

GET_COLUMN_INDEX_FROM_NAME Use the GET_COLUMN_INDEX_FROM_NAME function to determine the column
index associated with a specified column name.

GET_COLUMN_NAME_FROM_INDEX Use the GET_COLUMN_NAME_FROM_INDEX function to determine the column
name associated with a specified column index.

GET_COLUMN_VALUE_FROM_INDEX Use the GET_COLUMN_VALUE_FROM_INDEX function to return the column value
from the data record using the specified column index.

GET_COLUMN_VALUE_FROM_NAME Use the GET_COLUMN_VALUE_FROM_NAME function to return the column value
from the data record by using the specified column name.

GET_DATABASE_METADATA Use the GET_DATABASE_METADATA function to return database metadata.

GET_DDL_RECORD_PROPERTIES Use the GET_DDL_RECORD_PROPERTIES function to return information about a
DDL operation.

GET_ENV_VALUE
Use the GET_ENV_VALUE function to return information about the Oracle
GoldenGate environment.

GET_ERROR_INFO Use the GET_ERROR_INFO function to return error information associated with
a discard record.

GET_GMT_TIMESTAMP Use the GET_GMT_TIMESTAMP function to return the operation commit
timestamp in GMT format.

GET_MARKER_INFO Use the GET_MARKER_INFO function to return marker information when
posting data. Use markers to trigger custom processing within a user exit.

GET_OBJECT_NAME Returns the fully qualified two- or three-part name of a table or other object
that is associated with the record that is being processed.

GET_OBJECT_NAME_ONLY Returns the unqualified name of a table or other object that is associated
with the record that is being processed.

GET_OPERATION_TYPE Use the GET_OPERATION_TYPE function to determine the operation type
associated with a record.

GET_POSITION Use the GET_POSITION function is obtain a read position of an Extract data
pump or Replicat in the Oracle GoldenGate trail.

GET_RECORD_BUFFER Use the GET_RECORD_BUFFER function to obtain information for custom
column conversions.

GET_RECORD_LENGTH Use the GET_RECORD_LENGTH function to return the length of the data record.

GET_RECORD_TYPE Use the GET_RECORD_TYPE function to return the type of record being
processed

Chapter 6
Function Codes

6-6

Table 6-5 (Cont.) Summary of Oracle GoldenGate Function Codes

Function code Description

GET_SCHEMA_NAME_ONLY Use the GET_SCHEMA_NAME_ONLY function to return only the schema name of
a table.

GET_SESSION_CHARSET Use the GET_SESSION_CHARSET function to return the character set of the
user exit session.

GET_STATISTICS Use the GET_STATISTICS function to return the current processing statistics
for the Extract or Replicat process.

GET_TABLE_COLUMN_COUNT Use the GET_TABLE_COLUMN_COUNT function to return the total number of
columns in a table.

GET_TABLE_METADATA Use the GET_TABLE_METADATA function to return metadata for the table that
associated with the record that is being processed.

GET_TABLE_NAME Use the GET_TABLE_NAME function to return the fully qualified two- or three-
part name of the source or target table that is associated with the record that
is being processed.

GET_TABLE_NAME_ONLY Use the GET_TABLE_NAME_ONLY function to return only the unqualified name
of the table that is associated with the record that is being processed.

GET_TIMESTAMP Use the GET_TIMESTAMP function to return the I/O timestamp associated with
a source data record.

GET_TRANSACTION_IND Use the GET_TRANSACTION_IND function to determine whether a data record
is the first, last or middle operation in a transaction,

GET_USER_TOKEN_VALUE Use the GET_USER_TOKEN_VALUE function to obtain the value of a user token
from a trail record.

OUTPUT_MESSAGE_TO_REPORT Use the OUTPUT_MESSAGE_TO_REPORT function to output a message to the
report file.

RESET_USEREXIT_STATS Use the RESET_USEREXIT_STATS function to reset the statistics for the Oracle
GoldenGate process.

SET_COLUMN_VALUE_BY_INDEX Use the SET_COLUMN_VALUE_BY_INDEX function to modify a single column
value without manipulating the entire data record.

STRNCMP Use the SET_COLUMN_VALUE_BY_NAME function to modify a single column
value without manipulating the entire data record.

SET_OPERATION_TYPE Use the SET_OPERATION_TYPE function to change the operation type
associated with a data record.

SET_RECORD_BUFFER Use the SET_RECORD_BUFFER function for compatibility with HP NonStop user
exits, and for complex data record manipulation.

SET_SESSION_CHARSET Use the SET_SESSION_CHARSET function to set the character set of the user
exit session.

SET_TABLE_NAME Use the SET_TABLE_NAME function to change the table name associated with
a data record.

6.8 COMPRESS_RECORD
Valid For

Extract and Replicat

Chapter 6
COMPRESS_RECORD

6-7

Description

Use the COMPRESS_RECORD function to re-compress records that have been
decompressed with the DECOMPRESS_RECORD function. Call COMPRESS_RECORD only after
using DECOMPRESS_RECORD.

The content of the record buffer is not converted to or from the character set of the
user exit. It is passed as-is.

Syntax

#include "usrdecs.h"
short result_code;
compressed_rec_def compressed_rec;
ERCALLBACK (COMPRESS_RECORD, &compressed_rec, &result_code);

Buffer

typedef struct
{
char *compressed_rec;
long compressed_len;
char *decompressed_rec;
long decompressed_len;
short *columns_present;
short source_or_target;
char requesting_before_after_ind;
} compressed_rec_def;

Input

decompressed_rec

A pointer to the buffer containing the record before compression. The record is
assumed to be in the default Oracle GoldenGate canonical format.

decompressed_len

The length of the decompressed record.

source_or_target

One of the following to indicate whether the source or target record is being
compressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind

Used as internal input. Does not need to be set. If set, it will be ignored.

columns_present

An array of values that indicates the columns present in the compressed record. For
example, if the first, third and sixth columns exist in the compressed record, and the
total number of columns in the table is seven, the array should contain:

1, 0, 1, 0, 0, 1, 0

Use the GET_TABLE_COLUMN_COUNT function to get the number of columns in the table
(see "GET_TABLE_COLUMN_COUNT").

Chapter 6
COMPRESS_RECORD

6-8

Output

compressed_rec

A pointer to the record returned in compressed format. Typically, compressed_rec is a
pointer to a buffer of type exit_rec_buf_def. The exit_rec_buf_def buffer contains the
actual record about to be processed by Extract or Replicat. The buffer is supplied
when the call type is EXIT_CALL_DISCARD_RECORD. Exit routines may change the contents
of this buffer, for example to perform custom mapping functions. The caller must
ensure that the appropriate amount of memory is allocated to compressed_rec.

compressed_len

The returned length of the compressed record.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK
EXIT_FN_RET_INVALID_PARAM

6.9 DECOMPRESS_RECORD
Valid For

Extract and Replicat

Description

Use the DECOMPRESS_RECORD function when you want to retrieve or manipulate an entire
update record with the GET_RECORD_BUFFER (see "GET_RECORD_BUFFER") or
SET_RECORD_BUFFER function (see "SET_RECORD_BUFFER") and the record is
compressed. DECOMPRESS_RECORD makes compressed records easier to process and
map by putting the record into its logical column layout. The columns that are present
will be in the expected positions without the index and length indicators (see
"Compressed Record Format"). The missing columns will be represented as zeroes.
When used, DECOMPRESS_RECORD should be invoked before any manipulation occurs.
After the user exit processing is completed, use the COMPRESS_RECORD function (see
"COMPRESS_RECORD") to re-compress the record before returning it to the Oracle
GoldenGate process.

This function is valid for processing UPDATE operations only. Deletes, inserts and
updates appear in the buffer as full record images.

The content of the record buffer is not converted to or from the character set of the
user exit. It is passed as-is.

Compressed Record Format

Compressed SQL updates have the following format:

index length value [index length value][...]

where:

• index is a two-byte index into the list of columns of the table (first column is zero).

• length is the two-byte length of the table.

Chapter 6
DECOMPRESS_RECORD

6-9

• value is the actual column value, including one of the following two-byte null
indicators when applicable. 0 is not null. -1 is null.

Syntax

#include "usrdecs.h"
short result_code;
compressed_rec_def compressed_rec;
ERCALLBACK (DECOMPRESS_RECORD, &compressed_rec, &result_code);

Buffer

typedef struct
{
char *compressed_rec;
long compressed_len;
char *decompressed_rec;
long decompressed_len;
short *columns_present;
short source_or_target;
char requesting_before_after_ind;
} compressed_rec_def;

Input

compressed_rec

A pointer to the record in compressed format. Use the GET_RECORD_BUFFER function to
obtain this value (see "GET_RECORD_BUFFER").

compressed_len

The length of the compressed record. Use the GET_RECORD_BUFFER (see
"GET_RECORD_BUFFER") or GET_RECORD_LENGTH (see "GET_RECORD_LENGTH")
function to get this value.

source_or_target

One of the following to indicate whether the source or target record is being
decompressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind

Used as internal input. Does not need to be set. If set, it will be ignored.

Output

decompressed_rec

A pointer to the record returned in decompressed format. The record is assumed to
be in the Oracle GoldenGate internal canonical format. The caller must ensure that
the appropriate amount of memory is allocated to decompressed_rec.

decompressed_len

The returned length of the decompressed record.

columns_present

An array of values that indicate the columns present in the compressed record. For
example, if the first, third and sixth columns exist in the compressed record, and the
total number of columns in the table is seven, the array should contain:

Chapter 6
DECOMPRESS_RECORD

6-10

1, 0, 1, 0, 0, 1, 0

This array helps mapping functions determine when and whether a compressed
column should be mapped.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK
EXIT_FN_RET_INVALID_PARAM

6.10 GET_BASE_OBJECT_NAME
Valid For

Extract and Replicat

Description

Use the GET_BASE_OBJECT_NAME function to retrieve the fully qualified name of the base
object of a source or target object that is associated with the record being processed.
This function is valid tables and other objects in a DDL operation.

To return only part of the base object name, see the following:

GET_BASE_OBJECT_NAME_ONLY GET_BASE_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_BASE_OBJECT_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length

The maximum length of your allocated buffer to accept the object name. This is
returned as a NULL terminated string.

Chapter 6
GET_BASE_OBJECT_NAME

6-11

source_or_target

One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the object name is interpreted in the session
character set.

actual length

The string length of the returned object name. The actual length does not include the
null terminator. The actual length is 0 if the object is a table.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the object name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.11 GET_BASE_OBJECT_NAME_ONLY

Valid For

Extract and Replicat

Description

Use the GET_BASE_OBJECT_NAME_ONLY function to retrieve the unqualified name (without
the catalog, container, or schema) of the base object of a source or target object that
is associated with the record that is being processed. This function is valid for tables
and other objects in a DDL operation.

To return the fully qualified name of a base object, see the following:

GET_OBJECT_NAME

To return only the schema of the base object, see the following:

GET_BASE_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Chapter 6
GET_BASE_OBJECT_NAME_ONLY

6-12

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_BASE_OBJECT_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length

The maximum length of your allocated buffer to accept the object name. This is
returned as a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the object name is interpreted in the session
character set.

actual length

The string length of the returned object name. The actual length does not include the
null terminator. The actual length is 0 if the object is a table.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the object name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT

Chapter 6
GET_BASE_OBJECT_NAME_ONLY

6-13

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.12 GET_BASE_SCHEMA_NAME_ONLY
Description

Use the GET_BASE_SCHEMA_NAME_ONLY function to retrieve the name of the owner (such as
schema), but not the name, of the base object of the source or target object
associated with the record being processed. This function is valid for DDL operations.

To return the fully qualified name of a base object, see the following:

GET_BASE_OBJECT_NAME

To return only the unqualified base object name, see the following:

GET_BASE_OBJECT_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_BASE_SCHEMA_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned schema name. The name is null-
terminated.

max_length

The maximum length of your allocated buffer to accept the schema name. This is
returned as a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target schema name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Chapter 6
GET_BASE_SCHEMA_NAME_ONLY

6-14

Output

buffer

The fully qualified, null-terminated schema name.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the schema name is interpreted in the session
character set.

actual_length

The string length of the returned name. The actual length does not include the null
terminator.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the schema name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.13 GET_BEFORE_AFTER_IND
Valid For

Extract and Replicat

Description

Use the GET_BEFORE_AFTER_IND function to determine whether a record is a before image
or an after image of the database operation. INSERTs are after images, DELETEs are
before images, and UPDATEs can be either before or after images (see the Extract and
Replicat parameters GETUPDATEBEFORES and GETUPDATEAFTERS). If the before images of
UPDATE operations are being extracted, the before images precede the after images
within the same update.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_BEFORE_AFTER_IND, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;

Chapter 6
GET_BEFORE_AFTER_IND

6-15

short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Output

before_after_ind

One of the following to indicate whether the record is a before or after image.

BEFORE_IMAGE_VAL
AFTER_IMAGE_VAL

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

6.14 GET_CATALOG_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_CATALOG_NAME_ONLY function to retrieve the name of the SQL/MX catalog or
Oracle CDB container, but not the name of the owner (such as schema) or object, of
the source or target object associated with the record being processed. This function is
valid for DML and DDL operations.

To return the fully qualified name of a table, see the following:

GET_TABLE_NAME

To return the fully qualified name of a non-table object, such as a user, view or index,
see the following:

GET_OBJECT_NAME

To return only the unqualified table or object name, see the following:

GET_TABLE_NAME_ONLY

GET_OBJECT_NAME_ONLY

To return other parts of the table or object name, see the following:

GET_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Chapter 6
GET_CATALOG_NAME_ONLY

6-16

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_CATALOG_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned catalog name. The name is null-
terminated.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the catalog name is interpreted in the session
character set.

max_length

The maximum length of your allocated buffer to accept the name. This is returned as
a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target table catalog.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The fully qualified, null-terminated catalog name.

actual_length

The string length of the returned name. The actual length does not include the null
terminator.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the catalog name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT

Chapter 6
GET_CATALOG_NAME_ONLY

6-17

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.15 GET_COL_METADATA_FROM_INDEX
Valid For

Extract and Replicat

Description

Use the GET_COL_METADATA_FROM_INDEX function to retrieve column metadata by
specifying the index of the desired column.

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
col_metadata_def column_meta_rec;
ERCALLBACK (GET_COL_METADATA_FROM_INDEX, &column_meta_rec, &result_code);

Buffer

typedef struct
{
 short column_index;
 char *column_name;
 long max_name_length;
 short native_data_type;
 short gg_data_type;
 short gg_sub_data_type;
 short is_nullable;
 short is_part_of_key;
 short key_column_index;
 short length;
 short precision;
 short scale;
 short source_or_target;
} col_metadata_def;

Input

column_index

The column index of the column value to be returned.

max_name_length

The maximum length of the returned column name. Typically, the maximum length is
the length of the name buffer. Since the returned name is null-terminated, the
maximum length should equal the maximum length of the column name.

source_or_target

One of the following to indicate whether the source or target record is being
compressed.

Chapter 6
GET_COL_METADATA_FROM_INDEX

6-18

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

column_name

The column name of the column value to be returned.

actual_name_length

The actual length of the returned name.

value_truncated

A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if
the length of the column name plus the null terminator exceeds the maximum buffer
length.

native_data_type

The native (to the database) data type of the column. Either native_data_type or
dd_data_type is returned, depending on the process, as follows:

• If Extract is making the callback request for a source column, native_data_type is
returned. If Extract is requesting a mapped target column, gg_data_type is
returned (assuming there is a target definitions file on the system).

• If an Extract data pump is making the callback request for a source column and
there is a local database, native_data_type is returned. If there is no database,
gg_data_type is returned (assuming there is a source definitions file on the
system). If the pump is requesting the target column, gg_data_type is returned
(assuming a target definitions file exists on the system).

