
Oracle® Fusion Middleware
Using Oracle GoldenGate for Big Data

Release 12c (12.3.2.1)
F11078-02
November 2018

Oracle Fusion Middleware Using Oracle GoldenGate for Big Data, Release 12c (12.3.2.1)

F11078-02

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xviii

Documentation Accessibility xviii

Conventions xviii

Related Information xix

1 Introducing Oracle GoldenGate for Big Data

1.1 Understanding What’s Supported 1-1

1.1.1 Verifying Certification and System Requirements 1-1

1.1.2 What are the Additional Support Considerations? 1-1

1.2 Setting Up Oracle GoldenGate for Big Data 1-4

1.2.1 About Oracle GoldenGate Properties Files 1-4

1.2.2 Setting Up the Java Runtime Environment 1-5

1.2.3 Configuring Java Virtual Machine Memory 1-5

1.2.4 Grouping Transactions 1-6

1.3 Configuring Oracle GoldenGate for Big Data 1-6

1.3.1 Running with Replicat 1-7

1.3.1.1 Configuring Replicat 1-7

1.3.1.2 Adding the Replicat Process 1-7

1.3.1.3 Replicat Grouping 1-8

1.3.1.4 About Replicat Checkpointing 1-8

1.3.1.5 About Initial Load Support 1-8

1.3.1.6 About the Unsupported Replicat Features 1-8

1.3.1.7 How the Mapping Functionality Works 1-8

1.3.2 Overview of Logging 1-9

1.3.2.1 About Replicat Process Logging 1-9

1.3.2.2 About Java Layer Logging 1-9

1.3.3 About Schema Evolution and Metadata Change Events 1-10

1.3.4 About Configuration Property CDATA[] Wrapping 1-11

1.3.5 Using Regular Expression Search and Replace 1-11

1.3.5.1 Using Schema Data Replace 1-11

1.3.5.2 Using Content Data Replace 1-12

iii

1.3.6 Scaling Oracle GoldenGate for Big Data Delivery 1-13

1.3.7 Using Identities in Oracle GoldenGate Credential Store 1-15

1.3.7.1 Creating a Credential Store 1-16

1.3.7.2 Adding Users to a Credential Store 1-16

1.3.7.3 Configuring Properties to Access the Credential Store 1-17

2 Using the BigQuery Handler

2.1 Detailing the Functionality 2-1

2.1.1 Data Types 2-1

2.1.2 Operation Modes 2-1

2.1.3 Operation Processing Support 2-2

2.2 Setting Up and Running the BigQuery Handler 2-3

2.2.1 Understanding the BigQuery Handler Configuration 2-4

2.2.2 Review a Sample Configuration 2-5

2.2.3 Proxy Settings 2-6

2.2.4 Configuring Handler Authentication 2-6

3 Using the Cassandra Handler

3.1 Overview 3-1

3.2 Detailing the Functionality 3-1

3.2.1 About the Cassandra Data Types 3-2

3.2.2 About Catalog, Schema, Table, and Column Name Mapping 3-3

3.2.3 About DDL Functionality 3-3

3.2.3.1 About the Keyspaces 3-4

3.2.3.2 About the Tables 3-4

3.2.3.3 Addng Column Functionality 3-5

3.2.3.4 Dropping Column Functionality 3-5

3.2.4 How Operations are Processed 3-5

3.2.5 About Compressed Updates vs. Full Image Updates 3-6

3.2.6 About Primary Key Updates 3-7

3.3 Setting Up and Running the Cassandra Handler 3-7

3.3.1 Understanding the Cassandra Handler Configuration 3-8

3.3.2 Review a Sample Configuration 3-10

3.3.3 Configuring Security 3-11

3.4 About Automated DDL Handling 3-11

3.4.1 About the Table Check and Reconciliation Process 3-11

3.4.2 Capturing New Change Data 3-12

3.5 Performance Considerations 3-12

3.6 Additional Considerations 3-12

iv

3.7 Troubleshooting 3-13

3.7.1 Java Classpath 3-14

3.7.2 Logging 3-14

3.7.3 Write Timeout Exception 3-14

3.7.4 Logging 3-15

3.7.5 Datastax Driver Error 3-15

4 Using the Elasticsearch Handler

4.1 Overview 4-1

4.2 Detailing the Functionality 4-1

4.2.1 About the Elasticsearch Version Property 4-2

4.2.2 About the Index and Type 4-2

4.2.3 About the Document 4-2

4.2.4 About the Primary Key Update 4-2

4.2.5 About the Data Types 4-3

4.2.6 Operation Mode 4-3

4.2.7 Operation Processing Support 4-3

4.2.8 About the Connection 4-3

4.3 Setting Up and Running the Elasticsearch Handler 4-4

4.3.1 Configuring the Elasticsearch Handler 4-4

4.3.2 About the Transport Client Settings Properties File 4-7

4.4 Performance Consideration 4-7

4.5 About the Shield Plug-In Support 4-8

4.6 About DDL Handling 4-8

4.7 Troubleshooting 4-8

4.7.1 Incorrect Java Classpath 4-8

4.7.2 Elasticsearch Version Mismatch 4-9

4.7.3 Transport Client Properties File Not Found 4-9

4.7.4 Cluster Connection Problem 4-9

4.7.5 Unsupported Truncate Operation 4-9

4.7.6 Bulk Execute Errors 4-10

4.8 Logging 4-10

4.9 Known Issues in the Elasticsearch Handler 4-11

5 Using the File Writer Handler

5.1 Overview 5-1

5.1.1 Detailing the Functionality 5-2

5.1.1.1 Using File Roll Events 5-2

5.1.1.2 Automatic Directory Creation 5-4

v

5.1.1.3 About the Active Write Suffix 5-4

5.1.1.4 Maintenance of State 5-4

5.1.1.5 Using Templated Strings 5-5

5.1.2 Configuring the File Writer Handler 5-6

5.1.3 Review a Sample Configuration 5-14

5.2 Using the HDFS Event Handler 5-15

5.2.1 Detailing the Functionality 5-15

5.2.1.1 Configuring the Handler 5-15

5.2.1.2 Using Templated Strings 5-16

5.2.1.3 Configuring the HDFS Event Handler 5-17

5.3 Using the Optimized Row Columnar Event Handler 5-19

5.3.1 Overview 5-19

5.3.2 Detailing the Functionality 5-19

5.3.2.1 About the Upstream Data Format 5-19

5.3.2.2 About the Library Dependencies 5-20

5.3.2.3 Requirements 5-20

5.3.2.4 Using Templated Strings 5-20

5.3.3 Configuring the ORC Event Handler 5-22

5.4 Using the Oracle Cloud Infrastructure Event Handler 5-24

5.4.1 Overview 5-24

5.4.2 Detailing the Functionality 5-24

5.4.3 Configuring the Oracle Cloud Infrastructure Event Handler 5-24

5.4.4 Configuring Credentials for Oracle Cloud Infrastructure 5-27

5.4.5 Using Templated Strings 5-28

5.4.6 Troubleshooting 5-30

5.5 Using the Oracle Cloud Infrastructure Classic Event Handler 5-30

5.5.1 Overview 5-31

5.5.2 Detailing the Functionality 5-31

5.5.3 Configuring the Oracle Cloud Infrastructure Classic Event Handler 5-31

5.5.4 Using Templated Strings 5-34

5.5.5 Troubleshooting 5-35

5.6 Using the Parquet Event Handler 5-36

5.6.1 Overview 5-36

5.6.2 Detailing the Functionality 5-36

5.6.2.1 Configuring the Parquet Event Handler to Write to HDFS 5-36

5.6.2.2 About the Upstream Data Format 5-37

5.6.2.3 Using Templated Strings 5-37

5.6.3 Configuring the Parquet Event Handler 5-38

5.7 Using the S3 Event Handler 5-41

5.7.1 Overview 5-41

5.7.2 Detailing Functionality 5-41

vi

5.7.2.1 Configuring the Client ID and Secret 5-42

5.7.2.2 About the AWS S3 Buckets 5-42

5.7.2.3 Using Templated Strings 5-42

5.7.2.4 Troubleshooting 5-44

5.7.3 Configuring the S3 Event Handler 5-44

6 Using the Flume Handler

6.1 Overview 6-1

6.2 Setting Up and Running the Flume Handler 6-1

6.2.1 Classpath Configuration 6-2

6.2.2 Flume Handler Configuration 6-2

6.2.3 Review a Sample Configuration 6-3

6.3 Data Mapping of Operations to Flume Events 6-3

6.3.1 Operation Mode 6-4

6.3.2 Transaction Mode and EventMapsTo Operation 6-4

6.3.3 Transaction Mode and EventMapsTo Transaction 6-4

6.4 Performance Considerations 6-5

6.5 Metadata Change Events 6-5

6.6 Example Flume Source Configuration 6-5

6.6.1 Avro Flume Source 6-5

6.6.2 Thrift Flume Source 6-6

6.7 Advanced Features 6-6

6.7.1 Schema Propagation 6-6

6.7.2 Security 6-7

6.7.3 Fail Over Functionality 6-7

6.7.4 Load Balancing Functionality 6-7

6.8 Troubleshooting the Flume Handler 6-8

6.8.1 Java Classpath 6-8

6.8.2 Flume Flow Control Issues 6-8

6.8.3 Flume Agent Configuration File Not Found 6-8

6.8.4 Flume Connection Exception 6-9

6.8.5 Other Failures 6-9

7 Using the HBase Handler

7.1 Overview 7-1

7.2 Detailed Functionality 7-1

7.3 Setting Up and Running the HBase Handler 7-2

7.3.1 Classpath Configuration 7-2

7.3.2 HBase Handler Configuration 7-3

vii

7.3.3 Sample Configuration 7-5

7.3.4 Performance Considerations 7-6

7.4 Security 7-6

7.5 Metadata Change Events 7-6

7.6 Additional Considerations 7-7

7.7 Troubleshooting the HBase Handler 7-7

7.7.1 Java Classpath 7-7

7.7.2 HBase Connection Properties 7-8

7.7.3 Logging of Handler Configuration 7-8

7.7.4 HBase Handler Delete-Insert Problem 7-8

7.7.5 Cloudera CDH HBase Compatibility 7-9

8 Using the HDFS Handler

8.1 Overview 8-1

8.2 Writing into HDFS in SequenceFile Format 8-1

8.2.1 Integrating with Hive 8-1

8.2.2 Understanding the Data Format 8-2

8.3 Setting Up and Running the HDFS Handler 8-2

8.3.1 Classpath Configuration 8-3

8.3.2 HDFS Handler Configuration 8-3

8.3.3 Review a Sample Configuration 8-9

8.3.4 Performance Considerations 8-9

8.3.5 Security 8-10

8.4 Writing in HDFS in Avro Object Container File Format 8-10

8.5 Generating HDFS File Names Using Template Strings 8-11

8.6 Metadata Change Events 8-12

8.7 Partitioning 8-12

8.8 HDFS Additional Considerations 8-13

8.9 Best Practices 8-14

8.10 Troubleshooting the HDFS Handler 8-14

8.10.1 Java Classpath 8-14

8.10.2 HDFS Connection Properties 8-15

8.10.3 Handler and Formatter Configuration 8-15

9 Using the Java Database Connectivity Handler

9.1 Overview 9-1

9.2 Detailed Functionality 9-1

9.2.1 Single Operation Mode 9-2

9.2.2 Oracle Database Data Types 9-2

viii

9.2.3 MySQL Database Data Types 9-2

9.2.4 Netezza Database Data Types 9-3

9.2.5 Redshift Database Data Types 9-3

9.3 Setting Up and Running the JDBC Handler 9-3

9.3.1 Java Classpath 9-4

9.3.2 Handler Configuration 9-4

9.3.3 Statement Caching 9-5

9.3.4 Setting Up Error Handling 9-6

9.4 Sample Configurations 9-7

9.4.1 Sample Oracle Database Target 9-7

9.4.2 Sample Oracle Database Target with JDBC Metadata Provider 9-7

9.4.3 Sample MySQL Database Target 9-8

9.4.4 Sample MySQL Database Target with JDBC Metadata Provider 9-8

10

Using the Kafka Handler

10.1 Overview 10-1

10.2 Detailed Functionality 10-1

10.3 Setting Up and Running the Kafka Handler 10-3

10.3.1 Classpath Configuration 10-4

10.3.2 Kafka Handler Configuration 10-4

10.3.3 Java Adapter Properties File 10-6

10.3.4 Kafka Producer Configuration File 10-7

10.3.5 Using Templates to Resolve the Topic Name and Message Key 10-7

10.3.6 Kafka Configuring with Kerberos on a Hadoop Platform 10-9

10.4 Schema Propagation 10-13

10.5 Performance Considerations 10-13

10.6 About Security 10-14

10.7 Metadata Change Events 10-14

10.8 Snappy Considerations 10-15

10.9 Troubleshooting 10-15

10.9.1 Verify the Kafka Setup 10-15

10.9.2 Classpath Issues 10-15

10.9.3 Invalid Kafka Version 10-15

10.9.4 Kafka Producer Properties File Not Found 10-15

10.9.5 Kafka Connection Problem 10-16

11

Using the Kafka Connect Handler

11.1 Overview 11-1

11.2 Detailed Functionality 11-1

ix

11.3 Setting Up and Running the Kafka Connect Handler 11-3

11.3.1 Kafka Connect Handler Configuration 11-4

11.3.2 Using Templates to Resolve the Topic Name and Message Key 11-9

11.3.3 Configuring Security in the Kafka Connect Handler 11-10

11.4 Kafka Connect Handler Performance Considerations 11-11

11.5 Troubleshooting the Kafka Connect Handler 11-11

11.5.1 Java Classpath for Kafka Connect Handler 11-12

11.5.2 Invalid Kafka Version 11-12

11.5.3 Kafka Producer Properties File Not Found 11-12

11.5.4 Kafka Connection Problem 11-12

12

Using the Kafka REST Proxy Handler

12.1 Overview 12-1

12.2 Setting Up and Starting the Kafka REST Proxy Handler Services 12-1

12.2.1 Using the Kafka REST Proxy Handler 12-2

12.2.2 Kafka REST Proxy Handler Configuration 12-2

12.2.3 Security 12-4

12.2.4 Generating a Keystore 12-5

12.2.5 Using Templates to Resolve the Topic Name and Message Key 12-5

12.2.6 Kafka REST Proxy Handler Formatter Properties 12-7

12.2.7 Setting Metacolumn Output 12-11

12.3 Consuming the Records 12-14

12.4 Performance Considerations 12-15

12.5 Kafka REST Proxy Handler Metacolumns Template Property 12-15

13

Using the Kinesis Streams Handler

13.1 Overview 13-1

13.2 Detailed Functionality 13-1

13.2.1 Amazon Kinesis Java SDK 13-1

13.2.2 Kinesis Streams Input Limits 13-2

13.3 Setting Up and Running the Kinesis Streams Handler 13-2

13.3.1 Set the Classpath in Kinesis Streams Handler 13-3

13.3.2 Kinesis Streams Handler Configuration 13-3

13.3.3 Using Templates to Resolve the Stream Name and Partition Name 13-8

13.3.4 Configuring the Client ID and Secret in Kinesis Handler 13-10

13.3.5 Configuring the Proxy Server for Kinesis Streams Handler 13-10

13.3.6 Configuring Security in Kinesis Streams Handler 13-11

13.4 Kinesis Handler Performance Considerations 13-11

13.4.1 Kinesis Streams Input Limitations 13-12

x

13.4.2 Transaction Batching 13-12

13.4.3 Deferring Flush at Transaction Commit 13-13

13.5 Troubleshooting 13-13

13.5.1 Java Classpath 13-13

13.5.2 Kinesis Handler Connectivity Issues 13-13

13.5.3 Logging 13-14

14

Using the MongoDB Handler

14.1 Overview 14-1

14.2 Detailed Functionality 14-1

14.2.1 Document Key Column 14-1

14.2.2 Primary Key Update Operation 14-2

14.2.3 MongoDB Trail Data Types 14-2

14.3 Setting Up and Running the MongoDB Handler 14-2

14.3.1 Classpath Configuration 14-3

14.3.2 MongoDB Handler Configuration 14-3

14.3.3 Connecting and Authenticating 14-5

14.3.4 Using Bulk Write 14-6

14.3.5 Using Write Concern 14-6

14.3.6 Using Three-Part Table Names 14-6

14.3.7 Using Undo Handling 14-7

14.4 Review a Sample Configuration 14-7

15

Using the Metadata Providers

15.1 About the Metadata Providers 15-1

15.2 Avro Metadata Provider 15-2

15.2.1 Detailed Functionality 15-2

15.2.2 Runtime Prerequisites 15-3

15.2.3 Classpath Configuration 15-4

15.2.4 Avro Metadata Provider Configuration 15-4

15.2.5 Review a Sample Configuration 15-4

15.2.6 Metadata Change Events 15-5

15.2.7 Limitations 15-6

15.2.8 Troubleshooting 15-6

15.2.8.1 Invalid Schema Files Location 15-6

15.2.8.2 Invalid Schema File Name 15-6

15.2.8.3 Invalid Namespace in Schema File 15-7

15.2.8.4 Invalid Table Name in Schema File 15-7

15.3 Java Database Connectivity Metadata Provider 15-7

xi

15.3.1 JDBC Detailed Functionality 15-8

15.3.2 Java Classpath 15-8

15.3.3 JDBC Metadata Provider Configuration 15-9

15.3.4 Review a Sample Configuration 15-9

15.4 Hive Metadata Provider 15-10

15.4.1 Detailed Functionality 15-11

15.4.2 Configuring Hive with a Remote Metastore Database 15-12

15.4.3 Classpath Configuration 15-13

15.4.4 Hive Metadata Provider Configuration Properties 15-14

15.4.5 Review a Sample Configuration 15-15

15.4.6 Security 15-17

15.4.7 Metadata Change Event 15-17

15.4.8 Limitations 15-18

15.4.9 Additional Considerations 15-18

15.4.10 Troubleshooting 15-18

16

Using the Oracle NoSQL Handler

16.1 Overview 16-1

16.2 Detailed Functionality 16-1

16.2.1 Oracle NoSQL Data Types 16-2

16.2.2 Performance Considerations 16-2

16.2.3 Operation Processing Support 16-2

16.2.4 Column Processing 16-3

16.2.5 Table Check and Reconciliation Process 16-3

16.2.6 Security 16-4

16.3 Oracle NoSQL Handler Configuration 16-5

16.4 Review a Sample Configuration 16-7

16.5 Performance Considerations 16-8

16.6 Full Image Data Requirements 16-8

17

Using the Pluggable Formatters

17.1 Using the Avro Formatter 17-1

17.1.1 Avro Row Formatter 17-1

17.1.1.1 Operation Metadata Formatting Details 17-2

17.1.1.2 Operation Data Formatting Details 17-2

17.1.1.3 Sample Avro Row Messages 17-3

17.1.1.4 Avro Schemas 17-4

17.1.1.5 Avro Row Configuration Properties 17-5

17.1.1.6 Review a Sample Configuration 17-7

xii

17.1.1.7 Metadata Change Events 17-8

17.1.1.8 Special Considerations 17-8

17.1.2 The Avro Operation Formatter 17-10

17.1.2.1 Operation Metadata Formatting Details 17-10

17.1.2.2 Operation Data Formatting Details 17-11

17.1.2.3 Sample Avro Operation Messages 17-11

17.1.2.4 Avro Schema 17-13

17.1.2.5 Avro Operation Formatter Configuration Properties 17-15

17.1.2.6 Review a Sample Configuration 17-16

17.1.2.7 Metadata Change Events 17-17

17.1.2.8 Special Considerations 17-17

17.1.3 Avro Object Container File Formatter 17-18

17.1.3.1 Avro OCF Formatter Configuration Properties 17-19

17.1.4 Setting Metacolumn Output 17-23

17.2 Using the Delimited Text Formatter 17-25

17.2.1 Message Formatting Details 17-25

17.2.2 Sample Formatted Messages 17-26

17.2.2.1 Sample Insert Message 17-26

17.2.2.2 Sample Update Message 17-26

17.2.2.3 Sample Delete Message 17-27

17.2.2.4 Sample Truncate Message 17-27

17.2.3 Output Format Summary Log 17-27

17.2.4 Delimited Text Formatter Configuration Properties 17-27

17.2.5 Review a Sample Configuration 17-29

17.2.6 Metadata Change Events 17-30

17.2.7 Setting Metacolumn Output 17-30

17.2.8 Additional Considerations 17-32

17.2.8.1 Primary Key Updates 17-33

17.2.8.2 Data Consolidation 17-34

17.3 Using the JSON Formatter 17-34

17.3.1 Operation Metadata Formatting Details 17-34

17.3.2 Operation Data Formatting Details 17-35

17.3.3 Row Data Formatting Details 17-36

17.3.4 Sample JSON Messages 17-36

17.3.4.1 Sample Operation Modeled JSON Messages 17-37

17.3.4.2 Sample Flattened Operation Modeled JSON Messages 17-38

17.3.4.3 Sample Row Modeled JSON Messages 17-39

17.3.4.4 Sample Primary Key Output JSON Message 17-40

17.3.5 JSON Schemas 17-40

17.3.6 JSON Formatter Configuration Properties 17-47

17.3.7 Review a Sample Configuration 17-49

xiii

17.3.8 Metadata Change Events 17-50

17.3.9 Setting Metacolumn Output 17-50

17.3.10 JSON Primary Key Updates 17-52

17.3.11 Integrating Oracle Stream Analytics 17-52

17.4 Using the Length Delimited Value Formatter 17-52

17.4.1 Formatting Message Details 17-53

17.4.2 Sample Formatted Messages 17-53

17.4.3 LDV Formatter Configuration Properties 17-54

17.4.4 Additional Considerations 17-57

17.5 Using Operation-Based versus Row-Based Formatting 17-57

17.5.1 Operation Formatters 17-58

17.5.2 Row Formatters 17-58

17.5.3 Table Row or Column Value States 17-58

17.6 Using the XML Formatter 17-59

17.6.1 Message Formatting Details 17-59

17.6.2 Sample XML Messages 17-60

17.6.2.1 Sample Insert Message 17-60

17.6.2.2 Sample Update Message 17-61

17.6.2.3 Sample Delete Message 17-61

17.6.2.4 Sample Truncate Message 17-62

17.6.3 XML Schema 17-63

17.6.4 XML Formatter Configuration Properties 17-64

17.6.5 Review a Sample Configuration 17-65

17.6.6 Metadata Change Events 17-65

17.6.7 Setting Metacolumn Output 17-65

17.6.8 Primary Key Updates 17-67

18

Using Oracle GoldenGate Capture for Cassandra

18.1 Overview 18-1

18.2 Setting Up Cassandra Change Data Capture 18-2

18.2.1 Data Types 18-2

18.2.2 Cassandra Database Operations 18-3

18.3 Deduplication 18-3

18.4 Topology Changes 18-4

18.5 Data Availability in the CDC Logs 18-4

18.6 Using Extract Initial Load 18-4

18.7 Using Change Data Capture Extract 18-5

18.8 Replicating to RDMBS Targets 18-7

18.9 Partition Update or Insert of Static Columns 18-7

18.10 Partition Delete 18-8

xiv

18.11 Security and Authentication 18-8

18.11.1 Configuring SSL 18-8

18.12 Multiple Extract Support 18-9

18.13 CDC Configuration Reference 18-9

18.14 Troubleshooting 18-16

19

Connecting to Microsoft Azure Data Lake

A Cassandra Handler Client Dependencies

A.1 Cassandra Datastax Java Driver 3.1.0 A-1

B Cassandra Capture Client Dependencies

C Elasticsearch Handler Client Dependencies

C.1 Elasticsearch 2.4.4 and Shield Plugin 2.2.2 C-1

C.2 Elasticsearch 5.1.2 with X-Pack 5.1.2 C-2

D Flume Handler Client Dependencies

D.1 Flume 1.7.0 D-1

D.2 Flume 1.6.0 D-1

D.3 Flume 1.5.2 D-2

D.4 Flume 1.4.0 D-2

E HBase Handler Client Dependencies

E.1 HBase 1.2.5 E-1

E.2 HBase 1.1.1 E-2

E.3 HBase 1.0.1.1 E-3

F HDFS Handler Client Dependencies

F.1 Hadoop Client Dependencies F-1

F.1.1 HDFS 2.8.0 F-1

F.1.2 HDFS 2.7.1 F-2

F.1.3 HDFS 2.6.0 F-4

F.1.4 HDFS 2.5.2 F-5

xv

F.1.5 HDFS 2.4.1 F-6

F.1.6 HDFS 2.3.0 F-7

F.1.7 HDFS 2.2.0 F-8

G Kafka Handler Client Dependencies

G.1 Kafka 1.1.0 G-1

G.2 Kafka 1.0.0 G-1

G.3 Kafka 0.11.0.0 G-1

G.4 Kafka 0.10.2.0 G-2

G.5 Kafka 0.10.1.1 G-2

G.6 Kafka 0.10.0.1 G-2

G.7 Kafka 0.9.0.1 G-2

H Kafka Connect Handler Client Dependencies

H.1 Kafka 0.11.0.0 H-1

H.2 Kafka 0.10.2.0 H-2

H.3 Kafka 0.10.2.0 H-2

H.4 Kafka 0.10.0.0 H-2

H.5 Kafka 0.9.0.1 H-3

H.6 Confluent 4.1.2 H-3

H.7 Confluent 4.0.0 H-4

H.8 Confluent 3.2.1 H-4

H.9 Confluent 3.2.0 H-5

H.10 Confluent 3.2.1 H-5

H.11 Confluent 3.1.1 H-5

H.12 Confluent 3.0.1 H-6

H.13 Confluent 2.0.1 H-6

H.14 Confluent 2.0.1 H-7

I MongoDB Handler Client Dependencies

I.1 MongoDB Java Driver 3.4.3 I-1

J Optimized Row Columnar Event Handler Client Dependencies

J.1 ORC Client Dependencies J-1

xvi

K Parquet Event Handler Client Dependencies

K.1 Parquet Client Dependencies K-1

xvii

Preface

This guide contains information about configuring, and running Oracle GoldenGate for
Big Data to extend the capabilities of Oracle GoldenGate instances.

• Audience

• Documentation Accessibility

• Conventions

• Related Information

Audience
This guide is intended for system administrators who are configuring and running
Oracle GoldenGate for Big Data.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at:

https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

Preface

xix

https://docs.oracle.com/en/middleware/goldengate/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

1
Introducing Oracle GoldenGate for Big
Data

Learn about Oracle GoldenGate for Big Data concepts and features, including how to
setup and configure the environment.
The Oracle GoldenGate for Big Data integrations run as pluggable functionality into
the Oracle GoldenGate Java Delivery framework, also referred to as the Java
Adapters framework. This functionality extends the Java Delivery functionality. Oracle
recommends that you review the Java Delivery description in Oracle GoldenGate Java
Delivery.

Topics:

• Understanding What’s Supported

• Setting Up Oracle GoldenGate for Big Data

• Configuring Oracle GoldenGate for Big Data

1.1 Understanding What’s Supported
Oracle GoldenGate for Big Data supports specific configurations: the handlers, which
are compatible with clearly defined software versions, and there are many support
topics. This section provides the relevant support information.

Topics:

• Verifying Certification and System Requirements

• What are the Additional Support Considerations?

1.1.1 Verifying Certification and System Requirements
Make sure that you install your product on a supported hardware or software
configuration. For more information, see the certification document for your release on
the Oracle Fusion Middleware Supported System Configurations page.

Oracle has tested and verified the performance of your product on all certified systems
and environments; whenever new certifications occur, they are added to the proper
certification document right away. New certifications can occur at any time, and for this
reason the certification documents are kept outside of the documentation libraries on
the Oracle Technology Network.

1.1.2 What are the Additional Support Considerations?
This section describes additional Oracle GoldenGate for Big Data Handlers additional
support considerations.

1-1

Pluggable Formatters—Support
The handlers support the Pluggable Formatters as described in Using the Pluggable
Formatters as follows:

• The HDFS Handler supports all of the pluggable handlers .

• Pluggable formatters are not applicable to the HBase Handler. Data is streamed
to HBase using the proprietary HBase client interface.

• The Flume Handler supports all of the pluggable handlers described in .

• The Kafka Handler supports all of the pluggable handlers described in .

• The Kafka Connect Handler does not support pluggable formatters. You can
convert data to JSON or Avro using Kafka Connect data converters.

• The Kinesis Streams Handler supports all of the pluggable handlers described in .

• The Cassandra, MongoDB, and JDBC Handlers do not use a pluggable formatter.

Avro Formatter—Improved Support for Binary Source Data
In previous releases, the Avro Formatter did not support the Avro bytes data type.
Binary data was instead converted to Base64 and persisted in Avro messages as a
field with a string data type. This required an additional conversion step to convert the
data from Base64 back to binary.
The Avro Formatter now can identify binary source fields that will be mapped into an
Avro bytes field and the original byte stream from the source trail file will be
propagated to the corresponding Avro messages without conversion to Base64.

Avro Formatter—Generic Wrapper
The schema_hash field was changed to the schema_fingerprint field. The
schema_fingerprint is a long and is generated using the parsingFingerprint64(Schema
s) method on the org.apache.avro.SchemaNormalization class. This identifier provides
better traceability from the Generic Wrapper Message back to the Avro schema that is
used to generate the Avro payload message contained in the Generic Wrapper
Message.

JSON Formatter—Row Modeled Data
The JSON formatter supports row modeled data in addition to operation modeled
data.. Row modeled data includes the after image data for insert operations, the after
image data for update operations, the before image data for delete operations, and
special handling for primary key updates.

Java Delivery Using Extract
Java Delivery using Extract is not supported and was deprecated in this release.
Support for Java Delivery is only supported using the Replicat process. Replicat
provides better performance, better support for checkpointing, and better control of
transaction grouping.

Kafka Handler—Versions
Support for Kafka versions 0.8.2.2, 0.8.2.1, and 0.8.2.0 was discontinued. This
allowed the implementation of the flush call on the Kafka producer, which provides
better support for flow control and checkpointing.

HDFS Handler—File Creation
A new feature was added to the HDFS Handler so that you can use Extract, Load,
Transform (ELT). The new gg.handler.name.openNextFileAtRoll=true property was
added to create new files immediately when the previous file is closed. The new file
appears in the HDFS directory immediately after the previous file stream is closed.

Chapter 1
Understanding What’s Supported

1-2

This feature does not work when writing HDFS files in Avro Object Container File
(OCF) format or sequence file format.

MongoDB Handler—Support

• The handler can only replicate unique rows from source table. If a source table
has no primary key defined and has duplicate rows, replicating the duplicate rows
to the MongoDB target results in a duplicate key error and the Replicat process
abends.

• Missed updates and deletes are undetected so are ignored.

• Untested with sharded collections.

• Only supports date and time data types with millisecond precision. These values
from a trail with microseconds or nanoseconds precision are truncated to
millisecond precision.

• The datetime data type with timezone in the trail is not supported.

• A maximum BSON document size of 16 MB. If the trail record size exceeds this
limit, the handler cannot replicate the record.

• No DDL propagation.

• No truncate operation.

JDBC Handler—Support

• The JDBC handler uses the generic JDBC API, which means any target database
with a JDBC driver implementation should be able to use this handler. There are a
myriad of different databases that support the JDBC API and Oracle cannot certify
the JDBC Handler for all targets. Oracle has certified the JDBC Handler for the
following RDBMS targets:

Oracle
MySQL
Netezza
Redshift
Greenplum

• The handler supports Replicat using the REPERROR and HANDLECOLLISIONS
parameters, see Reference for Oracle GoldenGate.

• The database metadata retrieved through the Redshift JDBC driver has known
constraints, see Release Notes for Oracle GoldenGate for Big Data.

Redshift target table names in the Replicat parameter file must be in lower case
and double quoted. For example:

MAP SourceSchema.SourceTable, target “public”.”targetable”;

• DDL operations are ignored by default and are logged with a WARN level.

• Coordinated Replicat is a multithreaded process that applies transactions in
parallel instead of serially. Each thread handles all of the filtering, mapping,
conversion, SQL construction, and error handling for its assigned workload. A
coordinator thread coordinates transactions across threads to account for
dependencies. It ensures that DML is applied in a synchronized manner
preventing certain DMLs from occurring on the same object at the same time due

Chapter 1
Understanding What’s Supported

1-3

to row locking, block locking, or table locking issues based on database specific
rules. If there are database locking issue, then Coordinated Replicat performance
can be extremely slow or pauses.

Delimited Formatter—Limitation
Handlers configured to generate delimited formatter output only allows single
character delimiter fields. If your delimiter field length is greater than one character,
then the handler displays an error message similar to the following and Replicat
abends.

oracle.goldengate.util.ConfigException: Delimiter length cannot be more than one
character. Found delimiter [||]

DDL Event Handling
Only the TRUNCATE TABLE DDL statement is supported. All other DDL statements are
ignored.
You can use the TRUNCATE statements one of these ways:

• In a DDL statement, TRUNCATE TABLE, ALTER TABLE TRUNCATE PARTITION, and other
DDL TRUNCATE statements. This uses the DDL parameter.

• Standalone TRUNCATE support, which just has TRUNCATE TABLE. This uses the
GETTRUNCATES parameter.

1.2 Setting Up Oracle GoldenGate for Big Data
The various tasks that you need to preform to set up Oracle GoldenGate for Big Data
integrations with Big Data targets.

Topics:

• About Oracle GoldenGate Properties Files

• Setting Up the Java Runtime Environment

• Configuring Java Virtual Machine Memory

• Grouping Transactions

1.2.1 About Oracle GoldenGate Properties Files
There are two Oracle GoldenGate properties files required to run the Oracle
GoldenGate Java Deliver user exit (alternatively called the Oracle GoldenGate Java
Adapter). It is the Oracle GoldenGate Java Delivery that hosts Java integrations
including the Big Data integrations. A Replicat properties file is required in order to run
either process. The required naming convention for the Replicat file name is the
process_name.prm. The exit syntax in the Replicat properties file provides the name and
location of the Java Adapter properties file. It is the Java Adapter properties file that
contains the configuration properties for the Java adapter include GoldenGate for Big
Data integrations. The Replicat and Java Adapters properties files are required to run
Oracle GoldenGate for Big Data integrations.

Alternatively the Java Adapters properties can be resolved using the default syntax,
process_name.properties. It you use the default naming for the Java Adapter properties
file then the name of the Java Adapter properties file can be omitted from the Replicat
properties file.