• If Replicat is making the callback request for the source column, then
gg_data_type is returned (assuming a source definitions file exists on the system).
If Replicat is requesting the source column and ASSUMETARGETDEFS is being used in
the parameter file, then native_data_type is returned. If Replicat is requesting the
target column, native_data_type is returned.

gg_data_type

The Oracle GoldenGate data type of the column.

gg_sub_data_type

The Oracle GoldenGate sub-type of the column.

is_nullable

Flag indicating whether the column permits a null value (TRUE or FALSE).

is_part_of_key

Flag (TRUE or FALSE) indicating whether the column is part of the key that is being used
by Oracle GoldenGate.

key_column_index

Indicates the order of the columns in the index. For example, the following table has
two key columns that exist in a different order from the order in which they are
declared in the primary key.

CREATE TABLE ABC
(
cust_code VARCHAR2(4),

Chapter 6
GET_COL_METADATA_FROM_INDEX

6-19

name VARCHAR2(30),
city VARCHAR2(20),
state CHAR(2),
PRIMARY KEY (city, cust_code)
USING INDEX
);

Executing the callback function for each column in the logical column order returns
the following:

• cust_code returns 1

• name returns -1

• city returns 0

• state returns -1

If the column is part of the key, the value returned is the order of the column within the
key.
If the column is not part of the key, a value of -1 is returned.

length

Returns the length of the column.

precision

If a numeric data type, returns the precision of the column.

scale

If a numeric data type, returns the scale.

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_EXCEEDED_MAX_LENGTH
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_OK

6.16 GET_COL_METADATA_FROM_NAME
Valid For

Extract and Replicat

Description

Use the GET_COL_METADATA_FROM_NAME function to retrieve column metadata by specifying
the name of the desired column. If the character session of the user exit is set with
SET_SESSION_CHARSET to a value other than the default character set of the operating
system, as defined in ULIB_CS_DEFAULT in the ucharset.h file, the character data that is
exchanged between the user exit and the process is interpreted in the session
character set.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Chapter 6
GET_COL_METADATA_FROM_NAME

6-20

Syntax

#include "usrdecs.h"
short result_code;
col_metadata_def column_meta_rec;
ERCALLBACK (GET_COL_METADATA_FROM_NAME, &column_meta_rec, &result_code);

Buffer

typedef struct
{
 short column_index;
 char *column_name;
 long max_name_length;
 short native_data_type;
 short gg_data_type;
 short gg_sub_data_type;
 short is_nullable;
 short is_part_of_key;
 short key_column_index;
 short length;
 short precision;
 short scale;
 short source_or_target;
} col_metadata_def;

Input

column_name

The column name of the column value to be returned.

max_name_length

The maximum length of the returned column name. Typically, the maximum length is
the length of the name buffer. Since the returned name is null-terminated, the
maximum length should equal the maximum length of the column name.

source_or_target

One of the following to indicate whether the source or target record is being
compressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

column_index

The column index of the column value to be returned.

actual_name_length

The actual length of the returned name.

source_or_target

One of the following to indicate whether the source or target record is being
compressed.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Chapter 6
GET_COL_METADATA_FROM_NAME

6-21

value_truncated

A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if
the length of the column name plus the null terminator exceeds the maximum buffer
length.

native_data_type

The native (to the database) data type of the column.

gg_data_type

The Oracle GoldenGate data type of the column.

gg_sub_data_type

The Oracle GoldenGate sub-type of the column.

is_nullable

Flag indicating whether the column permits a null value (TRUE or FALSE).

is_part_of_key

Flag (TRUE or FALSE) indicating whether the column is part of the key that is being used
by Oracle GoldenGate.

key_column_index

Indicates the order of the columns in the index. For example, the following table has
two key columns that are defined in one order in the table and another in the index
definition.

CREATE TABLE tcustmer
(
cust_code VARCHAR2(4),
name VARCHAR2(30),
city VARCHAR2(20),
state CHAR(2),
PRIMARY KEY (city, cust_code)
USING INDEX
);

The return is as follows:

• cust_code returns 1

• name returns -1

• city returns 0

• state returns -1

If the column is part of the key, its order in the index is returned as an integer.
If the column is not part of the key, a value of -1 is returned.

length

Returns the length of the column.

precision

If a numeric data type, returns the precision of the column.

scale

If a numeric data type, returns the scale.

Chapter 6
GET_COL_METADATA_FROM_NAME

6-22

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_EXCEEDED_MAX_LENGTH
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_OK

6.17 GET_COLUMN_INDEX_FROM_NAME
Valid For

Extract and Replicat

Description

Use the GET_COLUMN_INDEX_FROM_NAME function to determine the column index associated
with a specified column name. If the character session of the user exit is set with
SET_SESSION_CHARSET to a value other than the default character set of the operating
system, as defined in ULIB_CS_DEFAULT in the ucharset.h file, the character data that is
exchanged between the user exit and the process is interpreted in the session
character set.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_COLUMN_INDEX_FROM_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to the column name

actual_length

The length of the column name within the buffer.

source_or_target

One of the following to indicate whether to use the source or target table to look up
column information.

Chapter 6
GET_COLUMN_INDEX_FROM_NAME

6-23

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

index

The returned column index for the specified column name.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.18 GET_COLUMN_NAME_FROM_INDEX
Valid For

Extract and Replicat

Description

Use the GET_COLUMN_NAME_FROM_INDEX function to determine the column name
associated with a specified column index. If the character session of the user exit is
set with SET_SESSION_CHARSET to a value other than the default character set of the
operating system, as defined in ULIB_CS_DEFAULT in the ucharset.h file, the character
data that is exchanged between the user exit and the process is interpreted in the
session character set.

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_COLUMN_NAME_FROM_INDEX, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned column name. The column name is null-
terminated.

Chapter 6
GET_COLUMN_NAME_FROM_INDEX

6-24

max_length

The maximum length of your allocated buffer to accept the resulting column name.
This is returned as a NULL terminated string.

index

The column index of the column name to be returned.

source_or_target

One of the following to indicate whether to use the source or target table to look up
column information.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The null-terminated column name.

actual length

The string length of the returned column name. The actual length does not include the
null terminator.

value_truncated

A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if
the length of the column name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.19 GET_COLUMN_VALUE_FROM_INDEX
Valid For

Extract and Replicat

Description

Use the GET_COLUMN_VALUE_FROM_INDEX function to retrieve the column value from the
data record using the specified column index. Column values are the basis for most
logic within the user exit. You can base complex logic on the values of individual
columns within the data record. You can specify the character format of the returned
value.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in
the ucharset.h file, the character data that is exchanged between the user exit and the
process is interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

Chapter 6
GET_COLUMN_VALUE_FROM_INDEX

6-25

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (GET_COLUMN_VALUE_FROM_INDEX, &column, &result_code);

Buffer

typedef struct
{
char *column_value;
unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;
char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value

A pointer to a buffer to accept the returned column value.

max_value_length

The maximum length of the returned column value. Typically, the maximum length is
the length of the column value buffer. If ASCII format is specified with
column_value_mode, the column value is null-terminated and the maximum length
should equal the maximum length of the column value.

column_index

The column index of the column value to be returned.

column_value_mode

Indicates the format of the column value.

EXIT_FN_CHAR_FORMAT

ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Chapter 6
GET_COLUMN_VALUE_FROM_INDEX

6-26

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as "123.45".

• Non-printable characters or binary values are converted to hexadecimal
notation.

• Floating point types are output as null-terminated strings, to the first 14
significant digits.

EXIT_FN_RAW_FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte
NULL indicator and a two-byte variable data length when applicable. No character-
set conversion is performed by Oracle GoldenGate for this format for any
character data type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT

User exit character set: This only applies if the column data type is:

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target

One of the following to indicate whether to use the source or the target data record to
retrieve the column value.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind

Set when processing an after image record and you want the before-image column
value of either an update or a primary key update.
To get the "before" value of the column while processing an "after image" of a primary
key update or a regular (non-key) update record, set the requesting_before_after_ind
flag to BEFORE_IMAGE_VAL.

• To access the before image of the key columns of a primary key update, nothing
else is necessary.

• To access non-key columns of a primary key update or any column of a regular
update, the before image must be available.

The default setting is AFTER_IMAGE_VAL (get the after image of the column) when an
explicit input for requesting_before_after_ind is not specified.
To make a before image available, you can use the GETUPDATEBEFORES parameter or
you can use the INCLUDEUPDATEBEFORES option within the CUSEREXIT parameter
statement.

Chapter 6
GET_COLUMN_VALUE_FROM_INDEX

6-27

Note that:

• GETUPDATEBEFORES causes an Extract process to write before-image records to the
trail and also to make an EXIT_CALL_PROCESS_RECORD call to the user exit with the
before images.

• INCLUDEUPDATEBEFORES does not cause an EXIT_CALL_PROCESS_RECORD call to the user
exit nor, in the case of Extract, does it cause the process to write the before
image to the trail.

requesting_before_after_ind

To get the before image of the column, set the char requesting_before_after_ind flag
to BEFORE_IMAGE_VAL. To get the after image, set it to AFTER_IMAGE_VAL. The default is to
always work with the after image unless the before is specified.
To make the before images available, you can use the GETUPDATEBEFORES parameter for
the TABLE statement that contains the table, or you can use the INCLUDEUPDATEBEFORES
option within the CUSEREXIT parameter statement. Both will cause the same callout to
the user exit for process_record.

Output

column_value

A pointer to the returned column value. If column_value_mode is specified as
EXIT_FN_CHAR_FORMAT, the column value is returned as a null-terminated ASCII string;
otherwise, the column value is returned in the Oracle GoldenGate internal canonical
format. In ASCII format, dates are returned in the following format:

YYYY-MM-DD HH:MI:SS.FFFFFF

The inclusion of fractional time is database-dependent.

actual_value_length

The string length of the returned column name, in bytes. The actual length does not
include a null terminator when column_value_mode is specified as EXIT_FN_CHAR_FORMAT.

null_value

A flag (0 or 1) indicating whether or not the column value is null. If the null_value flag
is 1, then the column value buffer is filled with null bytes.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the column value exceeds the maximum buffer length. If
column_value_mode was specified as EXIT_FN_CHAR_FORMAT, the null terminator is
included in the length of the column.

char more_lob_data

A flag that indicates if more LOB data is present beyond the initial 4K that can be
stored in the base record. When a LOB is larger than the 4K limit, it is stored in LOB
fragments.
You must allocate the appropriate amount of memory to contain the returned values.
Oracle GoldenGate will access LOB columns up to 8K of data at all times, filling up
the buffer to the amount that the user exit has allocated. If the LOB is larger than that
which was allocated, subsequent callbacks are required to obtain the total column
data, until all data has been sent to the user exit.
To determine the end of the data, evaluate more_lob_data. The user exit sets this flag
to either CHAR_NO_VAL or CHAR_YES_VAL before accessing a new column. If this flag is still

Chapter 6
GET_COLUMN_VALUE_FROM_INDEX

6-28

initialized after first callback and is not set to either CHAR_YES_VAL or CAR_NO_VAL, then
one of the following is true:

• Enough memory was allocated to handle the LOB.

• It is not a LOB.

• It was not over the 4K limit of the base trail record size.

It is recommended that you obtain the source table metadata to determine if a column
might be a LOB.

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_COLUMN_NOT_FOUND
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.20 GET_COLUMN_VALUE_FROM_NAME
Valid For

Extract and Replicat

Description

Use the GET_COLUMN_VALUE_FROM_NAME function to retrieve the column value from the data
record by using the specified column name. Column values are the basis for most
logic within the user exit. You can base complex logic on the values of individual
columns within the data record.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in
the ucharset.h file, the character data that is exchanged between the user exit and the
process is interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (GET_COLUMN_VALUE_FROM_NAME, &column, &result_code);

Buffer

typedef struct
{
char *column_value;

Chapter 6
GET_COLUMN_VALUE_FROM_NAME

6-29

unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;
char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value

A pointer to a buffer to accept the returned column value.

max_value_length

The maximum length of the returned column value. Typically, the maximum length is
the length of the column value buffer. If ASCII format is specified (see
column_value_mode) the column value is null-terminated, and the maximum length
should equal the maximum length of the column value.

column_name

The name of the column for the column value to be returned.

column_value_mode

Indicates the character set of the column value.

EXIT_FN_CHAR_FORMAT

ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as "123.45".

• Non-printable characters or binary values are converted to hexadecimal
notation.

Chapter 6
GET_COLUMN_VALUE_FROM_NAME

6-30

• Floating point types are output as null-terminated strings, to the first 14
significant digits.

EXIT_FN_RAW_FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character
data type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT

User exit character set: This only applies if the column data type is:

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target

One of the following indicating whether to use the source or target data record to
retrieve the column value.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind

Set when processing an after image record and you want the before columns of either
an update or a primary key update.
To get the "before" value of the column while processing an "after image" of a primary
key update or a regular (non-key) update record, set the requesting_before_after_ind
flag to BEFORE_IMAGE_VAL.

• To access the before image of the key columns of a primary key update, nothing
else is necessary.

• To access non-key columns of a primary key update or any column of a regular
update, the before image must be available.

The default setting is AFTER_IMAGE_VAL (get the after image of the column) when an
explicit input for requesting_before_after_ind is not specified.
To make a before image available, you can use the GETUPDATEBEFORES parameter or
you can use the INCLUDEUPDATEBEFORES option within the CUSEREXIT parameter
statement.
Note that:

• GETUPDATEBEFORES causes an Extract process to write before-image records to the
trail and also to make an EXIT_CALL_PROCESS_RECORD call to the user exit with the
before images.

• INCLUDEUPDATEBEFORES does not cause an EXIT_CALL_PROCESS_RECORD call to the user
exit nor, in the case of Extract, does it cause the process to write the before
image to the trail.

Output

column_value

A pointer to the returned column value. If column_value_mode is specified as
EXIT_FN_CHAR_FORMAT, the column value is returned as a null-terminated ASCII string;

Chapter 6
GET_COLUMN_VALUE_FROM_NAME

6-31

otherwise, the column value is returned in the Oracle GoldenGate internal canonical
format. In ASCII format, dates are returned in the following format:

CCYY-MM-DD HH:MI:SS.FFFFFF

The inclusion of fractional time is database-dependent.

actual length

The string length of the returned column name. The actual length does not include a
null terminator when column_value_mode is specified as EXIT_FN_CHAR_FORMAT.

null_value

A flag (0 or 1) indicating whether or not the column value is null. If the null_value flag
is 1, then the column value buffer is filled with null bytes.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the column value exceeds the maximum buffer length. If
column_value_mode was specified as EXIT_FN_CHAR_FORMAT, the null terminator is
included in the length of the column.

char more_lob_data

A flag that indicates if more LOB data is present beyond the initial 4K that can be
stored in the base record. When a LOB is larger than the 4K limit, it is stored in LOB
fragments.
You must allocate the appropriate amount of memory to contain the returned values.
Oracle GoldenGate will access LOB columns up to 8K of data at all times, filling up
the buffer to the amount that the user exit has allocated. If the LOB is larger than that
which was allocated, subsequent callbacks are required to obtain the total column
data, until all data has been sent to the user exit.
To determine the end of the data, evaluate more_lob_data. The user exit sets this flag
to either CAR_NO_VAL or CHAR_YES_VAL before accessing a new column. If this flag is still
initialized after first callback and is not set to either CHAR_YES_VAL or CAR_NO_VAL, then
one of the following is true:

• Enough memory was allocated to handle the LOB.

• It is not a LOB.

• It was not over the 4K limit of the base trail record size.

It is recommended that you obtain the source table metadata to determine if a column
might be a LOB.

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_COLUMN_NOT_FOUND
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

Example

memset (&col_meta, 0, sizeof(col_meta));
if (record.mapped)
col_meta.source_or_target = EXIT_FN_TARGET_VAL;
else
col_meta.source_or_target = EXIT_FN_SOURCE_VAL;

Chapter 6
GET_COLUMN_VALUE_FROM_NAME

6-32

col_meta.source_or_target = EXIT_FN_SOURCE_VAL;
col_meta.column_name = (char *)malloc(100);
col_meta.max_name_length = 100;
col_meta.column_index = 1;

call_callback (GET_COL_METADATA_FROM_NAME, &col_meta, &result_code);

6.21 GET_DATABASE_METADATA
Valid For

Extract and Replicat

Description

Use the GET_DATABASE_METADATA function to return the metadata of the database that is
associated with a record.