Chapter 1
Setting Up Oracle GoldenGate for Big Data

1-4

Samples of the properties files for Oracle GoldenGate for Big Data integrations can be
found in the subdirectories of the following directory:

GoldenGate_install_dir/AdapterExamples/big-data

1.2.2 Setting Up the Java Runtime Environment
The Oracle GoldenGate for Big Data integrations create an instance of the Java virtual
machine at runtime. Oracle GoldenGate for Big Data requires that you install Oracle
Java 8 Java Runtime Environment (JRE) at a minimum.

Oracle recommends that you set the JAVA_HOME environment variable to point to Java 8
installation directory. Additionally, the Java Delivery process needs to load the
libjvm.so and libjsig.so Java shared libraries. These libraries are installed as part of
the JRE. The location of these shared libraries need to be resolved and the
appropriate environmental variable set to resolve the dynamic libraries needs to be set
so the libraries can be loaded at runtime (that is, LD_LIBRARY_PATH, PATH, or LIBPATH).

1.2.3 Configuring Java Virtual Machine Memory
One of the difficulties of tuning Oracle GoldenGate for Big Data is deciding how much
Java virtual machine (JVM) heap memory to allocate for the Replicat process hosting
the Java Adapter. The JVM memory must be configured before starting the
application. Otherwise, the default Java heap sizing is used. Specifying the JVM heap
size correctly sized is important because if you size it to small, the JVM heap can
cause runtime issues:

• A Java Out of Memory exception, which causes the Extract or Replicat process to
abend.

• Increased frequency of Java garbage collections, which degrades performance.
Java garbage collection invocations de-allocate all unreferenced Java objects
resulting in reclaiming the heap memory for reuse.

Alternatively, too much heap memory is inefficient. The JVM reserves the maximum
heap memory (-Xmx) when the JVM is launched. This reserved memory is generally not
available to other applications even if the JVM is not using all of it. You can set the
JVM memory with these two parameters:

• -Xmx — The maximum JVM heap size. This amount gets reserved.

• -Xms — The initial JVM heap size. Also controls the sizing of additional allocations.

The -Xmx and –Xms properties are set in the Java Adapter properties file as follows:

javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=ggjava/ggjava.jar

There are no rules or equations for calculating the values of the maximum and initial
JVM heap sizes. Java heap usage is variable and depends upon a number of factors
many of which are widely variable at runtime. The Oracle GoldenGate Java Adapter
log file provides metrics on the Java heap when the status call is invoked. The
information appears in the Java Adapter log4j log file similar to:

INFO 2017-12-21 10:02:02,037 [pool-1-thread-1] Memory at Status : Max: 455.00 MB,
Total: 58.00 MB, Free: 47.98 MB, Used: 10.02 MB

You can interpret these values as follows:

Chapter 1
Setting Up Oracle GoldenGate for Big Data

1-5

• Max – The value of heap memory reserved (typically the -Xmx setting reduced by
approximately 10% due to overhead).

• Total – The amount currently allocated (typically a multiple of the -Xms setting
reduced by approximately 10% due to overhead).

• Free – The heap memory currently allocated, but free to be used to allocate Java
objects.

• Used – The heap memory currently allocated to Java objects.

You can control the frequency that the status is logged using the gg.report.time=30sec
configuration parameter in the Java Adapter properties file.

You should execute test runs of the process with actual data and review the heap
usage logging. Then analyze your peak memory usage and then allocate 25% - 30%
more memory to accommodate infrequent spikes in memory use and to make the
memory allocation and garbage collection processes efficient.

The following items can increase the heap memory required by the Replicat process:

• Operating in tx mod (For example, gg.handler.name.mode=tx.)

• Setting the Replicat property GROUPTRANSOPS to a large value

• Wide tables

• CLOB or BLOB data in the source

• Very large transactions in the source data

1.2.4 Grouping Transactions
The principal way to improve performance in Oracle GoldenGate for Big Data
integrations is using transaction grouping. In transaction grouping, the operations of
multiple transactions are grouped together in a single larger transaction. The
application of a larger grouped transaction is typically much more efficient than the
application of individual smaller transactions. Transaction grouping is possible with the
Replicat process discussed in Running with Replicat.

1.3 Configuring Oracle GoldenGate for Big Data
This section describes how to configure Oracle GoldenGate for Big Data Handlers.

Topics:

• Running with Replicat

• Overview of Logging

• About Schema Evolution and Metadata Change Events

• About Configuration Property CDATA[] Wrapping

• Using Regular Expression Search and Replace

• Scaling Oracle GoldenGate for Big Data Delivery

• Using Identities in Oracle GoldenGate Credential Store

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-6

1.3.1 Running with Replicat
This section explains how to run the Java Adapter with the Oracle GoldenGate
Replicat process. It includes the following sections:

Topics:

• Configuring Replicat

• Adding the Replicat Process

• Replicat Grouping

• About Replicat Checkpointing

• About Initial Load Support

• About the Unsupported Replicat Features

• How the Mapping Functionality Works

1.3.1.1 Configuring Replicat
The following is an example of how you can configure a Replicat process properties
file for use with the Java Adapter:

REPLICAT hdfs
TARGETDB LIBFILE libggjava.so SET property=dirprm/hdfs.properties
--SOURCEDEFS ./dirdef/dbo.def
DDL INCLUDE ALL
GROUPTRANSOPS 1000
MAPEXCLUDE dbo.excludetable
MAP dbo.*, TARGET dbo.*;

The following is explanation of these Replicat configuration entries:

REPLICAT hdfs - The name of the Replicat process.

TARGETDB LIBFILE libggjava.so SET property=dirprm/hdfs.properties - Sets the target
database as you exit to libggjava.so and sets the Java Adapters property file to
dirprm/hdfs.properties.

--SOURCEDEFS ./dirdef/dbo.def - Sets a source database definitions file. It is
commented out because Oracle GoldenGate trail files provide metadata in trail.

GROUPTRANSOPS 1000 - Groups 1000 transactions from the source trail files into a single
target transaction. This is the default and improves the performance of Big Data
integrations.

MAPEXCLUDE dbo.excludetable - Sets the tables to exclude.

MAP dbo.*, TARGET dbo.*; - Sets the mapping of input to output tables.

1.3.1.2 Adding the Replicat Process
The command to add and start the Replicat process in ggsci is the following:

ADD REPLICAT hdfs, EXTTRAIL ./dirdat/gg
START hdfs

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-7

1.3.1.3 Replicat Grouping
The Replicat process provides the Replicat configuration property, GROUPTRANSOPS, to
control transaction grouping. By default, the Replicat process implements transaction
grouping of 1000 source transactions into a single target transaction. If you want to
turn off transaction grouping then the GROUPTRANSOPS Replicat property should be set to
1.

1.3.1.4 About Replicat Checkpointing
In addition to the Replicat checkpoint file ,.cpr, an additional checkpoint file, dirchk/
group.cpj, is created that contains information similar to CHECKPOINTTABLE in Replicat for
the database.

1.3.1.5 About Initial Load Support
Replicat can already read trail files that come from both the online capture and initial
load processes that write to a set of trail files. In addition, Replicat can also be
configured to support the delivery of the special run initial load process using RMTTASK
specification in the Extract parameter file. For more details about configuring the direct
load, see Loading Data with an Oracle GoldenGate Direct Load.

Note:

The SOURCEDB or DBLOGIN parameter specifications vary depending on your
source database.

1.3.1.6 About the Unsupported Replicat Features
The following Replicat features are not supported in this release:

• BATCHSQL

• SQLEXEC

• Stored procedure

• Conflict resolution and detection (CDR)

1.3.1.7 How the Mapping Functionality Works
The Oracle GoldenGate Replicat process supports mapping functionality to custom
target schemas. You must use the Metadata Provider functionality to define a target
schema or schemas, and then use the standard Replicat mapping syntax in the
Replicat configuration file to define the mapping. For more information about the
Replicat mapping syntax in the Replication configuration file, see Mapping and
Manipulating Data.

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-8

1.3.2 Overview of Logging
Logging is essential to troubleshooting Oracle GoldenGate for Big Data integrations
with Big Data targets. This section covers how Oracle GoldenGate for Big Data
integration log and the best practices for logging.

Topics:

• About Replicat Process Logging

• About Java Layer Logging

1.3.2.1 About Replicat Process Logging
Oracle GoldenGate for Big Data integrations leverage the Java Delivery functionality
described in the Delivering Java Messages. In this setup, either a Oracle GoldenGate
Replicat process loads a user exit shared library. This shared library then loads a Java
virtual machine to thereby interface with targets providing a Java interface. So the flow
of data is as follows:

Replicat Process —>User Exit—> Java Layer

It is important that all layers log correctly so that users can review the logs to
troubleshoot new installations and integrations. Additionally, if you have a problem that
requires contacting Oracle Support, the log files are a key piece of information to be
provided to Oracle Support so that the problem can be efficiently resolved.

A running Replicat process creates or appends log files into the GoldenGate_Home/
dirrpt directory that adheres to the following naming convention: process_name.rpt. If
a problem is encountered when deploying a new Oracle GoldenGate process, this is
likely the first log file to examine for problems. The Java layer is critical for integrations
with Big Data applications.

1.3.2.2 About Java Layer Logging
The Oracle GoldenGate for Big Data product provides flexibility for logging from the
Java layer. The recommended best practice is to use Log4j logging to log from the
Java layer. Enabling simple Log4j logging requires the setting of two configuration
values in the Java Adapters configuration file.

gg.log=log4j
gg.log.level=INFO

These gg.log settings will result in a Log4j file to be created in the GoldenGate_Home/
dirrpt directory that adheres to this naming convention, process_name_log
level_log4j.log. The supported Log4j log levels are in the following list in order of
increasing logging granularity.

• OFF

• FATAL

• ERROR

• WARN

• INFO

• DEBUG

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-9

• TRACE

Selection of a logging level will include all of the coarser logging levels as well (that is,
selection of WARN means that log messages of FATAL, ERROR and WARN will be written to
the log file). The Log4j logging can additionally be controlled by separate Log4j
properties files. These separate Log4j properties files can be enabled by editing the
bootoptions property in the Java Adapter Properties file. These three example Log4j
properties files are included with the installation and are included in the classpath:

log4j-default.properties
log4j-debug.properites
log4j-trace.properties

You can modify the bootoptionsin any of the files as follows:

javawriter.bootoptions=-Xmx512m -Xms64m -Djava.class.path=.:ggjava/ggjava.jar -

Dlog4j.configuration=samplelog4j.properties

You can use your own customized Log4j properties file to control logging. The
customized Log4j properties file must be available in the Java classpath so that it can
be located and loaded by the JVM. The contents of a sample custom Log4j properties
file is the following:

Root logger option
log4j.rootLogger=INFO, file

Direct log messages to a log file
log4j.appender.file=org.apache.log4j.RollingFileAppender

log4j.appender.file.File=sample.log
log4j.appender.file.MaxFileSize=1GB
log4j.appender.file.MaxBackupIndex=10
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L -
%m%n

There are two important requirements when you use a custom Log4j properties file.
First, the path to the custom Log4j properties file must be included in the
javawriter.bootoptions property. Logging initializes immediately when the JVM is
initialized while the contents of the gg.classpath property is actually appended to the
classloader after the logging is initialized. Second, the classpath to correctly load a
properties file must be the directory containing the properties file without wildcards
appended.

1.3.3 About Schema Evolution and Metadata Change Events
The Metadata in trail is a feature that allows seamless runtime handling of metadata
change events by Oracle GoldenGate for Big Data, including schema evolution and
schema propagation to Big Data target applications. The NO_OBJECTDEFS is a sub-
parameter of the Extract and Replicat EXTTRAIL and RMTTRAIL parameters that lets you
suppress the important metadata in trail feature and revert to using a static metadata
definition.

The Oracle GoldenGate for Big Data Handlers and Formatters provide functionality to
take action when a metadata change event is encountered. The ability to take action in
the case of metadata change events depends on the metadata change events being
available in the source trail file. Oracle GoldenGate supports metadata in trail and the
propagation of DDL data from a source Oracle Database. If the source trail file does

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-10

not have metadata in trail and DDL data (metadata change events) then it is not
possible for Oracle GoldenGate for Big Data to provide and metadata change event
handling.

1.3.4 About Configuration Property CDATA[] Wrapping
The GoldenGate for Big Data Handlers and Formatters support the configuration of
many parameters in the Java properties file, the value of which may be interpreted as
white space. The configuration handling of the Java Adapter trims white space from
configuration values from the Java configuration file. This behavior of trimming
whitespace may be desirable for some configuration values and undesirable for other
configuration values. Alternatively, you can wrap white space values inside of special
syntax to preserve the whites pace for selected configuration variables. GoldenGate
for Big Data borrows the XML syntax of CDATA[] to preserve white space. Values that
would be considered to be white space can be wrapped inside of CDATA[].

The following is an example attempting to set a new-line delimiter for the Delimited
Text Formatter:

gg.handler.{name}.format.lineDelimiter=\n

This configuration will not be successful. The new-line character is interpreted as white
space and will be trimmed from the configuration value. Therefore the gg.handler
setting effectively results in the line delimiter being set to an empty string.

In order to preserve the configuration of the new-line character simply wrap the
character in the CDATA[] wrapper as follows:

gg.handler.{name}.format.lineDelimiter=CDATA[\n]

Configuring the property with the CDATA[] wrapping preserves the white space and the
line delimiter will then be a new-line character.

1.3.5 Using Regular Expression Search and Replace
You can perform more powerful search and replace operations of both schema data
(catalog names, schema names, table names, and column names) and column value
data, which are separately configured. Regular expressions (regex) are characters that
customize a search string through pattern matching. You can match a string against a
pattern or extract parts of the match. Oracle GoldenGate for Big Data uses the
standard Oracle Java regular expressions package, java.util.regex, see "Regular
Expressions” in The Single UNIX Specification, Version 4.

Topics:

• Using Schema Data Replace

• Using Content Data Replace

1.3.5.1 Using Schema Data Replace
You can replace schema data using the gg.schemareplaceregex and
gg.schemareplacestring properties. Use gg.schemareplaceregex to set a regular
expression, and then use it to search catalog names, schema names, table names,
and column names for corresponding matches. Matches are then replaced with the
content of the gg.schemareplacestring value. The default value of
gg.schemareplacestring is an empty string or "".

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-11

http://www.unix.org/version4/

For example, some system table names start with a dollar sign like $mytable. You may
want to replicate these tables even though most Big Data targets do not allow dollar
signs in table names. To remove the dollar sign, you could configure the following
replace strings:

gg.schemareplaceregex=[$]
gg.schemareplacestring=

The resulting example of searched and replaced table name is mytable. These
properties also support CDATA[] wrapping to preserve whitespace in the value of
configuration values. So the equivalent of the preceding example using CDATA[]
wrapping use is:

gg.schemareplaceregex=CDATA[[$]]
gg.schemareplacestring=CDATA[]

The schema search and replace functionality supports using multiple search regular
expressions and replacements strings using the following configuration syntax:

gg.schemareplaceregex=some_regex
gg.schemareplacestring=some_value
gg.schemareplaceregex1=some_regex
gg.schemareplacestring1=some_value
gg.schemareplaceregex2=some_regex
gg.schemareplacestring2=some_value

1.3.5.2 Using Content Data Replace
You can replace content data using the gg.contentreplaceregex and
gg.contentreplacestring properties to search the column values using the configured
regular expression and replace matches with the replacement string. For example, this
is useful to replace line feed characters in column values. If the delimited text formatter
is used then line feeds occurring in the data will be incorrectly interpreted as line
delimiters by analytic tools.

You can configure n number of content replacement regex search values. The regex
search and replacements are done in the order of configuration. Configured values
must follow a given order as follows:

gg.contentreplaceregex=some_regex
gg.contentreplacestring=some_value
gg.contentreplaceregex1=some_regex
gg.contentreplacestring1=some_value
gg.contentreplaceregex2=some_regex
gg.contentreplacestring2=some_value

Configuring a subscript of 3 without a subscript of 2 would cause the subscript 3
configuration to be ignored.

NOT_SUPPORTED:

 Regular express searches and replacements require computer processing
and can reduce the performance of the Oracle GoldenGate for Big Data
process.

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-12

To replace line feeds with a blank character you could use the following property
configurations:

gg.contentreplaceregex=[\n]
gg.contentreplacestring=CDATA[]

This changes the column value from:

this is
me

to :

this is me

Both values support CDATA wrapping. The second value must be wrapped in a CDATA[]
wrapper because a single blank space will be interpreted as whitespace and trimmed
by the Oracle GoldenGate for Big Data configuration layer. In addition, you can
configure multiple search a replace strings. For example, you may also want to trim
leading and trailing white space out of column values in addition to trimming line feeds
from:

^\\s+|\\s+$

gg.contentreplaceregex1=^\\s+|\\s+$
gg.contentreplacestring1=CDATA[]

1.3.6 Scaling Oracle GoldenGate for Big Data Delivery
 Oracle GoldenGate for Big Data supports breaking down the source trail files into
either multiple Replicat processes or by using Coordinated Delivery to instantiate
multiple Java Adapter instances inside a single Replicat process to improve
throughput.. This allows you to scale Oracle GoldenGate for Big Data delivery.

There are some cases where the throughput to Oracle GoldenGate for Big Data
integration targets is not sufficient to meet your service level agreements even after
you have tuned your Handler for maximum performance. When this occurs, you can
configure parallel processing and delivery to your targets using one of the following
methods:

• Multiple Replicat processes can be configured to read data from the same source
trail files. Each of these Replicat processes are configured to process a subset of
the data in the source trail files so that all of the processes collectively process the
source trail files in their entirety. There is no coordination between the separate
Replicat processes using this solution.

• Oracle GoldenGate Coordinated Delivery can be used to parallelize processing
the data from the source trail files within a single Replicat process. This solution
involves breaking the trail files down into logical subsets for which each configured
subset is processed by a different delivery thread. For more information about
Coordinated Delivery, see https://blogs.oracle.com/dataintegration/entry/
goldengate_12c_coordinated_replicat.

With either method, you can split the data into parallel processing for improved
throughput. Oracle recommends breaking the data down in one of the following two
ways:

• Splitting Source Data By Source Table –Data is divided into subsections by source
table. For example, Replicat process 1 might handle source tables table1 and

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-13

https://blogs.oracle.com/dataintegration/entry/goldengate_12c_coordinated_replicat
https://blogs.oracle.com/dataintegration/entry/goldengate_12c_coordinated_replicat

table2, while Replicat process 2 might handle data for source tables table3 and
table2. Data is split for source table and the individual table data is not subdivided.

• Splitting Source Table Data into Sub Streams – Data from source tables is split.
For example, Replicat process 1 might handle half of the range of data from
source table1, while Replicat process 2 might handler the other half of the data
from source table1.

Additional limitations:

• Parallel apply is not supported.

• The BATCHSQL parameter not supported.

Example 1-1 Scaling Support for the Oracle GoldenGate for Big Data Handlers

Handler Name Splitting Source Data By
Source Table

Splitting Source Table Data
into Sub Streams

Cassandra Supported Supported when:

• Required target tables in
Cassandra are pre-created.

• Metadata change events do
not occur.

Elastic Search Supported Supported

Flume Supported Supported for formats that
support schema propagation,
such as Avro. This is less
desirable due to multiple
instances feeding the same
schema information to the target.

HBase Supported when all required
HBase namespaces are pre-
created in HBase.

Supported when:

• All required HBase
namespaces are pre-
created in HBase.

• All required HBase target
tables are pre-created in
HBase. Schema evolution is
not an issue because
HBase tables have no
schema definitions so a
source metadata change
does not require any
schema change in HBase.

• The source data does not
contain any truncate
operations.

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-14

Handler Name Splitting Source Data By
Source Table

Splitting Source Table Data
into Sub Streams

HDFS Supported Supported with some
restrictions.

• You must select a naming
convention for generated
HDFS files wherethe file
names do not collide.
Colliding HDFS file names
results in a Replicat abend.
When using coordinated
apply it is suggested that
you configure ${groupName}
as part of the configuration
for the
gg.handler.name.fileName

MappingTemplate property .
The ${groupName} template
resolves to the Replicat
name concatenated with the
Replicat thread number,
which provides unique
naming per Replicat thread.

• Schema propagatation to
HDFS and Hive integration
is not currently supported.

JDBC Supported Supported

Kafka Supported Supported for formats that
support schema propagation,
such as Avro. This is less
desirable due to multiple
instances feeding the same
schema information to the target.

Kafka Connect Supported Supported

Kinesis Streams Supported Supported

MongoDB Supported Supported

1.3.7 Using Identities in Oracle GoldenGate Credential Store
The Oracle GoldenGate credential store manages user IDs and their encrypted
passwords (together known as credentials) that are used by Oracle GoldenGate
processes to interact with the local database. The credential store eliminates the need
to specify user names and clear-text passwords in the Oracle GoldenGate parameter
files. An optional alias can be used in the parameter file instead of the user ID to map
to a userid and password pair in the credential store. The credential store is
implemented as an auto login wallet within the Oracle Credential Store Framework
(CSF). The use of an LDAP directory is not supported for the Oracle GoldenGate
credential store. The auto login wallet supports automated restarts of Oracle

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-15

GoldenGate processes without requiring human intervention to supply the necessary
passwords.

In Oracle GoldenGate for Big Data, you specify the alias and domain in the property
file not the actual user ID or password. User credentials are maintained in secure
wallet storage.

Topics:

• Creating a Credential Store

• Adding Users to a Credential Store

• Configuring Properties to Access the Credential Store

1.3.7.1 Creating a Credential Store
You can create a credential store for your Big Data environment.

Run the GGSCI ADD CREDENTIALSTORE command to create a file called cwallet.sso in the
dircrd/ subdirectory of your Oracle GoldenGate installation directory (the default).

You can the location of the credential store (cwallet.sso file by specifying the desired
location with the CREDENTIALSTORELOCATION parameter in the GLOBALS file.

For more information about credential store commands, see Reference for Oracle
GoldenGate.

Note:

Only one credential store can be used for each Oracle GoldenGate instance.

1.3.7.2 Adding Users to a Credential Store
After you create a credential store for your Big Data environment, you can added
users to the store.

Run the GGSCI ALTER CREDENTIALSTORE ADD USER userid PASSWORD password [ALIAS
alias] [DOMAIN domain] command to create each user, where:

• userid is the user name. Only one instance of a user name can exist in the
credential store unless the ALIAS or DOMAIN option is used.

• password is the user's password. The password is echoed (not obfuscated) when
this option is used. If this option is omitted, the command prompts for the
password, which is obfuscated as it is typed (recommended because it is more
secure).

• alias is an alias for the user name. The alias substitutes for the credential in
parameters and commands where a login credential is required. If the ALIAS option
is omitted, the alias defaults to the user name.

For example:

ALTER CREDENTIALSTORE ADD USER scott PASSWORD tiger ALIAS scsm2 domain ggadapters

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-16

For more information about credential store commands, see Reference for Oracle
GoldenGate.

1.3.7.3 Configuring Properties to Access the Credential Store
The Oracle GoldenGate Java Adapter properties file requires specific syntax to resolve
user name and password entries in the Credential Store at runtime. For resolving a
user name the syntax is the following:

ORACLEWALLETUSERNAME[alias domain_name]

For resolving a password the syntax required is the following:

ORACLEWALLETPASSWORD[alias domain_name]

The following example illustrate how to configure a Credential Store entry with an alias
of myalias and a domain of mydomain.

Note:

With HDFS Hive JDBC the user name and password is encrypted.

Oracle Wallet integration only works for configuration properties which contain the
string username or password. For example:

gg.handler.hdfs.hiveJdbcUsername=ORACLEWALLETUSERNAME[myalias mydomain]
gg.handler.hdfs.hiveJdbcPassword=ORACLEWALLETPASSWORD[myalias mydomain]

Consider the user name and password entries as accessible values in the Credential
Store. Any configuration property resolved in the Java Adapter layer (not accessed in
the C user exit layer) can be resolved from the Credential Store. This allows you more
flexibility to be creative in how you protect sensitive configuration entries.

Chapter 1
Configuring Oracle GoldenGate for Big Data

1-17

2
Using the BigQuery Handler

Learn how to use the Google BigQuery Handler, which streams change data capture
data from source trail files into Google BigQuery.

BigQuery is a RESTful web service that enables interactive analysis of massively large
datasets working in conjunction with Google Storage, see https://cloud.google.com/
bigquery/.

Topics:

• Detailing the Functionality

• Setting Up and Running the BigQuery Handler

2.1 Detailing the Functionality

Topics:

• Data Types

• Operation Modes

• Operation Processing Support

2.1.1 Data Types
The BigQuery Handler supports the standard SQL data types and most of these data
types are supported by the BigQuery Handler. A data type conversion from the column
value in the trail file to the corresponding Java type representing the BigQuery column
type in the BigQuery Handler is required.

The following data types are supported:

STRING
BYTES
INTEGER
FLOAT
NUMERIC
BOOLEAN
TIMESTAMP
DATE
TIME
DATETIME

The BigQuery Handler does not support complex data types, such as ARRAY and
STRUCT.

2.1.2 Operation Modes
You can configure the BigQuery Handler in one of these two modes:

2-1

https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/

auditLogMode = true

When the handler is configured to run with Audit log mode, the data is pushed into
Google BigQuery without a unique id and primary key. As a result, Google BigQuery
is not able to merge different operations on the same row.
Also, the order in which the audit log is displayed in the BigQuery data set is not
deterministic.
To overcome these limitations, you need to specify optype and position in the meta
columns template for the handler. This adds two columns of the same names in the
schema for the table in Google BigQuery. For example:

gg.handler.bigquery.metaColumnsTemplate = ${optype}, ${position}

The optype is important to determine the operation type for the row in the audit log.
To view the audit log in order of the operations processed in the trail file, specify
position which can be used in the ORDER BY clause while querying the table in Google
BigQuery. For example:

SELECT * FROM [projectId:datasetId.tableId] ORDER BY position

auditLogMode = false

This causes the handler to write data into Google BigQuery specifying a unique id and
primary key for each row. As a result, Google BigQuery is able to merge different
operations on the same row.
The trail source needs to have a full image of the records in order to merge correctly.
Google BigQuery processes every operation as an insert for each row. As a result,
there is a deleted column added to the schema for the table in this mode of operation.
When the handler encounters a delete operation on a row, it inserts the row into
Google BigQuery and sets the deleted column to true.
To view data in the BigQuery table like it would ideally be seen in a RDBMS, specify a
WHERE deleted = false clause while querying the table in Google BigQuery.

2.1.3 Operation Processing Support
The BigQuery Handler pushes operations to Google BigQuery using synchronous API.
Insert, update, and delete operations are processed differently in BigQuery than in a
traditional RDBMS.

The following explains how insert, update, and delete operations are interpreted by the
handler depending on the mode of operation:

auditLogMode = true

• insert – Inserts the record with optype as an insert operation in the BigQuery
table.

• update –Inserts the record with optype as an update operation in the BigQuery
table.

• delete – Inserts the record with optype as a delete operation in the BigQuery
table.

• pkUpdate—When pkUpdateHandling property is configured as delete-insert, the
handler sends out a delete operation followed by an insert operation. Both these
rows have the same position in the BigQuery table, which helps to identify it as a
primary key operation and not a separate delete and insert operation.

Chapter 2
Detailing the Functionality

2-2

auditLogMode = false

• insert – If the row does not already exist in Google BigQuery, then an insert
operation is processed as an insert. If the row already exists in Google BigQuery,
then an insert operation is processed as an update. The handler sets the deleted
column to false.

• update –If a row does not exist in Google BigQuery, then an update operation is
processed as an insert. If the row already exists in Google BigQuery, then an
update operation is processed as update. The handler sets the deleted column to
false.

• delete – If the row does not exist in Google BigQuery, then a delete operation has
no effect. If the row exists in Google BigQuery, then a delete operation is
processed as a delete. The handler sets the deleted column to true.

• pkUpdate—When pkUpdateHandling property is configured as delete-insert, the
handler sets the deleted column to true for the row whose primary key is updated.
It is followed by a separate insert operation with the new primary key and the
deleted column set to false for this row.

Do not toggle the audit log mode because it forces the BigQuery handler to abend as
Google BigQuery cannot alter schema of an existing table. The existing table needs to
be deleted before switching audit log modes.

Note:

The BigQuery Handler does not support the truncate operation. It abends
when it encounters a truncate operation.

2.2 Setting Up and Running the BigQuery Handler
The BigQuery Client library does not ship with Oracle GoldenGate for Big Data. You
must download the latest version of the Java Client library for BigQuery at:

https://developers.google.com/api-client-library/java/apis/bigquery/v2

You must configure the gg.classpath configuration property in the Java Adapter
properties file to specify the JARs for the Java Client Library for BigQuery. The path to
the dependency JARs must include the asterisk (*) wildcard character to include all of
the JAR files in that directory in the associated classpath. Donot use *.jar. This is an
example of the correctly configured classpath:

gg.classpath= /path_to_repository/bigquery/libs/*:/path_to_repository/bigquery/*

Next, download the following JARs from Maven Central, and then include them in the
classpath for the BigQuery Handler:

• api-common-1.6.0.jar
• gax-1.28.0.jar
• gax-httpjson-0.45.0.jar
• google-auth-library-credentials-0.9.1.jar
• google-auth-library-oauth2-http-0.9.1.jar
• google-cloud-bigquery-1.31.0.jar
• google-cloud-core-1.35.0.jar
• google-cloud-core-http-1.35.0.jar

Chapter 2
Setting Up and Running the BigQuery Handler

2-3

https://developers.google.com/api-client-library/java/apis/bigquery/v2

• google-http-client-jackson-1.23.0.jar
• guava-25.1-jre.jar
• threetenbp-1.3.6.jar

• Understanding the BigQuery Handler Configuration

• Review a Sample Configuration

• Proxy Settings

• Configuring Handler Authentication

2.2.1 Understanding the BigQuery Handler Configuration
The following are the configurable values for the BigQuery Handler. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the BigQuery Handler, you must first configure the handler
type by specifying gg.handler.jdbc.type=bigquery and the other BigQuery properties as
follows:

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handlerlist Require
d

Any string None Provides a name for the BigQuery Handler.
The BigQuery Handler name then becomes
part of the property names listed in this table.

gg.handler.name.
type=bigquery

Require
d

bigquery None Selects the BigQuery Handler for streaming
change data capture into Google BigQuery.

gg.handler.name.
credentialsFile

Optional Relative
or
absolute
path to
the
credential
s file

None The credentials file downloaded from Google
BigQuery for authentication. If you do not
specify the path to the credentials file, you
need to set it as an environment variable,
see Configuring Handler Authentication.

gg.handler.name.
projectId

Require
d

Any string None The name of the project in Google BigQuery.
The handler needs project ID to connect to
Google BigQuery store.

gg.handler.name.
datasetId

Optional Any string defau
lt_da
taset

The name of the data set the tables are
stored in. If not specified, the handler creates
a new data set named default_dataset and
inserts the table into it.

gg.handler.name.
batchSize

Optional Any
number

500 The maximum number of operations to be
batched together. This is applicable for all
target table batches.

gg.handler.name.
batchFlushFreque
ncy

Optional Any
number

1000 The maximum amount of time in milliseconds
to wait before executing the next batch of
operations. This is applicable for all target
table batches.

gg.handler.name.
skipInvalidRows

Optional true |
false

false Sets whether to insert all valid rows of a
request, even if invalid rows exist. If not set,
the entire insert request fails if it contains an
invalid row.

Chapter 2
Setting Up and Running the BigQuery Handler

2-4

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.
ignoreUnknownVal
ues

Optional true |
false

false Sets whether to accept rows that contain
values that do not match the schema. If not
set, rows with unknown values are
considered to be invalid.

gg.handler.name.
connectionTimeou
t

Optional Positive
integer

20000 The maximum amount of time, in
milliseconds, to wait for the handler to
establish a connection with Google
BigQuery.

gg.handler.name.
readTimeout

Optional Positive
integer

30000 The maximum amount of time in milliseconds
to wait for the handler to read data from an
established connection.

gg.handler.name.
metaColumnsTempl
ate

Optional A legal
string

None A legal string specifying the metaColumns to
be included. If you set auditLogMode to true,
it is important that you set the
metaColumnsTemplate property to view the
operation type for the row inserted in the
audit log.

gg.handler.name.
auditLogMode

Optional true |
false

false Set to true, the handler writes each record to
the target without any primary key.
Everything is processed as insert.

Set to false, the handler tries to merge
incoming records into the target table if they
have the same primary key. Primary keys are
needed for this property. The trail source
records need to have a full image updates to
merge correctly.

gg.handler.name.
pkUpdateHandling

Optional abend |
delete-
insert

abend Sets how the handler handles update
operations that change a primary key.
Primary key operations can be problematic
for the BigQuery Handler and require special
consideration:

• abend- indicates the process abends.
• delete-insert- indicates the process

treats the operation as a delete and an
insert. The full before image is required
for this property to work correctly.
Without full before and after row images
the insert data are incomplete. Oracle
recommends this option.

2.2.2 Review a Sample Configuration
The following is a sample configuration for the BigQuery Handler from the Java
Adapter properties file:

gg.handlerlist = bigquery

#The handler properties
gg.handler.bigquery.type = bigquery
gg.handler.bigquery.projectId = festive-athlete-201315

Chapter 2
Setting Up and Running the BigQuery Handler

2-5

gg.handler.bigquery.datasetId = oggbd
gg.handler.bigquery.credentialsFile = credentials.json
gg.handler.bigquery.auditLogMode = true
gg.handler.bigquery.pkUpdateHandling = delete-insert

gg.handler.bigquery.metaColumnsTemplate =${optype}, ${position}

2.2.3 Proxy Settings
To connect to BigQuery using a proxy server, you must configure the proxy host and
the proxy port in the properties file as follows:

javawriter.bootoptions= -Dhttps.proxyHost=proxy_host_name
 -Dhttps.proxyPort=proxy_port_number

2.2.4 Configuring Handler Authentication
You have to configure the BigQuery Handler authentication using the credentials in the
JSON file downloaded from Google BigQuery.

Download the credentials file:

1. Login into your Google account at cloud.google.com.

2. Click Console, and then to go to the Dashboard where you can select your
project.

3. From the navigation menu, click APIs & Services then select Credentials.

4. From the Create Credentials menu, choose Service account key.

5. Choose the JSON key type to download the JSON credentials file for your system.

Once you have the credentials file, you can authenticate the handler in one of these
two ways:

• Specify the path to the credentials file in the properties file with the
gg.handler.name.credentialsFile configuration property.

The path of the credentials file must contain the path with no wildcard appended. If
you include the * wildcard in the path to the credentials file, the file is not
recognized.

Or

• Set the GOOGLE_APPLICATION_CREDENTIALS environment variable on your system. For
example:

export GOOGLE_APPLICATION_CREDENTIALS = credentials.json

Then restart the Oracle GoldenGate manager process.

Chapter 2
Setting Up and Running the BigQuery Handler

2-6

http://cloud.google.com

3
Using the Cassandra Handler

Learn how to use the Cassandra Handler, which provides the interface to Apache
Cassandra databases.

Topics:

• Overview

• Detailing the Functionality

• Setting Up and Running the Cassandra Handler

• About Automated DDL Handling

• Performance Considerations

• Additional Considerations

• Troubleshooting

3.1 Overview
Apache Cassandra is a NoSQL Database Management System designed to store
large amounts of data. A Cassandra cluster configuration provides horizontal scaling
and replication of data across multiple machines. It can provide high availability and
eliminate a single point of failure by replicating data to multiple nodes within a
Cassandra cluster. Apache Cassandra is open source and designed to run on low-cost
commodity hardware.

Cassandra relaxes the axioms of a traditional relational database management
systems (RDBMS) regarding atomicity, consistency, isolation, and durability. When
considering implementing Cassandra, it is important to understand its differences from
a traditional RDBMS and how those differences affect your specific use case.

Cassandra provides eventual consistency. Under the eventual consistency model,
accessing the state of data for a specific row eventually returns the latest state of the
data for that row as defined by the most recent change. However, there may be a
latency period between the creation and modification of the state of a row and what is
returned when the state of that row is queried. The benefit of eventual consistency is
that the latency period is predicted based on your Cassandra configuration and the
level of work load that your Cassandra cluster is currently under, see http://
cassandra.apache.org/.

The Cassandra Handler provides some control over consistency with the configuration
of the gg.handler.name.consistencyLevel property in the Java Adapter properties file.

3.2 Detailing the Functionality

Topics:

• About the Cassandra Data Types

3-1

http://cassandra.apache.org/
http://cassandra.apache.org/

• About Catalog, Schema, Table, and Column Name Mapping
Traditional RDBMSs separate structured data into tables. Related tables are
included in higher-level collections called databases. Cassandra contains both of
these concepts. Tables in an RDBMS are also tables in Cassandra, while
database schemas in an RDBMS are keyspaces in Cassandra.

• About DDL Functionality

• How Operations are Processed

• About Compressed Updates vs. Full Image Updates

• About Primary Key Updates

3.2.1 About the Cassandra Data Types
Cassandra provides a number of column data types and most of these data types are
supported by the Cassandra Handler.

Supported Cassandra Data Types

ASCII
BIGINT
BLOB
BOOLEAN
DATE
DECIMAL
DOUBLE
DURATION
FLOAT
INET
INT
SMALLINT
TEXT
TIME
TIMESTAMP
TIMEUUID
TINYINT
UUID
VARCHAR
VARINT

Unsupported Cassandra Data Types

COUNTER
MAP
SET
LIST
UDT (user defined type)
TUPLE
CUSTOM_TYPE

Supported Database Operations

INSERT
UPDATE (captured as INSERT)
DELETE

The Cassandra commit log files do not record any before images for the UPDATE or
DELETE operations. So the captured operations never have a before image section.

Chapter 3
Detailing the Functionality

3-2

Oracle GoldenGate features that rely on before image records, such as Conflict
Detection and Resolution, are not available.

Unsupported Database Operations

TRUNCATE
DDL (CREATE, ALTER, DROP)

The data type of the column value in the source trail file must be converted to the
corresponding Java type representing the Cassandra column type in the Cassandra
Handler. This data conversion introduces the risk of a runtime conversion error. A
poorly mapped field (such as varchar as the source containing alpha numeric data to a
Cassandra int) may cause a runtime error and cause the Cassandra Handler to
abend. You can view the Cassandra Java type mappings at:

https://github.com/datastax/java-driver/tree/3.x/manual#cql-to-java-type-mapping

It is possible that the data may require specialized processing to get converted to the
corresponding Java type for intake into Cassandra. If this is the case, you have two
options:

• Try to use the general regular expression search and replace functionality to
format the source column value data in a way that can be converted into the Java
data type for use in Cassandra.

Or

• Implement or extend the default data type conversion logic to override it with
custom logic for your use case. Contact Oracle Support for guidance.

3.2.2 About Catalog, Schema, Table, and Column Name Mapping
Traditional RDBMSs separate structured data into tables. Related tables are included
in higher-level collections called databases. Cassandra contains both of these
concepts. Tables in an RDBMS are also tables in Cassandra, while database schemas
in an RDBMS are keyspaces in Cassandra.

It is important to understand how data maps from the metadata definition in the source
trail file are mapped to the corresponding keyspace and table in Cassandra. Source
tables are generally either two-part names defined as schema.table,or three-part
names defined as catalog.schema.table.

The following table explains how catalog, schema, and table names map into
Cassandra. Unless you use special syntax, Cassandra converts all keyspace, table
names, and column names to lower case.

Table Name in Source Trail
File

Cassandra Keyspace Name Cassandra Table Name

QASOURCE.TCUSTMER qasource tcustmer

dbo.mytable dbo mytable

GG.QASOURCE.TCUSTORD gg_qasource tcustord

3.2.3 About DDL Functionality
Topics:

Chapter 3
Detailing the Functionality

3-3

• About the Keyspaces

• About the Tables

• Addng Column Functionality

• Dropping Column Functionality

3.2.3.1 About the Keyspaces

The Cassandra Handler does not automatically create keyspaces in Cassandra.
Keyspaces in Cassandra define a replication factor, the replication strategy, and
topology. The Cassandra Handler does not have enough information to create the
keyspaces, so you must manually create them.

You can create keyspaces in Cassandra by using the CREATE KEYSPACE command from
the Cassandra shell.

3.2.3.2 About the Tables

The Cassandra Handler can automatically create tables in Cassandra if you configure
it to do so. The source table definition may be a poor source of information to create
tables in Cassandra. Primary keys in Cassandra are divided into:

• Partitioning keys that define how data for a table is separated into partitions in
Cassandra.

• Clustering keys that define the order of items within a partition.

In the default mapping for automated table creation, the first primary key is the
partition key, and any additional primary keys are mapped as clustering keys.

Automated table creation by the Cassandra Handler may be fine for proof of concept,
but it may result in data definitions that do not scale well. When the Cassandra
Handler creates tables with poorly constructed primary keys, the performance of ingest
and retrieval may decrease as the volume of data stored in Cassandra increases.
Oracle recommends that you analyze the metadata of your replicated tables, then
manually create corresponding tables in Cassandra that are properly partitioned and
clustered for higher scalability.

Primary key definitions for tables in Cassandra are immutable after they are created.
Changing a Cassandra table primary key definition requires the following manual
steps:

1. Create a staging table.

2. Populate the data in the staging table from original table.

3. Drop the original table.

4. Re-create the original table with the modified primary key definitions.

5. Populate the data in the original table from the staging table.

6. Drop the staging table.

Chapter 3
Detailing the Functionality

3-4

3.2.3.3 Addng Column Functionality

You can configure the Cassandra Handler to add columns that exist in the source trail
file table definition but are missing in the Cassandra table definition. The Cassandra
Handler can accommodate metadata change events of this kind. A reconciliation
process reconciles the source table definition to the Cassandra table definition. When
the Cassandra Handler is configured to add columns, any columns found in the source
table definition that do not exist in the Cassandra table definition are added. The
reconciliation process for a table occurs after application startup the first time an
operation for the table is encountered. The reconciliation process reoccurs after a
metadata change event on a source table, when the first operation for the source table
is encountered after the change event.

3.2.3.4 Dropping Column Functionality
You can configure the Cassandra Handler to drop columns that do not exist in the
source trail file definition but exist in the Cassandra table definition. The Cassandra
Handler can accommodate metadata change events of this kind. A reconciliation
process reconciles the source table definition to the Cassandra table definition. When
the Cassandra Handler is configured to drop, columns any columns found in the
Cassandra table definition that are not in the source table definition are dropped.

Caution:

Dropping a column permanently removes data from a Cassandra table.
Carefully consider your use case before you configure this mode.

Note:

Primary key columns cannot be dropped. Attempting to do so results in an
abend.

Note:

Column name changes are not well-handled because there is no DDL is
processed. When a column name changes in the source database, the
Cassandra Handler interprets it as dropping an existing column and adding a
new column.

3.2.4 How Operations are Processed
The Cassandra Handler pushes operations to Cassandra using either the
asynchronous or synchronous API. In asynchronous mode, operations are flushed at
transaction commit (grouped transaction commit using GROUPTRANSOPS) to ensure write

Chapter 3
Detailing the Functionality

3-5

durability. The Cassandra Handler does not interface with Cassandra in a
transactional way.

Supported Database Operations

INSERT
UPDATE (captured as INSERT)
DELETE

The Cassandra commit log files do not record any before images for the UPDATE or
DELETE operations. So the captured operations never have a before image section.
Oracle GoldenGate features that rely on before image records, such as Conflict
Detection and Resolution, are not available.

Unsupported Database Operations

TRUNCATE
DDL (CREATE, ALTER, DROP)

Insert, update, and delete operations are processed differently in Cassandra than a
traditional RDBMS. The following explains how insert, update, and delete operations
are interpreted by Cassandra:

• Inserts: If the row does not exist in Cassandra, then an insert operation is
processed as an insert. If the row already exists in Cassandra, then an insert
operation is processed as an update.

• Updates: If a row does not exist in Cassandra, then an update operation is
processed as an insert. If the row already exists in Cassandra, then an update
operation is processed as insert.

• Delete:If the row does not exist in Cassandra, then a delete operation has no
effect. If the row exists in Cassandra, then a delete operation is processed as a
delete.

The state of the data in Cassandra is idempotent. You can replay the source trail files
or replay sections of the trail files. The state of the Cassandra database must be the
same regardless of the number of times that the trail data is written into Cassandra.

3.2.5 About Compressed Updates vs. Full Image Updates
Oracle GoldenGate allows you to control the data that is propagated to the source trail
file in the event of an update. The data for an update in the source trail file is either a
compressed or a full image of the update, and the column information is provided as
follows:

Compressed
For the primary keys and the columns for which the value changed. Data for columns
that have not changed is not provided in the trail file.

Full Image
For all columns, including primary keys, columns for which the value has changed,
and columns for which the value has not changed.

The amount of information about an update is important to the Cassandra Handler. If
the source trail file contains full images of the change data, then the Cassandra
Handler can use prepared statements to perform row updates in Cassandra. Full
images also allow the Cassandra Handler to perform primary key updates for a row in
Cassandra. In Cassandra, primary keys are immutable, so an update that changes a

Chapter 3
Detailing the Functionality

3-6

primary key must be treated as a delete and an insert. Conversely, when compressed
updates are used, prepared statements cannot be used for Cassandra row updates.
Simple statements identifying the changing values and primary keys must be
dynamically created and then executed. With compressed updates, primary key
updates are not possible and as a result, the Cassandra Handler will abend.

You must set the control properties gg.handler.name.compressedUpdates and
gg.handler.name.compressedUpdatesfor so that the handler expects either compressed
or full image updates.

The default value, true, sets the Cassandra Handler to expect compressed updates.
Prepared statements are not be used for updates, and primary key updates cause the
handler to abend.

When the value is false, prepared statements are used for updates and primary key
updates can be processed. A source trail file that does not contain full image data can
lead to corrupted data columns, which are considered null. As a result, the null value is
pushed to Cassandra. If you are not sure about whether the source trail files contains
compressed or full image data, set gg.handler.name.compressedUpdates to true.

CLOB and BLOB data types do not propagate LOB data in updates unless the LOB
column value changed. Therefore, if the source tables contain LOB data, set
gg.handler.name.compressedUpdates to true.

3.2.6 About Primary Key Updates
Primary key values for a row in Cassandra are immutable. An update operation that
changes any primary key value for a Cassandra row must be treated as a delete and
insert. The Cassandra Handler can process update operations that result in the
change of a primary key in Cassandra only as a delete and insert. To successfully
process this operation, the source trail file must contain the complete before and after
change data images for all columns. The gg.handler.name.compressed configuration
property of the Cassandra Handler must be set to false for primary key updates to be
successfully processed.

3.3 Setting Up and Running the Cassandra Handler
Instructions for configuring the Cassandra Handler components and running the
handler are described in the following sections.

Before you run the Cassandra Handler, you must install the Datastax Driver for
Cassandra and set the gg.classpath configuration property.

Get the Driver Libraries

The Datastax Java Driver for Cassandra does not ship with Oracle GoldenGate for Big
Data. You can download the recommended version of the Datastax Java Driver for
Cassandra 3.1 at:

https://github.com/datastax/java-driver

Set the Classpath

You must configure the gg.classpath configuration property in the Java Adapter
properties file to specify the JARs for the Datastax Java Driver for Cassandra. Ensure
that this JAR is first in the list.

Chapter 3
Setting Up and Running the Cassandra Handler

3-7

gg.classpath=/path_to_repository/com/datastax/cassandra/cassandra-drive r-core/3.3.1/
cassandra-driver-core-3.3.1.jar:/path_to_apache_cassandra/cassandra-3.11.0/ lib/*

Topics:

• Understanding the Cassandra Handler Configuration

• Review a Sample Configuration

• Configuring Security

3.3.1 Understanding the Cassandra Handler Configuration
The following are the configurable values for the Cassandra Handler. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the Cassandra Handler, you must first configure the handler
type by specifying gg.handler.jdbc.type=cassandra and the other Cassandra properties
as follows:

Table 3-1 Cassandra Handler Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handlerlist Require
d

Any string None Provides a name for the Cassandra Handler.
The Cassandra Handler name then becomes
part of the property names listed in this table.

gg.handler.name.
type=cassandra

Require
d

cassandr
a

None Selects the Cassandra Handler for streaming
change data capture into name.

gg.handler.name.
mode

Optional op | tx op The default is recommended. In op mode,
operations are processed as received. In tx
mode, operations are cached and processed
at transaction commit. The txmode is slower
and creates a larger memory footprint.

gg.handler.name.
contactPoints=

Optional A comma
separated
list of
host
names
that the
Cassandr
a Handler
will
connect
to.

local
host

A comma-separated list of the Cassandra
host machines for the driver to establish an
initial connection to the Cassandra cluster.
This configuration property does not need to
include all the machines enlisted in the
Cassandra cluster. By connecting to a single
machine, the driver can learn about other
machines in the Cassandra cluster and
establish connections to those machines as
required.

gg.handler.name.
username

Optional A legal
username
string.

None A user name for the connection to name.
Required if Cassandra is configured to
require credentials.

gg.handler.name.
password

Optional A legal
password
string.

None A password for the connection to name.
Required if Cassandra is configured to
require credentials.

Chapter 3
Setting Up and Running the Cassandra Handler

3-8

Table 3-1 (Cont.) Cassandra Handler Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.
compressedUpdate
s

Optional true |
false

true Sets the Cassandra Handler whether to
expect full image updates from the source
trail file. A value of true means that updates
in the source trail file only contain column
data for the primary keys and for columns
that changed. The Cassandra Handler
executes updates as simple statements
updating only the columns that changed.

A value of false means that updates in the
source trail file contain column data for
primary keys and all columns regardless of
whether the column value has changed. The
Cassandra Handler is able to use prepared
statements for updates, which can provide
better performance for streaming data to
name.

gg.handler.name.
ddlHandling

Optional CREATE |
ADD | DROP
in any
combinati
on with
values
delimited
by a
comma

None Configures the Cassandra Handler for the
DDL functionality to provide. Options include
CREATE, ADD, and DROP. These options can be
set in any combination delimited by commas.

When CREATE is enabled, the Cassandra
Handler creates tables in Cassandra if a
corresponding table does not exist.

When ADD is enabled, the Cassandra Handler
adds columns that exist in the source table
definition that do not exist in the
corresponding Cassandra table definition.

When DROP is enabled, the handler drops
columns that exist in the Cassandra table
definition that do not exist in the
corresponding source table definition.

gg.handler.name.
cassandraMode

Optional async |
sync

async Sets the interaction between the Cassandra
Handler and name. Set to async for
asynchronous interaction. Operations are
sent to Cassandra asynchronously and then
flushed at transaction commit to ensure
durability. Asynchronous provides better
performance.

Set to sync for synchronous interaction.
Operations are sent to Cassandra
synchronously.

Chapter 3
Setting Up and Running the Cassandra Handler

3-9

Table 3-1 (Cont.) Cassandra Handler Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.
consistencyLevel

Optional ALL | ANY |
EACH_QUO
RUM |
LOCAL_ON
E |
LOCAL_QU
ORUM | ONE
| QUORUM |
THREE |
TWO

The
Cassa
ndra
defaul
t.

Sets the consistency level for operations with
name. It configures the criteria that must be
met for storage on the Cassandra cluster
when an operation is executed. Lower levels
of consistency may provide better
performance, while higher levels of
consistency are safer.

An advanced configuration property so that
you can override the SSL
javax.net.ssl.SSLContext and cipher
suites. The fully qualified class name is
provided here and the class must be
included in the classpath. The class must
implement the
com.datastax.driver.core.SSLOptions
interface in the Datastax Cassandra Java
driver. This configuration property is only
applicable if gg.handler.name.withSSL is set
to true, see http://docs.datastax.com/en/
developer/java-driver/3.3/manual/ssl/.

gg.handler.name.
withSSL

Optional true |
false

false Set to true to enable secured connections to
the Cassandra cluster using SSL. This
requires additional Java boot options
configuration, see http://
docs.datastax.com/en/developer/java-
driver/3.3/manual/ssl/.

gg.handler.name.
port

Optional Integer 9042 Set to configure the port number that the
Cassandra Handler attempts to connect to
Cassandra server instances. You can
override the default in the Cassandra YAML
files.

3.3.2 Review a Sample Configuration
The following is a sample configuration for the Cassandra Handler from the Java
Adapter properties file:

gg.handlerlist=cassandra

#The handler properties
gg.handler.cassandra.type=cassandra
gg.handler.cassandra.mode=op
gg.handler.cassandra.contactPoints=localhost
gg.handler.cassandra.ddlHandling=CREATE,ADD,DROP
gg.handler.cassandra.compressedUpdates=true
gg.handler.cassandra.cassandraMode=async
gg.handler.cassandra.consistencyLevel=ONE

Chapter 3
Setting Up and Running the Cassandra Handler

3-10

http://docs.datastax.com/en/developer/java-driver/3.3/manual/ssl/
http://docs.datastax.com/en/developer/java-driver/3.3/manual/ssl/
http://docs.datastax.com/en/developer/java-driver/3.3/manual/ssl/
http://docs.datastax.com/en/developer/java-driver/3.3/manual/ssl/
http://docs.datastax.com/en/developer/java-driver/3.3/manual/ssl/

3.3.3 Configuring Security
The Cassandra Handler connection to the Cassandra Cluster can be secured using
user name and password credentials. These are set using the following configuration
properties:

gg.handler.name.username
gg.handler.name.password

Optionally, the connection to the Cassandra cluster can be secured using SSL. To
enable SSL security set the following parameter:

gg.handler.name.withSSL=true

Additionally, the Java bootoptions must be configured to include the location and
password of the keystore and the location and password of the truststore. For
example:

javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./
dirprm
-Djavax.net.ssl.trustStore=/path/to/client.truststore
-Djavax.net.ssl.trustStorePassword=password123
-Djavax.net.ssl.keyStore=/path/to/client.keystore
-Djavax.net.ssl.keyStorePassword=password123

3.4 About Automated DDL Handling
The Cassandra Handler performs the table check and reconciliation process the first
time an operation for a source table is encountered. Additionally, a DDL event or a
metadata change event causes the table definition in the Cassandra Handler to be
marked as dirty. Therefore, the next time an operation for the table is encountered, the
handler repeats the table check, and reconciliation process as described in the
following section.

Topics:

• About the Table Check and Reconciliation Process

• Capturing New Change Data

3.4.1 About the Table Check and Reconciliation Process
The Cassandra Handler first interrogates the target Cassandra database to determine
whether the target Cassandra keyspace exists. If the target Cassandra keyspace does
not exist, then the Cassandra Handler abends. Keyspaces must be created by the
user. The log file must contain the error of the exact keyspace name that the
Cassandra Handler is expecting.

Next, the Cassandra Handler interrogates the target Cassandra database for the table
definition. If the table does not exist, the Cassandra Handler either creates a table if
gg.handler.name.ddlHandling includes the CREATE option or abends the process. A
message is logged that shows you the table that does not exist in Cassandra.

If the table exists in Cassandra, then the Cassandra Handler reconciles the table
definition from the source trail file and the table definition in Cassandra. This
reconciliation process searches for columns that exist in the source table definition and

Chapter 3
About Automated DDL Handling

3-11

not in the corresponding Cassandra table definition. If it locates columns fitting this
criteria and the gg.handler.name.ddlHandling property includes ADD, then the Cassandra
Handler adds the columns to the target table in Cassandra. Otherwise, it ignores these
columns.

Next, the Cassandra Handler searches for columns that exist in the target Cassandra
table but do not exist in the source table definition. If it locates columns that fit this
criteria and the gg.handler.name.ddlHandling property includes DROP, then the
Cassandra Handler removes these columns from the target table in Cassandra.
Otherwise those columns are ignored.

Finally, the prepared statements are built.

3.4.2 Capturing New Change Data
You can capture all of the new change data into your Cassandra database, including
the DDL changes in the trail, for the target apply. Following is the acceptance criteria:

AC1: Support Cassandra as a bulk extract
AC2: Support Cassandra as a CDC source
AC4: All Cassandra supported data types are supported
AC5: Should be able to write into different tables based on any filter conditions,
like Updates to Update tables or based on primary keys
AC7: Support Parallel processing with multiple threads
AC8: Support Filtering based on keywords
AC9: Support for Metadata provider
AC10: Support for DDL handling on sources and target
AC11: Support for target creation and updating of metadata.
AC12: Support for error handling and extensive logging
AC13: Support for Conflict Detection and Resolution
AC14: Performance should be on par or better than HBase

3.5 Performance Considerations
Configuring the Cassandra Handler for async mode provides better performance than
sync mode. Set Replicat property GROUPTRANSOPS must be set to the default value of
1000.

Setting the consistency level directly affects performance. The higher the consistency
level, the more work must occur on the Cassandra cluster before the transmission of a
given operation can be considered complete. Select the minimum consistency level
that still satisfies the requirements of your use case.

The Cassandra Handler can work in either operation (op) or transaction (tx) mode. For
the best performance operation mode is recommended:

gg.handler.name.mode=op

3.6 Additional Considerations
• Cassandra database requires at least one primary key. The value of any primary

key cannot be null. Automated table creation fails for source tables that do not
have a primary key.

• When gg.handler.name.compressedUpdates=false is set, the Cassandra Handler
expects to update full before and after images of the data.

Chapter 3
Performance Considerations

3-12

Note:

Using this property setting with a source trail file with partial image
updates results in null values being updated for columns for which the
data is missing. This configuration is incorrect and update operations
pollute the target data with null values in columns that did not change.

• The Cassandra Handler does not process DDL from the source database, even if
the source database provides DDL Instead, it reconciles between the source table
definition and the target Cassandra table definition. A DDL statement executed at
the source database that changes a column name appears to the Cassandra
Handler as if a column is dropped from the source table and a new column is
added. This behavior depends on how the gg.handler.name.ddlHandling property is
configured.

gg.handler.name.ddlHandling
Configuration

Behavior

Not configured for ADD or DROP Old column name and data maintained in
Cassandra. New column is not created in
Cassandra, so no data is replicated for the
new column name from the DDL change
forward.

Configured for ADD only Old column name and data maintained in
Cassandra. New column iscreated in
Cassandra and data replicated for the new
column name from the DDL change forward.
Column mismatch between the data is
located before and after the DDL change.

Configured for DROP only Old column name and data dropped in
Cassandra. New column is not created in
Cassandra, so no data replicated for the
new column name.

Configured for ADD and DROP Old column name and data dropped in
Cassandra. New column is created in
Cassandra, and data is replicated for the
new column name from the DDL change
forward.

3.7 Troubleshooting
This section contains information to help you troubleshoot various issues. Review the
following topics for additional help:

• Java Classpath

• Logging

• Write Timeout Exception

• Logging

• Datastax Driver Error

Chapter 3
Troubleshooting

3-13

3.7.1 Java Classpath
When the classpath that is intended to include the required client libraries, a
ClassNotFound exception appears in the log file. To troubleshoot, set the Java Adapter
logging to DEBUG, and then run the process again. At the debug level, the log contains
data about the JARs that were added to the classpath from the gg.classpath
configuration variable. The gg.classpath variable selects the asterisk (*) wildcard
character to select all JARs in a configured directory. For example, /usr/cassandra/
cassandra-java-driver-3.3.1/*:/usr/cassandra/cassandra-java-driver-3.3.1/lib/*.

For more information about setting the classpath, see Setting Up and Running the
Cassandra Handlerand Cassandra Handler Client Dependencies.

3.7.2 Logging
The Cassandra Handler logs the state of its configuration to the Java log file. This is
helpful because you can review the configuration values for the Cassandra Handler. A
sample of the logging of the state of the configuration follows:

**** Begin Cassandra Handler - Configuration Summary ****
 Mode of operation is set to op.
 The Cassandra cluster contact point(s) is [localhost].
 The handler has been configured for GoldenGate compressed updates (partial image
updates).
 Sending data to Cassandra in [ASYNC] mode.
 The Cassandra consistency level has been set to [ONE].
 Cassandra Handler DDL handling:
 The handler will create tables in Cassandra if they do not exist.
 The handler will add columns to Cassandra tables for columns in the source
metadata that do not exist in Cassandra.
 The handler will drop columns in Cassandra tables for columns that do not exist
in the source metadata.
**** End Cassandra Handler - Configuration Summary ****

3.7.3 Write Timeout Exception
When running the Cassandra handler, you may experience a
com.datastax.driver.core.exceptions.WriteTimeoutException exception that causes the
Replicat process to abend. It is likely to occur under some or all of the following
conditions:

• The Cassandra Handler processes large numbers of operations, putting the
Cassandra cluster under a significant processing load.

• GROUPTRANSOPS is configured higher than the value of 1000 default.

• The Cassandra Handler is configured in asynchronous mode.

• The Cassandra Handler is configured with a consistency level higher than ONE.

When this problem occurs, the Cassandra Handler is streaming data faster than the
Cassandra cluster can process it. The write latency in the Cassandra cluster finally
exceeds the write request timeout period, which in turn results in the exception.

The following are potential solutions:

• Increase the write request timeout period. This is controlled with the
write_request_timeout_in_ms property in Cassandra and is located in the

Chapter 3
Troubleshooting

3-14

cassandra.yaml file in the cassandra_install/conf directory. The default is 2000 (2
seconds). You can increase this value to move past the error, and then restart the
Cassandra node or nodes for the change to take effect.

• Decrease the GROUPTRANSOPS configuration value of the Replicat process. Typically,
decreasing the GROUPTRANSOPS configuration decreases the size of transactions
processed and reduces the likelihood that the Cassandra Handler can overtax the
Cassandra cluster.

• Reduce the consistency level of the Cassandra Handler. This in turn reduces the
amount of work the Cassandra cluster has to complete for an operation to be
considered as written.

3.7.4 Logging
The java.lang.NoClassDefFoundError: io/netty/util/Timer error can occur in both the
3.3 and 3.2 versions of downloaded Datastax Java Driver. This is because the netty-
common JAR file is inadvertently missing from the Datastax driver tar file. You must
manually obtain thenetty-common JAR file of the same netty version, and then add it to
the classpath.

3.7.5 Datastax Driver Error
If you didn’t add the cassandra-driver-core-3.3.1.jar file in the gg.classpath property,
then this exception can occur:

com.datastax.driver.core.exceptions.UnresolvedUserTypeException: Cannot
resolve user type keyspace.duration

If there are tables with a duration data type column, this exception occurs. Using the
Cassandra driver, cassandra-driver-core-3.3.1.jar in the gg.classpath property
resolves the error. See Setting Up and Running the Cassandra Handler.

Chapter 3
Troubleshooting

3-15

4
Using the Elasticsearch Handler

Learn how to use the Elasticsearch Handler, which allows you to store, search, and
analyze large volumes of data quickly and in near real time.

Topics:

• Overview

• Detailing the Functionality

• Setting Up and Running the Elasticsearch Handler

• Performance Consideration

• About the Shield Plug-In Support

• About DDL Handling

• Troubleshooting

• Logging

• Known Issues in the Elasticsearch Handler

4.1 Overview
Elasticsearch is a highly scalable open-source full-text search and analytics engine.
Elasticsearch allows you to store, search, and analyze large volumes of data quickly
and in near real time. It is generally used as the underlying engine or technology that
drives applications with complex search features.

The Elasticsearch Handler uses the Elasticsearch Java client to connect and receive
data into Elasticsearch node, see https://www.elastic.co.

4.2 Detailing the Functionality
Topics:

• About the Elasticsearch Version Property

• About the Index and Type

• About the Document

• About the Primary Key Update

• About the Data Types

• Operation Mode

• Operation Processing Support

• About the Connection

4-1

https://www.elastic.co

4.2.1 About the Elasticsearch Version Property
The Elasticsearch Handler property gg.handler.name.version should be set according
to the version of the Elasticsearch cluster. The Elasticsearch Handler uses a Java
Transport client, which must have the same major version (such as, 2.x, or 5.x) as the
nodes in the cluster. The Elasticsearch Handler can connect to clusters that have a
different minor version (such as, 2.3.x) though new functionality may not be supported.

4.2.2 About the Index and Type
An Elasticsearch index is a collection of documents with similar characteristics. An
index can only be created in lowercase. An Elasticsearch type is a logical group within
an index. All the documents within an index or type should have same number and
type of fields.

The Elasticsearch Handler maps the source trail schema concatenated with source
trail table name to construct the index. For three-part table names in source trail, the
index is constructed by concatenating source catalog, schema, and table name.

The Elasticsearch Handler maps the source table name to the Elasticsearch type. The
type name is case-sensitive.

Table 4-1 Elasticsearch Mapping

Source Trail Elasticsearch Index Elasticsearch Type

schema.tablename schema_tablename tablename

catalog.schema.tablename catalog_schema_tablename tablename

If an index does not already exist in the Elasticsearch cluster, a new index is created
when Elasticsearch Handler receives (INSERT or UPDATE operation in source trail) data.

4.2.3 About the Document
An Elasticsearch document is a basic unit of information that can be indexed. Within
an index or type, you can store as many documents as you want. Each document has
an unique identifier based on the _id field.

The Elasticsearch Handler maps the source trail primary key column value as the
document identifier.

4.2.4 About the Primary Key Update
The Elasticsearch document identifier is created based on the source table's primary
key column value. The document identifier cannot be modified. The Elasticsearch
handler processes a source primary key's update operation by performing a DELETE
followed by an INSERT. While performing the INSERT, there is a possibility that the new
document may contain fewer fields than required. For the INSERT operation to contain
all the fields in the source table, enable trail Extract to capture the full data before
images for update operations or use GETBEFORECOLS to write the required column’s
before images.

Chapter 4
Detailing the Functionality

4-2

4.2.5 About the Data Types
Elasticsearch supports the following data types:

• 32-bit integer

• 64-bit integer

• Double

• Date

• String

• Binary

4.2.6 Operation Mode
The Elasticsearch Handler uses the operation mode for better performance. The
gg.handler.name.mode property is not used by the handler.

4.2.7 Operation Processing Support
The Elasticsearch Handler maps the source table name to the Elasticsearch type. The
type name is case-sensitive.

For three-part table names in source trail, the index is constructed by concatenating
source catalog, schema, and table name.

INSERT

The Elasticsearch Handler creates a new index if the index does not exist, and then
inserts a new document.

UPDATE

If an Elasticsearch index or document exists, the document is updated. If an
Elasticsearch index or document does not exist, a new index is created and the
column values in the UPDATE operation are inserted as a new document.

DELETE

If an Elasticsearch index or document exists, the document is deleted. If Elasticsearch
index or document does not exist, a new index is created with zero fields.

The TRUNCATE operation is not supported.

4.2.8 About the Connection
A cluster is a collection of one or more nodes (servers) that holds the entire data. It
provides federated indexing and search capabilities across all nodes.

A node is a single server that is part of the cluster, stores the data, and participates in
the cluster’s indexing and searching.

The Elasticsearch Handler property gg.handler.name.ServerAddressList can be set to
point to the nodes available in the cluster.

Chapter 4
Detailing the Functionality

4-3

4.3 Setting Up and Running the Elasticsearch Handler
You must ensure that the Elasticsearch cluster is setup correctly and the cluster is up
and running, see https://www.elastic.co/guide/en/elasticsearch/reference/current/
_installation.html. Alternatively, you can use Kibana to verify the setup.

Set the Classpath

The property gg.classpath must include all the jars required by the Java transport
client. For a listing of the required client JAR files by version, see Elasticsearch
Handler Client Dependencies.

Default location of 2.X JARs:

 Elasticsearch_Home/lib/*
 Elasticsearch_Home/plugins/shield/*

Default location of 5.X JARs:

 Elasticsearch_Home/lib/*
 Elasticsearch_Home/plugins/x-pack/*
 Elasticsearch_Home/modules/transport-netty3/*
 Elasticsearch_Home/modules/transport-netty4/*
 Elasticsearch_Home/modules/reindex/*

The inclusion of the * wildcard in the path can include the * wildcard character in order
to include all of the JAR files in that directory in the associated classpath. Do not use
*.jar.

The following is an example of the correctly configured classpath:

 gg.classpath=Elasticsearch_Home/lib/*

Topics:

• Configuring the Elasticsearch Handler

• About the Transport Client Settings Properties File

4.3.1 Configuring the Elasticsearch Handler
The following are the configurable values for the Elasticsearch handler. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

To enable the selection of the Elasticsearch Handler, you must first configure the
handler type by specifying gg.handler.jdbc.type=elasticsearch and the other
Elasticsearch properties as follows:

Table 4-2 Elasticsearch Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handlerlist Required Name (any name
of your choice)

None The list of
handlers to be
used.

Chapter 4
Setting Up and Running the Elasticsearch Handler

4-4

https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html

Table 4-2 (Cont.) Elasticsearch Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.type

Required elasticsearch None Type of handler
to use. For
example,
Elasticsearch,
Kafka, Flume, or
HDFS.

gg.handler.name
.ServerAddressL
ist

Optional Server:Port[,
Server:Port]

localhost:9300 Comma
separated list of
contact points of
the nodes to
connect to the
Elasticsearch
cluster.

gg.handler.name
.clientSettings
File

Required Transport client
properties file.