Buffer

typedef struct
{
char* dbName;
long dbName_max_length;
long dbName_actual_length;
unsigned char dbNameMetadata[MAXDBOBJTYPE];
char* locale;
long locale_max_length;
long locale_actual_length;
} database_def;
typedef struct
{
 database_def source_db_def;
 database_def target_db_def;
} database_defs;

Input

dbname

A pointer to a buffer to accept the database name.

dbname_max_length

The maximum length of the buffer to hold the name.

dbname_actual_length

The actual length of the database name.

dbNameMetadata

The name metadata for case-sensitivity, which is the same value that is written by
Extract and the data pump to a trail. See Administering Oracle GoldenGate for
Windows and UNIX for a list of macros that can be used by the user exit to check
database object name metadata, given an object name type.

locale

A null-terminated character string specifying the locale of the database. This is
returned as a conjunction of:

Chapter 6
GET_DATABASE_METADATA

6-33

• ISO-639 two-letter language code

• ISO-3166 two-letter country code

• Variant code using '_' U+005F as separator.

Example: "en_US", "ja_Japen"

locale_max_length

The maximum length of the buffer to accept the locale.

locale_actual_length

The actual length of the locale.

database_def source_db_def

Directs the process to return metadata for the source database.

database_def target_db_def

Directs the process to return metadata for the target database.

6.22 GET_DDL_RECORD_PROPERTIES
Valid For

Extract and Replicat, for databases for which DDL replication is supported

Description

Use the GET_DDL_RECORD_PROPERTIES function to return a DDL operation, including
information about the object on which the DDL was performed and also the text of the
DDL statement itself. The Extract process can only get the source table layout. The
Replicat process can get source or target layouts.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in
the ucharset.h file, the character data that is exchanged between the user exit and the
process is interpreted in the session character set. This includes the DDL type, the
object type, the two- or three-part object name, the owner name and the DDL text
itself.

#include "usrdecs.h"
short result_code;
ddl_record_def ddl_rec;
ERCALLBACK (GET_DDL_RECORD_PROPERTIES, &ddl_rec, &result_code);

Buffer

typedef struct
{
char *ddl_type;
long ddl_type_max_length; /* Maximum Description length PASSED IN BY USER */
long ddl_type_length; /* Actual length */

char *object_type;
long object_type_max_length; /* Maximum Description length PASSED IN BY USER */
long object_type_length; /* Actual length */

char *object_name; /* Fully qualified name of the object
 (3-part for CDB, 2-part for non-CDB) */

Chapter 6
GET_DDL_RECORD_PROPERTIES

6-34

long object_max_length; /* Maximum Description length PASSED IN BY USER */
long object_length; /* Actual length */

char *owner_name;
long owner_max_length; /* Maximum Description length PASSED IN BY USER */
long owner_length; /* Actual length */

char *ddl_text;
long ddl_text_max_length; /* Maximum Description length PASSED IN BY USER */
long ddl_text_length; /* Actual length */

short ddl_text_truncated; /* Was value truncated? */
short source_or_target; /* Source or target value? */
} ddl_record_def;

Input

ddl_type_length
object_type_length
object_length
owner_length
ddl_text_length

A pointer to one buffer for each of these items to accept the returned column values.
These items are as follows:

ddl_type_length

Contains the length of the type of DDL operation, for example a CREATE or ALTER.

object_type_length

Contains the length of type of database object that is affected by the DDL
operation, for example TABLE or INDEX.

object_length

Contains the length of the name of the object.

object_length

Contains the length of the owner of the object (schema or database).

ddl_text_length

Contains the length of the actual DDL statement text.

ddl_type_max_length

The maximum length of the DDL operation type that is returned by *ddl_type. The
DDL type is any DDL command that is valid for the database, such as ALTER.

object_type_max_length

The maximum length of the object type that is returned by *object_type. The object
type is any object that is valid for the database, such as TABLE, INDEX, and TRIGGER.

object_max_length

The maximum length of the name of the object that is returned by *object_name.

owner_max_length

The maximum length of the name of the owner that is returned by *owner_name.

ddl_text_max_length

The maximum length of the text of the DDL statement that is returned by *ddl_text.

Chapter 6
GET_DDL_RECORD_PROPERTIES

6-35

source_or_target

One of the following indicating whether to return the operation type for the source or
the target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

ddl_type_length
object_type_length
object_length
owner_length
ddl_text_length

All of these fields return the actual length of the value that was requested. (See the
input for descriptions.)

ddl_text_truncated

A flag (0 or 1) to indicate whether or not the DDL text was truncated. Truncation
occurs if the length of the DDL text plus the null terminator exceeds the maximum
buffer length.

Return Values

EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INCOMPLETE_DDL_REC

6.23 GETENV
Use the @GETENV function to return information about the Oracle GoldenGate
environment. You can use the information as input into the following:

• Stored procedures or queries (with SQLEXEC)

• Column maps (with the COLMAP option of TABLE or MAP)

• User tokens (defined with the TOKENS option of TABLE and mapped to target columns
by means of the @TOKEN function)

• The GET_ENV_VALUE user exit function (see "GET_ENV_VALUE")

Note:

All syntax options must be enclosed within quotes as shown in the
syntax descriptions.

Syntax

@GETENV (
'LAG' , 'unit' |
'LASTERR' , 'error_info' |
'JULIANTIMESTAMP' |
'JULIANTIMESTAMP_PRECISE' |
'RECSOUTPUT' |
{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic' |

Chapter 6
GETENV

6-36

'GGENVIRONMENT', 'environment_info' |
'GGFILEHEADER', 'header_info' |
'GGHEADER', 'header_info' |
'RECORD', 'location_info' |
'DBENVIRONMENT', 'database_info'
'TRANSACTION', 'transaction_info' |
'OSVARIABLE', 'variable' |
'TLFKEY', SYSKEY, unique_key
'RECORD_TIMESTAMP_PRECISE',
'TRANSACTION_TIMESTAMP_PRECISE',
'USERNAME',
'OSUSERNAME',
'MACHINENAME',
'PROGRAMNAME',
'CLIENTIDENTIFIER',
)

'LAG' , 'unit'

Valid for Extract and Replicat.

Use the LAG option of @GETENV to return lag information. Lag is the difference between
the time that a record was processed by Extract or Replicat and the timestamp of that
record in the data source.

Syntax

@GETENV ('LAG', {'SEC'|'MSEC'|'MIN'})

'SEC'

Returns the lag in seconds. This is the default when a unit is not explicitly provided for
LAG.

'MSEC'

Returns the lag in milliseconds.

'MIN'

Returns the lag in minutes.

'LASTERR' , 'error_info'

Valid for Replicat.

Use the LASTERR option of @GETENV to return information about the last failed operation
processed by Replicat.

Syntax

@GETENV ('LASTERR', {'DBERRNUM'|'DBERRMSG'|'OPTYPE'|'ERRTYPE'})

'DBERRNUM'

Returns the database error number associated with the failed operation.

'DBERRMSG'

Returns the database error message associated with the failed operation.

'OPTYPE'

Returns the operation type that was attempted. For a list of Oracle GoldenGate
operation types, see Administering Oracle GoldenGate for Windows and UNIX.

Chapter 6
GETENV

6-37

'ERRTYPE'

Returns the type of error. Possible results are:

• DB (for database errors)

• MAP (for errors in mapping)

'JULIANTIMESTAMP' | 'JULIANTIMESTAMP_PRECISE'

Valid for Extract and Replicat.

Use the JULIANTIMESTAMP option of @GETENV to return the current time in Julian format.
The unit is microseconds (one millionth of a second). On a Windows machine, the
value is padded with zeros (0) because the granularity of the Windows timestamp is
milliseconds (one thousandth of a second). For example, the following is a typical
column mapping:

MAP dbo.tab8451, Target targ.tabjts, COLMAP (USEDEFAULTS, &
JTSS = @GETENV ('JULIANTIMESTAMP')
JTSFFFFFF = @date ('yyyy-mm-dd hh:mi:ss.ffffff', 'JTS', &
@getenv ('JULIANTIMESTAMP')))
;

Possible values that the JTSS and JTSFFFFFF columns can have are:

212096320960773000 2010-12-17:16:42:40.773000
212096321536540000 2010-12-17:16:52:16.540000
212096322856385000 2010-12-17:17:14:16.385000
212096323062919000 2010-12-17:17:17:42.919000
212096380852787000 2010-12-18:09:20:52.787000

The last three digits (the microseconds) of the number all contain the padding of 0s .

Optionally, you can use the 'JULIANTIMESTAMP_PRECISE' option to obtain a timestamp
with high precision though this may effect performance.

Syntax

@GETENV ('JULIANTIMESTAMP')
@GETENV ('JULIANTIMESTAMP_PRECISE')

'RECSOUTPUT'

Valid for Extract.

Use the RECSOUTPUT option of @GETENV to retrieve a current count of the number of
records that Extract has written to the trail file since the process started. The returned
value is not unique to a table or transaction, but instead for the Extract session itself.
The count resets to 1 whenever Extract stops and then is started again.

Syntax

@GETENV ('RECSOUTPUT')

{'STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic'

Valid for Extract and Replicat.

Use the STATS and DELTASTATS options of @GETENV to return the number of operations
that were processed per table for any or all of the following:

• INSERT operations

Chapter 6
GETENV

6-38

• UPDATE operations

• DELETE operations

• TRUNCATE operations

• Total DML operations

• Total DDL operations

• Number of conflicts that occurred, if the Conflict Detection and Resolution (CDR)
feature is used.

• Number of CDR resolutions that succeeded

• Number of CDR resolutions that failed

Any errors in the processing of this function, such as an unresolved table entry or
incorrect syntax, returns a zero (0) for the requested statistics value.

Understanding How Recurring Table Specifications Affect Operation Counts

An Extract that is processing the same source table to multiple output trails returns
statistics based on each localized output trail to which the table linked to @GETENV is
written. For example, if Extract captures 100 inserts for table ABC and writes table ABC
to three trails, the result for the @GETENV is 300

EXTRACT ABC
...
EXTTRAIL c:\ogg\dirdat\aa;
TABLE TEST.ABC;
EXTTRAIL c:\ogg\dirdat\bb;
TABLE TEST.ABC;
TABLE EMI, TOKENS (TOKEN-CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));
EXTTRAIL c:\ogg\dirdat\cc;
TABLE TEST.ABC;

In the case of an Extract that writes a source table multiple times to a single output
trail, or in the case of a Replicat that has multiple MAP statements for the same TARGET
table, the statistics results are based on all matching TARGET entries. For example, if
Replicat filters 20 rows for REGION 'WEST,' 10 rows for REGION 'EAST,' 5 rows for REGION
'NORTH,' and 2 rows for REGION 'SOUTH' (all for table ABC) the result of the @GETENV is 37.

REPLICAT ABC
...
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'WEST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'EAST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'NORTH'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'SOUTH'));
MAP TEST.EMI, TARGET TEST.EMI, &
 COLMAP (CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));

Capturing Multiple Statistics

You can execute multiple instances of @GETENV to get counts for different operation
types.

This example returns statistics only for INSERT and UPDATE operations:

REPLICAT TEST
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, IU = @COMPUTE (@GETENV &

Chapter 6
GETENV

6-39

 ('STATS', 'TABLE', 'ABC', 'DML') - (@GETENV ('STATS', 'TABLE', &
 'ABC', 'DELETE'));

This example returns statistics for DDL and TRUNCATE operations:

REPLICAT TEST2
..
..
MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, DDL = @COMPUTE &
(@GETENV ('STATS', 'DDL') + (@GETENV ('STATS', 'TRUNCATE'));

Example Use Case

In the following use case, if all DML from the source is applied successfully to the
target, Replicat suspends by means of EVENTACTIONS with SUSPEND, until resumed from
GGSCI with SEND REPLICAT with RESUME.

GETENV used in Extract parameter file:

TABLE HR1.HR*;
TABLE HR1.STAT, TOKENS ('env_stats' = @GETENV ('STATS', 'TABLE', &
 'HR1.HR*', 'DML'));

GETENV used in Replicat parameter file:

MAP HR1.HR*, TARGET HR2.*;
MAP HR1.STAT, TARGET HR2.STAT, filter (
 @if (
 @token ('stats') =
 @getenv ('STATS', 'TABLE', 'TSSCAT.TCUSTORD', 'DML'), 1, 0)
),
 eventactions (suspend);

Using Statistics in FILTER Clauses

Statistics returned by STATS and DELTASTATS are dynamic values and are incremented
after mapping is performed. Therefore, when using CDR statistics in a FILTER clause in
each of multiple MAP statements, you need to order the MAP statements in descending
order of the statistics values. If the order is not correct, Oracle GoldenGate returns
error OGG-01921. For detailed information about this requirement, see Document
1556241.1 in the Knowledge base of My Oracle Support at http://support.oracle.com.

Example 6-1 MAP statements containing statistics in FILTER clauses

In the following example, the MAP statements containing the filter for the CDR_CONFLICTS
statistic are ordered in descending order of the statistic: >3, then =3, then <3.

MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE
ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT, OVERWRITE)),FILTER (@GETENV ("STATS",
"CDR_CONFLICTS") > 3),EVENTACTIONS (LOG INFO);MAP TEST.GG_HEARTBEAT_TABLE, TARGET
TEST.GG_HEARTBEAT_TABLE COMPARECOLS (ON UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,
(DEFAULT, OVERWRITE)),FILTER (@GETENV ("STATS", "CDR_CONFLICTS") = 3),EVENTACTIONS
(LOG WARNING);MAP TEST.GG_HEARTBEAT_TABLE, TARGET TEST.GG_HEARTBEAT_TABLE
COMPARECOLS (ON UPDATE ALL),RESOLVECONFLICT(UPDATEROWEXISTS,(DEFAULT,
OVERWRITE)),FILTER (@GETENV ("STATS", "CDR_CONFLICTS") < 3),EVENTACTIONS (LOG
WARNING);

Syntax

@GETENV ({'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic')

Chapter 6
GETENV

6-40

http://support.oracle.com

{'STATS' | 'DELTASTATS'}

STATS returns counts since process startup, whereas DELTASTATS returns counts since
the last execution of a DELTASTATS.
The execution logic is as follows:

• When Extract processes a transaction record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved source tables in the TABLE
statement.

• When Replicat processes a trail record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved target tables in the TARGET
clause of the MAP statement.

'TABLE', 'table'

Executes the STATS or DELTASTATS only for the specified table or tables. Without this
option, counts are returned for all tables that are specified in TABLE (Extract) or MAP
(Replicat) parameters in the parameter file.
Valid table_name values are:

• 'schema.table' specifies a table.

• 'table' specifies a table of the default schema.

• 'schema.*' specifies all tables of a schema.

• '*' specifies all tables of the default schema.

For example, the following counts DML operations only for tables in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.*', 'DML'));

Likewise, the following counts DML operations only for the emp table in the hr schema:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS', 'TABLE',
'hr.emp', 'DML'));

By contrast, because there are no specific tables specified for STATS in the following
example, the function counts all INSERT, UPDATE, and DELETE operations for all tables in
all schemas that are represented in the TARGET clauses of MAP statements:

MAP fin.*, TARGET fin.*;
MAP hr.*, TARGET hr.*;
MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = &
@GETENV ('STATS', 'DML'));

'statistic'
The type of statistic to return. See Using Statistics in FILTER Clauses for important
information when using statistics in FILTER clauses in multiple TABLE or MAP statements.

'INSERT'

Returns the number of INSERT operations that were processed.

'UPDATE'

Returns the number of UPDATE operations that were processed.

Chapter 6
GETENV

6-41

'DELETE'

Returns the number of DELETE operations that were processed.

'DML'

Returns the total of INSERT, UPDATE, and DELETE operations that were processed.

'TRUNCATE'

Returns the number of TRUNCATE operations that were processed. This variable
returns a count only if Oracle GoldenGate DDL replication is not being used. If
DDL replication is being used, this variable returns a zero.