None The filename in
classpath that
holds
Elasticsearch
transport client
properties used
by the
Elasticsearch
Handler.

gg.handler.name
.version

Optional 2.x | 5.x 2.x The version of
the transport
client used by the
Elasticsearch
Handler, this
should be
compatible with
the Elasticsearch
cluster.

gg.handler.name
.bulkWrite

Optional true | false false When this
property is true,
the Elasticsearch
Handler uses the
bulk write API to
ingest data into
Elasticsearch
cluster. The batch
size of bulk write
can be controlled
using the
MAXTRANSOPS
Replicat
parameter.

Chapter 4
Setting Up and Running the Elasticsearch Handler

4-5

Table 4-2 (Cont.) Elasticsearch Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.numberAsString

Optional true | false false When this
property is true,
the Elasticsearch
Handler would
receive all the
number column
values (Long,
Integer, or
Double) in the
source trail as
strings into the
Elasticsearch
cluster.

gg.handler.elas
ticsearch.upser
t

Optional true | false true When this
property is true,
a new document
is inserted if the
document does
not already exist
when performing
an UPDATE
operation.

Example 4-1 Sample Handler Properties file:

For 2.x Elasticsearch cluster:

gg.handlerlist=elasticsearch
gg.handler.elasticsearch.type=elasticsearch
gg.handler.elasticsearch.ServerAddressList=localhost:9300
gg.handler.elasticsearch.clientSettingsFile=client.properties
gg.handler.elasticsearch.version=2.x
gg.classpath=/path/to/elastic/lib/*

For 2.x Elasticsearch cluster with Shield:

gg.handlerlist=elasticsearch
gg.handler.elasticsearch.type=elasticsearch
gg.handler.elasticsearch.ServerAddressList=localhost:9300
gg.handler.elasticsearch.clientSettingsFile=client.properties
gg.handler.elasticsearch.version=2.x
gg.classpath=/path/to/elastic/lib/*:/path/to/elastic/plugins/shield/*

For 5.x Elasticsearch cluster:

gg.handlerlist=elasticsearch
gg.handler.elasticsearch.type=elasticsearch
gg.handler.elasticsearch.ServerAddressList=localhost:9300
gg.handler.elasticsearch.clientSettingsFile=client.properties
gg.handler.elasticsearch.version=5.x
gg.classpath=/path/to/elastic/lib/*:/path/to/elastic/modules/transport-netty4/*:/
path/to/elastic/modules/reindex/*

For 5.x Elasticsearch cluster with x-pack:

Chapter 4
Setting Up and Running the Elasticsearch Handler

4-6

gg.handlerlist=elasticsearch
gg.handler.elasticsearch.type=elasticsearch
gg.handler.elasticsearch.ServerAddressList=localhost:9300
gg.handler.elasticsearch.clientSettingsFile=client.properties
gg.handler.elasticsearch.version=5.x
gg.classpath=/path/to/elastic/lib/*:/path/to/elastic/plugins/x-pack/*:/path/to/
elastic/modules/transport-netty4/*:/path/to/elastic/modules/reindex/*

Sample Replicat configuration and a Java Adapter Properties files can be found at the
following directory:

GoldenGate_install_directory/AdapterExamples/big-data/elasticsearch

4.3.2 About the Transport Client Settings Properties File
The Elasticsearch Handler uses a Java Transport client to interact with Elasticsearch
cluster. The Elasticsearch cluster may have addional plug-ins like shield or x-pack,
which may require additional configuration.

The gg.handler.name.clientSettingsFile property should point to a file that has
additional client settings based on the version of Elasticsearch cluster. The
Elasticsearch Handler attempts to locate and load the client settings file using the Java
classpath. Te Java classpath must include the directory containing the properties file.

The client properties file for Elasticsearch 2.x(without any plug-in) is:

cluster.name=Elasticsearch_cluster_name

The client properties file for Elasticsearch 2.X with the Shield plug-in:

cluster.name=Elasticsearch_cluster_name
shield.user=shield_username:shield_password

The Shield plug-in also supports additional capabilities like SSL and IP filtering. The
properties can be set in the client.properties file, see https://www.elastic.co/
guide/en/elasticsearch/client/java-api/2.4/transport-client.html and https://
www.elastic.co/guide/en/shield/current/
_using_elasticsearch_java_clients_with_shield.html.

The client.properties file for Elasticsearch 5.x with the X-Pack plug-in is:

cluster.name=Elasticsearch_cluster_name
xpack.security.user=x-pack_username:x-pack-password

The X-Pack plug-in also supports additional capabilities. The properties can be set in
the client.properties file, see https://www.elastic.co/guide/en/elasticsearch/
client/java-api/5.1/transport-client.html and https://www.elastic.co/guide/en/x-pack/
current/java-clients.html.

4.4 Performance Consideration
The Elasticsearch Handler gg.handler.name.bulkWrite property is used to determine
whether the source trail records should be pushed to the Elasticsearch cluster one at a
time or in bulk using the bulk write API. When this property is true, the source trail
operations are pushed to the Elasticsearch cluster in batches whose size can be
controlled by the MAXTRANSOPS parameter in the generic Replicat parameter file. Using
the bulk write API provides better performance.

Chapter 4
Performance Consideration

4-7

https://www.elastic.co/guide/en/elasticsearch/client/java-api/2.4/transport-client.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/2.4/transport-client.html
https://www.elastic.co/guide/en/shield/current/_using_elasticsearch_java_clients_with_shield.html
https://www.elastic.co/guide/en/shield/current/_using_elasticsearch_java_clients_with_shield.html
https://www.elastic.co/guide/en/shield/current/_using_elasticsearch_java_clients_with_shield.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/5.1/transport-client.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/5.1/transport-client.html
https://www.elastic.co/guide/en/x-pack/current/java-clients.html
https://www.elastic.co/guide/en/x-pack/current/java-clients.html

Elasticsearch uses different thread pools to improve how memory consumption of
threads are managed within a node. Many of these pools also have queues associated
with them, which allow pending requests to be held instead of discarded.

For bulk operations, the default queue size is 50 (in version 5.2) and 200 (in version
5.3).

To avoid bulk API errors, you must set the Replicat MAXTRANSOPS size to match the bulk
thread pool queue size at a minimum. The configuration thread_pool.bulk.queue_size
property can be modified in the elasticsearch.yaml file.

4.5 About the Shield Plug-In Support
Elasticsearch versions 2.x supports a Shield plug-in which provides basic
authentication, SSL and IP filtering. Similar capabilities exists in the X-Pack plug-in for
Elasticsearch 5.x. The additional transport client settings can be configured in the
Elasticsearch Handler using the gg.handler.name.clientSettingsFile property.

4.6 About DDL Handling
The Elasticsearch Handler does not react to any DDL records in the source trail. Any
data manipulation records for a new source table results in auto-creation of index or
type in the Elasticsearch cluster.

4.7 Troubleshooting
This section contains information to help you troubleshoot various issues.

Topics:

• Incorrect Java Classpath

• Elasticsearch Version Mismatch

• Transport Client Properties File Not Found

• Cluster Connection Problem

• Unsupported Truncate Operation

• Bulk Execute Errors

4.7.1 Incorrect Java Classpath
The most common initial error is an incorrect classpath to include all the required client
libraries and creates a ClassNotFound exception in the log4j log file.

Also, it may be due to an error resolving the classpath if there is a typographic error in
the gg.classpath variable.

The Elasticsearch transport client libraries do not ship with the Oracle GoldenGate for
Big Data product. You should properly configure the gg.classpath property in the Java
Adapter Properties file to correctly resolve the client libraries, see Setting Up and
Running the Elasticsearch Handler.

Chapter 4
About the Shield Plug-In Support

4-8

4.7.2 Elasticsearch Version Mismatch
The Elasticsearch Handler gg.handler.name.version property must be set to 2.x or 5.x
to match the major version number of the Elasticsearch cluster.

The following errors may occur when there is a wrong version configuration:

Error: NoNodeAvailableException[None of the configured nodes are available:]

ERROR 2017-01-30 22:35:07,240 [main] Unable to establish connection. Check handler
properties and client settings configuration.

java.lang.IllegalArgumentException: unknown setting [shield.user]

Ensure that all required plug-ins are installed and review documentation changes for
any removed settings.

4.7.3 Transport Client Properties File Not Found
To resolve this exception:

ERROR 2017-01-30 22:33:10,058 [main] Unable to establish connection. Check handler
properties and client settings configuration.

Verify that the gg.handler.name.clientSettingsFile configuration property is correctly
setting the Elasticsearch transport client settings file name. Verify that the gg.classpath
variable includes the path to the correct file name and that the path to the properties
file does not contain an asterisk (*) wildcard at the end.

4.7.4 Cluster Connection Problem
This error occurs when the Elasticsearch Handler is unable to connect to the
Elasticsearch cluster:

Error: NoNodeAvailableException[None of the configured nodes are available:]

Use the following steps to debug the issue:

1. Ensure that the Elasticsearch server process is running.

2. Validate the cluster.name property in the client properties configuration file.

3. Validate the authentication credentials for the x-Pack or Shield plug-in in the client
properties file.

4. Validate the gg.handler.name.ServerAddressList handler property.

4.7.5 Unsupported Truncate Operation
The following error occurs when the Elasticsearch Handler finds a TRUNCATE operation
in the source trail:

oracle.goldengate.util.GGException: Elasticsearch Handler does not support the
operation: TRUNCATE

Chapter 4
Troubleshooting

4-9

This exception error message is written to the handler log file before the RAeplicat
process abends. Removing the GETTRUNCATES parameter from the Replicat parameter
file resolves this error.

4.7.6 Bulk Execute Errors
""

DEBUG [main] (ElasticSearch5DOTX.java:130) - Bulk execute status: failures:[true]
buildFailureMessage:[failure in bulk execution: [0]: index [cs2cat_s1sch_n1tab],
type [N1TAB], id [83], message [RemoteTransportException[[UOvac8l][127.0.0.1:9300]
[indices:data/write/bulk[s][p]]]; nested: EsRejectedExecutionException[rejected
execution of org.elasticsearch.transport.TransportService$7@43eddfb2 on
EsThreadPoolExecutor[bulk, queue capacity = 50,
org.elasticsearch.common.util.concurrent.EsThreadPoolExecutor@5ef5f412[Running, pool
size = 4, active threads = 4, queued tasks = 50, completed tasks = 84]]];]

It may be due to the Elasticsearch running out of resources to process the operation.
You can limit the Replicat batch size using MAXTRANSOPS to match the value of the
thread_pool.bulk.queue_size Elasticsearch configuration parameter.

Note:

Changes to the Elasticsearch parameter, thread_pool.bulk.queue_size, are
effective only after the Elasticsearch node is restarted.

4.8 Logging
The following log messages appear in the handler log file on successful connection:

Connection to 2.x Elasticsearch cluster:

INFO 2017-01-31 01:43:38,814 [main] **BEGIN Elasticsearch client settings**
INFO 2017-01-31 01:43:38,860 [main] key[cluster.name] value[elasticsearch-user1-
myhost]
INFO 2017-01-31 01:43:38,860 [main] key[request.headers.X-Found-Cluster]
value[elasticsearch-user1-myhost]
INFO 2017-01-31 01:43:38,860 [main] key[shield.user] value[es_admin:user1]
INFO 2017-01-31 01:43:39,715 [main] Connecting to Server[myhost.us.example.com]
Port[9300]
INFO 2017-01-31 01:43:39,715 [main] Client node name: Smith
INFO 2017-01-31 01:43:39,715 [main] Connected nodes: [{node-myhost}{vqtHikpGQP-
IXieHsgqXjw}{10.196.38.196}{198.51.100.1:9300}]
INFO 2017-01-31 01:43:39,715 [main] Filtered nodes: []
INFO 2017-01-31 01:43:39,715 [main] **END Elasticsearch client settings**

Connection to a 5.x Elasticsearch cluster:

INFO [main] (Elasticsearch5DOTX.java:38) - **BEGIN Elasticsearch client settings**
INFO [main] (Elasticsearch5DOTX.java:39) - {xpack.security.user=user1:user1_kibana,
cluster.name=elasticsearch-user1-myhost, request.headers.X-Found-
Cluster=elasticsearch-user1-myhost}
INFO [main] (Elasticsearch5DOTX.java:52) - Connecting to
Server[myhost.us.example.com] Port[9300]
INFO [main] (Elasticsearch5DOTX.java:64) - Client node name: _client_
INFO [main] (Elasticsearch5DOTX.java:65) - Connected nodes: [{node-myhost}

Chapter 4
Logging

4-10

{w9N25BrOSZeGsnUsogFn1A}{bIiIultVRjm0Ze57I3KChg}{myhost}{198.51.100.1:9300}]
INFO [main] (Elasticsearch5DOTX.java:66) - Filtered nodes: []
INFO [main] (Elasticsearch5DOTX.java:68) - **END Elasticsearch client settings**

4.9 Known Issues in the Elasticsearch Handler
Elasticsearch: Trying to input very large number

Very large numbers result in inaccurate values with Elasticsearch document. For
example, 9223372036854775807, -9223372036854775808. This is an issue with the
Elasticsearch server and not a limitation of the Elasticsearch Handler.

The workaround for this issue is to ingest all the number values as strings using the
gg.handler.name.numberAsString=true property.

Elasticsearch: Issue with index

The Elasticsearch Handler is not able to input data into the same index if there are
more than one table with similar column names and different column data types.

Index names are always lowercase though the catalog/schema/tablename in the trail
may be case-sensitive.

Chapter 4
Known Issues in the Elasticsearch Handler

4-11

5
Using the File Writer Handler

Learn how to use the File Writer Handler and associated event handlers, which
enables you to write data files to a local system.

Topics:

• Overview
Learn how to use the File Writer Handler and the event handlers to transform data.

• Using the HDFS Event Handler
Learn how to use the HDFS Event Handler to load files generated by the File
Writer Handler into HDFS.

• Using the Optimized Row Columnar Event Handler
Learn how to use the Optimized Row Columnar (ORC) Event Handler to generate
data files in ORC format.

• Using the Oracle Cloud Infrastructure Event Handler
Learn how to use the Oracle Cloud Infrastructure Event Handler to load files
generated by the File Writer Handler into an Oracle Cloud Infrastructure Object
Store.

• Using the Oracle Cloud Infrastructure Classic Event Handler
Learn how to use the Oracle Cloud Infrastructure Classic Event Handler to load
files generated by the File Writer Handler into an Oracle Cloud Infrastructure
Classic Object Store.

• Using the Parquet Event Handler
Learn how to use the Parquet Event Handler to load files generated by the File
Writer Handler into HDFS.

• Using the S3 Event Handler
Learn how to use the S3 Event Handler, which provides the interface to Amazon
S3 web services.

5.1 Overview
Learn how to use the File Writer Handler and the event handlers to transform data.

The File Writer Handler supports generating data files in delimited text, XML, JSON,
Avro, and Avro Object Container File formats. It is intended to fulfill an extraction, load,
and transform use case. Data files are staged on your local file system. Then when
writing to a data file is complete, you can use a third party application to read the file to
perform additional processing.

The File Writer Handler also supports the event handler framework. The event handler
framework allows data files generated by the File Writer Handler to be transformed
into other formats, such as Optimized Row Columnar (ORC) or Parquet. Data files can
be loaded into third party applications, such as HDFS or Amazon S3. The event
handler framework is extensible allowing more event handlers performing different
transformations or loading to different targets to be developed. Additionally, you can
develop a custom event handler for your big data environment.

5-1

Oracle GoldenGate for Big Data provides two handlers to write to HDFS. Oracle
recommends that you use the HDFS Handler or the File Writer Handler in the following
situations:

The HDFS Event Handler is designed to stream data directly to HDFS.
No post write processing is occurring in HDFS. The HDFS Event Handler does not
change the contents of the file, it simply uploads the existing file to HDFS.
Analytical tools are accessing data written to HDFS in real time including data in files
that are open and actively being written to.

The File Writer Handler is designed to stage data to the local file system and
then to load completed data files to HDFS when writing for a file is complete.
Analytic tools are not accessing data written to HDFS in real time.
Post write processing is occurring in HDFS to transform, reformat, merge, and move
the data to a final location.
You want to write data files to HDFS in ORC or Parquet format.

Topics:

• Detailing the Functionality

• Configuring the File Writer Handler

• Review a Sample Configuration

5.1.1 Detailing the Functionality
Topics:

• Using File Roll Events

• Automatic Directory Creation

• About the Active Write Suffix

• Maintenance of State

• Using Templated Strings

5.1.1.1 Using File Roll Events
A file roll event occurs when writing to a specific data file is completed. No more data
is written to that specific data file.

Finalize Action Operation

You can configure the finalize action operation to clean up a specific data file after a
successful file roll action using the finalizeaction parameter with the following
options:

none

Leave the data file in place (removing any active write suffix, see About the Active
Write Suffix).

delete

Delete the data file (such as, if the data file has been converted to another format or
loaded to a third party application).

Chapter 5
Overview

5-2

move

Maintain the file name (removing any active write suffix), but move the file to the
directory resolved using the movePathMappingTemplate property.

rename

Maintain the current directory, but rename the data file using the
fileRenameMappingTemplate property.

move-rename

Rename the file using the file name generated by the fileRenameMappingTemplate
property and move the file the file to the directory resolved using the
movePathMappingTemplate property.

Typically, event handlers offer a subset of these same actions.

A sample Configuration of a finalize action operation:

gg.handlerlist=filewriter
#The File Writer Handler
gg.handler.filewriter.type=filewriter
gg.handler.filewriter.mode=op
gg.handler.filewriter.pathMappingTemplate=./dirout/evActParamS3R
gg.handler.filewriter.stateFileDirectory=./dirsta
gg.handler.filewriter.fileNameMappingTemplate=${fullyQualifiedTableName}_$
{currentTimestamp}.txt
gg.handler.filewriter.fileRollInterval=7m
gg.handler.filewriter.finalizeAction=delete
gg.handler.filewriter.inactivityRollInterval=7m

File Rolling Actions

Any of the following actions trigger a file roll event.

• A metadata change event.

• The maximum configured file size is exceeded

• The file roll interval is exceeded (the current time minus the time of first file write is
greater than the file roll interval).

• The inactivity roll interval is exceeded (the current time minus the time of last file
write is greater than the file roll interval).

• The File Writer Handler is configured to roll on shutdown and the Replicat process
is stopped.

Operation Sequence

The file roll event triggers a sequence of operations to occur. It is important that you
understand the order of the operations that occur when an individual data file is rolled:

1. The active data file is switched to inactive, the data file is flushed, and state data
file is flushed.

2. The configured event handlers are called in the sequence that you specified.

3. The finalize action is executed on all the event handlers in the reverse order in
which you configured them. Any finalize action that you configured is executed.

4. The finalize action is executed on the data file and the state file. If all actions are
successful, the state file is removed. Any finalize action that you configured is
executed.

Chapter 5
Overview

5-3

For example, if you configured the File Writer Handler with the Parquet Event Handler
and then the S3 Event Handler, the order for a roll event is:

1. The active data file is switched to inactive, the data file is flushed, and state data
file is flushed.

2. The Parquet Event Handler is called to generate a Parquet file from the source
data file.

3. The S3 Event Handler is called to load the generated Parquet file to S3.

4. The finalize action is executed on the S3 Parquet Event Handler. Any finalize
action that you configured is executed.

5. The finalize action is executed on the Parquet Event Handler. Any finalize action
that you configured is executed.

6. The finalize action is executed for the data file in the File Writer Handler

5.1.1.2 Automatic Directory Creation
You do not have to configure write directories before you execute the handler. The File
Writer Handler checks to see if the specified write directory exists before creating a file
and recursively creates directories as needed.

5.1.1.3 About the Active Write Suffix
A common use case is using a third party application to monitor the write directory to
read data files. Third party application can only read a data file when writing to that file
has completed. These applications need a way to determine if writing to a data file is
active or complete. The File Writer Handler allows you to configure an active write
suffix using this property:

gg.handler.name.fileWriteActiveSuffix=.tmp

The value of this property is appended to the generated file name. When writing to the
file is complete, the data file is renamed and the active write suffix is removed from the
file name. You can set your third party application to monitor your data file names to
identify when the active write suffix is removed.

5.1.1.4 Maintenance of State
Previously, all Oracle GoldenGate for Big Data Handlers have been stateless. These
stateless handlers only maintain state in the context of the Replicat process that it was
running. If the Replicat process was stopped and restarted, then all the state was lost.
With a Replicat restart, the handler began writing with no contextual knowledge of the
previous run.

The File Writer Handler provides the ability of maintaining state between invocations of
the Replicat process. By default with a restart:

• the state saved files are read,

• the state is restored,

• and appending active data files continues where the previous run stopped.

You can change this default action to require all files be rolled on shutdown by setting
this property:

Chapter 5
Overview

5-4

gg.handler.name.rollOnShutdown=true

5.1.1.5 Using Templated Strings
Templated strings can contain a combination of string constants and keywords that
are dynamically resolved at runtime. The ORC Event Handler makes extensive use of
templated strings to generate the ORC directory names, data file names, and ORC
bucket names. These strings give you the flexibility to select where to write data files
and the names of those data files. You should exercise caution when choosing file and
directory names to avoid file naming collisions that can result in an abend.

Supported Templated Strings

Keyword Description

${fullyQualifiedTableName} The fully qualified source table name delimited
by a period (.). For example,
MYCATALOG.MYSCHEMA.MYTABLE.

${catalogName} The individual source catalog name. For
example, MYCATALOG.

${schemaName} The individual source schema name. For
example, MYSCHEMA.

${tableName} The individual source table name. For
example, MYTABLE.

${groupName} The name of the Replicat process (with the
thread number appended if you’re using
coordinated apply).

${emptyString} Evaluates to an empty string. For example,“”

${operationCount} The total count of operations in the data file. It
must be used either on rename or by the event
handlers or it will be zero (0) because nothing
is written yet. For example, “1024”.

${insertCount} The total count of insert operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “125”.

${updateCount} The total count of update operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“265”.

${deleteCount} The total count of delete operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “11”.

${truncateCount} The total count of truncate operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“5”.

Chapter 5
Overview

5-5

Keyword Description

${currentTimestamp} The current timestamp. The default output
format for the date time is yyyy-MM-dd_HH-mm-
ss.SSS. For example,
2017-07-05_04-31-23.123. Alternatively, you
can customize the format of the current
timestamp by inserting the format inside
square brackets like:

${currentTimestamp[MM-dd_HH]}

This format uses the syntax defined in the
Java SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

${toUpperCase[]} Converts the contents inside the square
brackets to uppercase. For example, $
{toUpperCase[$
{fullyQualifiedTableName}]}.

${toLowerCase[]} Converts the contents inside the square
brackets to lowercase. For example, $
{toLowerCase[$
{fullyQualifiedTableName}]}.

Configuration of template strings can use a mix of keywords and static strings to
assemble path and data file names at runtime.

Path Configuration Example

/usr/local/${fullyQualifiedTableName}

Data File Configuration Example

${fullyQualifiedTableName}_${currentTimestamp}_${groupName}.handlerIndicator

Requirements

The directory and file names generated using the templates must be legal on the
system being written to. File names must be unique to avoid a file name collision. You
can avoid a collision by adding a current timestamp using the ${currentTimestamp}
keyword. If you are using coordinated apply, then adding ${groupName} into the data file
name is recommended.

5.1.2 Configuring the File Writer Handler
Lists the configurable values for the File Writer Handler. These properties are located
in the Java Adapter properties file (not in the Replicat properties file)

To enable the selection of the File Writer Handler, you must first configure the handler
type by specifying gg.handler.jdbc.type=filewriter and the other File Writer properties
as follows:

Chapter 5
Overview

5-6

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Table 5-1 File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.type

Required filewrite
r

None Selects the File Writer Handler for use.

gg.handler.name
.maxFileSize

Optional Default
unit of
measure
is bytes.
You can
stipulate k,
m, or g to
signify
kilobytes,
megabyte
s, or
gigabytes
respectivel
y.
Examples
of legal
values
include
10000,
10k, 100m,
1.1g.

1g Sets the maximum file size of files
generated by the File Writer Handler.
When the file size is exceeded, a roll event
is triggered.

Chapter 5
Overview

5-7

Table 5-1 (Cont.) File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.fileRollInterv
al

Optional The
default
unit of
measure
is
millisecon
ds. You
can
stipulate
ms, s, m, h
to signify
millisecon
ds,
seconds,
minutes,
or hours
respectivel
y.
Examples
of legal
values
include
10000,
10000ms,
10s, 10m,
or 1.5h.
Values of
0 or less
indicate
that file
rolling on
time is
turned off.

File
rolling
on time
is off.

The timer starts when a file is created. If
the file is still open when the interval
elapses then the a file roll event will be
triggered.

Chapter 5
Overview

5-8

Table 5-1 (Cont.) File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.inactivityRoll
Interval

Optional The
default
unit of
measure
is
millisecon
ds. You
can
stipulate
ms, s, m, h
to signify
millisecon
ds,
seconds,
minutes,
or hours
respectivel
y.
Examples
of legal
values
include
10000,
10000ms,
10s, 10m,
or 1.5h.
Values of
0 or less
indicate
that file
rolling on
time is
turned off.

File
inactivit
y rolling
is
turned
off.

The timer starts from the latest write to a
generated file. New writes to a generated
file restart the counter. If the file is still
open when the timer elapses a roll event is
triggered..

gg.handler.name
.fileNameMappin
gTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
File Writer
Handler
data file
names at
runtime.

None Use keywords interlaced with constants to
dynamically generate a unique path names
at runtime. Typically, path names follow
the format, $
{fullyQualifiedTableName}_$
{groupName}_${currentTimeStamp}
{.txt}.

Chapter 5
Overview

5-9

Table 5-1 (Cont.) File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.pathMappingTem
plate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the
directory
to which a
file is
written.

None Use keywords interlaced with constants to
dynamically generate a unique path names
at runtime. Typically, path names follow
the format, $
{fullyQualifiedTableName}_$
{groupName}_${currentTimeStamp}
{.txt}.

gg.handler.name
.fileWriteActiv
eSuffix

Optional A string. None An optional suffix that is appended to files
generated by the File Writer Handler to
indicate that writing to the file is active. At
the finalize action the suffix is removed.

gg.handler.name
.stateFileDirec
tory

Required A directory
on the
local
machine
to store
the state
files of the
File Writer
Handler.

None Sets the directory on the local machine to
store the state files of the File Writer
Handler. The group name is appended to
the directory to ensure that the functionality
works when operating in a coordinated
apply environment.

gg.handler.name
.rollOnShutdown

Optional true |
false

false Set to true, on normal shutdown of the
Replicat process all open files are closed
and a file roll event is triggered. If
successful, the File Writer Handler has no
state to carry over to a restart of the File
Writer Handler.

Chapter 5
Overview

5-10

Table 5-1 (Cont.) File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.finalizeAction

Optional none |
delete |
move |
rename |
move-
rename

none Indicates what the File Writer Handler
should do at the finalize action.

none
Leave the data file in place (removing any
active write suffix, see About the Active
Write Suffix).

delete
Delete the data file (such as, if the data file
has been converted to another format or
loaded to a third party application).

move
Maintain the file name (removing any
active write suffix), but move the file to the
directory resolved using the
movePathMappingTemplate property.

rename
Maintain the current directory, but rename
the data file using the
fileRenameMappingTemplate property.

move-rename
Rename the file using the file name
generated by the
fileRenameMappingTemplate property and
move the file the file to the directory
resolved using the
movePathMappingTemplate property.

gg.handler.name
.partitionByTab
le

Optional true |
false

true Set to true so that data from different
source tables is partitioned into separate
files. Set to false to interlace operation
data from all source tables into a single
output file. It cannot be set to false if the
file format is the Avro OCF (Object
Container File) format.

gg.handler.name
.eventHandler

Optional HDFS |
ORC |
PARQUET |
S3

No
event
handler
configu
red.

A unique string identifier cross referencing
an event handler. The event handler will be
invoked on the file roll event. Event
handlers can do thing file roll event actions
like loading files to S3, converting to
Parquet or ORC format, or loading files to
HDFS.

Chapter 5
Overview

5-11

Table 5-1 (Cont.) File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.fileRenameMapp
ingTemplate

Required
if
gg.handl
er.name.
finalize
Action is
set to
rename or
move-
rename.

A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
File Writer
Handler
data file
names for
file
renaming
in the
finalize
action.

None. Use keywords interlaced with constants to
dynamically generate unique file names at
runtime. Typically, file names follow the
format, ${fullyQualifiedTableName}_$
{groupName}_${currentTimeStamp}
{.txt}.

gg.handler.name
.movePathMappin
gTemplate

Required
if
gg.handl
er.name.
finalize
Action is
set to
rename or
move-
rename.

A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the
directory
to which a
file is
written.

None Use keywords interlaced with constants to
dynamically generate a unique path names
at runtime. Typically, path names typically
follow the format, /ogg/data/$
{groupName}/$
{fullyQualifiedTableName}.

Chapter 5
Overview

5-12

Table 5-1 (Cont.) File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.format

Required delimited
text |
json |
json_row
| xml |
avro_row
| avro_op
|
avro_row_
ocf |
avro_op_o
cf

delimi
tedtex
t

Selects the formatter for the HDFS Handler
for how output data will be formatted

delimitedtext
Delimited text.

json
JSON

json_row
JSON output modeling row data

xml
XML

avro_row
Avro in row compact format.

avro_op
Avro in operation more verbose format.

avro_row_ocf
Avro in the row compact format written into
HDFS in the Avro Object Container File
(OCF) format.

avro_op_ocf
Avro in the more verbose format written
into HDFS in the Avro OCF format.

If you want to use the Parquet or ORC
Event Handlers, then the selected format
must be avro_row_ocf or avro_op_ocf.

gg.handler.name
.bom

Optional An even
number of
hex
characters
.

None Enter an even number of hex characters
where every two characters correspond to
a single byte in the byte order mark (BOM).
For example, the string efbbbf represents
the 3-byte BOM for UTF-8.

gg.handler.name
.createControlF
ile

Optional true |
false

false Set to true to create a control file. A
control file contains all of the completed
file names including the path separated by
a delimiter. The name of the control file is
{groupName}.control. For example, if the
Replicat process name is fw, then the
control file name is FW.control.

gg.handler.name
.controlFileDel
imiter

Optional Any string new
line
(\n)

Allows you to control the delimiter
separating file names in the control file.
You can useCDATA[] wrapping with this
property.

Chapter 5
Overview

5-13

Table 5-1 (Cont.) File Writer Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.controlFileDir
ectory

Optional A path to a
directory
to hold the
control file.

A
period
(.) or
the
Oracle
Golden
Gate
installat
ion
director
y.

Set to specify where you want to write the
control file.

gg.handler.name
.createOwnerFil
e

Optional true |
false

false Set to true to create an owner file. The
owner file is created when the Replicat
process starts and is removed when it
terminates normally. The owner file allows
other applications to determine if the
process is running. The owner file remains
in place when the Replicat process ends
abnormally. The name of the owner file is
the {groupName}.owner. For example, if
the replicat process is name fw, then the
owner file name is FW.owner. The file is
create in the . directory or the Oracle
GoldenGate installation directory.

gg.handler.name
.atTime

Optional One or
more
times to
trigger a
roll action
of all open
files.

None Configure one or more trigger times in the
following format:

HH:MM,HH:MM,HH:MM

Entries are based on a 24 hour clock. For
example, an entry to configure rolled
actions at three discrete times of day is:

gg.handler.fw.atTime=03:30,21:00,23:51

5.1.3 Review a Sample Configuration
This File Writer Handler configuration example is using the Parquet Event Handler to
convert data files to Parquet, and then for the S3 Event Handler to load Parquet files
into S3:

gg.handlerlist=filewriter

#The handler properties
gg.handler.name.type=filewriter
gg.handler.name.mode=op
gg.handler.name.pathMappingTemplate=./dirout
gg.handler.name.stateFileDirectory=./dirsta
gg.handler.name.fileNameMappingTemplate=${fullyQualifiedTableName}_$
{currentTimestamp}.txt
gg.handler.name.fileRollInterval=7m

Chapter 5
Overview

5-14

gg.handler.name.finalizeAction=delete
gg.handler.name.inactivityRollInterval=7m
gg.handler.name.format=avro_row_ocf
gg.handler.name.includetokens=true
gg.handler.name.partitionByTable=true
gg.handler.name.eventHandler=parquet
gg.handler.name.rollOnShutdown=true

gg.eventhandler.parquet.type=parquet
gg.eventhandler.parquet.pathMappingTemplate=./dirparquet
gg.eventhandler.parquet.writeToHDFS=false
gg.eventhandler.parquet.finalizeAction=delete
gg.eventhandler.parquet.eventHandler=s3
gg.eventhandler.parquet.fileNameMappingTemplate=${tableName}_$
{currentTimestamp}.parquet

gg.handler.filewriter.eventHandler=s3
gg.eventhandler.s3.type=s3
gg.eventhandler.s3.region=us-west-2
gg.eventhandler.s3.proxyServer=www-proxy.us.oracle.com
gg.eventhandler.s3.proxyPort=80
gg.eventhandler.s3.bucketMappingTemplate=tomsfunbucket
gg.eventhandler.s3.pathMappingTemplate=thepath
gg.eventhandler.s3.finalizeAction=none

5.2 Using the HDFS Event Handler
Learn how to use the HDFS Event Handler to load files generated by the File Writer
Handler into HDFS.

See Using the File Writer Handler.

Topics:

• Detailing the Functionality

5.2.1 Detailing the Functionality
Topics:

• Configuring the Handler

• Using Templated Strings

• Configuring the HDFS Event Handler

5.2.1.1 Configuring the Handler
The HDFS Event Handler can can upload data files to HDFS. These additional
configuration steps are required:

The HDFS Event Handler dependencies and considerations are the same as the
HDFS Handler, see HDFS Additional Considerations.

Ensure that gg.classpath includes the HDFS client libraries.

Ensure that the directory containing the HDFS core-site.xml file is in gg.classpath.
This is so the core-site.xml file can be read at runtime and the connectivity
information to HDFS can be resolved. For example:

Chapter 5
Using the HDFS Event Handler

5-15

gg.classpath=/{HDFSinstallDirectory}/etc/hadoop

If Kerberos authentication is enabled on the HDFS cluster, you have to configure the
Kerberos principal and the location of the keytab file so that the password can be
resolved at runtime:

gg.eventHandler.name.kerberosPrincipal=principal
gg.eventHandler.name.kerberosKeytabFile=pathToTheKeytabFile

5.2.1.2 Using Templated Strings
Templated strings can contain a combination of string constants and keywords that
are dynamically resolved at runtime. The HDFS Event Handler makes extensive use of
templated strings to generate the HDFS directory names, data file names, and HDFS
bucket names. This gives you the flexibility to select where to write data files and the
names of those data files.

Supported Templated Strings

Keyword Description

${fullyQualifiedTableName} The fully qualified source table name delimited
by a period (.). For example,
MYCATALOG.MYSCHEMA.MYTABLE.

${catalogName} The individual source catalog name. For
example, MYCATALOG.

${schemaName} The individual source schema name. For
example, MYSCHEMA.

${tableName} The individual source table name. For
example, MYTABLE.

${groupName} The name of the Replicat process (with the
thread number appended if you’re using
coordinated apply).

${emptyString} Evaluates to an empty string. For example,“”

${operationCount} The total count of operations in the data file. It
must be used either on rename or by the event
handlers or it will be zero (0) because nothing
is written yet. For example, “1024”.

${insertCount} The total count of insert operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “125”.

${updateCount} The total count of update operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“265”.

${deleteCount} The total count of delete operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “11”.

Chapter 5
Using the HDFS Event Handler

5-16

Keyword Description

${truncateCount} The total count of truncate operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“5”.

${currentTimestamp} The current timestamp. The default output
format for the date time is yyyy-MM-dd_HH-mm-
ss.SSS. For example,
2017-07-05_04-31-23.123. Alternatively, you
can customize the format of the current
timestamp by inserting the format inside
square brackets like:

${currentTimestamp[MM-dd_HH]}

This format uses the syntax defined in the
Java SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

${toUpperCase[]} Converts the contents inside the square
brackets to uppercase. For example, $
{toUpperCase[$
{fullyQualifiedTableName}]}.

${toLowerCase[]} Converts the contents inside the square
brackets to lowercase. For example, $
{toLowerCase[$
{fullyQualifiedTableName}]}.

Configuration of template strings can use a mix of keywords and static strings to
assemble path and data file names at runtime.

Path Configuration Example

/usr/local/${fullyQualifiedTableName}

Data File Configuration Example

${fullyQualifiedTableName}_${currentTimestamp}_${groupName}.handlerIndicator

5.2.1.3 Configuring the HDFS Event Handler
You configure the HDFS Handler operation using the properties file. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the HDFS Event Handler, you must first configure the
handler type by specifying gg.eventhandler.jdbc.type=hdfs and the other HDFS Event
properties as follows:

Table 5-2 HDFS Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.type

Required hdfs None Selects the HDFS Event Handler for use.

Chapter 5
Using the HDFS Event Handler

5-17

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Table 5-2 (Cont.) HDFS Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
HDFS to
write data
files.

None Use keywords interlaced with constants to
dynamically generate a unique path names
at runtime. Path names typically follow the
format, /ogg/data/${groupName}/$
{fullyQualifiedTableName}.

gg.eventhandler
.name.fileNameM
appingTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the HDFS
file name
at runtime.

None Use keywords interlaced with constants to
dynamically generate a unique file names
at runtime. If not set, the upstream file
name is used.

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Indicates what the File Writer Handler
should do at the finalize action.

none
Leave the data file in place (removing any
active write suffix, see About the Active
Write Suffix).

delete
Delete the data file (such as, if the data file
has been converted to another format or
loaded to a third party application).

gg.eventhandler
.name.kerberosP
rincipal

Optional The
Kerberos
principal
name.

None Set to the Kerberos principal when HDFS
Kerberos authentication is enabled.

gg.eventhandler
.name.keberosKe
ytabFile

Optional The path
to the
Keberos
keytab
file.

None Set to the path to the Kerberos keytab
file when HDFS Kerberos authentication is
enabled.

Chapter 5
Using the HDFS Event Handler

5-18

Table 5-2 (Cont.) HDFS Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencin
g a child
event
handler.

No
event
handler
configu
red.

A unique string identifier cross referencing
an event handler. The event handler will be
invoked on the file roll event. Event
handlers can do thing file roll event actions
like loading files to S3, converting to
Parquet or ORC format, or loading files to
HDFS.

5.3 Using the Optimized Row Columnar Event Handler
Learn how to use the Optimized Row Columnar (ORC) Event Handler to generate data
files in ORC format.

Topics:

• Overview

• Detailing the Functionality

• Configuring the ORC Event Handler

5.3.1 Overview
ORC is a row columnar format that can substantially improve data retrieval times and
the performance of Big Data analytics. You can use the ORC Event Handler to write
ORC files to either a local file system or directly to HDFS. For information, see https://
orc.apache.org/.

5.3.2 Detailing the Functionality
Topics:

• About the Upstream Data Format

• About the Library Dependencies

• Requirements

• Using Templated Strings

5.3.2.1 About the Upstream Data Format
The ORC Event Handler can only convert Avro Object Container File (OCF) generated
by the File Writer Handler. The ORC Event Handler cannot convert other formats to
ORC data files. The format of the File Writer Handler must be avro_row_ocf or
avro_op_ocf, see Using the File Writer Handler.

Chapter 5
Using the Optimized Row Columnar Event Handler

5-19

https://orc.apache.org/
https://orc.apache.org/

5.3.2.2 About the Library Dependencies
Generating ORC files requires both the Apache ORC libraries and the HDFS client
libraries, see Optimized Row Columnar Event Handler Client Dependencies and
HDFS Handler Client Dependencies.

Oracle GoldenGate for Big Data does not include the Apache ORC libraries nor does it
include the HDFS client libraries. You must configure the gg.classpath variable to
include the dependent libraries.

5.3.2.3 Requirements
The ORC Event Handler can write ORC files directly to HDFS. You must set the
writeToHDFS property to true:

gg.eventhandler.orc.writeToHDFS=true

Ensure that the directory containing the HDFS core-site.xml file is in gg.classpath.
This is so the core-site.xml file can be read at runtime and the connectivity
information to HDFS can be resolved. For example:

gg.classpath=/{HDFS_install_directory}/etc/hadoop

If you enable Kerberos authentication is on the HDFS cluster, you have to configure
the Kerberos principal and the location of the keytab file so that the password can be
resolved at runtime:

gg.eventHandler.name.kerberosPrincipal=principal
gg.eventHandler.name.kerberosKeytabFile=path_to_the_keytab_file

5.3.2.4 Using Templated Strings
Templated strings can contain a combination of string constants and keywords that
are dynamically resolved at runtime. The ORC Event Handler makes extensive use of
templated strings to generate the ORC directory names, data file names, and ORC
bucket names. This gives you the flexibility to select where to write data files and the
names of those data files.

Supported Templated Strings

Keyword Description

${fullyQualifiedTableName} The fully qualified source table name delimited
by a period (.). For example,
MYCATALOG.MYSCHEMA.MYTABLE.

${catalogName} The individual source catalog name. For
example, MYCATALOG.

${schemaName} The individual source schema name. For
example, MYSCHEMA.

${tableName} The individual source table name. For
example, MYTABLE.

${groupName} The name of the Replicat process (with the
thread number appended if you’re using
coordinated apply).

Chapter 5
Using the Optimized Row Columnar Event Handler

5-20

Keyword Description

${emptyString} Evaluates to an empty string. For example,“”

${operationCount} The total count of operations in the data file. It
must be used either on rename or by the event
handlers or it will be zero (0) because nothing
is written yet. For example, “1024”.

${insertCount} The total count of insert operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “125”.

${updateCount} The total count of update operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“265”.

${deleteCount} The total count of delete operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “11”.

${truncateCount} The total count of truncate operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“5”.

${currentTimestamp} The current timestamp. The default output
format for the date time is yyyy-MM-dd_HH-mm-
ss.SSS. For example,
2017-07-05_04-31-23.123. Alternatively, you
can customize the format of the current
timestamp by inserting the format inside
square brackets like:

${currentTimestamp[MM-dd_HH]}

This format uses the syntax defined in the
Java SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

${toUpperCase[]} Converts the contents inside the square
brackets to uppercase. For example, $
{toUpperCase[$
{fullyQualifiedTableName}]}.

${toLowerCase[]} Converts the contents inside the square
brackets to lowercase. For example, $
{toLowerCase[$
{fullyQualifiedTableName}]}.

Configuration of template strings can use a mix of keywords and static strings to
assemble path and data file names at runtime.

Path Configuration Example

/usr/local/${fullyQualifiedTableName}

Chapter 5
Using the Optimized Row Columnar Event Handler

5-21

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Data File Configuration Example

${fullyQualifiedTableName}_${currentTimestamp}_${groupName}.handlerIndicator

5.3.3 Configuring the ORC Event Handler
You configure the ORC Handler operation using the properties file. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

The ORC Event Handler works only in conjunction with the File Writer Handler.

To enable the selection of the ORC Handler, you must first configure the handler type
by specifying gg.eventhandler.name.type=orc and the other ORC properties as follows:

Table 5-3 ORC Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.type

Required ORC None Selects the ORC Event Handler.

gg.eventhandler
.name.writeToHD
FS

Optional true |
false

false The ORC framework allows direct writing
to HDFS. Set to false to write to the local
file system. Set to true to write directly to
HDFS.

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
the ORC
bucket to
write the
file.

None Use keywords interlaced with constants to
dynamically generate a unique ORC path
names at runtime. Typically, path names
follow the format, /ogg/data/$
{groupName}/$
{fullyQualifiedTableName}.

gg.eventhandler
.name.fileMappi
ngTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the ORC
file name
at runtime.

None Use resolvable keywords and constants
used to dynamically generate the ORC
data file name at runtime. If not set, the
upstream file name is used.

gg.eventhandler
.name.compressi
onCodec

Optional LZ4 | LZO
| NONE |
SNAPPY |
ZLIB

NONE Sets the compression codec of the
generated ORC file.

Chapter 5
Using the Optimized Row Columnar Event Handler

5-22

Table 5-3 (Cont.) ORC Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Set to none to leave the ORC data file in
place on the finalize action. Set to delete if
you want to delete the ORC data file with
the finalize action.

gg.eventhandler
.name.kerberosP
rincipal

Optional The
Kerberos
principal
name.

None Sets the Kerberos principal when writing
directly to HDFS and Kerberos
authentication is enabled.

gg.eventhandler
.name.keberosKe
ytabFile

Optional The path
to the
Keberos
keytab
file.

none Sets the path to the Kerberos keytab file
with writing directly to HDFS and Kerberos
authentication is enabled.

gg.eventhandler
.name.blockPadd
ing

Optional true |
false

true Set to true to enable block padding in
generated ORC files or false to disable.

gg.eventhandler
.name.blockSize

Optional long The
ORC
default.

Sets the block size of generated ORC files.

gg.eventhandler
.name.bufferSiz
e

Optional integer The
ORC
default.

Sets the buffer size of generated ORC
files.

gg.eventhandler
.name.encodingS
trategy

Optional COMPRESSI
ON |
SPEED

The
ORC
default.

Set if the ORC encoding strategy is
optimized for compression or for speed..

gg.eventhandler
.name.paddingTo
lerance

Optional A
percentag
e
represente
d as a
floating
point
number.

The
ORC
default.

Sets the percentage for padding tolerance
of generated ORC files.

gg.eventhandler
.name.rowIndexS
tride

Optional integer The
ORC
default.

Sets the row index stride of generated
ORC files.

gg.eventhandler
.name.stripeSiz
e

Optional integer The
ORC
default.

Sets the stripe size of generated ORC
files.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencin
g a child
event
handler.

No
event
handler
configu
red.

The event handler that is invoked on the
file roll event. Event handlers can do file
roll event actions like loading files to S3 or
HDFS.

Chapter 5
Using the Optimized Row Columnar Event Handler

5-23

5.4 Using the Oracle Cloud Infrastructure Event Handler
Learn how to use the Oracle Cloud Infrastructure Event Handler to load files generated
by the File Writer Handler into an Oracle Cloud Infrastructure Object Store.

Topics:

• Overview

• Detailing the Functionality

• Configuring the Oracle Cloud Infrastructure Event Handler

• Configuring Credentials for Oracle Cloud Infrastructure

• Using Templated Strings

• Troubleshooting

5.4.1 Overview
The Oracle Cloud Infrastructure Object Storage service is an internet-scale, high-
performance storage platform that offers reliable and cost-efficient data durability. The
Object Storage service can store an unlimited amount of unstructured data of any
content type, including analytic data and rich content, like images and videos, see
https://cloud.oracle.com/en_US/cloud-infrastructure.

You can use any format handler that the File Writer Handler supports.

5.4.2 Detailing the Functionality
The Oracle Cloud Infrastructure Event Handler requires the Oracle Cloud
Infrastructure Java software development kit (SDK) to transfer files to Oracle Cloud
Infrastructure Object Storage. Oracle GoldenGate for Big Data does not include the
Oracle Cloud Infrastructure Java SDK, see https://docs.cloud.oracle.com/iaas/
Content/API/Concepts/sdkconfig.htm.

You must download the Oracle Cloud Infrastructure Java SDK at:

https://docs.us-phoenix-1.oraclecloud.com/Content/API/SDKDocs/javasdk.htm

Extract the JAR files to a permanent directory. There are two directories required by
the handler, the JAR library directory that has Oracle Cloud Infrastructure SDK JAR
and a third-party JAR library. Both directories must be in the gg.classpath.

Specify the gg.classpath environment variable to include the JAR files of the Oracle
Cloud Infrastructure Java SDK.

Example

gg.classpath=/usr/var/oci/lib/*:/usr/var/oci/third-party/lib/*

5.4.3 Configuring the Oracle Cloud Infrastructure Event Handler
You configure the Oracle Cloud Infrastructure Event Handler operation using the
properties file. These properties are located in the Java Adapter properties file (not in
the Replicat properties file).

Chapter 5
Using the Oracle Cloud Infrastructure Event Handler

5-24

https://cloud.oracle.com/en_US/cloud-infrastructure
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/javasdk.htm

The Oracle Cloud Infrastructure Event Handler works only in conjunction with the File
Writer Handler.

To enable the selection of the Oracle Cloud Infrastructure Event Handler, you must
first configure the handler type by specifying gg.eventhandler.name.type=oci and the
other Oracle Cloud Infrastructure properties as follows:

Table 5-4 Oracle Cloud Infrastructure Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.type

Required oci None Selects the Oracle Cloud Infrastructure
Event Handler.

gg.eventhandler
.name.configFil
ePath

Required Path to the
event
handler
config
file.

None The configuration file name and location.

gg.eventhandler
.name.profile

Required Valid
string
representi
ng the
profile
name.

None In the Oracle Cloud Infrastructure config
file, the entries are identified by the profile
name. The default profile is DEFAULT. You
can have an additional profile like
ADMIN_USER. Any value that isn't explicitly
defined for the ADMIN_USER profile (or any
other profiles that you add to the config
file) is inherited from the DEFAULT profile.

gg.eventhandler
.name.namespace

Required Oracle
Cloud
Infrastruct
ure
namespac
e.

None The namespace serves as a top-level
container for all buckets and objects and
allows you to control bucket naming within
user’s tenancy. The Object Storage
namespace is a system-generated string
assigned during account creation. Your
namespace string is listed in Object
Storage Settings while using the Oracle
Cloud Infrastructure Console.

gg.eventhandler
.name.region

Required Oracle
Cloud
Infrastruct
ure region

None Oracle Cloud Infrastructure Servers and
Data is hosted in a region and is a
localized geographic area. There are four
supported regions. For example:

London Heathrow("uk-london-1")
Frankfurt("eu-frankfurt-1")
Ashburn("us-ashburn-1")
Phoenix("us-phoenix-1").

gg.eventhandler
.name.compartme
ntID

Required Valid
compartm
ent id.

None A compartment is a logical container to
organize Oracle Cloud Infrastructure
resources. The compartmentID is listed in
Bucket Details while using the Oracle
Cloud Infrastructure Console.

Chapter 5
Using the Oracle Cloud Infrastructure Event Handler

5-25

Table 5-4 (Cont.) Oracle Cloud Infrastructure Event Handler Configuration
Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
the Oracle
Cloud
Infrastruct
ure bucket
to write
the file.

None Use keywords interlaced with constants to
dynamically generate unique Oracle Cloud
Infrastructure path names at runtime.

gg.eventhandler
.name.fileMappi
ngTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the Oracle
Cloud
Infrastruct
ure file
name at
runtime.

None Use resolvable keywords and constants to
dynamically generate the Oracle Cloud
Infrastructure data file name at runtime. If
not set, the upstream file name is used.

gg.eventhandler
.name.bucketMap
pingTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
the Oracle
Cloud
Infrastruct
ure bucket
to write
the file.

None Use resolvable keywords and constants
used to dynamically generate the Oracle
Cloud Infrastructure bucket name at
runtime. The event handler attempts to
create the Oracle Cloud Infrastructure
bucket if it does not exist.

Chapter 5
Using the Oracle Cloud Infrastructure Event Handler

5-26

Table 5-4 (Cont.) Oracle Cloud Infrastructure Event Handler Configuration
Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Set to none to leave the Oracle Cloud
Infrastructure data file in place on the
finalize action. Set to delete if you want to
delete the Oracle Cloud Infrastructure data
file with the finalize action.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencin
g a child
event
handler.

No
event
handler
is
configu
red.

Sets the event handler that is invoked on
the file roll event. Event handlers can do
file roll event actions like loading files to
S3, converting to Parquet or ORC format,
loading files to HDFS, loading files to
Oracle Cloud Infrastructure Storage
Classic, or loading file to Oracle Cloud
Infrastructure.

Sample Configuration

gg.eventhandler.oci.type=oci
gg.eventhandler.oci.configFilePath=~/.oci/config
gg.eventhandler.oci.profile=DEFAULT
gg.eventhandler.oci.namespace=dwcsdemo
gg.eventhandler.oci.region=us-ashburn-1
gg.eventhandler.oci.compartmentID=ocid1.compartment.oc1..aaaaaaaajdg6iblwgqlyqpegf6kw
dais2gyx3guspboa7fsi72tfihz2wrba
gg.eventhandler.oci.pathMappingTemplate=${schemaName}
gg.eventhandler.oci.bucketMappingTemplate=${schemaName}
gg.eventhandler.oci.fileNameMappingTemplate=${tableName}_${currentTimestamp}.txt
gg.eventhandler.oci.finalizeAction=NONE

5.4.4 Configuring Credentials for Oracle Cloud Infrastructure
Basic configuration information like user credentials and tenancy Oracle Cloud IDs
(OCIDs) of Oracle Cloud Infrastructure is required for the Java SDKs to work, see
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm.

The ideal configuration file include keys user, fingerprint, key_file, tenancy, and
region with their respective values. The default configuration file name and location is
~/.oci/config.

Create the config file as follows:

1. Create a directory called .oci in the Oracle GoldenGate for Big Data home
directory

2. Create a text file and name it config.

3. Obtain the values for these properties:

Chapter 5
Using the Oracle Cloud Infrastructure Event Handler

5-27

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm

user

a. Login to the Oracle Cloud Infrastructure Console https://console.us-
ashburn-1.oraclecloud.com.

b. Click Username.

c. Click User Settings.

The User's OCID is displayed and is the value for the key user.

tenancy

The Tenancy ID is displayed at the bottom of the Console page.

region

The region is displayed with the header session drop-down menu in the Console.

fingerprint

To generate the fingerprint, use the How to Get the Key's Fingerprint instructions
at:

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

key_file

You need to share the public and private key to establish a connection with
Oracle Cloud Infrastructure. To generate the keys, use the How to Generate an
API Signing Keyat:

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

Sample Configuration File

user=ocid1.user.oc1..aaaaaaaat5nvwcna5j6aqzqedqw3rynjq
fingerprint=20:3b:97:13::4e:c5:3a:34
key_file=~/.oci/oci_api_key.pem
tenancy=ocid1.tenancy.oc1..aaaaaaaaba3pv6wkcr44h25vqstifs

5.4.5 Using Templated Strings
Templated strings can contain a combination of string constants and keywords that
are dynamically resolved at runtime. This event handler makes extensive use of
templated strings to generate the Oracle Cloud Infrastructure directory names, data file
names, and Oracle Cloud Infrastructure bucket names. These strings give you the
flexibility to select where to write data files and the names of those data files. You
should exercise caution when choosing file and directory names to avoid file naming
collisions that can result in an abend.

Supported Templated Strings

Keyword Description

${fullyQualifiedTableName} The fully qualified source table name delimited
by a period (.). For example,
MYCATALOG.MYSCHEMA.MYTABLE.

${catalogName} The individual source catalog name. For
example, MYCATALOG.

${schemaName} The individual source schema name. For
example, MYSCHEMA.

Chapter 5
Using the Oracle Cloud Infrastructure Event Handler

5-28

https://console.us-ashburn-1.oraclecloud.com
https://console.us-ashburn-1.oraclecloud.com
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

Keyword Description

${tableName} The individual source table name. For
example, MYTABLE.

${groupName} The name of the Replicat process (with the
thread number appended if you’re using
coordinated apply).

${emptyString} Evaluates to an empty string. For example,“”

${operationCount} The total count of operations in the data file. It
must be used either on rename or by the event
handlers or it will be zero (0) because nothing
is written yet. For example, “1024”.

${insertCount} The total count of insert operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “125”.

${updateCount} The total count of update operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“265”.

${deleteCount} The total count of delete operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “11”.

${truncateCount} The total count of truncate operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“5”.

${currentTimestamp} The current timestamp. The default output
format for the date time is yyyy-MM-dd_HH-mm-
ss.SSS. For example,
2017-07-05_04-31-23.123. Alternatively, you
can customize the format of the current
timestamp by inserting the format inside
square brackets like:

${currentTimestamp[MM-dd_HH]}

This format uses the syntax defined in the
Java SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

${toUpperCase[]} Converts the contents inside the square
brackets to uppercase. For example, $
{toUpperCase[$
{fullyQualifiedTableName}]}.

${toLowerCase[]} Converts the contents inside the square
brackets to lowercase. For example, $
{toLowerCase[$
{fullyQualifiedTableName}]}.

Configuration of template strings can use a mix of keywords and static strings to
assemble path and data file names at runtime.

Chapter 5
Using the Oracle Cloud Infrastructure Event Handler

5-29

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Path Configuration Example

/usr/local/${fullyQualifiedTableName}

Data File Configuration Example

${fullyQualifiedTableName}_${currentTimestamp}_${groupName}.handlerIndicator

Requirements

The directory and file names generated using the templates must be legal on the
system being written to. File names must be unique to avoid a file name collision. You
can avoid a collision by adding a current timestamp using the ${currentTimestamp}
keyword. If you are using coordinated apply, then adding ${groupName} into the data file
name is recommended.

5.4.6 Troubleshooting
Connectivity Issues

If the event handler is unable to connect to the Oracle Cloud Infrastructure Classic
Object when running on-premise, it’s likely your connectivity to the public internet is
protected by a proxy server. Proxy servers act a gateway between the private network
of a company and the public internet. Contact your network administrator to get the
URLs of your proxy server, and then setup up a proxy server.

Oracle GoldenGate for Big Data can be used with a proxy server using the following
Java run time arguments to enable the proxy server as in this example:

-Dhttps.proxyHost=www-proxy.us.company.com
-Dhttps.proxyPort=80

ClassNotFoundException Error

The most common initial error is an incorrect classpath that does not include all the
required client libraries so results in a ClassNotFoundException error. Specify the
gg.classpath variable to include all of the required JAR files for the Oracle Cloud
Infrastructure Java SDK, see Detailing the Functionality.

5.5 Using the Oracle Cloud Infrastructure Classic Event
Handler

Learn how to use the Oracle Cloud Infrastructure Classic Event Handler to load files
generated by the File Writer Handler into an Oracle Cloud Infrastructure Classic Object
Store.

Topics:

• Overview

• Detailing the Functionality

• Configuring the Oracle Cloud Infrastructure Classic Event Handler

• Using Templated Strings

• Troubleshooting

Chapter 5
Using the Oracle Cloud Infrastructure Classic Event Handler

5-30

5.5.1 Overview
The Oracle Cloud Infrastructure Object Classic service is an Infrastructure as a
Service (IaaS) product that provides an enterprise-grade, large-scale, object storage
solution for files and unstructured data., see https://cloud.oracle.com/storage-classic.

You can use any format handler that the File Writer Handler supports.

5.5.2 Detailing the Functionality
The Oracle Cloud Infrastructure Classic Event Handler requires File Transfer Manager
(FTM), a Java SDK to transfer files to Oracle Cloud Infrastructure Classic. Oracle
GoldenGate for Big Data does not include the FTM Java SDK. .

You must download the FTM Java SDK at:

http://www.oracle.com/technetwork/topics/cloud/downloads/index.html#storejavasdk

Extract the JAR files to a permanent directory. There are two directories required by
the handler, the JAR library directory that has Oracle Cloud Infrastructure SDK JAR
and a third-party JAR library. Both directories must be in the gg.classpath.

Specify the gg.classpath environment variable to include the JAR files of the FTM Java
SDK.

These are the required third-party JARs:

ftm-api-2.4.4.jar
javax.json-1.0.4.jar
slf4j-api-1.7.7.jar
slf4j-log4j12-1.7.7.jar
log4j-1.2.17-16.jar
low-level-api-core-1.14.22.jar

Example

gg.classpath=/usr/var/ftm-sdk/libs/*:

5.5.3 Configuring the Oracle Cloud Infrastructure Classic Event
Handler

You configure the Oracle Cloud Infrastructure Classic Handler operation using the
properties file. These properties are located in the Java Adapter properties file (not in
the Replicat properties file).

The Oracle Cloud Infrastructure Classic Event Handler works only in conjunction with
the File Writer Handler.

To enable the selection of the Oracle Cloud Infrastructure Classic Event Handler, you
must first configure the handler type by specifying gg.eventhandler.name.type=oci-c
and the other Oracle Cloud Infrastructure properties as follows:

Chapter 5
Using the Oracle Cloud Infrastructure Classic Event Handler

5-31

https://cloud.oracle.com/storage-classic
http://www.oracle.com/technetwork/topics/cloud/downloads/index.html#storejavasdk

Table 5-5 Oracle Cloud Infrastructure Classic Event Handler Configuration
Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.type

Required oci-c None Selects the Oracle Cloud Infrastructure
Classic Event Handler.

gg.eventhandler
.name.serverUrl

Required Server
URL

None The server URL for the Oracle Cloud
Infrastructure Classic Event Handler.

gg.eventhandler
.name.tenantID

Required Valid
string
representi
ng
tenantID.

None The case-sensitive tenant id that you
specify when signing in to the Oracle
Cloud Infrastructure Console.

gg.eventhandler
.name.serviceNa
me

Required The
Oracle
Cloud
Infrastruct
ure
Classic
Event
Handler
service
instance
name.

None The Oracle Cloud Infrastructure Classic
Event Handler service instance name that
you specified.

gg.eventhandler
.name.username

Required Valid user
name.

None The user name for the Oracle Cloud
Infrastructure user account.

gg.eventhandler
.name.password

Required Valid
password.

None The password for the Oracle Cloud
Infrastructure user account.

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
the Oracle
Cloud
Infrastruct
ure bucket
to write
the file.

None Use resolvable keywords and constants to
dynamically generate a unique Oracle
Cloud Infrastructure Classic path names at
runtime.

Chapter 5
Using the Oracle Cloud Infrastructure Classic Event Handler

5-32

Table 5-5 (Cont.) Oracle Cloud Infrastructure Classic Event Handler
Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.container
MappingTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
the Oracle
Cloud
Infrastruct
ure
container
to write
the file.

None Use resolvable keywords and constants
used to dynamically generate the Oracle
Cloud Infrastructure container name at
runtime. The event handler attempts to
create the Oracle Cloud Infrastructure
container if it does not exist.

gg.eventhandler
.name.fileMappi
ngTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the Oracle
Cloud
Infrastruct
ure file
name at
runtime.

None Use resolvable keywords and constants
used to dynamically generate the Oracle
Cloud Infrastructure file name at runtime. If
not set, the upstream file name is used.

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Set to none to leave the Oracle Cloud
Infrastructure Classic data file in place on
the finalize action. Set to delete if you
want to delete the Oracle Cloud
Infrastructure Classic data file with the
finalize action.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencin
g a child
event
handler.

No
event
handler
is
configu
red.

Sets the event handler that is invoked on
the file roll event. Event handlers can do
file roll event actions like loading files to
S3, converting to Parquet or ORC format,
loading files to HDFS, loading files to
Oracle Cloud Infrastructure Classic, or
loading file to Oracle Cloud Infrastructure.

Sample Configuration

#The OCI-C Event handler
gg.eventhandler.oci-c.type=oci-c

Chapter 5
Using the Oracle Cloud Infrastructure Classic Event Handler

5-33

gg.eventhandler.oci-c.serverURL=https://storage.companycloud.com/
gg.eventhandler.oci-c.tenantID=usoraclebig
gg.eventhandler.oci-c.serviceName=dev1
gg.eventhandler.oci-c.username=user@company.com
gg.eventhandler.oci-c.password=pass
gg.eventhandler.oci-c.pathMappingTemplate=${schemaName}
gg.eventhandler.oci-c.containerMappingTemplate=${schemaName}
gg.eventhandler.oci-c.fileNameMappingTemplate=${tableName}_${currentTimestamp}.json
gg.eventhandler.oci-c.finalizeAction=NONE

5.5.4 Using Templated Strings
Templated strings can contain a combination of string constants and keywords that
are dynamically resolved at runtime. This event handler makes extensive use of
templated strings to generate the Oracle Cloud Infrastructure directory names, data file
names, and Oracle Cloud Infrastructure bucket names. These strings give you the
flexibility to select where to write data files and the names of those data files. You
should exercise caution when choosing file and directory names to avoid file naming
collisions that can result in an abend.

Supported Templated Strings

Keyword Description

${fullyQualifiedTableName} The fully qualified source table name delimited
by a period (.). For example,
MYCATALOG.MYSCHEMA.MYTABLE.

${catalogName} The individual source catalog name. For
example, MYCATALOG.

${schemaName} The individual source schema name. For
example, MYSCHEMA.

${tableName} The individual source table name. For
example, MYTABLE.

${groupName} The name of the Replicat process (with the
thread number appended if you’re using
coordinated apply).

${emptyString} Evaluates to an empty string. For example,“”

${operationCount} The total count of operations in the data file. It
must be used either on rename or by the event
handlers or it will be zero (0) because nothing
is written yet. For example, “1024”.

${insertCount} The total count of insert operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “125”.

${updateCount} The total count of update operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“265”.

${deleteCount} The total count of delete operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “11”.

Chapter 5
Using the Oracle Cloud Infrastructure Classic Event Handler

5-34

Keyword Description

${truncateCount} The total count of truncate operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“5”.

${currentTimestamp} The current timestamp. The default output
format for the date time is yyyy-MM-dd_HH-mm-
ss.SSS. For example,
2017-07-05_04-31-23.123. Alternatively, you
can customize the format of the current
timestamp by inserting the format inside
square brackets like:

${currentTimestamp[MM-dd_HH]}

This format uses the syntax defined in the
Java SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

${toUpperCase[]} Converts the contents inside the square
brackets to uppercase. For example, $
{toUpperCase[$
{fullyQualifiedTableName}]}.

${toLowerCase[]} Converts the contents inside the square
brackets to lowercase. For example, $
{toLowerCase[$
{fullyQualifiedTableName}]}.

Configuration of template strings can use a mix of keywords and static strings to
assemble path and data file names at runtime.

Path Configuration Example

/usr/local/${fullyQualifiedTableName}

Data File Configuration Example

${fullyQualifiedTableName}_${currentTimestamp}_${groupName}.handlerIndicator

Requirements

The directory and file names generated using the templates must be legal on the
system being written to. File names must be unique to avoid a file name collision. You
can avoid a collision by adding a current timestamp using the ${currentTimestamp}
keyword. If you are using coordinated apply, then adding ${groupName} into the data file
name is recommended.

5.5.5 Troubleshooting
Connectivity Issues

If the event handler is unable to connect to the Oracle Cloud Infrastructure Classic
Object when running on-premise, it’s likely your connectivity to the public internet is
protected by a proxy server. Proxy servers act a gateway between the private network
of a company and the public internet. Contact your network administrator to get the
URLs of your proxy server, and then setup up a proxy server.

Chapter 5
Using the Oracle Cloud Infrastructure Classic Event Handler

5-35

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Oracle GoldenGate for Big Data can be used with a proxy server using the following
Java run time arguments to enable the proxy server as in this example:

-Dhttps.proxyHost=www-proxy.us.company.com
-Dhttps.proxyPort=80

ClassNotFoundException Error

The most common initial error is an incorrect classpath that does not include all the
required client libraries so results in a ClassNotFoundException error. Specify the
gg.classpath variable to include all of the required JAR files for the Oracle Cloud
Infrastructure Java SDK, see Detailing the Functionality.

5.6 Using the Parquet Event Handler
Learn how to use the Parquet Event Handler to load files generated by the File Writer
Handler into HDFS.

See Using the File Writer Handler.

Topics:

• Overview

• Detailing the Functionality

• Configuring the Parquet Event Handler

5.6.1 Overview
The Parquet Event Handler enables you to generate data files in Parquet format.
Parquet files can be written to either the local file system or directly to HDFS. Parquet
is a columnar data format that can substantially improve data retrieval times and
improve the performance of Big Data analytics, see https://parquet.apache.org/.

5.6.2 Detailing the Functionality
Topics:

• Configuring the Parquet Event Handler to Write to HDFS

• About the Upstream Data Format

• Using Templated Strings

5.6.2.1 Configuring the Parquet Event Handler to Write to HDFS
The Apache Parquet framework supports writing directly to HDFS. The Parquet Event
Handler can write Parquet files directly to HDFS. These additional configuration steps
are required:

The Parquet Event Handler dependencies and considerations are the same as the
HDFS Handler, see HDFS Additional Considerations.

Set the writeToHDFS property to true:

gg.eventhandler.parquet.writeToHDFS=true

Ensure that gg.classpath includes the HDFS client libraries.