'DDL'

Returns the number of DDL operations that were processed, including TRUNCATEs
and DDL specified in INCLUDE and EXCLUDE clauses of the DDL parameter, all scopes
(MAPPED, UNMAPPED, OTHER). This variable returns a count only if Oracle GoldenGate
DDL replication is being used. This variable is not valid for 'DELTASTATS'.

'CDR_CONFLICTS'

Returns the number of conflicts that Replicat detected when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP','CDR_CONFLICTS')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_CONFLICTS')

'CDR_RESOLUTIONS_SUCCEEDED'

Returns the number of conflicts that Replicat resolved when executing the Conflict
Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_SUCCEEDED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')

'CDR_RESOLUTIONS_FAILED'

Returns the number of conflicts that Replicat could not resolve when executing
the Conflict Detection and Resolution (CDR) feature.
Example for a specific table:

@GETENV ('STATS','TABLE','HR.EMP', 'CDR_RESOLUTIONS_FAILED')

Example for all tables processed by Replicat:

@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

'GGENVIRONMENT' , 'environment_info'

Valid for Extract and Replicat.

Use the GGENVIRONMENT option of @GETENV to return information about the Oracle
GoldenGate environment.

Chapter 6
GETENV

6-42

Syntax

@GETENV ('GGENVIRONMENT', {'DOMAINNAME'|'GROUPDESCRIPTION'|'GROUPNAME'|

'GROUPTYPE'|'HOSTNAME'|'OSUSERNAME'|'PROCESSID'|'USERNAME'|'MACHINENAME'|'PROGRAMNAME
'|'CLIENTIDENTIFIER'})

'DOMAINNAME'

(Windows only) Returns the domain name associated with the user that started the
process.

'GROUPDESCRIPTION'

Returns the description of the group, taken from the checkpoint file. Requires that a
description was provided with the DESCRIPTION parameter when the group was created
with the ADD command in GGSCI.

'GROUPNAME'

Returns the name of the process group.

'GROUPTYPE'

Returns the type of process, either EXTRACT or REPLICAT.

'HOSTNAME'

Returns the name of the system running the Extract or Replicat process.

'OSUSERNAME'

Returns the operating system user name that started the process.

'PROCESSID'

Returns the process ID that is assigned to the process by the operating system.

‘USERNAME’
Database login user name.

‘MACHINENAME’
Name of the host, machine, or server where database is running

‘PROGRAMNAME’
Name of the program or application that started the transaction or session.

‘CLIENTIDENTIFIER’
Value set by using DBMS_SESSION_.set_identifier().

'GGHEADER' , 'header_info'

Valid for Extract and Replicat.

Use the GGHEADER option of @GETENV to return information from the header portion of an
Oracle GoldenGate trail record. The header describes the transaction environment of
the record. For more information on record headers and record types, see
Administering Oracle GoldenGate for Windows and UNIX.

Syntax

@GETENV ('GGHEADER', {'BEFOREAFTERINDICATOR'|'COMMITTIMESTAMP'|'LOGPOSITION'|
 'LOGRBA'|'OBJECTNAME'|'TABLENAME'|'OPTYPE'|'RECORDLENGTH'|
 'TRANSACTIONINDICATOR'})

Chapter 6
GETENV

6-43

'BEFOREAFTERINDICATOR'

Returns the before or after indicator showing whether the record is a before image or
an after image. Possible results are:

• BEFORE (before image)

• AFTER (after image)

'COMMITTIMESTAMP'

Returns the transaction timestamp (the time when the transaction committed)
expressed in the format of YYYY-MM-DD HH:MI:SS.FFFFFF, for example:

2011-01-24 17:08:59.000000

'LOGPOSITION'

Returns the position of the Extract process in the data source. (See the LOGRBA option.)

'LOGRBA'

LOGRBA and LOGPOSITION store details of the position in the data source of the record.
For transactional log-based products, LOGRBA is the sequence number and LOGPOSITION
is the relative byte address. However, these values will vary depending on the capture
method and database type.

'OBJECTNAME' | 'TABLENAME'

Returns the table name or object name (if a non-table object).

'OPTYPE'

Returns the type of operation. Possible results are:

INSERT
UPDATE
DELETE
ENSCRIBE COMPUPDATE
SQL COMPUPDATE
PK UPDATE
TRUNCATE

If the operation is not one of the above types, then the function returns the word TYPE
with the number assigned to the type.

'RECORDLENGTH'

Returns the record length in bytes.

'TRANSACTIONINDICATOR'

Returns the transaction indicator. The value corresponds to the TransInd field of the
record header, which can be viewed with the Logdump utility.
Possible results are:

• BEGIN (represents TransInD of 0, the first record of a transaction.)

• MIDDLE (represents TransInD of 1, a record in the middle of a transaction.)

• END (represents TransInD of 2, the last record of a transaction.)

• WHOLE (represents TransInD of 3, the only record in a transaction.)

'GGFILEHEADER' , 'header_info'

Valid for Replicat.

Chapter 6
GETENV

6-44

Use the GGFILEHEADER option of @GETENV to return attributes of an Oracle GoldenGate
extract file or trail file. These attributes are stored as tokens in the file header.

Note:

If a given database, operating system, or Oracle GoldenGate version does
not provide information that relates to a given token, a NULL value will be
returned.

Syntax

@GETENV ('GGFILEHEADER', {'COMPATIBILITY'|'CHARSET'|'CREATETIMESTAMP'|
 'FILENAME'|'FILETYPE'|'FILESEQNO'|'FILESIZE'|'FIRSTRECCSN'|
 'LASTRECCSN'|'FIRSTRECIOTIME'|'LASTRECIOTIME'|'URI'|'URIHISTORY'|
 'GROUPNAME'|'DATASOURCE'|'GGMAJORVERSION'|'GGMINORVERSION'|
 'GGVERSIONSTRING'|'GGMAINTENANCELEVEL'|'GGBUGFIXLEVEL'|'GGBUILDNUMBER'|
 'HOSTNAME'|'OSVERSION'|'OSRELEASE'|'OSTYPE'|'HARDWARETYPE'|
 'DBNAME'|'DBINSTANCE'|'DBTYPE'|'DBCHARSET'|'DBMAJORVERSION'|
 'DBMINORVERSION'|'DBVERSIONSTRING'|'DBCLIENTCHARSET'|'DBCLIENTVERSIONSTRING'|
 'LASTCOMPLETECSN'|'LASTCOMPLETEXIDS'|'LASTCSN'|'LASTXID'|
 'LASTCSNTS'})

'COMPATIBILITY'

Returns the Oracle GoldenGate compatibility level of the trail file. The compatibility
level of the current Oracle GoldenGate version must be greater than, or equal to, the
compatibility level of the trail file to be able to read the data records in that file. Current
valid values are 0 or 1.

• 1 means that the trail file is of Oracle GoldenGate version 10.0 or later, which
supports file headers that contain file versioning information.

• 0 means that the trail file is of an Oracle GoldenGate version that is older than
10.0. File headers are not supported in those releases. The 0 value is used for
backward compatibility to those Oracle GoldenGate versions.

'CHARSET'

Returns the global character set of the trail file. For example:
WCP1252-1

'CREATETIMESTAMP'

Returns the time that the trail was created, in local GMT Julian time in INT64.

'FILENAME'

Returns the name of the trail file. Can be an absolute or relative path, with a forward
or backward slash depending on the file system.

'FILETYPE'

Returns a numerical value indicating whether the trail file is a single file (such as one
created for a batch run) or a sequentially numbered file that is part of a trail for online,
continuous processing. The valid values are:

• 0 - EXTFILE

• 1 - EXTTRAIL

Chapter 6
GETENV

6-45

• 2 - UNIFIED and EXTFILE

• 3 - UNIFIED and EXTTRAIL

'FILESEQNO'

Returns the sequence number of the trail file, without any leading zeros. For example,
if a file sequence number is aa000026, FILESEQNO returns 26.

'FILESIZE'

Returns the size of the trail file. It returns NULL on an active file and returns a size
value when the file is full and the trail rolls over.

'FIRSTRECCSN'

Returns the commit sequence number (CSN) of the first record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate for Windows and UNIX.

'LASTRECCSN'

Returns the commit sequence number (CSN) of the last record in the trail file.Value is
NULL until the trail file is completed. For more information about the CSN, see
Administering Oracle GoldenGate for Windows and UNIX.

'FIRSTRECIOTIME'

Returns the time that the first record was written to the trail file. Value is NULL until the
trail file is completed.

'LASTRECIOTIME'

Returns the time that the last record was written to the trail file. Value is NULL until the
trail file is completed.

'URI'

Returns the universal resource identifier of the process that created the trail file, in the
following format:

host_name:dir:[:dir][:dir_n]group_name

Where:

• host_name is the name of the server that hosts the process

• dir is a subdirectory of the Oracle GoldenGate installation path.

• group_name is the name of the process group that is linked with the process.

The following example shows where the trail was processed and by which process.
This includes a history of previous runs.

sys1:home:oracle:v9.5:extora

'URIHISTORY'

Returns a list of the URIs of processes that wrote to the trail file before the current
process.

• For a primary Extract, this field is empty.

• For a data pump, this field is URIHistory + URI of the input trail file.

Chapter 6
GETENV

6-46

'GROUPNAME'

Returns the name of the group that is associated with the Extract process that created
the trail. The group name is the one that was supplied when the ADD EXTRACT
command was issued.

'DATASOURCE'

Returns the data source that was read by the process. The return value can be one of
the following:

• DS_EXTRACT_TRAILS: The source was an Oracle GoldenGate extract file, populated

with change data.

• DS_DATABASE: The source was a direct select from database table written to a trail,
used for SOURCEISTABLE-driven initial load.

• DS_TRAN_LOGS: The source was the database transaction log.

• DS_INITIAL_DATA_LOAD: The source was a direct select from database tables for

an initial load.

• DS_VAM_EXTRACT: The source was a vendor access module (VAM).

• DS_VAM_TWO_PHASE_COMMIT: The source was a VAM trail.

'GGMAJORVERSION'

Returns the major version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 1.

'GGMINORVERSION'

Returns the minor version of the Extract process that created the trail, expressed as
an integer. For example, if a version is 1.2.3, it returns 2.

'GGVERSIONSTRING'

Returns the maintenance (or patch) level of the Extract process that created the trail,
expressed as an integer. For example, if a version is 1.2.3, it returns 3.

'GGMAINTENANCELEVEL'

Returns the maintenance version of the process (xx.xx.xx).

'GGBUGFIXLEVEL'

Returns the patch version of the process (xx.xx.xx.xx).

'GGBUILDNUMBER'

Returns the build number of the process.

'HOSTNAME'

Returns the DNS name of the machine where the Extract that wrote the trail is
running. For example:

• sysa

• sysb

• paris

• hq25

'OSVERSION'

Returns the major version of the operating system of the machine where the Extract
that wrote the trail is running. For example:

Chapter 6
GETENV

6-47

• Version s10_69

• #1 SMP Fri Feb 24 16:56:28 EST 2006

• 5.00.2195 Service Pack 4

'OSRELEASE'

Returns the release version of the operating system of the machine where the Extract
that wrote the trail is running. For example, release versions of the examples given for
OSVERSION could be:

• 5.10

• 2.6.9-34.ELsmp

'OSTYPE'

Returns the type of operating system of the machine where the Extract that wrote the
trail is running. For example:

• SunOS

• Linux

• Microsoft Windows

'HARDWARETYPE'

Returns the type of hardware of the machine where the Extract that wrote the trail is
running. For example:

• sun4u

• x86_64

• x86

'DBNAME'

Returns the name of the database, for example findb.

'DBINSTANCE'

Returns the name of the database instance, if applicable to the database type, for
example ORA1022A.

'DBTYPE'

Returns the type of database that produced the data in the trail file. Can be one of:

DB2 UDB
DB2 ZOS
CTREE
MSSQL
MYSQL
ORACLE
SQLMX
SYBASE
TERADATA
NONSTOP
ENSCRIBE
ODBC

'DBCHARSET'

Returns the character set that is used by the database that produced the data in the
trail file. (For some databases, this will be empty.)

Chapter 6
GETENV

6-48

'DBMAJORVERSION'

Returns the major version of the database that produced the data in the trail file.

'DBMINORVERSION'

Returns the minor version of the database that produced the data in the trail file.

'DBVERSIONSTRING'

Returns the maintenance (patch) level of the database that produced the data in the
trail file.

'DBCLIENTCHARSET'

Returns the character set that is used by the database client.

'DBCLIENTVERSIONSTRING'

Returns the maintenance (patch) level of the database client. (For some databases,
this will be empty.)

'LASTCOMPLETECSN'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCOMPLETEXIDS'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCSN'

Returns recovery information for internal Oracle GoldenGate use.

'LASTXID'

Returns recovery information for internal Oracle GoldenGate use.

'LASTCSNTS'

Returns recovery information for internal Oracle GoldenGate use.

'RECORD' , 'location_info'

Valid for a data-pump Extract or Replicat.

Use the RECORD option of @GETENV to return the location or Oracle rowid of a record in an
Oracle GoldenGate trail file.

Syntax

@GETENV ('RECORD', {'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'FILESEQNO'

Returns the sequence number of the trail file without any leading zeros.

'FILERBA'

Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'

(Valid for Oracle) Returns the rowid of the record.

'RSN'

Returns the record sequence number within the transaction.

'TIMESTAMP'

Returns the timestamp of the record.

Chapter 6
GETENV

6-49

'RECORD_TIMESTAMP_PRECISE' , 'location_info'

Valid for a data-pump Extract or Replicat.

Use the RECORD_TIMESTAMP_PRECISE option of @GETENV to return the location or Oracle
rowid of a record in an Oracle GoldenGate trail file, with fraction precision.

This option returns the timestamp from YEAR to MICROSECONDS. However,
depending on the database, the value can be in MILLISECONDS with zero
MICROSECONDS.

Syntax

@GETENV ('RECORD_TIMESTAMP_PRECISE',
{'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'FILESEQNO'

Returns the sequence number of the trail file without any leading zeros.

'FILERBA'

Returns the relative byte address of the record within the FILESEQNO file.

'ROWID'

(Valid for Oracle) Returns the rowid of the record.

'RSN'

Returns the record sequence number within the transaction.

'TIMESTAMP'

Returns the timestamp of the record in microseconds or milliseconds, depending on
the database type.

'DBENVIRONMENT' , 'database_info'

Valid for Extract and Replicat.

Use the DBENVIRONMENT option of @GETENV to return global environment information for a
database.

Syntax

@GETENV ('DBENVIRONMENT', {'DBNAME'|'DBVERSION'|'DBUSER'|'SERVERNAME'})

'DBNAME'

Returns the database name.

'DBVERSION'

Returns the database version.

'DBUSER'

Returns the database login user. Note that SQL Server does not log the user ID.

'SERVERNAME'

Returns the name of the server.

'TRANSACTION' , 'transaction_info

Valid for Extract.

Chapter 6
GETENV

6-50

Use the TRANSACTION option of @GETENV to return information about a source transaction.
This option is valid for the Extract process.

Syntax

@GETENV ('TRANSACTION', {'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD')

'TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction
and are stored as tokens in the trail record. For each transaction ID, there is an
associated CSN. Transaction ID tokens have no zero-padding on any platform,
because they never get evaluated as relative values. They only get evaluated for
whether they match or do not match. Note that in the trail, the transaction ID token is
shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when
returned for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other
supported databases, the CSN is zero-padded. In the case of the Sybase CSN, each
substring that is delimited by a dot (.) will be padded to a length that does not change
for that substring.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.
For more information about the CSN, see Administering Oracle GoldenGate for
Windows and UNIX.

'TIMESTAMP'

Returns the commit timestamp of the transaction.

'NAME'

Returns the transaction name, if available.

'USERID'

(Oracle) Returns the Oracle user ID of the database user that committed the last
transaction.

'USERNAME'

(Oracle) Returns the Oracle user name of the database user that committed the last
transaction.

'PLANNAME'

(DB2 on z/OS) Returns the plan name under which the current transaction was
originally executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the
native sequence number that identifies the beginning of the oldest uncommitted
transaction that is held in Extract memory. For example, given an Oracle database,
the BSN would be expressed as a system change number (SCN). The BSN
corresponds to the current I/O checkpoint value of Extract. This value can be obtained
from the trail by Replicat when @GETENV ('TRANSACTION', 'LOGBSN') is used. This value
also can be obtained by using the INFO REPLICAT command with the DETAIL option. The
purpose of obtaining the BSN from Replicat is to get a recovery point for Extract in the
event that a system failure or file system corruption makes the Extract checkpoint file

Chapter 6
GETENV

6-51

unusable. See Administering Oracle GoldenGate for Windows and UNIX for more
information about recovering the Extract position.

'REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the
value is always 1. For data pump and Replicat, the thread id used by Extract capture
of a RAC node is returned; on non-RAC, @GETENV() returns an error. Logdump shows
the token, ORATHREADID, in the token section if the transaction is captured by Extract on
a RAC node.

'TRANSACTION_TIMESTAMP_PRECISE' , 'transaction_info

Valid for Extract.

Use the TRANSACTION_TIMESTAMP_PRECISE option of @GETENV to return information about a
source transaction, but with fraction precision. It returns the timestamp from YEAR to
MICROSECONDS. This option is valid for the Extract process.

Syntax

@GETENV ('TRANSACTION_TIMESTAMP_PRECISE',
{'TRANSACTIONID'|'XID'|'CSN'|'TIMESTAMP'|'NAME'|
 'USERID'|'USERNAME'|'PLANNAME' | 'LOGBSN' | 'REDOTHREAD')

'TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The
transaction ID and the CSN are associated with the first record of every transaction
and are stored as tokens in the trail record. For each transaction ID, there is an
associated CSN. Transaction ID tokens have no zero-padding on any platform,
because they never get evaluated as relative values. They only get evaluated for
whether they match or do not match. Note that in the trail, the transaction ID token is
shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when
returned for these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other
supported databases, the CSN is zero-padded. In the case of the Sybase CSN, each
substring that is delimited by a dot (.) will be padded to a length that does not change
for that substring.
Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.
For more information about the CSN, see Administering Oracle GoldenGate for
Windows and UNIX.

'TIMESTAMP'

Returns the commit timestamp of the transaction.

'NAME'

Returns the transaction name, if available.

'USERID'

(Oracle) Returns the Oracle user ID of the database user that committed the last
transaction.

'USERNAME'

(Oracle) Returns the Oracle user name of the database user that committed the last
transaction.

Chapter 6
GETENV

6-52

'PLANNAME'

(DB2 on z/OS) Returns the plan name under which the current transaction was
originally executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the
native sequence number that identifies the beginning of the oldest uncommitted
transaction that is held in Extract memory. For example, given an Oracle database,
the BSN would be expressed as a system change number (SCN). The BSN
corresponds to the current I/O checkpoint value of Extract. This value can be obtained
from the trail by Replicat when @GETENV ('TRANSACTION', 'LOGBSN') is used. This value
also can be obtained by using the INFO REPLICAT command with the DETAIL option. The
purpose of obtaining the BSN from Replicat is to get a recovery point for Extract in the
event that a system failure or file system corruption makes the Extract checkpoint file
unusable. See Administering Oracle GoldenGate for Windows and UNIX for more
information about recovering the Extract position.

'REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the
value is always 1. For data pump and Replicat, the thread id used by Extract capture
of a RAC node is returned; on non-RAC, @GETENV() returns an error. Logdump shows
the token, ORATHREADID, in the token section if the transaction is captured by Extract on
a RAC node.

'OSVARIABLE' , 'variable'

Valid for Extract and Replicat.

Use the OSVARIABLE option of @GETENV to return the string value of a specified operating-
system environment variable.

Syntax

@GETENV ('OSVARIABLE', 'variable')

'variable'

The name of the variable. The search is an exact match of the supplied variable
name. For example, the UNIX grep command would return all of the following
variables, but @GETENV ('OSVARIABLE', 'HOME') would only return the value for HOME:

ANT_HOME=/usr/local/ant
JAVA_HOME=/usr/java/j2sdk1.4.2_10
HOME=/home/judyd
ORACLE_HOME=/rdbms/oracle/ora1022i/64

The search is case-sensitive if the operating system supports case-sensitivity.

'TLFKEY' , SYSKEY, 'unique_key'

Valid for Extract and Replicat.

Use the TLFKEY option of @GETENV to associate a unique key with TLF/PTLF records in
ACI's Base24 application. The 64-bit key is composed of the following concatenated
items:

• The number of seconds since 2000.

• The block number of the record in the TLF/PTLF block multiplied by ten.

Chapter 6
GETENV

6-53

• The node specified by the user (must be between 0 and 255).

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax
element in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

'USERNAME' ,

Specifies the database login user name.

Syntax

@GETENV ('TLFKEY', SYSKEY, unique_key)

SYSKEY, unique_key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax
element in quotes.
Example:

GETENV ('TLFKEY', SYSKEY, 27)

6.24 GET_ENV_VALUE
Valid For

Extract and Replicat

Description

Use the GET_ENV_VALUE function to return information about the Oracle GoldenGate
environment. The information that is supplied is the same as that of the @GETENV
column-conversion function and is specified by using the same input values. For more
information about the valid information types, environment variables, and return
values, see "GETENV".

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in
the ucharset.h file, the character data that is exchanged between the user exit and the
process is interpreted in the session character set.

Syntax

#include "usrdecs.h"
short result_code;
getenv_value_def env_ptr;
ERCALLBACK (GET_ENV_VALUE, &env_ptr, &result_code);

Buffer

typedef struct
{
char *information_type;

Chapter 6
GET_ENV_VALUE

6-54

char *env_value_name;
char *return_value;
long max_return_length;
long actual_length;
short value_truncated;
} getenv_value_def;

Input

information_type

The information type that is to be returned, for example 'GGENVIRONMENT' or 'GGHEADER'.
The information type must be supplied within double quotes. For a list of information
types and subsequent detailed descriptions, see "GETENV".

env_value_name

The environment value that is wanted from the information type. The environment
value must be supplied within double quotes. For valid values, see "GETENV". For
example, if using the 'GGENVIRONMENT' information type, a valid environment value
would be 'GROUPNAME'.

max_return_length

The maximum length of the buffer for this data.

Output

return_value

A valid return value for the supplied environment value.

actual_length

The actual length of the data in this buffer.

value_truncated

A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if
the length of the value plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN_RET_OK
EXIT_FN_RET_ENV_NOT_FOUND
EXIT_FN_RET_INVALID_PARAM

6.25 GET_ERROR_INFO
Valid For

Extract and Replicat

Description

Use the GET_ERROR_INFO function to retrieve error information associated with a discard
record. The user exit can use this information in custom error handling logic. For
example, the user exit could send an e-mail message with detailed error information.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in
the ucharset.h file, the message data that is exchanged between the user exit and the
process is interpreted in the session character set.

Chapter 6
GET_ERROR_INFO

6-55

Syntax

#include "usrdecs.h"
short result_code;
error_info_def error_info;
ERCALLBACK (GET_ERROR_INFO, &error_info, &result_code);

Buffer

typedef struct
{
long error_num;
char *error_msg;
long max_length;
long actual_length;
short msg_truncated;
} error_info_def;

Input

error_msg

A pointer to a buffer to accept the returned error message.

max_length

The maximum length of your allocated error_msg buffer to accept any resulting error
message. This is returned as a NULL terminated string.

Output

error_num

The SQL or system error number associated with the discarded record.

error_msg

A pointer to the null-terminated error message string associated with the discarded
record.

actual_length

The length of the error message, not including the null terminator.

msg_truncated

A flag (0 or 1) indicating whether or not the error message was truncated. Truncation
occurs if the length of the error message plus a null terminator exceeds the maximum
buffer length.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

6.26 GET_GMT_TIMESTAMP
Valid For

Extract and Replicat

Chapter 6
GET_GMT_TIMESTAMP

6-56

Description

Use the GET_GMT_TIMESTAMP function to retrieve the operation commit timestamp in GMT
format. This function requires compiling with Version 2 usrdecs.h or later.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_GMT_TIMESTAMP, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Output

timestamp

The returned 64-bit I/O timestamp in GMT format.

io_datetime

A null-terminated string containing the local I/O date and time:
YYYY-MM-DD HH:MI:SS.FFFFFF

The format of the datetime string is in the session character set.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

6.27 GET_MARKER_INFO
Valid For

Extract (data pump only) and Replicat

Chapter 6
GET_MARKER_INFO

6-57

Description

Use the GET_MARKER_INFO function to retrieve marker information sent from a NonStop
source system when Replicat is applying data. Use markers to trigger custom
processing within a user exit.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in
the ucharset.h file, all of the returned marker data is interpreted in the session
character set.

Syntax

#include "usrdecs.h"
short result_code;
marker_info_def marker_info;
ERCALLBACK (GET_MARKER_INFO, &marker_info, &result_code);

Buffer

typedef struct
{
char *processed;
char *added;
char *text;
char *group;
char *program;
char *node;
} marker_info_def;

Input

processed

A pointer to a buffer to accept the processed return value.

added

A pointer to a buffer to accept the added return value.

text

A pointer to a buffer to accept the text return value.

group

A pointer to a buffer to accept the group return value.

program

A pointer to a buffer to accept the program return value.

node

A pointer to a buffer to accept the node return value.

Output

processed

A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date
and time that the marker was processed.

Chapter 6
GET_MARKER_INFO

6-58

added

A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date
and time that the marker was added.

text

A null-terminated string containing the text associated with the marker.

group

A null-terminated string indicating the Replicat group that processed the marker.

program

A null-terminated string indicating the program that processed the marker.

node

A null-terminated string representing the Himalaya node on which the marker was
originated.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

6.28 GET_OBJECT_NAME
Valid For

Extract and Replicat

Description

Use the GET_OBJECT_NAME function to retrieve the fully qualified name of a source or
target object that is associated with the record being processed. This function is valid
tables and other objects in a DML or DDL operation.

To return only part of the object name, see the following:

GET_OBJECT_NAME_ONLY GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_OBJECT_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Chapter 6
GET_OBJECT_NAME

6-59

Input

buffer

A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length

The maximum length of your allocated buffer to accept the object name. This is
returned as a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the object name is interpreted in the session
character set.

actual length

The string length of the returned object name. The actual length does not include the
null terminator. The actual length is 0 if the object is a table.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the object name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.29 GET_OBJECT_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_OBJECT_NAME_ONLY function to retrieve the unqualified name (without the
catalog, container, or schema) of a source or target object that is associated with the
record that is being processed. This function is valid for tables and other objects in a
DML or DDL operation.

To return the fully qualified name of an object, see the following:

GET_OBJECT_NAME

Chapter 6
GET_OBJECT_NAME_ONLY

6-60

To return other parts of the object name, see the following:

GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_OBJECT_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length

The maximum length of your allocated buffer to accept the object name. This is
returned as a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target object name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the object name is interpreted in the session
character set.

actual length

The string length of the returned object name. The actual length does not include the
null terminator. The actual length is 0 if the object is a table.

Chapter 6
GET_OBJECT_NAME_ONLY

6-61

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the object name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.30 GET_OPERATION_TYPE
Valid For

Extract and Replicat

Description

Use the GET_OPERATION_TYPE function to determine the operation type associated with a
record. Knowing the operation type can be useful in a user exit. For example, the user
exit can perform complex validations any time a delete is encountered. It also is
important to know when a compressed record is being processed if the user exit is
manipulating the full data record.

As an alternative, you can use the GET_RECORD_BUFFER function to determine the
operation type (see "GET_RECORD_BUFFER").

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_OPERATION_TYPE, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Chapter 6
GET_OPERATION_TYPE

6-62

Input

source_or_target

One of the following indicating whether to return the operation type for the source or
the target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

io_type

Returned as one of the following:

• DDL type:

SQL_DDL_VAL

• DML types:

DELETE_VAL
INSERT_VAL
UPDATE_VAL

• Compressed Enscribe update:

UPDATE_COMP_ENSCRIBE_VAL

• Compressed SQL update:

UPDATE_COMP_SQL_VAL
UPDATE_COMP_PK_SQL_VAL

• Other:

TRUNCATE_TABLE_VAL

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.31 GET_POSITION
Valid For

Extract (data pump only) and Replicat

Description

Use the GET_POSITION function is obtain a read position of an Extract data pump or
Replicat in the Oracle GoldenGate trail.

Syntax

#include "usrdecs.h"
short result_code;
ERCALLBACK (GET_POSITION &position_def, &result_code);

Chapter 6
GET_POSITION

6-63

Buffer

typedef struct
{
char *position;
long position_len;
short position_type;
short ascii_or_internal;
} position_def;

Input

position_len

Allocation length for the position length.

position_type

Can be one of the following:

STARTUP_CHECKPOINT

The start position in the trail.

CURRENT_CHECKPOINT

The position of the last read in the trail.

column_value_mode

An indicator for the format in which the column value was passed. Currently, only the
default Oracle GoldenGate canonical format is supported, as represented by:
EXIT_FN_RAW_FORMAT

Output

*position

A pointer to a buffer representing the position values. This buffer is declared in the
position_def as two binary values (unsigned int32t and int32t) as seqnorba for eight
bytes in a char field. The user exit must move the data to the correct data type. Using
this function on a Little Endian platform will cause the process to "reverse bytes" on
the two fields individually.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_NOT_SUPPORTED
EXIT_FN_RET_OK

6.32 GET_RECORD_BUFFER
Valid For

Extract and Replicat

Description

Use the GET_RECORD_BUFFER function to obtain information for custom column
conversions. User exits can be used for data mapping between dissimilar source and
target records when the COLMAP option of the MAP or TABLE parameter is not sufficient.
For example, you can use a user exit to convert a proprietary date field (for example,

Chapter 6
GET_RECORD_BUFFER

6-64

YYDDD) in an Enscribe database to a standard SQL date in the target record, while other
columns are mapped by the Extract process by means of the COLMAP option.

You can use the SET_RECORD_BUFFER function (see "SET_RECORD_BUFFER") to
modify the data retrieved with GET_RECORD_BUFFER. However, it requires an
understanding of the data record as written in the internal Oracle GoldenGate
canonical format. As an alternative, you can set column values in the data record with
the SET_COLUMN_VALUE_BY_INDEX function (see "SET_COLUMN_VALUE_BY_INDEX") or
the SET_COLUMN_VALUE_BY_NAME function (see "STRNCMP").

Deletes, inserts and updates appear in the buffer as full record images.

Compressed SQL updates have the following format:

index length value [index length value][...]

where:

• index is a two-byte index into the list of columns of the table (first column is zero).

• length is the two-byte length of the table.

• value is the actual column value, including one of the following two-byte null
indicators when applicable. 0 is not null. -1 is null.

For SQL records, you can use the DECOMPRESS_RECORD function
("DECOMPRESS_RECORD") to decompress the record for possible manipulation and
then use the COMPRESS_RECORD function ("COMPRESS_RECORD") to compress it again,
as expected by the process.

Compressed Enscribe updates have the following format:

offset length value [offset length value][...]

where:

• offset is the offset into the Enscribe record of the data fragment that changed.

• length is the length of the fragment.

• value is the data. Fragments can span field boundaries, so full fields are not
always retrieved (unless compression is off or FETCHCOMPS is used).

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_RECORD_BUFFER, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;

Chapter 6
GET_RECORD_BUFFER

6-65

short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

source_or_target

One of the following indicating whether to return the record buffer for the source or
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind

Optional. Set when requesting a record buffer on a record io_type of
UPDATE_COMP_PK_SQL_VAL (primary key update). Use one of the following to indicate
which portion of the primary key update is to be accessed. The default is
AFTER_IMAGE_VAL.