Chapter 5
Using the Parquet Event Handler

5-36

https://parquet.apache.org/

Ensure that the directory containing the HDFS core-site.xml file is in gg.classpath.
This is so the core-site.xml file can be read at runtime and the connectivity
information to HDFS can be resolved. For example:

gg.classpath=/{HDFS_install_directory}/etc/hadoop

If Kerberos authentication is enabled on the HDFS cluster, you have to configure the
Kerberos principal and the location of the keytab file so that the password can be
resolved at runtime:

gg.eventHandler.name.kerberosPrincipal=principal
gg.eventHandler.name.kerberosKeytabFile=path_to_the_keytab_file

5.6.2.2 About the Upstream Data Format
The Parquet Event Handler can only convert Avro Object Container File (OCF)
generated by the File Writer Handler. The Parquet Event Handler cannot convert other
formats to Parquet data files. The format of the File Writer Handler must be
avro_row_ocf or avro_op_ocf, see Using the File Writer Handler.

5.6.2.3 Using Templated Strings
Templated strings can contain a combination of string constants and keywords that
are dynamically resolved at runtime. The Parquet Event Handler makes extensive use
of templated strings to generate the HDFS directory names, data file names, and
HDFS bucket names. This gives you the flexibility to select where to write data files
and the names of those data files.

Supported Templated Strings

Keyword Description

${fullyQualifiedTableName} The fully qualified source table name delimited
by a period (.). For example,
MYCATALOG.MYSCHEMA.MYTABLE.

${catalogName} The individual source catalog name. For
example, MYCATALOG.

${schemaName} The individual source schema name. For
example, MYSCHEMA.

${tableName} The individual source table name. For
example, MYTABLE.

${groupName} The name of the Replicat process (with the
thread number appended if you’re using
coordinated apply).

${emptyString} Evaluates to an empty string. For example,“”

${operationCount} The total count of operations in the data file. It
must be used either on rename or by the event
handlers or it will be zero (0) because nothing
is written yet. For example, “1024”.

${insertCount} The total count of insert operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “125”.

Chapter 5
Using the Parquet Event Handler

5-37

Keyword Description

${updateCount} The total count of update operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“265”.

${deleteCount} The total count of delete operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “11”.

${truncateCount} The total count of truncate operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“5”.

${currentTimestamp} The current timestamp. The default output
format for the date time is yyyy-MM-dd_HH-mm-
ss.SSS. For example,
2017-07-05_04-31-23.123. Alternatively, you
can customize the format of the current
timestamp by inserting the format inside
square brackets like:

${currentTimestamp[MM-dd_HH]}

This format uses the syntax defined in the
Java SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

${toUpperCase[]} Converts the contents inside the square
brackets to uppercase. For example, $
{toUpperCase[$
{fullyQualifiedTableName}]}.

${toLowerCase[]} Converts the contents inside the square
brackets to lowercase. For example, $
{toLowerCase[$
{fullyQualifiedTableName}]}.

Configuration of template strings can use a mix of keywords and static strings to
assemble path and data file names at runtime.

Path Configuration Example

/usr/local/${fullyQualifiedTableName}

Data File Configuration Example

${fullyQualifiedTableName}_${currentTimestamp}_${groupName}.handlerIndicator

5.6.3 Configuring the Parquet Event Handler
You configure the Parquet Event Handler operation using the properties file. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

The Parquet Event Handler works only in conjunction with the File Writer Handler.

Chapter 5
Using the Parquet Event Handler

5-38

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

To enable the selection of the Parquet Event Handler, you must first configure the
handler type by specifying gg.eventhandler.name.type=parquet and the other Parquet
Event properties as follows:

Table 5-6 Parquet Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.type

Required parquet None Selects the Parquet Event Handler for use.

gg.eventhandler
.name.writeToHD
FS

Optional true |
false

false Set to false to write to the local file
system. Set to true to write directly to
HDFS.

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path to
write
generated
Parquet
files.

None Use keywords interlaced with constants to
dynamically generate a unique path names
at runtime. Typically, path names follow
the format, /ogg/data/${groupName}/$
{fullyQualifiedTableName}.

gg.eventhandler
.name.fileNameM
appingTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the
Parquet
file name
at runtime

None Sets the Parquet file name. If not set, the
upstream file name is used.

gg.eventhandler
.name.compressi
onCodec

Optional GZIP |
LZO |
SNAPPY |
UNCOMPRES
SED

UNCOMP
RESSED

Sets the compression codec of the
generated Parquet file.

Chapter 5
Using the Parquet Event Handler

5-39

Table 5-6 (Cont.) Parquet Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Indicates what the Parquet Event Handler
should do at the finalize action.

none
Leave the data file in place.

delete
Delete the data file (such as, if the data file
has been converted to another format or
loaded to a third party application).

gg.eventhandler
.name.dictionar
yEncoding

Optional true |
false

The
Parque
t
default.

Set to true to enable Parquet dictionary
encoding.

gg.eventhandler
.name.validatio
n

Optional true |
false

The
Parque
t
default.

Set to true to enable Parquet validation.

gg.eventhandler
.name.dictionar
yPageSize

Optional Integer The
Parque
t
default.

Sets the Parquet dictionary page size.

gg.eventhandler
.name.maxPaddin
gSize

Optional Integer The
Parque
t
default.

Sets the Parquet padding size.

gg.eventhandler
.name.pageSize

Optional Integer The
Parque
t
default.

Sets the Parquet page size.

gg.eventhandler
.name.rowGroupS
ize

Optional Integer The
Parque
t
default.

Sets the Parquet row group size.

gg.eventhandler
.name.kerberosP
rincipal

Optional The
Kerberos
principal
name.

None Set to the Kerberos principal when writing
directly to HDFS and Kerberos
authentication is enabled.

gg.eventhandler
.name.keberosKe
ytabFile

Optional The path
to the
Keberos
keytab
file.

The
Parque
t
default.

Set to the path to the Kerberos keytab
file with writing directly to HDFS and
Kerberos authentication is enabled.

Chapter 5
Using the Parquet Event Handler

5-40

Table 5-6 (Cont.) Parquet Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencin
g a child
event
handler.

No
event
handler
configu
red.

The event handler that is invoked on the
file roll event. Event handlers can do file
roll event actions like loading files to S3,
converting to Parquet or ORC format, or
loading files to HDFS.

5.7 Using the S3 Event Handler
Learn how to use the S3 Event Handler, which provides the interface to Amazon S3
web services.

Topics:

• Overview

• Detailing Functionality

• Configuring the S3 Event Handler

5.7.1 Overview
Amazon S3 is object storage hosted in the Amazon cloud. The purpose of the S3
Event Handler is to load data files generated by the File Writer Handler into Amazon
S3, see https://aws.amazon.com/s3/.

You can use any format that the File Writer Handler, see Using the File Writer Handler.

5.7.2 Detailing Functionality
The S3 Event Handler requires the Amazon Web Services (AWS) Java SDK to
transfer files to S3 object storage.Oracle GoldenGate for Big Data does not include the
AWS Java SDK. You have to download and install the AWS Java SDK from:

https://aws.amazon.com/sdk-for-java/

Then you have to configure the gg.classpath variable to include the JAR files in the
AWS Java SDK and are divided into two directories. Both directories must be in
gg.classpath, for example:

gg.classpath=/usr/var/aws-java-sdk-1.11.240/lib/*:/usr/var/aws-java-sdk-1.11.240/
third-party/lib/

Topics:

• Configuring the Client ID and Secret

• About the AWS S3 Buckets

• Using Templated Strings

Chapter 5
Using the S3 Event Handler

5-41

https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/

• Troubleshooting

5.7.2.1 Configuring the Client ID and Secret
A client ID and secret are the required credentials for the S3 Event Handler to interact
with Amazon S3. A client ID and secret are generated using the Amazon AWS
website. The retrieval of these credentials and presentation to the S3 server are
performed on the client side by the AWS Java SDK. The AWS Java SDK provides
multiple ways that the client ID and secret can be resolved at runtime.

The client ID and secret can be set as Java properties, on one line, in the Java
Adapter properties file as follows:

javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=ggjava/ggjava.jar -
Daws.accessKeyId=your_access_key -Daws.secretKey=your_secret_key

This sets environmental variables using the Amazon Elastic Compute Cloud (Amazon
EC2) AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY variables on the local machine.

5.7.2.2 About the AWS S3 Buckets
AWS divides S3 storage into separate file systems called buckets. The S3 Event
Handler can write to pre-created buckets. Alternatively, if the S3 bucket does not exist,
the S3 Event Handler attempts to create the specified S3 bucket. AWS requires that
S3 bucket names are lowercase. Amazon S3 bucket names must be globally unique. If
you attempt to create an S3 bucket that already exists in any Amazon account, it
causes the S3 Event Handler to abend.

5.7.2.3 Using Templated Strings
Templated strings can contain a combination of string constants and keywords that
are dynamically resolved at runtime. The S3 Event Handler makes extensive use of
templated strings to generate the S3 directory names, data file names, and S3 bucket
names. This gives you the flexibility to select where to write data files and the names
of those data files.

Supported Templated Strings

Keyword Description

${fullyQualifiedTableName} The fully qualified source table name delimited
by a period (.). For example,
MYCATALOG.MYSCHEMA.MYTABLE.

${catalogName} The individual source catalog name. For
example, MYCATALOG.

${schemaName} The individual source schema name. For
example, MYSCHEMA.

${tableName} The individual source table name. For
example, MYTABLE.

${groupName} The name of the Replicat process (with the
thread number appended if you’re using
coordinated apply).

${emptyString} Evaluates to an empty string. For example,“”

Chapter 5
Using the S3 Event Handler

5-42

Keyword Description

${operationCount} The total count of operations in the data file. It
must be used either on rename or by the event
handlers or it will be zero (0) because nothing
is written yet. For example, “1024”.

${insertCount} The total count of insert operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “125”.

${updateCount} The total count of update operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“265”.

${deleteCount} The total count of delete operations in the data
file. It must be used either on rename or by the
event handlers or it will be zero (0) because
nothing is written yet. For example, “11”.

${truncateCount} The total count of truncate operations in the
data file. It must be used either on rename or
by the event handlers or it will be zero (0)
because nothing is written yet. For example,
“5”.

${currentTimestamp} The current timestamp. The default output
format for the date time is yyyy-MM-dd_HH-mm-
ss.SSS. For example,
2017-07-05_04-31-23.123. Alternatively, you
can customize the format of the current
timestamp by inserting the format inside
square brackets like:

${currentTimestamp[MM-dd_HH]}

This format uses the syntax defined in the
Java SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

${toUpperCase[]} Converts the contents inside the square
brackets to uppercase. For example, $
{toUpperCase[$
{fullyQualifiedTableName}]}.

${toLowerCase[]} Converts the contents inside the square
brackets to lowercase. For example, $
{toLowerCase[$
{fullyQualifiedTableName}]}.

Configuration of template strings can use a mix of keywords and static strings to
assemble path and data file names at runtime.

Path Configuration Example

/usr/local/${fullyQualifiedTableName}

Data File Configuration Example

${fullyQualifiedTableName}_${currentTimestamp}_${groupName}.handlerIndicator

Chapter 5
Using the S3 Event Handler

5-43

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

5.7.2.4 Troubleshooting

Connectivity Issues

If the S3 Event Handler is unable to connect to the S3 object storage when running on
premise, it’s likely your connectivity to the public internet is protected by a proxy
server. Proxy servers act a gateway between the private network of a company and
the public internet. Contact your network administrator to get the URLs of your proxy
server, and then setup up a proxy server.

Oracle GoldenGate can be used with a proxy server using the following parameters to
enable the proxy server:

• gg.handler.name.proxyServer=

•
gg.handler.name.proxyPort=80

Access to the proxy servers can be secured using credentials and the following
configuration parameters:

• gg.handler.name.proxyUsername=username

• gg.handler.name.proxyPassword=password

Sample configuration:

gg.handlerlist=s3
gg.handler.s3.type=s3
gg.handler.s3.mode=op
gg.handler.s3.format=json
gg.handler.s3.region=us-west-2
gg.handler.s3.partitionMappingTemplate=TestPartitionName
gg.handler.s3.streamMappingTemplate=TestStream
gg.handler.s3.deferFlushAtTxCommit=true
gg.handler.s3.deferFlushOpCount=1000
gg.handler.s3.formatPerOp=true
#gg.handler.s3.customMessageGrouper=oracle.goldengate.handler.s3.s3JsonTxMessageGroup
er
gg.handler.s3.proxyServer=www-proxy.myhost.com
gg.handler.s3.proxyPort=80

5.7.3 Configuring the S3 Event Handler
You configure the S3 Event Handler operation using the properties file. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

To enable the selection of the S3 Event Handler, you must first configure the handler
type by specifying gg.eventhandler.name.type=s3 and the other S3 Event properties as
follows:

Chapter 5
Using the S3 Event Handler

5-44

Table 5-7 S3 Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.type

Required s3 None Selects the S3 Event Handler for use with
Replicat.

gg.eventhandler
.name.region

Required The AWS
region
name that
is hosting
your S3
instance.

None Setting the legal AWS region name is
required.

gg.eventhandler
.name.proxyServ
er

Optional The host
name of
your proxy
server.

None Sets the host name of your proxy server if
connectivity to AWS is required use a
proxy server.

gg.eventhandler
.name.proxyPort

Optional The port
number of
the proxy
server.

None Sets the port number of the proxy server if
connectivity to AWS is required use a
proxy server.

gg.eventhandler
.name.proxyUser
name

Optional The
username
of the
proxy
server.

None Sets the user name of the proxy server if
connectivity to AWS is required use a
proxy server and the proxy server requires
credentials.

gg.eventhandler
.name.proxyPass
word

Optional The
password
of the
proxy
server.

None Sets the password for the user name of the
proxy server if connectivity to AWS is
required use a proxy server and the proxy
server requires credentials.

gg.eventhandler
.name.bucketMap
pingTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
the S3
bucket to
write the
file.

None Use resolvable keywords and constants
used to dynamically generate the S3
bucket name at runtime. The handler
attempts to create the S3 bucket if it does
not exist. AWS requires bucket names to
be all lowercase. A bucket name with
uppercase characters results in a runtime
exception.

Chapter 5
Using the S3 Event Handler

5-45

Table 5-7 (Cont.) S3 Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the path in
the S3
bucket to
write the
file.

None Use keywords interlaced with constants to
dynamically generate a unique S3 path
names at runtime. Typically, path names
follow the format, ogg/data/$
{groupName}/$
{fullyQualifiedTableName} In S3, the
convention is not to begin the path with the
backslash (/) because it results in a root
directory of “”.

gg.eventhandler
.name.fileMappi
ngTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamicall
y generate
the S3 file
name at
runtime.

None Use resolvable keywords and constants
used to dynamically generate the S3 data
file name at runtime. If not set, the
upstream file name is used.

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Set to none to leave the S3 data file in
place on the finalize action. Set to delete if
you want to delete the S3 data file with the
finalize action.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencin
g a child
event
handler.

No
event
handler
configu
red.

The event handler that is invoked on the
file roll event. Event handlers can do file
roll event actions like loading files to S3,
converting to Parquet or ORC format, or
loading files to HDFS.

gg.eventhandler
.name.url

Optional(
unless
Dell
ECS,
then
required)

A legal
URL to
connect to
cloud
storage.

None Not required for Amazon AWS S3.
Required for Dell ECS. Sets the URL to
connect to cloud storage.

Chapter 5
Using the S3 Event Handler

5-46

6
Using the Flume Handler

Learn how to use the Flume Handler to stream change capture data to a Flume source
database.

Topics:

• Overview

• Setting Up and Running the Flume Handler

• Data Mapping of Operations to Flume Events

• Performance Considerations

• Metadata Change Events

• Example Flume Source Configuration

• Advanced Features

• Troubleshooting the Flume Handler

6.1 Overview
The Flume Handler is designed to stream change capture data from an Oracle
GoldenGate trail to a Flume source. Apache Flume is an open source application for
which the primary purpose is streaming data into Big Data applications. The Flume
architecture contains three main components, sources, channels, and sinks that
collectively make a pipeline for data.

• A Flume source publishes the data to a Flume channel.

• A Flume sink retrieves the data out of a Flume channel and streams the data to
different targets.

• A Flume Agent is a container process that owns and manages a source, channel
and sink.

A single Flume installation can host many agent processes. The Flume Handler can
stream data from a trail file to Avro or Thrift RPC Flume sources.

6.2 Setting Up and Running the Flume Handler
Instructions for configuring the Flume Handler components and running the handler
are described in this section.

To run the Flume Handler, a Flume Agent configured with an Avro or Thrift Flume
source must be up and running. Oracle GoldenGate can be collocated with Flume or
located on a different machine. If located on a different machine, the host and port of
the Flume source must be reachable with a network connection. For instructions on
how to configure and start a Flume Agent process, see the Flume User Guide https://
flume.apache.org/releases/content/1.6.0/FlumeUserGuide.pdf.

Topics:

6-1

https://flume.apache.org/releases/content/1.6.0/FlumeUserGuide.pdf
https://flume.apache.org/releases/content/1.6.0/FlumeUserGuide.pdf

• Classpath Configuration

• Flume Handler Configuration

• Review a Sample Configuration

6.2.1 Classpath Configuration
For the Flume Handler to connect to the Flume source and run, the Flume Agent
configuration file and the Flume client jars must be configured in
gg.classpathconfiguration variable. The Flume Handler uses the contents of the
Flume Agent configuration file to resolve the host, port, and source type for the
connection to Flume source. The Flume client libraries do not ship with Oracle
GoldenGate for Big Data. The Flume client library versions must match the version of
Flume to which the Flume Handler is connecting. For a list of the required Flume client
JAR files by version, see Flume Handler Client Dependencies.

The Oracle GoldenGate property, gg.classpath variable must be set to include the
following default locations:

• The default location of the core-site.xml file is Flume_Home/conf.

• The default location of the Flume client JARS is Flume_Home/lib/*.

The gg.classpath must be configured exactly as shown here. The path to the Flume
Agent configuration file must contain the path with no wild card appended. The
inclusion of the wildcard in the path to the Flume Agent configuration file will make the
file inaccessible. Conversely, pathing to the dependency jars must include the *
wildcard character in order to include all of the JAR files in that directory in the
associated classpath. Do not use *.jar. The following is an example of a correctly
configured gg.classpath variable:

gg.classpath=dirprm/:/var/lib/flume/lib/*

If the Flume Handler and Flume are not collocated, then the Flume Agent configuration
file and the Flume client libraries must be copied to the machine hosting the Flume
Handler process.

6.2.2 Flume Handler Configuration
The following are the configurable values for the Flume Handler. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the Flume Handler, you must first configure the handler type
by specifying gg.handler.jdbc.type=flume and the other Flume properties as follows:

Property Name Property Value Required /
Optional

Default Description

gg.handlerlist flumehandler
(choice of any
name)

Yes List of handlers. Only one is allowed with
grouping properties ON.

gg.handler.name.
type

flume Yes Type of handler to use.

Chapter 6
Setting Up and Running the Flume Handler

6-2

Property Name Property Value Required /
Optional

Default Description

gg.handler.name.
format

Formatter class or
short code

No. Defaults to
delimitedtex
t

The formatter to be used. Can be one of
the following:

• avro_row

• avro_op

• delimitedtext

• xml

• json

• json_row

You can also write a custom formatter and
include the fully qualified class name here.

gg.handler.name.
RpcClientPropert
iesFile

Any choice of
filename

No. Defaults
to default-
flume-
rpc.properti
es

Either the default default-flume-
rpc.properties or a specified custom
RPC client properties file must exist in the
classpath.

gg.handler.name.
mode

op|tx No. Defaults
to op

Operation mode (op) or Transaction Mode
(tx). Java Adapter grouping options can be
used only in tx mode.

gg.handler.name.
EventHeaderClass

A custom
implementation
fully qualified class
name

No. Defaults
to
DefaultFlume
EventHeader

Class to be used to define what header
properties are to be added to a flume
event.

gg.handler.name.
EventMapsTo

op|tx No. Defaults
to op

Defines whether each flume event
represents an operation or a transaction. If
handler mode = op, EventMapsTo will
always be op.

gg.handler.name.
PropagateSchema

true|false No. Defaults
to false

When set to true, the Flume handler
publishes schema events.

gg.handler.name.
includeTokens

true|false No. Defaults
to false

When set to true, includes token data from
the source trail files in the output. When set
to false, to excludes the token data from
the source trail files in the output.

6.2.3 Review a Sample Configuration
gg.handlerlist = flumehandler
gg.handler.flumehandler.type = flume
gg.handler.flumehandler.RpcClientPropertiesFile=custom-flume-rpc.properties
gg.handler.flumehandler.format =avro_op
gg.handler.flumehandler.mode =tx
gg.handler.flumehandler.EventMapsTo=tx
gg.handler.flumehandler.PropagateSchema =true
gg.handler.flumehandler.includeTokens=false

6.3 Data Mapping of Operations to Flume Events
This section explains how operation data from the Oracle GoldenGate trail file is
mapped by the Flume Handler into Flume Events based on different configurations. A
Flume Event is a unit of data that flows through a Flume agent. The event flows from

Chapter 6
Data Mapping of Operations to Flume Events

6-3

source to channel to sink and is represented by an implementation of the event
interface. An event carries a payload (byte array) that is accompanied by an optional
set of headers (string attributes).

Topics:

• Operation Mode

• Transaction Mode and EventMapsTo Operation

• Transaction Mode and EventMapsTo Transaction

6.3.1 Operation Mode
The configuration for the Flume Handler in the Oracle GoldenGate Java configuration
file is as follows:

gg.handler.{name}.mode=op

The data for each operation from an Oracle GoldenGate trail file maps into a single
Flume Event. Each event is immediately flushed to Flume. Each Flume Event has the
following headers:

• TABLE_NAME: The table name for the operation

• SCHEMA_NAME: The catalog name (if available) and the schema name of the
operation

• SCHEMA_HASH: The hash code of the Avro schema (only applicable for Avro Row and
Avro Operation formatters)

6.3.2 Transaction Mode and EventMapsTo Operation
The configuration for the Flume Handler in the Oracle GoldenGate Java configuration
file is as follows:

gg.handler.flume_handler_name.mode=tx
gg.handler.flume_handler_name.EventMapsTo=op

The data for each operation from Oracle GoldenGate trail file maps into a single Flume
Event. Events are flushed to Flume when the transaction is committed. Each Flume
Event has the following headers:

• TABLE_NAME: The table name for the operation

• SCHEMA_NAME: The catalog name (if available) and the schema name of the
operation

• SCHEMA_HASH: The hash code of the Avro schema (only applicable for Avro Row and
Avro Operation formatters)

We recommend that you use this mode when formatting data as Avro or delimited text.
It is important to understand that configuring Replicat batching functionality increases
the number of operations that are processed in a transaction.

6.3.3 Transaction Mode and EventMapsTo Transaction
The configuration for the Flume Handler in the Oracle GoldenGate Java configuration
file is as follows.

Chapter 6
Data Mapping of Operations to Flume Events

6-4

gg.handler.flume_handler_name.mode=tx
gg.handler.flume_handler_name.EventMapsTo=tx

The data for all operations for a transaction from the source trail file are concatenated
and mapped into a single Flume Event. The event is flushed when the transaction is
committed. Each Flume Event has the following headers:

• GG_TRANID: The transaction ID of the transaction

• OP_COUNT: The number of operations contained in this Flume payload event

We recommend that you use this mode only when using self describing formats such
as JSON or XML. In is important to understand that configuring Replicat batching
functionality increases the number of operations that are processed in a transaction.

6.4 Performance Considerations
Consider the following options for enhanced performance:

• Set Replicat-based grouping

• Set the transaction mode with gg.handler.flume_handler_name. EventMapsTo=tx

• Increase the maximum heap size of the JVM in Oracle GoldenGate Java
properties file (the maximum heap size of the Flume Handler may affect
performance)

6.5 Metadata Change Events
The Flume Handler is adaptive to metadata change events. To handle metadata
change events, the source trail files must have metadata in the trail file. However, this
functionality depends on the source replicated database and the upstream Oracle
GoldenGate Capture process to capture and replicate DDL events. This feature is not
available for all database implementations in Oracle GoldenGate. To determine
whether DDL replication is supported, see the Oracle GoldenGate installation and
configuration guide for the appropriate database.

Whenever a metadata change occurs at the source, the Flume Handler notifies the
associated formatter of the metadata change event. Any cached schema that the
formatter is holding for that table will be deleted. The next time that the associated
formatter encounters an operation for that table the schema is regenerated.

6.6 Example Flume Source Configuration
Topics:

• Avro Flume Source

• Thrift Flume Source

6.6.1 Avro Flume Source
The following is a sample configuration for an Avro Flume source from the Flume
Agent configuration file:

client.type = default
hosts = h1

Chapter 6
Performance Considerations

6-5

hosts.h1 = host_ip:host_port
batch-size = 100
connect-timeout = 20000
request-timeout = 20000

6.6.2 Thrift Flume Source
The following is a sample configuration for an Avro Flume source from the Flume
Agent configuration file:

client.type = thrift
hosts = h1
hosts.h1 = host_ip:host_port

6.7 Advanced Features
You may choose to implement the following advanced features of the Flume Handler:

Topics:

• Schema Propagation

• Security

• Fail Over Functionality

• Load Balancing Functionality

6.7.1 Schema Propagation
The Flume Handler can propagate schemas to Flume. This feature is currently only
supported for the Avro Row and Operation formatters. To enable this feature, set the
following property:

gg.handler.name.propagateSchema=true

The Avro Row or Operation Formatters generate Avro schemas on a just-in-time
basis. Avro schemas are generated the first time an operation for a table is
encountered. A metadata change event results in the schema reference being for a
table being cleared, and a new schema is generated the next time an operation is
encountered for that table.

When schema propagation is enabled, the Flume Handler propagates schemas in an
Avro Event when they are encountered.

Default Flume Schema Event headers for Avro include the following information:

• SCHEMA_EVENT: true

• GENERIC_WRAPPER: true or false

• TABLE_NAME: The table name as seen in the trail

• SCHEMA_NAME: The catalog name (if available) and the schema name

• SCHEMA_HASH: The hash code of the Avro schema

Chapter 6
Advanced Features

6-6

6.7.2 Security
Kerberos authentication for the Oracle GoldenGate for Big Data Flume Handler
connection to the Flume source is possible. This feature is supported only in Flume
1.6.0 and later using the Thrift Flume source. You can enable it by changing the
configuration of the Flume source in the Flume Agent configuration file.

The following is an example of the Flume source configuration from the Flume Agent
configuration file that shows how to enable Kerberos authentication. You must provide
Kerberos principal name of the client and the server. The path to a Kerberos keytab file
must be provided so that the password of the client principal can be resolved at
runtime. For information on how to administer Kerberos, on Kerberos principals and
their associated passwords, and about the creation of a Kerberos keytab file, see the
Kerberos documentation.

client.type = thrift
hosts = h1
hosts.h1 =host_ip:host_port
kerberos=true
client-principal=flumeclient/client.example.org@EXAMPLE.ORG
client-keytab=/tmp/flumeclient.keytab
server-principal=flume/server.example.org@EXAMPLE.ORG

6.7.3 Fail Over Functionality
It is possible to configure the Flume Handler so that it fails over when the primary
Flume source becomes unavailable. This feature is currently supported only in Flume
1.6.0 and later using the Avro Flume source. It is enabled with Flume source
configuration in the Flume Agent configuration file. The following is a sample
configuration for enabling fail over functionality:

client.type=default_failover
hosts=h1 h2 h3
hosts.h1=host_ip1:host_port1
hosts.h2=host_ip2:host_port2
hosts.h3=host_ip3:host_port3
max-attempts = 3
batch-size = 100
connect-timeout = 20000
request-timeout = 20000

6.7.4 Load Balancing Functionality
You can configure the Flume Handler so that produced Flume events are load-
balanced across multiple Flume sources. This feature is currently supported only in
Flume 1.6.0 and later using the Avro Flume source. You can enable it by changing the
Flume source configuration in the Flume Agent configuration file. The following is a
sample configuration for enabling load balancing functionality:

client.type = default_loadbalance
hosts = h1 h2 h3
hosts.h1 = host_ip1:host_port1
hosts.h2 = host_ip2:host_port2
hosts.h3 = host_ip3:host_port3
backoff = false
maxBackoff = 0

Chapter 6
Advanced Features

6-7

host-selector = round_robin
batch-size = 100
connect-timeout = 20000
request-timeout = 20000

6.8 Troubleshooting the Flume Handler
Topics:

• Java Classpath

• Flume Flow Control Issues

• Flume Agent Configuration File Not Found

• Flume Connection Exception

• Other Failures

6.8.1 Java Classpath
Issues with the Java classpath are common. A ClassNotFoundException in the Oracle
GoldenGate Java log4j log file indicates a classpath problem. You can use the Java
log4j log file to troubleshoot this issue. Setting the log level to DEBUG allows for logging
of each of the JARs referenced in the gg.classpath object to be logged to the log file.
This way, you can make sure that all of the required dependency JARs are resolved.
For more information, see Classpath Configuration.

6.8.2 Flume Flow Control Issues
In some situations, the Flume Handler may write to the Flume source faster than the
Flume sink can dispatch messages. When this happens, the Flume Handler works for
a while, but when Flume can no longer accept messages, it will abend. The cause that
is logged in the Oracle GoldenGate Java log file may probably be an
EventDeliveryException, indicating that the Flume Handler was unable to send an
event. Check the Flume log for the exact cause of the problem. You may be able to re-
configure the Flume channel to increase capacity or increase the Java heap size if the
Flume Agent is experiencing an OutOfMemoryException. This may not solve the problem.
If the Flume Handler can push data to the Flume source faster than messages are
dispatched by the Flume sink, then any change may only extend the period the Flume
Handler can run before failing.

6.8.3 Flume Agent Configuration File Not Found
If the Flume Agent configuration file is not in the classpath,, Flume Handler abends at
startup. The result is usually a ConfigException that reports the issue as an error
loading the Flume producer properties. Check the gg.handler.name.
RpcClientProperites configuration file to make sure that the naming of the Flume Agent
properties file is correct. Check the Oracle GoldenGate gg.classpath properties to
make sure that the classpath contains the directory containing the Flume Agent
properties file. Also, check the classpath to ensure that the path to the Flume Agent
properties file does not end with a wildcard (*) character.

Chapter 6
Troubleshooting the Flume Handler

6-8

6.8.4 Flume Connection Exception
The Flume Handler terminates abnormally at start up if it cannot connect to the Flume
source. The root cause of this problem may probably be reported as an IOExeption in
the Oracle GoldenGate Java log4j, file indicating a problem connecting to Flume at a
given host and port. Make sure that the following are both true:

• The Flume Agent process is running

• The Flume agent configuration file that the Flume Handler is accessing contains
the correct host and port.

6.8.5 Other Failures
Review the contents of the Oracle GoldenGate Java log4j file to identify any other
issues.

Chapter 6
Troubleshooting the Flume Handler

6-9

7
Using the HBase Handler

Learn how to use the HBase Handler to populate HBase tables from existing Oracle
GoldenGate supported sources.

Topics:

• Overview

• Detailed Functionality

• Setting Up and Running the HBase Handler

• Security

• Metadata Change Events

• Additional Considerations

• Troubleshooting the HBase Handler

7.1 Overview
HBase is an open source Big Data application that emulates much of the functionality
of a relational database management system (RDBMS). Hadoop is specifically
designed to store large amounts of unstructured data. Conversely, data stored in
databases and replicated through Oracle GoldenGate is highly structured. HBase
provides a way to maintain the important structure of data while taking advantage of
the horizontal scaling that is offered by the Hadoop Distributed File System (HDFS).

7.2 Detailed Functionality
The HBase Handler takes operations from the source trail file and creates
corresponding tables in HBase, and then loads change capture data into those tables.

HBase Table Names

Table names created in an HBase map to the corresponding table name of the
operation from the source trail file. Table name is case-sensitive.

HBase Table Namespace

For two-part table names (schema name and table name), the schema name maps to
the HBase table namespace. For a three-part table name like Catalog.Schema.MyTable,
the create HBase namespace would be Catalog_Schema. HBase table namespaces are
case sensitive. A null schema name is supported and maps to the default HBase
namespace.

HBase Row Key

HBase has a similar concept to the database primary keys, called the HBase row key.
The HBase row key is the unique identifier for a table row. HBase only supports a
single row key per row and it cannot be empty or null. The HBase Handler maps the

7-1

primary key value into the HBase row key value. If the source table has multiple
primary keys, then the primary key values are concatenated, separated by a pipe
delimiter (|).You can configure the HBase row key delimiter.

The source table must have at least one primary key column. Replication of a table
without a primary key causes the HBase Handler to abend.

HBase Column Family

HBase has the concept of a column family. A column family is a way to group column
data. Only a single column family is supported. Every HBase column must belong to a
single column family. The HBase Handler provides a single column family per table
that defaults to cf. You can configure the column family name. However, after a table
is created with a specific column family name, you cannot reconfigure the column
family name in the HBase example, without first modifying or dropping the table results
in an abend of the Oracle GoldenGateReplicat processes.

7.3 Setting Up and Running the HBase Handler
HBase must run either collocated with the HBase Handler process or on a machine
that can connect from the network that is hosting the HBase Handler process. The
underlying HDFS single instance or clustered instance serving as the repository for
HBase data must also run.

Instructions for configuring the HBase Handler components and running the handler
are described in this section.

Topics:

• Classpath Configuration

• HBase Handler Configuration

• Sample Configuration

• Performance Considerations

7.3.1 Classpath Configuration
For the HBase Handler to connect to HBase and stream data, the hbase-site.xml file
and the HBase client jars must be configured in gg.classpath variable. The HBase
client jars must match the version of HBase to which the HBase Handler is connecting.
The HBase client jars are not shipped with the Oracle GoldenGate for Big Data
product.

HBase Handler Client Dependencies lists the required HBase client jars by version.

The default location of the hbase-site.xml file is HBase_Home/conf.

The default location of the HBase client JARs is HBase_Home/lib/*.

If the HBase Handler is running on Windows, follow the Windows classpathing syntax.

The gg.classpath must be configured exactly as described. The path to the hbase-
site.xml file must contain only the path with no wild card appended. The inclusion of
the * wildcard in the path to the hbase-site.xml file will cause it to be inaccessible.
Conversely, the path to the dependency jars must include the (*) wildcard character in
order to include all the jar files in that directory, in the associated classpath. Do not use
*.jar. The following is an example of a correctly configured gg.classpath variable:

Chapter 7
Setting Up and Running the HBase Handler

7-2

gg.classpath=/var/lib/hbase/lib/*:/var/lib/hbase/conf

7.3.2 HBase Handler Configuration
The following are the configurable values for the HBase Handler. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the HBase Handler, you must first configure the handler
type by specifying gg.handler.jdbc.type=hbase and the other HBase properties as
follows:

Table 7-1 HBase Handler Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handlerlist Require
d

Any
string.

None Provides a name for the HBase Handler. The
HBase Handler name is then becomes part
of the property names listed in this table.

gg.handler.name.
type

Require
d

hbase. None Selects the HBase Handler for streaming
change data capture into HBase.

gg.handler.name.
hBaseColumnFamil
yName

Optional Any string
legal for
an HBase
column
family
name.

cf Column family is a grouping mechanism for
columns in HBase. The HBase Handler only
supports a single column family in the 12.2
release.

gg.handler.name.
includeTokens

Optional true |
false

false Using true indicates that token values are
included in the output to HBase. Using false
means token values are not to be included.

gg.handler.name.
keyValueDelimite
r

Optional Any
string.

= Provides a delimiter between key values in a
map. For example,
key=value,key1=value1,key2=value2.
Tokens are mapped values. Configuration
value supports CDATA[] wrapping.

gg.handler.name.
keyValuePairDeli
miter

Optional Any
string.

, Provides a delimiter between key value pairs
in a map. For example,
key=value,key1=value1,key2=value2key=v
alue,key1=value1,key2=value2. Tokens are
mapped values. Configuration value supports
CDATA[] wrapping.

Chapter 7
Setting Up and Running the HBase Handler

7-3

Table 7-1 (Cont.) HBase Handler Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.
encoding

Optional Any
encoding
name or
alias
supported
by Java.1

For a list
of
supported
options,
see
https://
docs.ora
cle.com/
javase/8
/docs/
technote
s/
guides/
intl/
encoding
.doc.htm
l.

The
native
syste
m
encod
ing of
the
machi
ne
hostin
g the
Oracl
e
Golde
nGate
proce
ss

Determines the encoding of values written
the HBase. HBase values are written as
bytes.

gg.handler.name.
pkUpdateHandling

Optional abend |
update |
delete-
insert

abend Provides configuration for how the HBase
Handler should handle update operations
that change a primary key. Primary key
operations can be problematic for the HBase
Handler and require special consideration by
you.

• abend: indicates the process will end
abnormally.

• update: indicates the process will treat
this as a normal update

• delete-insert: indicates the process
will treat this as a delete and an insert.
The full before image is required for this
feature to work properly. This can be
achieved by using full supplemental
logging in Oracle Database. Without full
before and after row images the insert
data will be incomplete.

gg.handler.name.
nullValueReprese
ntation

Optional Any
string.

NULL Allows you to configure what will be sent to
HBase in the case of a NULL column value.
The default is NULL. Configuration value
supports CDATA[] wrapping.

gg.handler.name.
authType

Optional kerberos None Setting this property to kerberos enables
Kerberos authentication.

Chapter 7
Setting Up and Running the HBase Handler

7-4

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

Table 7-1 (Cont.) HBase Handler Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.
kerberosKeytabFi
le

Optional
(Require
d if
authTyp
e=kerbe
ros)

Relative
or
absolute
path to a
Kerberos
keytab
file.

- The keytab file allows the HDFS Handler to
access a password to perform a kinit
operation for Kerberos security.

gg.handler.name.
kerberosPrincipa
l

Optional
(Require
d if
authTyp
e=kerbe
ros)

A legal
Kerberos
principal
name (for
example,
user/
FQDN@MY.
REALM)

- The Kerberos principal name for Kerberos
authentication.

gg.handler.name.
hBase98Compatibl
e

Optional true |
false

false Set this configuration property to true to
enable integration with the HBase 0.98.x and
0.96.x releases.

gg.handler.name.
rowkeyDelimiter

Optional Any
string/

| Configures the delimiter between primary key
values from the source table when
generating the HBase rowkey. This property
supports CDATA[] wrapping of the value to
preserve whitespace if the user wishes to
delimit incoming primary key values with a
character or characters determined to be
whitespace.

gg.handler.name.
setHBaseOperatio
nTimestamp

Optional true |
false

false Set to true to set the timestamp for HBase
operations in the HBase Handler instead of
allowing HBase is assign the timestamps on
the server side. This property can be used to
solve the problem of a row delete followed by
an immediate reinsert of the row not showing
up in HBase, see HBase Handler Delete-
Insert Problem.

gg.handler.name.
omitNullValues

Optional true |
false

false Set to true to omit null fields from being
written.

1 See Java Internalization Support at https://docs.oracle.com/javase/8/docs/technotes/
guides/intl/.

7.3.3 Sample Configuration
The following is a sample configuration for the HBase Handler from the Java Adapter
properties file:

gg.handlerlist=hbase
gg.handler.hbase.type=hbase
gg.handler.hbase.mode=tx
gg.handler.hbase.hBaseColumnFamilyName=cf

Chapter 7
Setting Up and Running the HBase Handler

7-5

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/

gg.handler.hbase.includeTokens=true
gg.handler.hbase.keyValueDelimiter=CDATA[=]
gg.handler.hbase.keyValuePairDelimiter=CDATA[,]
gg.handler.hbase.encoding=UTF-8
gg.handler.hbase.pkUpdateHandling=abend
gg.handler.hbase.nullValueRepresentation=CDATA[NULL]
gg.handler.hbase.authType=none

7.3.4 Performance Considerations
At each transaction commit, the HBase Handler performs a flush call to flush any
buffered data to the HBase region server. This must be done to maintain write
durability. Flushing to the HBase region server is an expensive call and performance
can be greatly improved by using the Replicat GROUPTRANSOPS parameter to group
multiple smaller transactions in the source trail file into a larger single transaction
applied to HBase. You can use Replicat base-batching by adding the configuration
syntax in the Replicat configuration file.

Operations from multiple transactions are grouped together into a larger transaction,
and it is only at the end of the grouped transaction that transaction is committed.

7.4 Security
You can secure HBase connectivity using Kerberos authentication. Follow the
associated documentation for the HBase release to secure the HBase cluster. The
HBase Handler can connect to Kerberos secured clusters. The HBase hbase-site.xml
must be in handlers classpath with the hbase.security.authentication property set to
kerberos and hbase.security.authorization property set to true.

You have to include the directory containing the HDFS core-site.xml file in the
classpath. Kerberos authentication is performed using the Hadoop
UserGroupInformation class. This class relies on the Hadoop configuration property
hadoop.security.authentication being set to kerberos to successfully perform the kinit
command.

Additionally, you must set the following properties in the HBase Handler Java
configuration file:

gg.handler.{name}.authType=kerberos
gg.handler.{name}.keberosPrincipalName={legal Kerberos principal name}
gg.handler.{name}.kerberosKeytabFile={path to a keytab file that contains the
password for the Kerberos principal so that the Oracle GoldenGate HDFS handler can
programmatically perform the Kerberos kinit operations to obtain a Kerberos ticket}.

You may encounter the inability to decrypt the Kerberos password from the keytab
file. This causes the Kerberos authentication to fall back to interactive mode which
cannot work because it is being invoked programmatically. The cause of this problem
is that the Java Cryptography Extension (JCE) is not installed in the Java Runtime
Environment (JRE). Ensure that the JCE is loaded in the JRE, see http://
www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html.

7.5 Metadata Change Events
Oracle GoldenGate 12.2 includes metadata in trail and can handle metadata change
events at runtime. The HBase Handler can handle metadata change events at runtime
as well. One of the most common scenarios is the addition of a new column. The

Chapter 7
Security

7-6

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

result in HBase is that the new column and its associated data are streamed to HBase
after the metadata change event.

It is important to understand that in order to enable metadata change events, the entire
Replication chain must be upgraded to Oracle GoldenGate 12.2. The 12.2 HBase
Handler can work with trail files produced by Oracle GoldenGate 12.1 and later.
However, these trail files do not include metadata in trail, and therefore metadata
change events cannot be handled at runtime.

7.6 Additional Considerations
HBase has been experiencing changes to the client interface in the last few releases.
HBase 1.0.0 introduced a new recommended client interface and the 12.2 HBase
Handler has moved to the new interface to keep abreast of the most current changes.
However, this does create a backward compatibility issue. The HBase Handler is not
compatible with HBase versions older than 1.0.0. If an Oracle GoldenGate integration
is required with 0.99.x or older version of HBase, this can be accomplished using the
12.1.2.1.x HBase Handler. Contact Oracle Support to obtain a ZIP file of the 12.1.2.1.x
HBase Handler.

Classpath issues are common during the initial setup of the HBase Handler. The
typical indicators are occurrences of the ClassNotFoundException in the Java log4j log
file. The HBase client jars do not ship with Oracle GoldenGate for Big Data. You must
resolve the required HBase client jars. HBase Handler Client Dependencies includes a
list of HBase client jars for each supported version. Either the hbase-site.xml or one or
more of the required client JARS are not included in the classpath. For instructions on
configuring the classpath of the HBase Handler, see Classpath Configuration.

7.7 Troubleshooting the HBase Handler
Troubleshooting of the HBase Handler begins with the contents for the Java log4j file.
Follow the directions in the Java Logging Configuration to configure the runtime to
correctly generate the Java log4j log file.

Topics:

• Java Classpath

• HBase Connection Properties

• Logging of Handler Configuration

• HBase Handler Delete-Insert Problem

• Cloudera CDH HBase Compatibility

7.7.1 Java Classpath
Issues with the Java classpath are common. A ClassNotFoundException in the Java
log4j log file indicates a classpath problem. You can use the Java log4j log file to
troubleshoot this issue. Setting the log level to DEBUG logs each of the jars referenced in
the gg.classpath object to the log file. You can make sure that all of the required
dependency jars are resolved by enabling DEBUG level logging, and then searching the
log file for messages like the following:

2015-09-29 13:04:26 DEBUG ConfigClassPath:74 - ...adding to classpath:
 url="file:/ggwork/hbase/hbase-1.0.1.1/lib/hbase-server-1.0.1.1.jar"

Chapter 7
Additional Considerations

7-7

7.7.2 HBase Connection Properties
The contents of the HDFS hbase-site.xml file (including default settings) are output to
the Java log4j log file when the logging level is set to DEBUG or TRACE. This file shows
the connection properties to HBase. Search for the following in the Java log4j log file.

2015-09-29 13:04:27 DEBUG HBaseWriter:449 - Begin - HBase configuration object
contents for connection troubleshooting.
Key: [hbase.auth.token.max.lifetime] Value: [604800000].

Commonly, for the hbase-site.xml file is not included in the classpath or the path to the
hbase-site.xml file is incorrect. In this case, the HBase Handler cannot establish a
connection to HBase, and the Oracle GoldenGate process abends. The following error
is reported in the Java log4j log.

2015-09-29 12:49:29 ERROR HBaseHandler:207 - Failed to initialize the HBase handler.
org.apache.hadoop.hbase.ZooKeeperConnectionException: Can't connect to ZooKeeper

Verify that the classpath correctly includes the hbase-site.xml file and that HBase is
running.

7.7.3 Logging of Handler Configuration
The Java log4j log file contains information on the configuration state of the HBase
Handler. This information is output at the INFO log level. The following is a sample
output:

2015-09-29 12:45:53 INFO HBaseHandler:194 - **** Begin HBase Handler - Configuration
Summary ****
 Mode of operation is set to tx.
 HBase data will be encoded using the native system encoding.
 In the event of a primary key update, the HBase Handler will ABEND.
 HBase column data will use the column family name [cf].
 The HBase Handler will not include tokens in the HBase data.
 The HBase Handler has been configured to use [=] as the delimiter between keys and
values.
 The HBase Handler has been configured to use [,] as the delimiter between key
values pairs.
 The HBase Handler has been configured to output [NULL] for null values.
Hbase Handler Authentication type has been configured to use [none]

7.7.4 HBase Handler Delete-Insert Problem
If you are using the HBase Handler gg.handler.name.setHBaseOperationTimestamp
configuration property, the source database may get out of sync with data in the
HBase Handler tables. This is caused by the deletion of a row followed by the
immediate reinsertion of the row. HBase creates a tombstone marker for the delete
that is identified by a specific timestamp. This tombstone marker marks any row
records in HBase with the same row key as deleted that have a timestamp before or
the same as the tombstone marker. This can occur when the deleted row is
immediately reinserted. The insert operation can inadvertently have the same
timestamp as the delete operation so the delete operation causes the subsequent
insert operation to incorrectly appear as deleted.

To work around this issue, you need to set the
gg.handler.name.setHbaseOperationTimestamp= to true, which does two things:

Chapter 7
Troubleshooting the HBase Handler

7-8

• Sets the timestamp for row operations in the HBase Handler.

• Detection of a delete-insert operation that ensures that the insert operation has a
timestamp that is after the insert.

The default for gg.handler.name.setHbaseOperationTimestamp isfalse, which means that
the HBase server supplies the timestamp for a row. This can cause the out of sync
problem.

Setting the row operation timestamp in the HBase Handler can have these
consequences:

1. Since the timestamp is set on the client side, this could create problems if multiple
applications are feeding data to the same HBase table.

2. If delete and reinsert is a common pattern in your use case, then the HBase
Handler has to increment the timestamp 1 millisecond each time this scenario is
encountered.

Processing cannot be allowed to get too far into the future so the HBase Handler only
allows the timestamp to increment 100 milliseconds into the future before it attempts to
wait the process so that the client side HBase operation timestamp and real time are
back in sync. When a delete-insert is used instead of an update in the source
database so this sync scenario would be quite common. Processing speeds may be
affected by not allowing the HBase timestamp to go over 100 milliseconds into the
future if this scenario is common.

7.7.5 Cloudera CDH HBase Compatibility
The Cloudera CDH has moved to HBase 1.0.0 in the CDH 5.4.0 version. To keep
reverse compatibility with HBase 0.98.x and before, the HBase client in the CDH broke
the binary compatibility with Apache HBase 1.0.0. This created a compatibility problem
for the HBase Handler when connecting to Cloudera CDH HBase for CDH versions
5.4 - 5.11. You may have been advised to solve this problem by using the old 0.98
HBase interface and setting the following configuration parameter:

gg.handler.name.hBase98Compatible=true

This compatibility problem is solved using Java Refection. If you are using the HBase
Handler to connect to CDH 5.4x, then you should changed the HBase Handler
configuration property to the following:

gg.handler.name.hBase98Compatible=false

Optionally, you can omit the property entirely because the default value is false.

Chapter 7
Troubleshooting the HBase Handler

7-9

8
Using the HDFS Handler

Learn how to use the HDFS Handler, which is designed to stream change capture
data into the Hadoop Distributed File System (HDFS).

Topics:

• Overview

• Writing into HDFS in SequenceFile Format

• Setting Up and Running the HDFS Handler

• Writing in HDFS in Avro Object Container File Format

• Generating HDFS File Names Using Template Strings

• Metadata Change Events

• Partitioning

• HDFS Additional Considerations

• Best Practices

• Troubleshooting the HDFS Handler

8.1 Overview
The HDFS is the primary file system for Big Data. Hadoop is typically installed on
multiple machines that work together as a Hadoop cluster. Hadoop allows you to store
very large amounts of data in the cluster that is horizontally scaled across the
machines in the cluster. You can then perform analytics on that data using a variety of
Big Data applications.

8.2 Writing into HDFS in SequenceFile Format
The HDFS SequenceFile is a flat file consisting of binary key and value pairs. You can
enable writing data in SequenceFile format by setting the gg.handler.name.format
property to sequencefile. The key part of the record is set to null, and the actual data is
set in the value part. For information about Hadoop SequenceFile, see https://
wiki.apache.org/hadoop/SequenceFile.

Topics:

• Integrating with Hive

• Understanding the Data Format

8.2.1 Integrating with Hive
Oracle GoldenGate for Big Data release does not include a Hive storage handler
because the HDFS Handler provides all of the necessary Hive functionality .

8-1

https://wiki.apache.org/hadoop/SequenceFile
https://wiki.apache.org/hadoop/SequenceFile

You can create a Hive integration to create tables and update table definitions in case
of DDL events. This is limited to data formatted in Avro Object Container File format.
For more information, see Writing in HDFS in Avro Object Container File Format and
HDFS Handler Configuration.

For Hive to consume sequence files, the DDL creates Hive tables including STORED as
sequencefile . The following is a sample create table script:

CREATE EXTERNAL TABLE table_name (
 col1 string,
 ...
 ...
 col2 string)
ROW FORMAT DELIMITED
STORED as sequencefile
LOCATION '/path/to/hdfs/file';

Note:

If files are intended to be consumed by Hive, then the
gg.handler.name.partitionByTable property should be set to true.

8.2.2 Understanding the Data Format
The data written in the value part of each record and is in delimited text format. All of
the options described in the Using the Delimited Text Formatter section are applicable
to HDFS SequenceFile when writing data to it.

For example:

gg.handler.name.format=sequencefile
gg.handler.name.format.includeColumnNames=true
gg.handler.name.format.includeOpType=true
gg.handler.name.format.includeCurrentTimestamp=true
gg.handler.name.format.updateOpKey=U

8.3 Setting Up and Running the HDFS Handler
To run the HDFS Handler, a Hadoop single instance or Hadoop cluster must be
installed, running, and network-accessible from the machine running the HDFS
Handler. Apache Hadoop is open source and you can download it from:

http://hadoop.apache.org/

Follow the Getting Started links for information on how to install a single-node cluster
(for pseudo-distributed operation mode) or a clustered setup (for fully-distributed
operation mode).

Instructions for configuring the HDFS Handler components and running the handler
are described in the following sections.

• Classpath Configuration

• HDFS Handler Configuration

• Review a Sample Configuration

Chapter 8
Setting Up and Running the HDFS Handler

8-2

http://hadoop.apache.org/

• Performance Considerations

• Security

8.3.1 Classpath Configuration
For the HDFS Handler to connect to HDFS and run, the HDFS core-site.xml file and
the HDFS client jars must be configured in gg.classpath variable. The HDFS client jars
must match the version of HDFS that the HDFS Handler is connecting. For a list of the
required client jar files by release, see HDFS Handler Client Dependencies.

The default location of the core-site.xml file is Hadoop_Home/etc/hadoop

The default locations of the HDFS client jars are the following directories:

Hadoop_Home/share/hadoop/common/lib/*

Hadoop_Home/share/hadoop/common/*

Hadoop_Home/share/hadoop/hdfs/lib/*

Hadoop_Home/share/hadoop/hdfs/*

The gg.classpath must be configured exactly as shown. The path to the core-site.xml
file must contain the path to the directory containing the core-site.xmlfile with no
wildcard appended. If you include a (*) wildcard in the path to the core-site.xml file,
the file is not picked up. Conversely, the path to the dependency jars must include the
(*) wildcard character in order to include all the jar files in that directory in the
associated classpath. Do not use *.jar.

The following is an example of a correctly configured gg.classpath variable:

gg.classpath=/ggwork/hadoop/hadoop-2.6.0/etc/hadoop:/ggwork/hadoop/hadoop-2.6.0/
share/hadoop/common/lib/*:/ggwork/hadoop/hadoop-2.6.0/share/hadoop/common/*:/ggwork/
hadoop/hadoop-2.6.0/share/hadoop/hdfs/*:/ggwork/hadoop/hadoop-2.6.0/share/hadoop/
hdfs/lib/*

The HDFS configuration file hdfs-site.xml must also be in the classpath if Kerberos
security is enabled. By default, the hdfs-site.xml file is located in the Hadoop_Home/etc/
hadoop directory. If the HDFS Handler is not collocated with Hadoop, either or both files
can be copied to another machine.

8.3.2 HDFS Handler Configuration
The following are the configurable values for the HDFSHandler. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the HDFS Handler, you must first configure the handler type
by specifying gg.handler.jdbc.type=hdfs and the other HDFS properties as follows:

Property Optional
/
Require
d

Legal Values Default Explanation

gg.handlerlist Required Any string None Provides a name for the HDFS Handler.
The HDFS Handler name then becomes
part of the property names listed in this
table.

Chapter 8
Setting Up and Running the HDFS Handler

8-3

Property Optional
/
Require
d

Legal Values Default Explanation

gg.handler.name
.type

Required hdfs None Selects the HDFS Handler for streaming
change data capture into HDFS.

gg.handler.name
.mode

Optional tx | op op Selects operation (op) mode or transaction
(tx) mode for the handler. In almost all
scenarios, transaction mode results in
better performance.

gg.handler.name
.maxFileSize

Optional The default unit of
measure is bytes. You
can use k, m, or g to
specify kilobytes,
megabytes, or gigabytes.
Examples of legal values
include 10000, 10k, 100m,
1.1g.

1g Selects the maximum file size of the
created HDFS files.

gg.handler.name
.pathMappingTem
plate

Optional Any legal templated string
to resolve the target write
directory in HDFS.
Templates can contain a
mix of constants and
keywords which are
dynamically resolved at
runtime to generate the
HDFS write directory.

/ogg/$
{toLowerC
ase[$
{fullyQua
lifiedTab
leName}]}

You can use keywords interlaced with
constants to dynamically generate the
HDFS write directory at runtime, see
Generating HDFS File Names Using
Template Strings.

gg.handler.name
.fileRollInterv
al

Optional The default unit of
measure is milliseconds.
You can stipulate ms, s, m,
h to signify milliseconds,
seconds, minutes, or
hours respectively.
Examples of legal values
include 10000, 10000ms,
10s, 10m, or 1.5h. Values
of 0 or less indicate that
file rolling on time is
turned off.

File rolling
on time is
off.

The timer starts when an HDFS file is
created. If the file is still open when the
interval elapses, then the file is closed. A
new file is not immediately opened. New
HDFS files are created on a just-in-time
basis.

gg.handler.name
.inactivityRoll
Interval

Optional The default unit of
measure is milliseconds.
You can use ms, s, m, h to
specify milliseconds,
seconds, minutes, or
hours. Examples of legal
values include 10000,
10000ms, 10s, 10, 5m, or
1h. Values of 0 or less
indicate that file inactivity
rolling on time is turned
off.

File
inactivity
rolling on
time is off.

The timer starts from the latest write to an
HDFS file. New writes to an HDFS file
restart the counter. If the file is still open
when the counter elapses, the HDFS file is
closed. A new file is not immediately
opened. New HDFS files are created on a
just-in-time basis.

Chapter 8
Setting Up and Running the HDFS Handler

8-4

Property Optional
/
Require
d

Legal Values Default Explanation

gg.handler.name
.fileNameMappin
gTemplate

Optional A string with resolvable
keywords and constants
used to dynamically
generate HDFS file
names at runtime.

$
{fullyQua
lifiedTab
leName}_$
{groupNam
e}_$
{currentT
imeStamp}
.txt

You can use keywords interlaced with
constants to dynamically generate unique
HDFS file names at runtime, see
Generating HDFS File Names Using
Template Strings. File names typically
follow the format, $
{fullyQualifiedTableName}_$
{groupName}_${currentTimeStamp}{.txt}.

gg.handler.name
.partitionByTab
le

Optional true | false true (data
is
partitioned
by table)

Determines whether data written into HDFS
must be partitioned by table. If set to true,
then data for different tables are written to
different HDFS files. If set to false, then
data from different tables is interlaced in the
same HDFS file.

Must be set to true to use the Avro Object
Container File Formatter. If set to false, a
configuration exception occurs at
initialization.

gg.handler.name
.rollOnMetadata
Change

Optional true | false true
(HDFS
files are
rolled on a
metadata
change
event)

Determines whether HDFS files are rolled
in the case of a metadata change. True
means the HDFS file is rolled, false means
the HDFS file is not rolled.

Must be set to true to use the Avro Object
Container File Formatter. If set to false, a
configuration exception occurs at
initialization.

gg.handler.name
.format

Optional delimitedtext | json |
json_row | xml | avro_row
| avro_op | avro_row_ocf
| avro_op_ocf |
sequencefile

delimited
text

Selects the formatter for the HDFS Handler
for how output data is formatted.

• delimitedtext: Delimited text
• json: JSON
• json_row: JSON output modeling row

data
• xml: XML
• avro_row: Avro in row compact format
• avro_op: Avro in operation more

verbose format.
• avro_row_ocf: Avro in the row compact

format written into HDFS in the Avro
Object Container File (OCF) format.

• avro_op_ocf: Avro in the more verbose
format written into HDFS in the Avro
Object Container File format.

• sequencefile: Delimited text written in
sequence into HDFS is sequence file
format.

gg.handler.name
.includeTokens

Optional true | false false Set to true to include the tokens field and
tokens key/values in the output. Set to
false to suppress tokens output.

Chapter 8
Setting Up and Running the HDFS Handler

8-5

Property Optional
/
Require
d

Legal Values Default Explanation

gg.handler.name
.partitioner.fu
lly_qualified_t
able_ name

Equals one or
more column
names separated
by commas.

Optional Fully qualified table name
and column names must
exist.

- This partitions the data into subdirectories
in HDFS in the following format:
par_{column name}={column value}

gg.handler.name
.authType

Optional
kerberos

none Setting this property to kerberos enables
Kerberos authentication.

gg.handler.name
.kerberosKeytab
File

Optional
(Require
d if

authType
=Kerbero
s

)

Relative or absolute path
to a Kerberos keytab file.

- The keytab file allows the HDFS Handler to
access a password to perform a kinit
operation for Kerberos security.

gg.handler.name
.kerberosPrinci
pal

Optional
(Require
d if

authType
=Kerbero
s

)

A legal Kerberos principal
name like user/
FQDN@MY.REALM.

- The Kerberos principal name for Kerberos
authentication.

gg.handler.name
.schemaFilePath

Optional null Set to a legal path in HDFS so that
schemas (if available) are written in that
HDFS directory. Schemas are currently
only available for Avro and JSON
formatters. In the case of a metadata
change event, the schema is overwritten to
reflect the schema change.

gg.handler.name
.compressionTyp
e

Applicable to
Sequence File
Format only.

Optional block | none | record none Hadoop Sequence File Compression Type.
Applicable only if gg.handler.name.format
is set to sequencefile

gg.handler.name
.compressionCod
ec

Applicable to
Sequence File
and writing to
HDFS is Avro
OCF formats only.

Optional org.apache.hadoop.io.c
ompress.DefaultCodec |
org.apache.hadoop.io.c
ompress. BZip2Codec |
org.apache.hadoop.io.c
ompress.SnappyCodec |
org.apache.hadoop.io.c
ompress. GzipCodec

org.apach
e.hadoop.
io.compre
ss.Defaul
tCodec

Hadoop Sequence File Compression
Codec. Applicable only if
gg.handler.name.format is set to
sequencefile

Chapter 8
Setting Up and Running the HDFS Handler

8-6

Property Optional
/
Require
d

Legal Values Default Explanation

Entry Needed Optional null | snappy | bzip2
| xz | deflate

null Avro OCF Formatter Compression Code.
This configuration controls the selection of
the compression library to be used for Avro
OCF files.

Snappy includes native binaries in the
Snappy JAR file and performs a Java-
native traversal when compressing or
decompressing. Use of Snappy may
introduce runtime issues and platform
porting issues that you may not experience
when working with Java. You may need to
perform additional testing to ensure that
Snappy works on all of your required
platforms. Snappy is an open source
library, so Oracle cannot guarantee its
ability to operate on all of your required
platforms.

gg.handler.name
.hiveJdbcUrl

Optional A legal URL for
connecting to Hive using
the Hive JDBC interface.

null (Hive
integration
disabled)

Only applicable to the Avro OCF Formatter.

This configuration value provides a JDBC
URL for connectivity to Hive through the
Hive JDBC interface. Use of this property
requires that you include the Hive JDBC
library in the gg.classpath.

Hive JDBC connectivity can be secured
through basic credentials, SSL/TLS, or
Kerberos. Configuration properties are
provided for the user name and password
for basic credentials.

See the Hive documentation for how to
generate a Hive JDBC URL for SSL/TLS.

See the Hive documentation for how to
generate a Hive JDBC URL for Kerberos. (If
Kerberos is used for Hive JDBC security, it
must be enabled for HDFS connectivity.
Then the Hive JDBC connection can
piggyback on the HDFS Kerberos
functionality by using the same Kerberos
principal.)

gg.handler.name
.hiveJdbcUserna
me

Optional A legal user name if the
Hive JDBC connection is
secured through
credentials.

Java call
result from
System.ge
tProperty
(user.nam
e)

Only applicable to the Avro Object
Container File OCF Formatter.

This property is only relevant if the
hiveJdbcUrlproperty is set. It may be
required in your environment when the Hive
JDBC connection is secured through
credentials. Hive requires that Hive DDL
operations be associated with a user. If you
do not set the value, it defaults to the result
of the following Java call:
System.getProperty(user.name)

Chapter 8
Setting Up and Running the HDFS Handler

8-7

Property Optional
/
Require
d

Legal Values Default Explanation

gg.handler.name
.hiveJdbcPasswo
rd

Optional A legal password if the
Hive JDBC connection
requires a password.

None Only applicable to the Avro OCF Formatter.

This property is only relevant if the
hiveJdbcUrl property is set. It may be
required in your environment when the Hive
JDBC connection is secured through
credentials. This property is required if Hive
is configured to require passwords for the
JDBC connection.

gg.handler.name
.hiveJdbcDriver

Optional The fully qualified Hive
JDBC driver class name.

org.apach
e.hive.jd
bc.HiveDr
iver

Only applicable to the Avro OCF Formatter.

This property is only relevant if the
hiveJdbcUrl property is set. The default is
the Hive Hadoop2 JDBC driver name.
Typically, this property does not require
configuration and is provided for use when
Apache Hive introduces a new JDBC driver
class.

gg.handler.name
.openNextFileAt
Roll

Optional true | false false Applicable only to the HDFS Handler that is
not writing an Avro OCF or sequence file to
support extract, load, transform (ELT)
situations.

When set to true, this property creates a
new file immediately on the occurrence of a
file roll.

File rolls can be triggered by any one of the
following:

• Metadata change
• File roll interval elapsed
• Inactivity interval elapsed
Data files are being loaded into HDFS and
a monitor program is monitoring the write
directories waiting to consume the data.
The monitoring programs use the
appearance of a new file as a trigger so that
the previous file can be consumed by the
consuming application.

Chapter 8
Setting Up and Running the HDFS Handler

8-8

Property Optional
/
Require
d

Legal Values Default Explanation

gg.handler.name
.hsync

Optional true | false false Set to use an hflush call to ensure that
data is transferred from the HDFS Handler
to the HDFS cluster. When set to false,
hflush is called on open HDFS write
streams at transaction commit to ensure
write durability.

Setting hsync to true calls hsync instead of
hflush at transaction commit. Using hsync
ensures that data has moved to the HDFS
cluster and that the data is written to disk.
This provides a higher level of write
durability though it adversely effects
performance. Also, it does not make the
write data immediately available to analytic
tools.

For most applications setting this property
to false is appropriate.

8.3.3 Review a Sample Configuration
The following is a sample configuration for the HDFS Handler from the Java Adapter
properties file:

gg.handlerlist=hdfs
gg.handler.hdfs.type=hdfs
gg.handler.hdfs.mode=tx
gg.handler.hdfs.includeTokens=false
gg.handler.hdfs.maxFileSize=1g
gg.handler.hdfs.pathMappingTemplate=/ogg/${fullyQualifiedTableName
gg.handler.hdfs.fileRollInterval=0
gg.handler.hdfs.inactivityRollInterval=0
gg.handler.hdfs.partitionByTable=true
gg.handler.hdfs.rollOnMetadataChange=true
gg.handler.hdfs.authType=none
gg.handler.hdfs.format=delimitedtext

8.3.4 Performance Considerations
The HDFS Handler calls the HDFS flush method on the HDFS write stream to flush
data to the HDFS data nodes at the end of each transaction in order to maintain write
durability. This is an expensive call and performance can adversely affect, especially
in the case of transactions of one or few operations that result in numerous HDFS
flush calls.

Performance of the HDFS Handler can be greatly improved by batching multiple small
transactions into a single larger transaction. If you require high performance, configure
batching functionality for the Replicat process. For more information, see Replicat
Grouping.

The HDFS client libraries spawn threads for every HDFS file stream opened by the
HDFS Handler. Therefore, the number of threads executing in the JMV grows

Chapter 8
Setting Up and Running the HDFS Handler

8-9

proportionally to the number of HDFS file streams that are open. Performance of the
HDFS Handler may degrade as more HDFS file streams are opened. Configuring the
HDFS Handler to write to many HDFS files (due to many source replication tables or
extensive use of partitioning) may result in degraded performance. If your use case
requires writing to many tables, then Oracle recommends that you enable the roll on
time or roll on inactivity features to close HDFS file streams. Closing an HDFS file
stream causes the HDFS client threads to terminate, and the associated resources
can be reclaimed by the JVM.

8.3.5 Security
The HDFS cluster can be secured using Kerberos authentication. The HDFS Handler
can connect to Kerberos secured cluster. The HDFS core-site.xml should be in the
handlers classpath with the hadoop.security.authentication property set to kerberos
and the hadoop.security.authorization property set to true. Additionally, you must set
the following properties in the HDFS Handler Java configuration file:

gg.handler.name.authType=kerberos
gg.handler.name.kerberosPrincipalName=legal Kerberos principal name
gg.handler.name.kerberosKeytabFile=path to a keytab file that contains the password
for the Kerberos principal so that the HDFS Handler can programmatically perform the
Kerberos kinit operations to obtain a Kerberos ticket

You may encounter the inability to decrypt the Kerberos password from the keytab
file. This causes the Kerberos authentication to fall back to interactive mode which
cannot work because it is being invoked programmatically. The cause of this problem
is that the Java Cryptography Extension (JCE) is not installed in the Java Runtime
Environment (JRE). Ensure that the JCE is loaded in the JRE, see http://
www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html.

8.4 Writing in HDFS in Avro Object Container File Format
The HDFS Handler includes specialized functionality to write to HDFS in Avro Object
Container File (OCF) format. This Avro OCF is part of the Avro specification and is
detailed in the Avro documentation at:

https://avro.apache.org/docs/current/spec.html#Object+Container+Files

Avro OCF format may be a good choice because it:

• integrates with Apache Hive (Raw Avro written to HDFS is not supported by Hive.)

• provides good support for schema evolution.

Configure the following to enable writing to HDFS in Avro OCF format:

To write row data to HDFS in Avro OCF format, configure the
gg.handler.name.format=avro_row_ocf property.

To write operation data to HDFS is Avro OCF format, configure the
gg.handler.name.format=avro_op_ocf property.

The HDFS and Avro OCF integration includes functionality to create the corresponding
tables in Hive and update the schema for metadata change events. The configuration
section provides information on the properties to enable integration with Hive. The
Oracle GoldenGate Hive integration accesses Hive using the JDBC interface, so the
Hive JDBC server must be running to enable this integration.