BEFORE_IMAGE_VAL
AFTER_IMAGE_VAL

Output

buffer

A pointer to the record buffer. Typically, buffer is a pointer to a buffer of type
exit_rec_buf_def. The exit_rec_buf_def buffer contains the actual record about to be
processed by Extract or Replicat. The buffer is supplied when the call type is
EXIT_CALL_DISCARD_RECORD. Exit routines can change the contents of this buffer, for
example, to perform custom mapping functions.
The content of the record buffer is not converted to or from the character set of the
user exit. It is passed as-is.

length

The returned length of the record buffer.

io_type

Returned as one of the following:

• DDL type:

SQL_DDL_VAL

• DML types:

DELETE_VAL
INSERT_VAL
UPDATE_VAL

• Compressed Enscribe update:

UPDATE_COMP_ENSCRIBE_VAL

• Compressed SQL update:

UPDATE_COMP_SQL_VAL
UPDATE_COMP_PK_SQL_VAL

Chapter 6
GET_RECORD_BUFFER

6-66

• Other:

TRUNCATE_TABLE_VAL

mapped

A flag (0 or 1) indicating whether or not this is a mapped record buffer.

before_after_ind

One of the following to indicate whether the record is a before or after image.

BEFORE_IMAGE_VAL
AFTER_IMAGE_VAL

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.33 GET_RECORD_LENGTH
Valid For

Extract and Replicat

Description

Use the GET_RECORD_LENGTH function to retrieve the length of the data record. As an
alternative, you can use the GET_RECORD_BUFFER function to retrieve the length of the
data record.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_RECORD_LENGTH, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Chapter 6
GET_RECORD_LENGTH

6-67

Input

source_or_target

One of the following indicating whether to return the record length for the source or
target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

length

The returned length of the data record.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.34 GET_RECORD_TYPE
Valid For

Extract and Replicat

Description

Use the GET_RECORD_TYPE function to retrieve the type of record being processed. The
record can be either a SQL or Enscribe record. The record type is important when
manipulating the record buffer, because each record type has a different format.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_RECORD_TYPE, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Chapter 6
GET_RECORD_TYPE

6-68

Input

source_or_target

One of the following indicating whether or not to return the record type for the source
or target data record.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

record_type

The returned record type. Can be one of the following:

• For SQL records:

EXIT_REC_TYPE_SQL

• For Enscribe records:

EXIT_REC_TYPE_ENSCRIBE

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.35 GET_SCHEMA_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_SCHEMA_NAME_ONLY function to retrieve the name of the owner (such as
schema), but not the name of the catalog or container (if applicable) or the object, of
the source or target object associated with the record being processed. This function is
valid for DML and DDL operations.

To return the fully qualified name of a table, see the following:

GET_TABLE_NAME

To return the fully qualified name of a non-table object, such as a user, view or index,
see the following:

GET_OBJECT_NAME

To return only the unqualified table or object name, see the following:

GET_TABLE_NAME_ONLY

GET_OBJECT_NAME_ONLY

To return other parts of the table or object name, see the following:

GET_CATALOG_NAME_ONLY

Chapter 6
GET_SCHEMA_NAME_ONLY

6-69

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_SCHEMA_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned schema name. The name is null-
terminated.

max_length

The maximum length of your allocated buffer to accept the schema name. This is
returned as a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target schema name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The fully qualified, null-terminated schema name.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the schema name is interpreted in the session
character set.

actual_length

The string length of the returned name. The actual length does not include the null
terminator.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the schema name plus the null terminator exceeds the maximum buffer
length.

Chapter 6
GET_SCHEMA_NAME_ONLY

6-70

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.36 GET_SESSION_CHARSET
Valid For

Extract and Replicat

Description

Use GET_SESSION_CHARSET to get the current user exit session character set. This
character set can be set through callback function SET_SESSION_CHARSET. The character
set of the user exit session indicates the encoding of any character-based callback
structure members that are used between the user exit and the caller process (Extract,
data pump, Replicat), including metadata such as (but not limited to):

• database names and locales

• table and column names

• DDL text

• error messages

• character-type columns such as CHAR and NCHAR

• date-time and numeric columns that are represented in string form

The valid values of the session character set are defined in the header file ucharset.h.
This function can be called at any time that the user exit has control.

For more information about globalization support, see Administering Oracle
GoldenGate for Windows and UNIX.

Syntax

#include usrdecs.h
short result_code;
session_def session_charset_def;
ERCALLBACK (GET_SESSION_CHARSET, &session_charset_def, &result_code);

Buffer

typedef struct
{
ULibCharSet session_charset;
} session_def;

Input

None

Output

session_charset_def.session_charset

Chapter 6
GET_SESSION_CHARSET

6-71

Return Values

EXIT_FN_RET_OK

6.37 GET_STATISTICS
Valid For

Extract and Replicat

Description

Use the GET_STATISTICS function to retrieve the current processing statistics for the
Extract or Replicat process. For example, the user exit can output statistics to a
custom report should a fatal error occur during Extract or Replicat processing.

Statistics are automatically handled based on which process type has requested the
data:

• The Extract process will always treat the request as a source table, counting that
table once regardless of the number of times output.

• The Replicat process will always treat the request as a set of target tables. The set
includes all counts to the target regardless of the number of source tables.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
statistics_def statistics;
ERCALLBACK (GET_STATISTICS, &statistics, &result_code);

Buffer

typedef struct
{
char *table_name;
short group;
exit_timestamp_string start_datetime;
long num_inserts;
long num_updates;
long num_befores;
long num_deletes;
long num_discards;
long num_ignores;
long total_db_operations;
long total_operations;
/* Version 2 CALLBACK_STRUCT_VERSION */
long num_truncates;
} statistics_def;

Chapter 6
GET_STATISTICS

6-72

Input

table_name

A null-terminated string specifying the fully qualified name of the source table.
Statistics are always recorded against the source records. If the character session of
the user exit is set with SET_SESSION_CHARSET to a value other than the default character
set of the operating system, as defined in ULIB_CS_DEFAULT in the ucharset.h file, the
table name and the date are interpreted in the session character set.

group

Can be one of the following:

EXIT_STAT_GROUP_STARTUP

Retrieves statistics since the Oracle GoldenGate process was last started.

EXIT_STAT_GROUP_DAILY

Retrieves statistics since midnight of the current day.

EXIT_STAT_GROUP_HOURLY

Retrieves statistics since the start of the current hour.

EXIT_STAT_GROUP_RECENT

Retrieves statistics since the statistics were reset using GGSCI.

EXIT_STAT_GROUP_REPORT

Retrieves statistics since the last report was generated.

EXIT_STAT_GROUP_USEREXIT

Retrieves statistics since the last time the user exit reset the statistics with
RESET_USEREXIT_STATS.

Output

start_datetime

A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date
and time that statistics started to be recorded for the specified group.

num_inserts

The returned number of inserts processed by Extract or Replicat.

num_updates

The returned number of updates processed by Extract or Replicat.

num_befores

The returned number of update before images processed by Extract or Replicat.

num_deletes

The returned number of deletes processed by Extract or Replicat.

num_discards

The returned number of records discarded by Extract or Replicat.

num_ignores

The returned number of records ignored by Extract or Replicat.

Chapter 6
GET_STATISTICS

6-73

total_db_operations

The returned number of total database operations processed by Extract or Replicat.

total_operations

The returned number of total operations processed by Extract or Replicat, including
discards and ignores.

num_truncates

The returned number of truncates processed by Extract or Replicat.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_TABLE_NOT_FOUND
EXIT_FN_RET_OK

6.38 GET_TABLE_COLUMN_COUNT
Valid For

Extract and Replicat

Description

Use the GET_TABLE_COLUMN_COUNT function to retrieve the total number of columns in a
table, including the number of key columns.

Syntax

#include "usrdecs.h"
short result_code;
table_def table;
ERCALLBACK (GET_TABLE_COLUMN_COUNT, &table, &result_code);

Buffer

typedef struct
{
short num_columns;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
short num_key_columns;
} table_def;

Input

source_or_target

One of the following indicating whether to return the total number of columns for the
source or target table.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

num_columns

The returned total number of columns in the specified table.

Chapter 6
GET_TABLE_COLUMN_COUNT

6-74

num_key_columns

The returned total number of columns that are being used by Oracle GoldenGate as
the key for the specified table.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.39 GET_TABLE_METADATA
Valid For

Extract and Replicat

Description

Use the GET_TABLE_METADATA function to retrieve metadata about the table that
associated with the record that is being processed.

Syntax

#include "usrdecs.h"
short result_code;
table_metadata_def tbl_meta_rec;
ERCALLBACK (GET_TABLE_METADATA, &tbl_meta_rec, &result_code);

Buffer

typedef struct
{
char *table_name;
short value_truncated;
long max_name_length;
long actual_name_length;
short num_columns;
short num_key_columns;
short *key_columns;
short num_keys_returned;
BOOL using_pseudo_key;
short source_or_target;
} table_metadata_def;

Input

table_name

A pointer to a buffer to accept the table_name return value

key_columns

A pointer to an array of key_columns indexes.

max_name_length

The maximum length of the returned table name. Typically, the maximum length is the
length of the table name buffer. Since the returned table name is null-terminated, the
maximum length should equal the maximum length of the table name.

Chapter 6
GET_TABLE_METADATA

6-75

source_or_target

One of the following indicating whether to return the source or target table name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

table_name

The name of the table associated with the record that is being processed. If the
character session of the user exit is set with SET_SESSION_CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS_DEFAULT in the
ucharset.h file, the table name is interpreted in the session character set.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the table name plus the null terminator exceeds the maximum buffer
length.

actual_name_length

The string length of the returned table name. The actual length does not include the
null terminator.

num_columns

The number of columns in the table.

num_key_columns

The number of columns in the key that is being used by Oracle GoldenGate.

key_columns

The values for the key columns. You must know the expected number of keys
multiplied by the length of the columns, and then allocate the appropriate amount of
buffer.

num_keys_returned

The number of key columns that are requested.

using_pseudo_key

A flag that indicates whether or not KEYCOLS-specified columns are being used as a
key. Returns TRUE or FALSE.

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_EXCEEDED_MAX_LENGTH
EXIT_FN_RET_OK

6.40 GET_TABLE_NAME
Valid For

Extract and Replicat

Chapter 6
GET_TABLE_NAME

6-76

Description

Use the GET_TABLE_NAME function to retrieve the fully qualified name of the source or
target table associated with the record being processed. This function is valid only for
tables in DML and DDL operations. To retrieve the fully qualified name of a non-table
object, see the following:

GET_OBJECT_NAME

To return only part of the fully qualified name, see also the following:

GET_TABLE_NAME_ONLY GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

This function returns a value only if the object is a table. Otherwise, the actual_length
of the env_value_def variable returns 0.

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_TABLE_NAME, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned table name. The table name is null-
terminated.

max_length

The maximum length of your allocated buffer to accept the table name. This is
returned as a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target table name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Chapter 6
GET_TABLE_NAME

6-77

Output

buffer

The fully qualified, null-terminated table name, for example schema.table or
catalog.schema.table, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the table name is interpreted in the session
character set.

actual length

The string length of the returned table name. The actual length does not include the
null terminator. The actual length returned is 0 if the object is anything other than a
table.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the table name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.41 GET_TABLE_NAME_ONLY
Valid For

Extract and Replicat

Description

Use the GET_TABLE_NAME_ONLY function to retrieve the unqualified name (without the
catalog, container, or schema) of the source or target table associated with the record
being processed. This function is valid only for tables in DML and DDL operations. To
retrieve the unqualified name of a non-table object, see the following:

GET_OBJECT_NAME_ONLY

To return the fully qualified name of a table, see the following:

GET_TABLE_NAME

To return other parts of the table name, see the following:

GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting
database, including the letter case.

This function returns a value only if the object is a table. Otherwise, the actual_length
of the env_value_def variable returns 0.

Chapter 6
GET_TABLE_NAME_ONLY

6-78

Syntax

#include "usrdecs.h"
short result_code;
env_value_def env_value;
ERCALLBACK (GET_TABLE_NAME_ONLY, &env_value, &result_code);

Buffer

typedef struct
{
char *buffer;
long max_length;
long actual_length;
short value_truncated;
short index;
short source_or_target;
} env_value_def;

Input

buffer

A pointer to a buffer to accept the returned table name. The table name is null-
terminated.

max_length

The maximum length of your allocated buffer to accept the table name. This is
returned as a NULL terminated string.

source_or_target

One of the following indicating whether to return the source or target table name.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

buffer

The fully qualified, null-terminated table name, for example schema.table or
catalog.schema.table, depending on the database platform.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the table name is interpreted in the session
character set.

actual length

The string length of the returned table name. The actual length does not include the
null terminator. The actual length returned is 0 if the object is anything other than a
table.

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if
the length of the table name plus the null terminator exceeds the maximum buffer
length.

Chapter 6
GET_TABLE_NAME_ONLY

6-79

Return Values

EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.42 GET_TIMESTAMP
Valid For

Extract and Replicat

Description

Use the GET_TIMESTAMP function to retrieve the I/O timestamp associated with a source
data record in ASCII datetime format. The timestamp is then converted to local time
and approximates the time of the original database operation.

Note:

The ASCII commit timestamp can vary with the varying regional use of
Daylight Savings Time. The user exit callback should return the ASCII
datetime as a GMT time to avoid this variance. The Oracle GoldenGate trail
uses GMT format. See "GET_GMT_TIMESTAMP".

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_TIMESTAMP, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Chapter 6
GET_TIMESTAMP

6-80

Output

timestamp

The returned 64-bit I/O timestamp in ASCII format.

io_datetime

A null-terminated string containing the local I/O date and time, in the format of:
YYYY-MM-DD HH:MI:SS.FFFFFF

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

6.43 GET_TRANSACTION_IND
Valid For

Extract and Replicat

Description

Use the GET_TRANSACTION_IND function to determine whether a data record is the first,
last or middle operation in a transaction. This can be useful when, for example, a user
exit can compile the details of each transaction and output a special summary record.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (GET_TRANSACTION_IND, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

None

Chapter 6
GET_TRANSACTION_IND

6-81

Output

transaction_ind

The returned transaction indicator, represented as one of the following:

BEGIN_TRANS_VAL

The record is the beginning of a transaction.

MIDDLE_TRANS_VAL

The record is in the middle of a transaction.

END_TRANS_VAL

The record is the end of a transaction.

WHOLE_TRANS_VAL

The record is the only one in the transaction.

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_OK

6.44 GET_USER_TOKEN_VALUE
Valid For

Extract and Replicat

Description

Use the GET_USER_TOKEN_VALUE function to obtain the value of a user token from a trail
record. No character-set conversion is performed on the token value.

Syntax

#include "usrdecs.h"

Buffer

typedef struct
{
char *token_name;
char *token_value;
long max_length;
long actual_length;
short value_truncated;
} token_value_def;

Input

token_name

A pointer to a buffer representing the name of a token. It is assumed that the token
name is encoded in the default character set of the operating system that hosts the
Extract TABLE statement where the token is configured. The user exit prepares the
token name in the character set that is specified with SET_SESSION_CHARSET, but

Chapter 6
GET_USER_TOKEN_VALUE

6-82

converts it back to the operating system character set before retrieving the matching
token value.

max_length

The maximum length of your allocated token_name buffer to accept any resulting token
value. This is returned as a NULL terminated string.

Output

token_value

A pointer to a buffer representing the return value (if any) of a token. The token value
is passed back to the user exit as-is, without any character-set conversion.

actual_length

The actual length of the token value that is returned. A value of 0 is returned if the
token is found and there is no value present.

value_truncated

A flag of either 0 or 1 that indicates whether or not the token value was truncated.
Truncation occurs if the length of the table name plus the null terminator exceeds the
maximum buffer length.

Return Values

EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_TOKEN_NOT_FOUND
EXIT_FN_RET_OK

6.45 OUTPUT_MESSAGE_TO_REPORT
Valid For

Extract and Replicat

Description

Use the OUTPUT_MESSAGE_TO_REPORT function to output a message to the report file. If a
character session for the user exit is set with SET_SESSION_CHARSET, the message is
interpreted in the session character set but is converted to the default character set of
the operating system before being written to the report file.

Syntax

#include "usrdecs.h"
short result_code;
char message[500];
ERCALLBACK (OUTPUT_MESSAGE_TO_REPORT, message, &result_code);

Buffer

None

Chapter 6
OUTPUT_MESSAGE_TO_REPORT

6-83

Input

message

A null-terminated string.

Output

None

Return Values

EXIT_FN_RET_OK

6.46 RESET_USEREXIT_STATS
Valid For

Extract and Replicat

Description

Use the RESET_USEREXIT_STATS function to reset the EXIT_STAT_GROUP_USEREXIT statistics
for the Oracle GoldenGate process since the last call to GET_STATISTICS was
processed. This function enables the user exit to control when to reset the group
statistics that are returned by the GET_STATISTICS function, but does not permit any of
the other statistics to be reset.

Syntax

#include "usrdecs.h"
short result_code;
call_callback (RESET_USEREXIT_STATS, NULL, &result_code);

Input

None

Output

None

Return Values

None

6.47 SET_COLUMN_VALUE_BY_INDEX
Valid For

Extract and Replicat

Description

Use the SET_COLUMN_VALUE_BY_INDEX or SET_COLUMN_VALUE_BY_NAME function to modify a
single column value without manipulating the entire data record. If the character
session of the user exit is set with SET_SESSION_CHARSET to a value other than the default

Chapter 6
RESET_USEREXIT_STATS

6-84

character set of the operating system, as defined in ULIB_CS_DEFAULT in the ucharset.h
file, the character data that is exchanged between the user exit and the process is
interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (SET_COLUMN_VALUE_BY_INDEX, &column, &result_code);

Buffer

typedef struct
{
char *column_value;
unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;
char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value

A pointer to a buffer representing the new column value.

actual_value_length

The length of the new column value, in bytes. The actual length should not include the
null terminator if the new column value is in ASCII format.

null_value

A flag (0 or 1) indicating whether the new column value is null. If the null_value flag is
set to 1, the column value in the data record is set to null.

remove_column

A flag (0 or 1) indicating whether to remove the column from a compressed update if it
exists. A compressed update is one in which only the changed column values are
logged, not all of the column values. This flag should only be set if the operation type
for the record is UPDATE_COMP_SQL_VAL, PK_UPDATE_SQL_VAL, or UPDATE_COMP_ENSCRIBE_VAL.

Chapter 6
SET_COLUMN_VALUE_BY_INDEX

6-85

column_index

The column index of the new column value to be copied into the data record buffer.
Column indexes start at zero.

column_value_mode

Indicates the format of the column value.

EXIT_FN_CHAR_FORMAT

ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as '123.45'.

• Non-printable characters or binary values are converted to hexadecimal
notation.

• Floating point types are output as null-terminated strings, to the first 14
significant digits.

EXIT_FN_RAW_FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character
data type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT

User exit character set: This only applies if the column data type is:

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target

One of the following indicating whether the source or target record is being modified.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind

Set when setting a column value on a record io_type of UPDATE_COMP_PK_SQL_VAL
(primary key update). Use one of the following to indicate which portion of the primary
key update is to be accessed. The default is AFTER_IMAGE_VAL.

• BEFORE_IMAGE_VAL

Chapter 6
SET_COLUMN_VALUE_BY_INDEX

6-86

• AFTER_IMAGE_VAL

Output

None

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED
EXIT_FN_RET_INVALID_COLUMN_TYPE

6.48 SET_COLUMN_VALUE_BY_NAME
Valid For

Extract and Replicat

Description

Use the SET_COLUMN_VALUE_BY_NAME or SET_COLUMN_VALUE_BY_INDEX function to modify a
single column value without manipulating the entire data record.

If the character session of the user exit is set with SET_SESSION_CHARSET to a value other
than the default character set of the operating system, as defined in ULIB_CS_DEFAULT in
the ucharset.h file, the character data that is exchanged between the user exit and the
process is interpreted in the session character set.

A column value is set to the session character set only if the following is true:

• The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2/
NCLOB), a SQL date/timestamp/interval/number type)

• The column_value_mode indicator is set to EXIT_FN_CNVTED_SESS_CHAR_FORMAT.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"
short result_code;
column_def column;
ERCALLBACK (SET_COLUMN_VALUE_BY_NAME, &column, &result_code);

Buffer

typedef struct
{
char *column_value;
unsigned short max_value_length;
unsigned short actual_value_length;
short null_value;
short remove_column;
short value_truncated;
short column_index;

Chapter 6
SET_COLUMN_VALUE_BY_NAME

6-87

char *column_name;
/* Version 3 CALLBACK_STRUCT_VERSION */
short column_value_mode;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
char more_lob_data;
/* Version 3 CALLBACK_STRUCT_VERSION */
ULibCharSet column_charset;
} column_def;

Input

column_value

A pointer to a buffer representing the new column value.

actual_value_length

The length of the new column value, in bytes. The actual length should not include the
null terminator if the new column value is in ASCII format.

null_value

A flag (0 or 1) indicating whether the new column value is null. If the null_value flag is
set to 1, the column value in the data record is set to null.

remove_column

A flag (0 or 1) indicating whether to remove the column from a compressed update if it
exists. A compressed update is one where only the changed column values are
logged, not all of the column values. This flag should only be set if the operation type
for the record is UPDATE_COMP_SQL_VAL, PK_UPDATE_SQL_VAL, or UPDATE_COMP_ENSCRIBE_VAL.

column_name

The name of the column that corresponds to the new column value to be copied into
the data record buffer.

column_value_mode

Indicates the format of the column value.

EXIT_FN_CHAR_FORMAT

ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a
known exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because
the value is interpreted as an ASCII string and is supposed to be null-
terminated. The first value of 0 becomes the string terminator.

• Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional
time is database-dependent.

• Numeric values are in their string format. For example, 123.45 is represented
as '123.45'.

Chapter 6
SET_COLUMN_VALUE_BY_NAME

6-88

• Non-printable characters or binary values are converted to hexadecimal
notation.

• Floating point types are output as null-terminated strings, to the first 14
significant digits.

EXIT_FN_RAW_FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character
data type.

EXIT_FN_CNVTED_SESS_CHAR_FORMAT

User exit character set: This only applies if the column data type is:

• a character-based type, single or multi-byte

• a numeric type with a string representation

This format is not null-terminated.

source_or_target

One of the following indicating whether the source or the target data record is being
modified.

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

requesting_before_after_ind

Set when setting a column value on a record io_type of UPDATE_COMP_PK_SQL_VAL
(primary key update). Use one of the following to indicate which portion of the primary
key update is to be accessed. The default is AFTER_IMAGE_VAL.

• BEFORE_IMAGE_VAL

• AFTER_IMAGE_VAL

Output

None

Return Values

EXIT_FN_RET_BAD_COLUMN_DATA
EXIT_FN_RET_INVALID_COLUMN
EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED
EXIT_FN_RET_INVALID_COLUMN_TYPE

6.49 SET_OPERATION_TYPE
Valid For

Extract and Replicat

Chapter 6
SET_OPERATION_TYPE

6-89

Description

Use the SET_OPERATION_TYPE function to change the operation type associated with a
data record. For example, a delete on a specified table can be turned into an insert
into another table. The record header's before/after indicator is modified as appropriate
for insert and delete operations.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (SET_OPERATION_TYPE, &record, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

io_type

Returned as one of the following for deletes, inserts, and updates, respectively:

DELETE_VAL
INSERT_VAL
UPDATE_VAL

For a compressed Enscribe update, the following is returned:

UPDATE_COMP_ENSCRIBE_VAL

For a compressed SQL update, the following is returned:

UPDATE_COMP_SQL_VAL

If the new operation type is an insert or delete, the before/after indicator for the record
is set to one of the following:
Insert: AFTER_IMAGE_VAL (after image)
Delete: BEFORE_IMAGE_VAL (before image)

source_or_target

One of the following indicating whether to set the operation type for the source or
target data record.

Chapter 6
SET_OPERATION_TYPE

6-90

EXIT_FN_SOURCE_VAL
EXIT_FN_TARGET_VAL

Output

None

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

6.50 SET_RECORD_BUFFER
Valid For

Extract and Replicat

Description

Use the SET_RECORD_BUFFER function for compatibility with user exits, and for complex
data record manipulation. This function manipulates the entire record. It is best to
modify individual column values, rather than the entire record, because the Oracle
GoldenGate internal record formats must be known in order to accurately modify the
data record buffer directly. To modify column values, use the
SET_COLUMN_VALUE_BY_INDEX and SET_COLUMN_VALUE_BY_NAME functions. These functions
are sufficient to handle most custom mapping within a user exit.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (SET_RECORD_BUFFER, &record_def, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Chapter 6
SET_RECORD_BUFFER

6-91

Input

buffer

A pointer to the new record buffer. Typically, buffer is a pointer to a buffer of type
exit_rec_buf_def. The exit_rec_buf_def buffer contains the actual record about to be
processed by Extract or Replicat. The buffer is supplied when the call type is
EXIT_CALL_DISCARD_RECORD. Exit routines can change the contents of this buffer, for
example to perform custom mapping functions.
The content of the record buffer is not converted to or from the character set of the
user exit. It is passed as-is.

length

The new length of the record buffer.

Output

None

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK
EXIT_FN_RET_NOT_SUPPORTED

6.51 SET_SESSION_CHARSET
Valid For

Extract and Replicat

Description

Use the SET_SESSION_CHARSET function to set the character set of the user exit. The
character set of the user exit session indicates the encoding of any character-based
callback structure members that are used between the user exit and the caller process
(Extract, data pump, Replicat), including metadata such as (but not limited to):

• database names and locales

• table and column names

• DDL text

• error messages

• character-type columns such as CHAR and NCHAR

• date-time and numeric columns that are represented in string form

This function can be called at any time that the user exit has control. When the user
exit sets the session character set, it takes effect immediately, and all character values
start being converted to the specified set. The recommended place to call this function
is with call type EXIT_CALL_START.

Chapter 6
SET_SESSION_CHARSET

6-92

Note:

SET_SESSION_CHARSET is not thread-safe.

If SET_SESSION_CHARSET is not called, the session gets set to the default character set of
the operating system, which is a predefined enumerated type value in ULIB_CS_DEFAULT
in the ucharset.h file. When the session character set is a default from
ULIB_CS_DEFAULT, no conversion is performed by Oracle GoldenGate for character-type
values that are exchanged between the user exit and the caller process. In addition,
the object-name metadata of the database are considered to be the default character
set of the operating system. Keep in mind that the default may not be correct.

The character set of the user exit is printed to the report file when the user exit is
loaded and when SET_SESSION_CHARSET is called. If the session character set is
ULIB_CS_DEFAULT, there is a message stating that no column data character-set
conversion is being performed.

For more information about globalization support, see Administering Oracle
GoldenGate for Windows and UNIX.

Syntax

#include usrdecs.h
short result_code;
session_def session_charset_def;
ERCALLBACK (SET_SESSION_CHARSET, &session_charset_def, &result_code);

Buffer

typedef struct
{
ULibCharSet session_charset;
} session_def;

Input

session_charset

The valid values of the session character set are defined in the header file ucharset.h.

Output

None

Return Values

EXIT_FN_RET_OK

6.52 SET_TABLE_NAME
Valid For

Extract and data pumps

Chapter 6
SET_TABLE_NAME

6-93

Description

Use the SET_TABLE_NAME function to change the table name associated with a data
record. For example, a delete on a specified table can be changed to an insert into a
history table. You can change the table name only during Extract processing.

If the database is case-sensitive, object names must be specified in the same letter
case as they are defined in the hosting database; otherwise, the case does not matter.
Specify the full two-part or three-part table name.

Syntax

#include "usrdecs.h"
short result_code;
record_def record;
ERCALLBACK (SET_TABLE_NAME, &record_def, &result_code);

Buffer

typedef struct
{
char *table_name;
char *buffer;
long length;
char before_after_ind;
short io_type;
short record_type;
short transaction_ind;
int64_t timestamp;
exit_ts_str io_datetime;
short mapped;
short source_or_target;
/* Version 2 CALLBACK_STRUCT_VERSION */
char requesting_before_after_ind;
} record_def;

Input

table_name

A null-terminated string specifying the new table name to be associated with the data
record.
If the character session of the user exit is set with SET_SESSION_CHARSET to a value
other than the default character set of the operating system, as defined in
ULIB_CS_DEFAULT in the ucharset.h file, the table name is interpreted in the session
character set.

Output

None

Return Values

EXIT_FN_RET_INVALID_CONTEXT
EXIT_FN_RET_INVALID_PARAM
EXIT_FN_RET_OK

Chapter 6
SET_TABLE_NAME

6-94

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Oracle GoldenGate GGSCI Commands
	1.1 Summary of Oracle GoldenGate Commands
	1.1.1 Summary of Manager Commands
	1.1.2 Summary of Extract Commands
	1.1.3 Summary of Replicat Commands
	1.1.4 Summary of the ER Command
	1.1.5 Summary of Wallet Commands
	1.1.6 Summary of Credential Store Commands
	1.1.7 Summary of Trail Commands
	1.1.8 Summary of Parameter Commands
	1.1.9 Summary of Database Commands
	1.1.10 Summary of Trandata Commands
	1.1.11 Summary of Checkpoint Table Commands
	1.1.12 Summary of Oracle Trace Table Commands
	1.1.13 Summary of Oracle GoldenGate Data Store Commands
	1.1.14 Summary of Oracle GoldenGate Monitor JAgent Commands
	1.1.15 Summary of Oracle GoldenGate Automatic Heartbeat Commands
	1.1.16 Summary of Miscellaneous Oracle GoldenGate Commands

	1.2 INFO MANAGER
	1.3 SEND MANAGER
	1.4 START MANAGER
	1.5 STATUS MANAGER
	1.6 STOP MANAGER
	1.7 ADD EXTRACT
	1.8 ALTER EXTRACT
	1.9 CLEANUP EXTRACT
	1.10 DELETE EXTRACT
	1.11 INFO EXTRACT
	1.12 KILL EXTRACT
	1.13 LAG EXTRACT
	1.14 REGISTER EXTRACT
	1.15 SEND EXTRACT
	1.16 START EXTRACT
	1.17 STATS EXTRACT
	1.18 STATUS EXTRACT
	1.19 STOP EXTRACT
	1.20 UNREGISTER EXTRACT
	1.21 ADD REPLICAT
	1.22 ALTER REPLICAT
	1.23 CLEANUP REPLICAT
	1.24 DELETE REPLICAT
	1.25 INFO REPLICAT
	1.26 KILL REPLICAT
	1.27 LAG REPLICAT
	1.28 REGISTER REPLICAT
	1.29 SEND REPLICAT
	1.30 START REPLICAT
	1.31 STATS REPLICAT
	1.32 STATUS REPLICAT
	1.33 STOP REPLICAT
	1.34 SYNCHRONIZE REPLICAT
	1.35 UNREGISTER REPLICAT
	1.36 ER
	1.37 CREATE WALLET
	1.38 OPEN WALLET
	1.39 PURGE WALLET
	1.40 ADD MASTERKEY
	1.41 INFO MASTERKEY
	1.42 RENEW MASTERKEY
	1.43 DELETE MASTERKEY
	1.44 UNDELETE MASTERKEY
	1.45 ADD CREDENTIALSTORE
	1.46 ALTER CREDENTIALSTORE
	1.47 INFO CREDENTIALSTORE
	1.48 DELETE CREDENTIALSTORE
	1.49 ADD EXTTRAIL
	1.50 ADD RMTTRAIL
	1.51 ALTER EXTTRAIL
	1.52 ALTER RMTTRAIL
	1.53 DELETE EXTTRAIL
	1.54 DELETE RMTTRAIL
	1.55 INFO EXTTRAIL
	1.56 INFO RMTTRAIL
	1.57 VIEW PARAMS
	1.58 EDIT PARAMS
	1.59 SET EDITOR
	1.60 INFO PARAM
	1.61 GETPARAMINFO
	1.62 DBLOGIN
	1.63 ENCRYPT PASSWORD
	1.64 DUMPDDL
	1.65 FLUSH SEQUENCE
	1.66 LIST TABLES
	1.67 MININGDBLOGIN
	1.68 SET NAMECCSID
	1.69 ADD SCHEMATRANDATA
	1.70 ADD TRANDATA
	1.71 DELETE SCHEMATRANDATA
	1.72 DELETE TRANDATA
	1.73 INFO SCHEMATRANDATA
	1.74 INFO TRANDATA
	1.75 SET_INSTANTIATION_CSN
	1.76 CLEAR_INSTANTIATION_CSN
	1.77 CLEANUP CHECKPOINTTABLE
	1.78 DELETE CHECKPOINTTABLE
	1.79 INFO CHECKPOINTTABLE
	1.80 UPGRADE CHECKPOINTTABLE
	1.81 ADD TRACETABLE
	1.82 DELETE TRACETABLE
	1.83 INFO TRACETABLE
	1.84 ALTER DATASTORE
	1.85 CREATE DATASTORE
	1.86 DELETE DATASTORE
	1.87 INFO DATASTORE
	1.88 REPAIR DATASTORE
	1.89 INFO JAGENT
	1.90 START JAGENT
	1.91 STATUS JAGENT
	1.92 STOP JAGENT
	1.93 ADD HEARTBEATTABLE
	1.94 ALTER HEARTBEATTABLE
	1.95 DELETE HEARTBEATTABLE
	1.96 DELETE HEARTBEATENTRY
	1.97 INFO HEARTBEATTABLE
	1.98 !
	1.99 ALLOWNESTED | NOALLOWNESTED
	1.100 CREATE SUBDIRS
	1.101 DEFAULTJOURNAL
	1.102 FC
	1.103 HELP
	1.104 HISTORY
	1.105 INFO ALL
	1.106 INFO MARKER
	1.107 OBEY
	1.108 SHELL
	1.109 SHOW
	1.110 VERSIONS
	1.111 VIEW GGSEVT
	1.112 VIEW REPORT
	1.113 ADD CHECKPOINTTABLE

	2 Oracle GoldenGate Native Commands
	2.1 Summary of Oracle GoldenGate IBM i Native Commands
	2.2 checkprm
	2.3 convchk
	2.4 defgen
	2.5 extract
	2.6 ggsci
	2.7 keygen
	2.8 logdump
	2.9 mgr
	2.10 replicat

	3 Oracle GoldenGate Parameters
	3.1 Summary of Oracle GoldenGate Parameters
	3.1.1 Summary of GLOBALS Parameters
	3.1.2 Summary of Manager Parameters
	3.1.3 Summary of Parameters Common to Extract and Replicat
	3.1.4 Summary of Extract Parameters
	3.1.5 Summary of Replicat Parameters
	3.1.6 Summary of Wildcard Exclusion Parameters
	3.1.7 Summary of DEFGEN Parameters
	3.1.8 Summary of DDL Parameters
	3.1.9 Summary of Oracle GoldenGate Data Store Commands

	3.2 ABORTDISCARDRECS
	3.3 ACCESSRULE
	3.4 ALLOCFILES
	3.5 ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP
	3.6 ALLOWINVISIBLEINDEXKEYS
	3.7 ALLOWNONVALIDATEDKEYS
	3.8 ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES
	3.9 ALLOWOUTPUTDIR
	3.10 APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES
	3.11 ASCIITOEBCDIC
	3.12 ASSUMETARGETDEFS
	3.13 AUTORESTART
	3.14 AUTOSTART
	3.15 BATCHSQL
	3.16 BEGIN
	3.17 BLOBMEMORY
	3.18 BOOTDELAYMINUTES
	3.19 BR
	3.20 BULKLOAD
	3.21 CACHEMGR
	3.22 CATALOGEXCLUDE
	3.23 CHARMAP
	3.24 CHARSET
	3.25 CHECKMINUTES
	3.26 CHECKPARAMS
	3.27 CHECKPOINTSECS
	3.28 CHECKPOINTTABLE
	3.29 CMDTRACE
	3.30 COLCHARSET
	3.31 COLMATCH
	3.32 COMMENT | --
	3.33 COMPRESSDELETES | NOCOMPRESSDELETES
	3.34 COMPRESSUPDATES | NOCOMPRESSUPDATES
	3.35 COORDSTATINTERVAL
	3.36 COORDTIMER
	3.37 CREDENTIALSTORELOCATION
	3.38 CRYPTOENGINE
	3.39 CUSEREXIT
	3.40 DBOPTIONS
	3.41 DDL
	3.42 DDLERROR
	3.43 DDLOPTIONS
	3.44 DDLSUBST
	3.45 DDLRULEHINT
	3.46 DDLTABLE
	3.47 DECRYPTTRAIL
	3.48 DEFERAPPLYINTERVAL
	3.49 DEFSFILE
	3.50 DISCARDFILE | NODISCARDFILE
	3.51 DISCARDROLLOVER
	3.52 DOWNREPORT
	3.53 DSOPTIONS
	3.54 DYNAMICPORTLIST
	3.55 DYNAMICRESOLUTION | NODYNAMICRESOLUTION
	3.56 EBCDICTOASCII
	3.57 ENABLECATALOGNAMES
	3.58 ENABLEMONITORING
	3.59 ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE
	3.60 ENCRYPTTRAIL | NOENCRYPTTRAIL
	3.61 END
	3.62 EOFDELAY | EOFDELAYCSECS
	3.63 EXCLUDEHIDDENCOLUMNS
	3.64 EXCLUDETAG
	3.65 EXCLUDEWILDCARDOBJECTSONLY
	3.66 EXTFILE
	3.67 EXTRACT
	3.68 EXTTRAIL
	3.69 FETCHOPTIONS
	3.70 FETCHUSERID
	3.71 FETCHUSERIDALIAS
	3.72 FILTERDUPS | NOFILTERDUPS
	3.73 FLUSHSECS | FLUSHCSECS
	3.74 FORMATASCII
	3.75 FORMATSQL
	3.76 FORMATXML
	3.77 FUNCTIONSTACKSIZE
	3.78 GENLOADFILES
	3.79 GETAPPLOPS | IGNOREAPPLOPS
	3.80 GETDELETES | IGNOREDELETES
	3.81 GETENV
	3.82 GETINSERTS | IGNOREINSERTS
	3.83 GETREPLICATES | IGNOREREPLICATES
	3.84 GETTRUNCATES | IGNORETRUNCATES
	3.85 GETUPDATEAFTERS | IGNOREUPDATEAFTERS
	3.86 GETUPDATEBEFORES | IGNOREUPDATEBEFORES
	3.87 GETUPDATES | IGNOREUPDATES
	3.88 GGSCHEMA
	3.89 GROUPTRANSOPS
	3.90 HANDLECOLLISIONS | NOHANDLECOLLISIONS
	3.91 HANDLETPKUPDATE
	3.92 HAVEUDTWITHNCHAR
	3.93 HEARTBEATTABLE
	3.94 INCLUDE
	3.95 INSERTALLRECORDS
	3.96 INSERTAPPEND | NOINSERTAPPEND
	3.97 INSERTDELETES | NOINSERTDELETES
	3.98 INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES
	3.99 INSERTUPDATES | NOINSERTUPDATES
	3.100 LAGCRITICAL
	3.101 LAGINFO
	3.102 LAGREPORT
	3.103 LIST | NOLIST
	3.104 LOBMEMORY
	3.105 LOGALLSUPCOLS
	3.106 MACRO
	3.107 MACROCHAR
	3.108 MAP for Extract
	3.109 MAP
	3.110 MAPEXCLUDE
	3.111 MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS
	3.112 MARKERTABLE
	3.113 MAXDISCARDRECS
	3.114 MAXGROUPS
	3.115 MAXSQLSTATEMENTS
	3.116 MAXTRANSOPS
	3.117 MGRSERVNAME
	3.118 MONITORING_HEARTBEAT_TIMEOUT
	3.119 NAMECCSID
	3.120 NAMEMATCH parameters
	3.121 NOCATALOG
	3.122 NODUPMSGSUPPRESSION
	3.123 NUMFILES
	3.124 OBEY
	3.125 OUTPUTFILEUMASK
	3.126 OVERRIDEDUPS | NOOVERRIDEDUPS
	3.127 PTKCAPTUREPROCSTATS
	3.128 PTKMONITORFREQUENCY
	3.129 PORT
	3.130 PRESERVETARGETTIMEZONE
	3.131 PROCEDURE
	3.132 PURGEDDLHISTORY | PURGEDDLHISTORYALT
	3.133 PURGEMARKERHISTORY
	3.134 PURGEOLDEXTRACTS for Extract and Replicat
	3.135 PURGEOLDEXTRACTS for Manager
	3.136 PURGEOLDTASKS
	3.137 RECOVERYOPTIONS
	3.138 REPERROR
	3.139 REPFETCHEDCOLOPTIONS
	3.140 REPLACEBADCHAR
	3.141 REPLACEBADNUM
	3.142 REPLICAT
	3.143 REPORT
	3.144 REPORTCOUNT
	3.145 REPORTROLLOVER
	3.146 RESTARTCOLLISIONS | NORESTARTCOLLISIONS
	3.147 RMTFILE
	3.148 RMTHOST
	3.149 RMTHOSTOPTIONS
	3.150 RMTTASK
	3.151 RMTTRAIL
	3.152 ROLLOVER
	3.153 SCHEMAEXCLUDE
	3.154 SEQUENCE
	3.155 SESSIONCHARSET
	3.156 SETENV
	3.157 SHOWSYNTAX
	3.158 SOURCECATALOG
	3.159 SOURCECHARSET
	3.160 SOURCEDB
	3.161 SOURCEDEFS
	3.162 SOURCEISTABLE
	3.163 SOURCETIMEZONE
	3.164 SPACESTONULL | NOSPACESTONULL
	3.165 SPECIALRUN
	3.166 SQLDUPERR
	3.167 SQLEXEC
	3.168 STARTUPVALIDATIONDELAY[CSECS]
	3.169 STATOPTIONS
	3.170 SYSLOG
	3.171 TABLE | MAP
	3.172 TABLE for DEFGEN
	3.173 TABLE for Replicat
	3.174 TABLEEXCLUDE
	3.175 TARGETDB
	3.176 TARGETDEFS
	3.177 TCPSOURCETIMER | NOTCPSOURCETIMER
	3.178 THREADOPTIONS
	3.179 TRACE | TRACE2
	3.180 TRACETABLE | NOTRACETABLE
	3.181 TRAILBYTEORDER
	3.182 TRAILCHARSET
	3.183 TRAILCHARSETASCII
	3.184 TRAILCHARSETUNICODE
	3.185 TRAILCHARSETEBCDIC
	3.186 TRAIL_SEQLEN_6D | TRAIL_SEQLEN_9D
	3.187 TRANLOGOPTIONS
	3.188 TRANSACTIONTIMEOUT
	3.189 TRANSMEMORY
	3.190 TRIMSPACES | NOTRIMSPACES
	3.191 TRIMVARSPACES | NOTRIMVARSPACES
	3.192 UPDATEDELETES | NOUPDATEDELETES
	3.193 UPDATEINSERTS | NOUPDATEINSERTS
	3.194 UPDATERECORDFORMAT
	3.195 UPREPORT
	3.196 USE_TRAILDEFS | NO_USE_TRAILDEFS
	3.197 USEANSISQLQUOTES | NOUSEANSISQLQUOTES
	3.198 USEDEDICATEDCOORDINATIONTHREAD
	3.199 USEIPV4
	3.200 USEIPV6
	3.201 USERID | NOUSERID
	3.202 USERIDALIAS
	3.203 VAM
	3.204 VARWIDTHNCHAR | NOVARWIDTHNCHAR
	3.205 VERIDATAREPORTAGE
	3.206 WALLETLOCATION
	3.207 WARNLONGTRANS
	3.208 WARNRATE
	3.209 WILDCARDRESOLVE
	3.210 XAGENABLE
	3.211 Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

	4 Collector Parameters
	4.1 Overview of the Collector Process
	4.2 Summary of Collector Parameters
	4.3 -B
	4.4 -b
	4.5 -cp
	4.6 -d
	4.7 -E
	4.8 -e
	4.9 -ENCRYPT
	4.10 -f
	4.11 -g
	4.12 -h
	4.13 -k
	4.14 -KEYNAME
	4.15 -l
	4.16 -m
	4.17 -P
	4.18 -p
	4.19 -R
	4.20 -x

	5 Column Conversion Functions
	5.1 Summary of Column-Conversion Functions
	5.2 AFTER
	5.3 BEFORE
	5.4 BEFOREAFTER
	5.5 BINARY
	5.6 BINTOHEX
	5.7 CASE
	5.8 COLSTAT
	5.9 COLTEST
	5.10 COMPUTE
	5.11 DATE
	5.12 DATEDIFF
	5.13 DATENOW
	5.14 DDL
	5.15 EVAL
	5.16 GETENV
	5.17 GETVAL
	5.18 HEXTOBIN
	5.19 HIGHVAL | LOWVAL
	5.20 IF
	5.21 NUMBIN
	5.22 NUMSTR
	5.23 OGG_SHA1
	5.24 RANGE
	5.25 STRCAT
	5.26 STRCMP
	5.27 STREQ
	5.28 STREXT
	5.29 STRFIND
	5.30 STRLEN
	5.31 STRLTRIM
	5.32 STRNCAT
	5.33 STRNCMP
	5.34 STRNUM
	5.35 STRRTRIM
	5.36 STRSUB
	5.37 STRTRIM
	5.38 STRUP
	5.39 TOKEN
	5.40 VALONEOF

	6 User Exit Functions
	6.1 Calling a User Exit
	6.2 Summary of User Exit Functions
	6.3 Using EXIT_CALL_TYPE
	6.4 Using EXIT_CALL_RESULT
	6.5 Using EXIT_PARAMS
	6.6 Using ERCALLBACK
	6.7 Function Codes
	6.8 COMPRESS_RECORD
	6.9 DECOMPRESS_RECORD
	6.10 GET_BASE_OBJECT_NAME
	6.11 GET_BASE_OBJECT_NAME_ONLY
	6.12 GET_BASE_SCHEMA_NAME_ONLY
	6.13 GET_BEFORE_AFTER_IND
	6.14 GET_CATALOG_NAME_ONLY
	6.15 GET_COL_METADATA_FROM_INDEX
	6.16 GET_COL_METADATA_FROM_NAME
	6.17 GET_COLUMN_INDEX_FROM_NAME
	6.18 GET_COLUMN_NAME_FROM_INDEX
	6.19 GET_COLUMN_VALUE_FROM_INDEX
	6.20 GET_COLUMN_VALUE_FROM_NAME
	6.21 GET_DATABASE_METADATA
	6.22 GET_DDL_RECORD_PROPERTIES
	6.23 GETENV
	6.24 GET_ENV_VALUE
	6.25 GET_ERROR_INFO
	6.26 GET_GMT_TIMESTAMP
	6.27 GET_MARKER_INFO
	6.28 GET_OBJECT_NAME
	6.29 GET_OBJECT_NAME_ONLY
	6.30 GET_OPERATION_TYPE
	6.31 GET_POSITION
	6.32 GET_RECORD_BUFFER
	6.33 GET_RECORD_LENGTH
	6.34 GET_RECORD_TYPE
	6.35 GET_SCHEMA_NAME_ONLY
	6.36 GET_SESSION_CHARSET
	6.37 GET_STATISTICS
	6.38 GET_TABLE_COLUMN_COUNT
	6.39 GET_TABLE_METADATA
	6.40 GET_TABLE_NAME
	6.41 GET_TABLE_NAME_ONLY
	6.42 GET_TIMESTAMP
	6.43 GET_TRANSACTION_IND
	6.44 GET_USER_TOKEN_VALUE
	6.45 OUTPUT_MESSAGE_TO_REPORT
	6.46 RESET_USEREXIT_STATS
	6.47 SET_COLUMN_VALUE_BY_INDEX
	6.48 SET_COLUMN_VALUE_BY_NAME
	6.49 SET_OPERATION_TYPE
	6.50 SET_RECORD_BUFFER
	6.51 SET_SESSION_CHARSET
	6.52 SET_TABLE_NAME