Chapter 8
Writing in HDFS in Avro Object Container File Format

8-10

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://avro.apache.org/docs/current/spec.html#Object+Container+Files

8.5 Generating HDFS File Names Using Template Strings
The HDFS Handler can dynamically generate HDFS file names using a template
string. The template string allows you to generate a combination of keywords that are
dynamically resolved at runtime with static strings to provide you more control of
generated HDFS file names. You can control the template file name using the
gg.handler.name.fileNameMappingTemplate configuration property. The default value for
this parameters is:

${fullyQualifiedTableName}_${groupName}_${currentTimestamp}.txt

Supported keywords which are dynamically replaced at runtime include the following:

Keyword
Replacement

${fullyQualifiedTableName}

The fully qualified table name with period (.) delimiting the names. For example,
oracle.test.table1.

${catalogName}

The catalog name of the source table. For example, oracle.

${schemaName}

The schema name of the source table. For example, test.

${tableName}

The short table name of the source table. For example, table1.

${groupName}

The Replicat process name concatenated with the thread id if using coordinated
apply. For example, HDFS001.

${currentTimestamp}

The default output format for the date time is yyyy-MM-dd_HH-mm-ss.SSS. For example,
2017-07-05_04-31-23.123.
Alternatively, your can configure your own format mask for the date using the
syntax, ${currentTimestamp[yyyy-MM-dd_HH-mm-ss.SSS]}. Date time format masks follow
the convention in the java.text.SimpleDateFormat Java class.

${toLowerCase[]}

Converts the argument inside of the square brackets to lower case. Keywords can be
nested inside of the square brackets as follows:

${toLowerCase[${fullyQualifiedTableName}]}

This is important because source table names are normalized in Oracle GoldenGate
to upper case.

${toUpperCase[]}

Converts the arguments inside of the square brackets to upper case. Keywords can
be nested inside of the square brackets.

Following are examples of legal templates and the resolved strings:

Chapter 8
Generating HDFS File Names Using Template Strings

8-11

Legal Template
Replacement

${schemaName}.${tableName}__${groupName}_${currentTimestamp}.txt

test.table1__HDFS001_2017-07-05_04-31-23.123.txt

${fullyQualifiedTableName}--${currentTimestamp}.avro

oracle.test.table1—2017-07-05_04-31-23.123.avro

${fullyQualifiedTableName}_${currentTimestamp[yyyy-MM-ddTHH-mm-ss.SSS]}.json

oracle.test.table1—2017-07-05T04-31-23.123.json

Be aware of these restrictions when generating HDFS file names using templates:

• Generated HDFS file names must be legal HDFS file names.

• Oracle strongly recommends that you use ${groupName} as part of the HDFS file
naming template when using coordinated apply and breaking down source table
data to different Replicat threads. The group name provides uniqueness of
generated HDFS names that ${currentTimestamp} alone does not guarantee..
HDFS file name collisions result in an abend of the Replicat process.

8.6 Metadata Change Events
Metadata change events are now handled in the HDFS Handler. The default behavior
of the HDFS Handler is to roll the current relevant file in the event of a metadata
change event. This behavior allows for the results of metadata changes to at least be
separated into different files. File rolling on metadata change is configurable and can
be turned off.

To support metadata change events, the process capturing changes in the source
database must support both DDL changes and metadata in trail. Oracle
GoldenGatedoes not support DDL replication for all database implementations. See
the Oracle GoldenGateinstallation and configuration guide for the appropriate
database to determine whether DDL replication is supported.

8.7 Partitioning
The HDFS Handler supports partitioning of table data by one or more column values.
The configuration syntax to enable partitioning is the following:

gg.handler.name.partitioner.fully qualified table name=one mor more column names
separated by commas

Consider the following example:

gg.handler.hdfs.partitioner.dbo.orders=sales_region

This example can result in the following breakdown of files in HDFS:

/ogg/dbo.orders/par_sales_region=west/data files
/ogg/dbo.orders/par_sales_region=east/data files
/ogg/dbo.orders/par_sales_region=north/data files
/ogg/dbo.orders/par_sales_region=south/data files

You should exercise care when choosing columns for partitioning. The key is to
choose columns that contain only a few (10 or less) possible values, and to make sure

Chapter 8
Metadata Change Events

8-12

that those values are also helpful for grouping and analyzing the data. For example, a
column of sales regions would be good for partitioning. A column that contains the
customers dates of birth would not be good for partitioning. Configuring partitioning on
a column that has many possible values can cause problems. A poor choice can result
in hundreds of HDFS file streams being opened, and performance may degrade for
the reasons discussed in Performance Considerations. Additionally, poor partitioning
can result in problems during data analysis. Apache Hive requires that all where
clauses specify partition criteria if the Hive data is partitioned.

8.8 HDFS Additional Considerations
The Oracle HDFS Handler requires certain HDFS client libraries to be resolved in its
classpath as a prerequisite for streaming data to HDFS.

For a list of required client JAR files by version, see HDFS Handler Client
Dependencies. The HDFS client jars do not ship with the Oracle GoldenGate for Big
Dataproduct. The HDFS Handler supports multiple versions of HDFS, and the HDFS
client jars must be the same version as the HDFS version to which the HDFS Handler
is connecting. The HDFS client jars are open source and are freely available to
download from sites such as the Apache Hadoop site or the maven central repository.

In order to establish connectivity to HDFS, the HDFS core-site.xml file must be in the
classpath of the HDFS Handler. If the core-site.xml file is not in the classpath, the
HDFS client code defaults to a mode that attempts to write to the local file system.
Writing to the local file system instead of HDFS can be advantageous for
troubleshooting, building a point of contact (POC), or as a step in the process of
building an HDFS integration.

Another common issue is that data streamed to HDFS using the HDFS Handler may
not be immediately available to Big Data analytic tools such as Hive. This behavior
commonly occurs when the HDFS Handler is in possession of an open write stream to
an HDFS file. HDFS writes in blocks of 128 MB by default. HDFS blocks under
construction are not always visible to analytic tools. Additionally, inconsistencies
between file sizes when using the -ls, -cat, and -get commands in the HDFS shell
may occur. This is an anomaly of HDFS streaming and is discussed in the HDFS
specification. This anomaly of HDFS leads to a potential 128 MB per file blind spot in
analytic data. This may not be an issue if you have a steady stream of replication data
and do not require low levels of latency for analytic data from HDFS. However, this
may be a problem in some use cases because closing the HDFS write stream finalizes
the block writing. Data is immediately visible to analytic tools, and file sizing metrics
become consistent again. Therefore, the new file rolling feature in the HDFS Handler
can be used to close HDFS writes streams, making all data visible.

Important:

The file rolling solution may present its own problems. Extensive use of file
rolling can result in many small files in HDFS. Many small files in HDFS may
result in performance issues in analytic tools.

You may also notice the HDFS inconsistency problem in the following scenarios.

• The HDFS Handler process crashes.

Chapter 8
HDFS Additional Considerations

8-13

• A forced shutdown is called on the HDFS Handler process.

• A network outage or other issue causes the HDFS Handler process to abend.

In each of these scenarios, it is possible for the HDFS Handler to end without explicitly
closing the HDFS write stream and finalizing the writing block. HDFS in its internal
process ultimately recognizes that the write stream has been broken, so HDFS
finalizes the write block. In this scenario, you may experience a short term delay
before the HDFS process finalizes the write block.

8.9 Best Practices
It is considered a Big Data best practice for the HDFS cluster to operate on dedicated
servers called cluster nodes. Edge nodes are server machines that host the
applications to stream data to and retrieve data from the HDFS cluster nodes.
Because the HDFS cluster nodes and the edge nodes are different servers, the
following benefits are seen:

• The HDFS cluster nodes do not compete for resources with the applications
interfacing with the cluster.

• The requirements for the HDFS cluster nodes and edge nodes probably differ.
This physical topology allows the appropriate hardware to be tailored to specific
needs.

It is a best practice for the HDFS Handler to be installed and running on an edge node
and streaming data to the HDFS cluster using network connection. The HDFS Handler
can run on any machine that has network visibility to the HDFS cluster. The installation
of the HDFS Handler on an edge node requires that the core-site.xml files, and the
dependency jars are copied to the edge node so that the HDFS Handler can access
them. The HDFS Handler can also run collocated on a HDFS cluster node if required.

8.10 Troubleshooting the HDFS Handler
Troubleshooting of the HDFS Handler begins with the contents for the Java log4j file.
Follow the directions in the Java Logging Configuration to configure the runtime to
correctly generate the Java log4j log file.

Topics:

• Java Classpath

• HDFS Connection Properties

• Handler and Formatter Configuration

8.10.1 Java Classpath
Problems with the Java classpath are common. The usual indication of a Java
classpath problem is a ClassNotFoundException in the Java log4j log file. The Java
log4j log file can be used to troubleshoot this issue. Setting the log level to DEBUG
allows for logging of each of the jars referenced in the gg.classpath object to be logged
to the log file. In this way, you can ensure that all of the required dependency jars are
resolved by enabling DEBUG level logging and search the log file for messages, as in the
following:

2015-09-21 10:05:10 DEBUG ConfigClassPath:74 - ...adding to classpath: url="file:/
ggwork/hadoop/hadoop-2.6.0/share/hadoop/common/lib/guava-11.0.2.jar

Chapter 8
Best Practices

8-14

8.10.2 HDFS Connection Properties
The contents of the HDFS core-site.xml file (including default settings) are output to
the Java log4j log file when the logging level is set to DEBUG or TRACE. This output
shows the connection properties to HDFS. Search for the following in the Java log4j
log file:

2015-09-21 10:05:11 DEBUG HDFSConfiguration:58 - Begin - HDFS configuration object
contents for connection troubleshooting.

If the fs.defaultFS property points to the local file system, then the core-site.xml file is
not properly set in the gg.classpath property.

 Key: [fs.defaultFS] Value: [file:///].

This shows to the fs.defaultFS property properly pointed at and HDFS host and port.

Key: [fs.defaultFS] Value: [hdfs://hdfshost:9000].

8.10.3 Handler and Formatter Configuration
The Java log4j log file contains information on the configuration state of the HDFS
Handler and the selected formatter. This information is output at the INFO log level. The
output resembles the following:

2015-09-21 10:05:11 INFO AvroRowFormatter:156 - **** Begin Avro Row Formatter -
 Configuration Summary ****
 Operation types are always included in the Avro formatter output.
 The key for insert operations is [I].
 The key for update operations is [U].
 The key for delete operations is [D].
 The key for truncate operations is [T].
 Column type mapping has been configured to map source column types to an
 appropriate corresponding Avro type.
 Created Avro schemas will be output to the directory [./dirdef].
 Created Avro schemas will be encoded using the [UTF-8] character set.
 In the event of a primary key update, the Avro Formatter will ABEND.
 Avro row messages will not be wrapped inside a generic Avro message.
 No delimiter will be inserted after each generated Avro message.
**** End Avro Row Formatter - Configuration Summary ****

2015-09-21 10:05:11 INFO HDFSHandler:207 - **** Begin HDFS Handler -
 Configuration Summary ****
 Mode of operation is set to tx.
 Data streamed to HDFS will be partitioned by table.
 Tokens will be included in the output.
 The HDFS root directory for writing is set to [/ogg].
 The maximum HDFS file size has been set to 1073741824 bytes.
 Rolling of HDFS files based on time is configured as off.
 Rolling of HDFS files based on write inactivity is configured as off.
 Rolling of HDFS files in the case of a metadata change event is enabled.
 HDFS partitioning information:
 The HDFS partitioning object contains no partitioning information.
HDFS Handler Authentication type has been configured to use [none]
**** End HDFS Handler - Configuration Summary ****

Chapter 8
Troubleshooting the HDFS Handler

8-15

9
Using the Java Database Connectivity
Handler

Learn how to use the Java Database Connectivity (JDBC) Handler, which can
replicate source transactional data to a target or database.

Topics:

• Overview

• Detailed Functionality

• Setting Up and Running the JDBC Handler

• Sample Configurations

9.1 Overview
The Generic Java Database Connectivity (JDBC) Handler lets you replicate source
transactional data to a target system or database by using a JDBC interface. You can
use it with targets that support JDBC connectivity.

You can use the JDBC API to access virtually any data source, from relational
databases to spreadsheets and flat files. JDBC technology also provides a common
base on which the JDBC Handler was built. The JDBC handler with the JDBC
metadata provider also lets you use Replicat features such as column mapping and
column functions. For more information about using these features, see Using the
Metadata Providers

For more information about using the JDBC API, see http://docs.oracle.com/javase/8/
docs/technotes/guides/jdbc/index.html.

9.2 Detailed Functionality
The JDBC Handler replicates source transactional data to a target or database by
using a JDBC interface.

Topics:

• Single Operation Mode

• Oracle Database Data Types

• MySQL Database Data Types

• Netezza Database Data Types

• Redshift Database Data Types

9-1

http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/index.html

9.2.1 Single Operation Mode
The JDBC Handler performs SQL operations on every single trail record (row
operation) when the trail record is processed by the handler. The JDBC Handler does
not use the BATCHSQL feature of the JDBC API to batch operations.

9.2.2 Oracle Database Data Types
The following column data types are supported for Oracle Database targets:

NUMBER

DECIMAL

INTEGER

FLOAT

REAL

DATE

TIMESTAMP

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

CHAR

VARCHAR2

NCHAR

NVARCHAR2

RAW

CLOB

NCLOB

BLOB

TIMESTAMP WITH TIMEZONE1

TIME WITH TIMEZONE2

9.2.3 MySQL Database Data Types
The following column data types are supported for MySQL Database targets:

INT

REAL

FLOAT

DOUBLE

NUMERIC

DATE

DATETIME

TIMESTAMP

TINYINT

BOOLEAN

SMALLINT

BIGINT

1 Time zone with a two-digit hour and a two-digit minimum offset.
2 Time zone with a two-digit hour and a two-digit minimum offset.

Chapter 9
Detailed Functionality

9-2

MEDIUMINT

DECIMAL

BIT

YEAR

ENUM

CHAR

VARCHAR

9.2.4 Netezza Database Data Types
The following column data types are supported for Netezza database targets:

byteint

smallint

integer

bigint

numeric(p,s)

numeric(p)

float(p)

Real

double

char

varchar

nchar

nvarchar

date

time

Timestamp

9.2.5 Redshift Database Data Types
The following column data types are supported for Redshift database targets:

SMALLINT
INTEGER

BIGINT

DECIMAL

REAL

DOUBLE

CHAR

VARCHAR

DATE

TIMESTAMP

9.3 Setting Up and Running the JDBC Handler
The following sections provide instructions for configuring the JDBC Handler
components and running the handler.

Chapter 9
Setting Up and Running the JDBC Handler

9-3

Note:

Use the JDBC Metadata Provider with the JDBC Handler to obtain column
mapping features, column function features, and better data type mapping.

Topics:

• Java Classpath

• Handler Configuration

• Statement Caching

• Setting Up Error Handling

9.3.1 Java Classpath
The JDBC Java Driver location must be included in the class path of the handler using
the gg.classpath property.

For example, the configuration for a MySQL database could be:

gg.classpath= /path/to/jdbc/driver/jar/mysql-connector-java-5.1.39-bin.jar

9.3.2 Handler Configuration
You configure the JDBC Handler operation using the properties file. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the JDBC Handler, you must first configure the handler type
by specifying gg.handler.name.type=jdbc and the other JDBC properties as follows:

Table 9-1 JDBC Handler Configuration Properties

Properties Requir
ed/
Option
al

Legal
Values

Default Explanation

gg.handler.name
.type

Require
d

jdbc None Selects the JDBC Handler for streaming
change data capture into name.

gg.handler.name
.connectionURL

Require
d

A valid
JDBC
connectio
n URL

None The target specific JDBC connection URL.

gg.handler.name
.DriverClass

Target
databas
e
depend
ent.

The
target
specific
JDBC
driver
class
name

None The target specific JDBC driver class
name.

Chapter 9
Setting Up and Running the JDBC Handler

9-4

Table 9-1 (Cont.) JDBC Handler Configuration Properties

Properties Requir
ed/
Option
al

Legal
Values

Default Explanation

gg.handler.name
.userName

Target
databas
e
depend
ent.

A valid
user
name

None The user name used for the JDBC
connection to the target database.

gg.handler.name
.password

Target
databas
e
depend
ent.

A valid
password

None The password used for the JDBC
connection to the target database.

gg.handler.name
.maxActiveState
ments

Optiona
l

Unsigned
integer

Target
database
depende
nt

If this property is not specified, the JDBC
Handler queries the target dependent
database metadata indicating maximum
number of active prepared SQL statements.
Some targets do not provide this metadata
so then the default value of 256 active SQL
statements is used.

If this property is specified, the JDBC
Handler will not query the target database
for such metadata and use the property
value provided in the configuration.

In either case, when the JDBC handler
finds that the total number of active SQL
statements is about to be exceeded, the
oldest SQL statement is removed from the
cache to add one new SQL statement.

9.3.3 Statement Caching
To speed up DML operations, JDBC driver implementations typically allow multiple
statements to be cached. This configuration avoids repreparing a statement for
operations that share the same profile or template.

The JDBC Handler uses statement caching to speed up the process and caches as
many statements as the underlying JDBC driver supports. The cache is implemented
by using an LRU cache where the key is the profile of the operation (stored internally
in the memory as an instance of StatementCacheKey class), and the value is the
PreparedStatement object itself.

A StatementCacheKey object contains the following information for the various DML
profiles that are supported in the JDBC Handler:

DML operation type StatementCacheKey contains a tuple of:

INSERT (table name, operation type, ordered after-image column
indices)

UPDATE (table name, operation type, ordered after-image column
indices)

Chapter 9
Setting Up and Running the JDBC Handler

9-5

DML operation type StatementCacheKey contains a tuple of:

DELETE (table name, operation type)

TRUNCATE (table name, operation type)

9.3.4 Setting Up Error Handling
The JDBC Handler supports using the REPERROR and HANDLECOLLISIONS Oracle
GoldenGate parameters. See Reference for Oracle GoldenGate.

You must configure the following properties in the handler properties file to define the
mapping of different error codes for the target database.

gg.error.duplicateErrorCodes

A comma-separated list of error codes defined in the target database that indicate a
duplicate key violation error. Most of the drivers of the JDBC drivers return a valid
error code so, REPERROR actions can be configured based on the error code. For
example:

gg.error.duplicateErrorCodes=1062,1088,1092,1291,1330,1331,1332,1333

gg.error.notFoundErrorCodes

A comma-separated list of error codes that indicate missed DELETE or UPDATE
operations on the target database.
In some cases, the JDBC driver errors occur when an UPDATE or DELETE operation does
not modify any rows in the target database so, no additional handling is required by
the JDBC Handler.
Most JDBC drivers do not return an error when a DELETE or UPDATE is affecting zero
rows so, the JDBC Handler automatically detects a missed UPDATE or DELETE operation
and triggers an error to indicate a not-found error to the Replicat process. The
Replicat process can then execute the specified REPERROR action.
The default error code used by the handler is zero. When you configure this property
to a non-zero value, the configured error code value is used when the handler triggers
a not-found error. For example:

gg.error.notFoundErrorCodes=1222

gg.error.deadlockErrorCodes

A comma-separated list of error codes that indicate a deadlock error in the target
database. For example:

gg.error.deadlockErrorCodes=1213

Setting Codes
Oracle recommends that you set a non-zero error code for the
gg.error.duplicateErrorCodes, gg.error.notFoundErrorCodes, and
gg.error.deadlockErrorCodes properties because Replicat does not respond to
REPERROR and HANDLECOLLISIONS configuration when the error code is set to zero.

Sample Oracle Database Target Error Codes

gg.error.duplicateErrorCodes=1
gg.error.notFoundErrorCodes=0
gg.error.deadlockErrorCodes=60

Chapter 9
Setting Up and Running the JDBC Handler

9-6

Sample MySQL Database Target Error Codes

gg.error.duplicateErrorCodes=1022,1062
gg.error.notFoundErrorCodes=1329
gg.error.deadlockErrorCodes=1213,1614

9.4 Sample Configurations
The following sections contain sample configurations for the databases supported by
the JDBC Handler from the Java Adapter properties file.

Topics:

• Sample Oracle Database Target

• Sample Oracle Database Target with JDBC Metadata Provider

• Sample MySQL Database Target

• Sample MySQL Database Target with JDBC Metadata Provider

9.4.1 Sample Oracle Database Target
gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for Oracle database target
gg.handler.jdbcwriter.DriverClass=oracle.jdbc.driver.OracleDriver
gg.handler.jdbcwriter.connectionURL=jdbc:oracle:thin:@<DBServer address>:
1521:<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/oracle/jdbc/driver/ojdbc5.jar
goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./
dirprm

9.4.2 Sample Oracle Database Target with JDBC Metadata Provider
gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for Oracle database target with JDBC Metadata provider
gg.handler.jdbcwriter.DriverClass=oracle.jdbc.driver.OracleDriver
gg.handler.jdbcwriter.connectionURL=jdbc:oracle:thin:@<DBServer address>:
1521:<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/oracle/jdbc/driver/ojdbc5.jar
#JDBC Metadata provider for Oracle target
gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:oracle:thin:@<DBServer address>:1521:<database name>
gg.mdp.DriverClassName=oracle.jdbc.driver.OracleDriver

Chapter 9
Sample Configurations

9-7

gg.mdp.UserName=<dbuser>
gg.mdp.Password=<dbpassword>
goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./
dirprm

9.4.3 Sample MySQL Database Target
gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for MySQL database target
gg.handler.jdbcwriter.DriverClass=com.mysql.jdbc.Driver
gg.handler.jdbcwriter.connectionURL=jdbc:<a target="_blank"
href="mysql://">mysql://<DBServer address>:3306/<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/mysql/jdbc/driver//mysql-connector-java-5.1.39-bin.jar

goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./
dirprm

9.4.4 Sample MySQL Database Target with JDBC Metadata Provider
gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for MySQL database target with JDBC Metadata provider
gg.handler.jdbcwriter.DriverClass=com.mysql.jdbc.Driver
gg.handler.jdbcwriter.connectionURL=jdbc:<a target="_blank"
href="mysql://">mysql://<DBServer address>:3306/<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/mysql/jdbc/driver//mysql-connector-java-5.1.39-bin.jar
#JDBC Metadata provider for MySQL target
gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:mysql://<DBServer
address>:3306/<database name>
gg.mdp.DriverClassName=com.mysql.jdbc.Driver
gg.mdp.UserName=<dbuser>
gg.mdp.Password=<dbpassword>

goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j

Chapter 9
Sample Configurations

9-8

gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./
dirprm

Chapter 9
Sample Configurations

9-9

10
Using the Kafka Handler

Learn how to use the Kafka Handler, which is designed to stream change capture data
from an Oracle GoldenGate trail to a Kafka topic.

Topics:

• Overview

• Detailed Functionality

• Setting Up and Running the Kafka Handler

• Schema Propagation

• Performance Considerations

• About Security

• Metadata Change Events

• Snappy Considerations

• Troubleshooting

10.1 Overview
The Oracle GoldenGate for Big Data Kafka Handler streams change capture data from
an Oracle GoldenGate trail to a Kafka topic. Additionally, the Kafka Handler provides
functionality to publish messages to a separate schema topic. Schema publication for
Avro and JSON is supported.

Apache Kafka is an open source, distributed, partitioned, and replicated messaging
service, see http://kafka.apache.org/.

Kafka can be run as a single instance or as a cluster on multiple servers. Each Kafka
server instance is called a broker. A Kafka topic is a category or feed name to which
messages are published by the producers and retrieved by consumers.

In Kafka, when the topic name corresponds to the fully-qualified source table name,
the Kafka Handler implements a Kafka producer. The Kafka producer writes serialized
change data capture, from multiple source tables to either a single configured topic or
separating source operations, to different Kafka topics.

10.2 Detailed Functionality
Transaction Versus Operation Mode

The Kafka Handler sends instances of the Kafka ProducerRecord class to the Kafka
producer API, which in turn publishes the ProducerRecord to a Kafka topic. The Kafka
ProducerRecord effectively is the implementation of a Kafka message. The
ProducerRecord has two components: a key and a value. Both the key and value are
represented as byte arrays by the Kafka Handler. This section describes how the
Kafka Handler publishes data.

10-1

http://kafka.apache.org/

Transaction Mode

The following configuration sets the Kafka Handler to transaction mode:

gg.handler.name.Mode=tx

In transaction mode, the serialized data is concatenated for every operation in a
transaction from the source Oracle GoldenGate trail files. The contents of the
concatenated operation data is the value of the Kafka ProducerRecord object. The key
of the Kafka ProducerRecord object is NULL. The result is that Kafka messages
comprise data from 1 to N operations, where N is the number of operations in the
transaction.

For grouped transactions, all the data for all the operations are concatenated into a
single Kafka message. Therefore, grouped transactions may result in very large Kafka
messages that contain data for a large number of operations.

Operation Mode

The following configuration sets the Kafka Handler to operation mode:

gg.handler.name.Mode=op

In operation mode, the serialized data for each operation is placed into an individual
ProducerRecord object as the value. The ProducerRecord key is the fully qualified table
name of the source operation. The ProducerRecord is immediately sent using the Kafka
Producer API. This means that there is a 1 to 1 relationship between the incoming
operations and the number of Kafka messages produced.

Blocking Versus Non-Blocking Mode

The Kafka Handler can send messages to Kafka in either blocking mode
(synchronous) or non-blocking mode (asynchronous).

Blocking Mode

The following configuration property sets the Kafka Handler to blocking mode:

gg.handler.name.BlockingSend=true

Messages are delivered to Kafka on a synchronous basis. The Kafka Handler does not
send the next message until the current message has been written to the intended
topic and an acknowledgement has been received. Blocking mode provides the best
guarantee of message delivery but at the cost of reduced performance.

You must never set the Kafka Producer linger.ms variable when in blocking mode, as
this causes the Kafka producer to wait for the entire timeout period before sending the
message to the Kafka broker. When this happens, the Kafka Handler waits for
acknowledgement that the message has been sent while at the same time the Kafka
Producer buffers messages to be sent to the Kafka brokers.

Non-Blocking Mode

The following configuration property sets the Kafka Handler to non-blocking mode:

gg.handler.name.BlockingSend=false

Chapter 10
Detailed Functionality

10-2

Messages are delivered to Kafka asynchronously. Kafka messages are published one
after the other without waiting for acknowledgements. The Kafka Producer client may
buffer incoming messages in order to increase throughput.

On each transaction commit, the Kafka producer flush call is invoked to ensure that all
outstanding messages are transferred to the Kafka cluster. This allows the Kafka
Handler to safely checkpoint, ensuring zero data loss. Invocation of the Kafka
producer flush call is not affected by the linger.ms duration. This allows the Kafka
Handler to safely checkpoint ensuring zero data loss.

You can control when the Kafka Producer flushes data to the Kafka Broker by a
number of configurable properties in the Kafka producer configuration file. In order to
enable batch sending of messages by the Kafka Producer, both the batch.size and
linger.ms Kafka Producer properties must be set. The batch.size controls the
maximum number of bytes to buffer before a send to Kafka, while the linger.ms
variable controls the maximum milliseconds to wait before sending data. Data is sent
to Kafka once the batch.size is reached or when the linger.ms period expires,
whichever comes first. Setting the batch.size variable only ensures that messages are
sent immediately to Kafka.

Topic Name Selection

The topic is resolved at runtime using this configuration parameter:

gg.handler.topicMappingTemplate

You can configure a static string, keywords, or a combination of static strings and
keywords to dynamically resolve the topic name at runtime based on the context of the
current operation, see Using Templates to Resolve the Topic Name and Message
Key.

Kafka Broker Settings

To configure topics to be created automatically, set the auto.create.topics.enable
property to true. This is the default setting.

If you set the auto.create.topics.enable property to false, then you must manually
create topics before you start the Replicat process.

Schema Propagation

The schema data for all tables is delivered to the schema topic that is configured with
the schemaTopicName property. For more information , see Schema Propagation.

10.3 Setting Up and Running the Kafka Handler
Instructions for configuring the Kafka Handler components and running the handler are
described in this section.

You must install and correctly configure Kafka either as a single node or a clustered
instance, see http://kafka.apache.org/documentation.html.

If you are using a Kafka distribution other than Apache Kafka, then consult the
documentation for your Kafka distribution for installation and configuration instructions.

Zookeeper, a prerequisite component for Kafka and Kafka broker (or brokers), must be
up and running.

Chapter 10
Setting Up and Running the Kafka Handler

10-3

http://kafka.apache.org/documentation.html

Oracle recommends and considers it best practice that the data topic and the schema
topic (if applicable) are preconfigured on the running Kafka brokers. You can create
Kafka topics dynamically. However, this relies on the Kafka brokers being configured
to allow dynamic topics.

If the Kafka broker is not collocated with the Kafka Handler process, then the remote
host port must be reachable from the machine running the Kafka Handler.

Topics:

• Classpath Configuration

• Kafka Handler Configuration

• Java Adapter Properties File

• Kafka Producer Configuration File

• Using Templates to Resolve the Topic Name and Message Key

• Kafka Configuring with Kerberos on a Hadoop Platform

10.3.1 Classpath Configuration
For the Kafka Handler to connect to Kafka and run, the Kafka Producer properties file
and the Kafka client JARs must be configured in the gg.classpath configuration
variable. The Kafka client JARs must match the version of Kafka that the Kafka
Handler is connecting to. For a list of the required client JAR files by version, see
Kafka Handler Client Dependencies.

The recommended storage location for the Kafka Producer properties file is the Oracle
GoldenGate dirprm directory.

The default location of the Kafka client JARs is Kafka_Home/libs/*.

The gg.classpath must be configured precisely. The path of the Kafka Producer
Properties file must contain the path with no wildcard appended. If the * wildcard is
included in the path to the Kafka Producer Properties file, the file is not picked up.
Conversely, path to the dependency JARs must include the * wild card character in
order to include all the JAR files in that directory in the associated classpath. Do not
use *.jar. The following is an example of the correctly configured classpath:

gg.classpath={kafka install dir}/libs/*

10.3.2 Kafka Handler Configuration
The following are the configurable values for the Kafka Handler. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the Kafka Handler, you must first configure the handler type
by specifying gg.handler.jdbc.type=kafka and the other Kafka properties as follows:

Table 10-1 Configuration Properties for Kafka Handler

Property Name Required /
Optional

Property Value Default Description

gg.handlerlist Required name (choice of any
name)

None List of handlers to be used.

Chapter 10
Setting Up and Running the Kafka Handler

10-4

Table 10-1 (Cont.) Configuration Properties for Kafka Handler

Property Name Required /
Optional

Property Value Default Description

gg.handler.name.
type

Required kafka None Type of handler to use.

gg.handler.name.
KafkaProducerCon
figFile

Optional Any custom file
name

kafka-producer-
default.properties

Filename in classpath that holds
Apache Kafka properties to
configure the Apache Kafka
producer.

gg.handler.name.
Format

Optional Formatter class or
short code.

delimitedtext Formatter to use to format
payload. Can be one of xml,
delimitedtext, json, json_row,
avro_row, avro_op

gg.handler.name.
SchemaTopicName

Required
when schema
delivery is
required.

Name of the schema
topic.

None Topic name where schema data
will be delivered. If this property
is not set, schema will not be
propagated. Schemas will be
propagated only for Avro
formatters.

gg.handler.name.
SchemaPrClassNam
e

Optional Fully qualified class
name of a custom
class that
implements Oracle
GoldenGate for Big
Data Kafka
Handler's
CreateProducerReco
rd Java Interface.

Provided this
implementation
class:
oracle.goldengate.
handler.kafka

ProducerRecord

Schema is also propagated as a
ProducerRecord. The default key
is the fully qualified table name. If
this needs to be changed for
schema records, the custom
implementation of the
CreateProducerRecord interface
needs to be created and this
property needs to be set to point
to the fully qualified name of the
new class.

gg.handler.name.
BlockingSend

Optional true | false false If this property is set to true, then
delivery to Kafka works in a
completely synchronous model.
The next payload is sent only
after the current payload has
been written to the intended topic
and an acknowledgement has
been received. In transaction
mode, this provides exactly once
semantics. If this property is set
to false, then delivery to Kafka is
made to work in an
asynchronous model. Payloads
are sent one after the other
without waiting for
acknowledgements. Kafka
internal queues may buffer
contents to increase throughput.
Checkpoints are made only when
acknowledgements are received
from Kafka brokers using Java
callbacks.

Chapter 10
Setting Up and Running the Kafka Handler

10-5

Table 10-1 (Cont.) Configuration Properties for Kafka Handler

Property Name Required /
Optional

Property Value Default Description

gg.handler.name.
mode

Optional tx/op tx With Kafka Handler operation
mode, each change capture data
record (Insert, Update, Delete,
and so on) payload is
represented as a Kafka Producer
Record and is flushed one at a
time. With Kafka Handler in
transaction mode, all operations
within a source transaction are
represented as a single Kafka
Producer record. This combined
byte payload is flushed on a
transaction Commit event.

gg.handler.name.
topicMappingTemp
late

Required A template string
value to resolve the
Kafka topic name at
runtime.

None See Using Templates to Resolve
the Topic Name and Message
Key.

gg.handler.name.
keyMappingTempla
te

Required A template string
value to resolve the
Kafka message key
at runtime.

None See Using Templates to Resolve
the Topic Name and Message
Key.

gg.hander.name.l
ogSuccessfullySe
ntMessages

Optional true | false true Set to true, the Kafka Handler
will log at the INFO level message
that have been successfully sent
to Kafka. Enabling this property
has negative impact
onnnperformance.

10.3.3 Java Adapter Properties File
The following is a sample configuration for the Kafka Handler from the Adapter
properties file:

gg.handlerlist = kafkahandler
gg.handler.kafkahandler.Type = kafka
gg.handler.kafkahandler.KafkaProducerConfigFile = custom_kafka_producer.properties
gg.handler.kafkahandler.topicMappingTemplate=oggtopic
gg.handler.kafkahandler.keyMappingTemplate=${currentTimestamp}
gg.handler.kafkahandler.Format = avro_op
gg.handler.kafkahandler.SchemaTopicName = oggSchemaTopic
gg.handler.kafkahandler.SchemaPrClassName = com.company.kafkaProdRec.SchemaRecord
gg.handler.kafkahandler.Mode = tx
gg.handler.kafkahandler.BlockingSend = true

You can find a sample Replicat configuration and a Java Adapter Properties file for a
Kafka integration in the following directory:

GoldenGate_install_directory/AdapterExamples/big-data/kafka

Chapter 10
Setting Up and Running the Kafka Handler

10-6

10.3.4 Kafka Producer Configuration File
The Kafka Handler must access a Kafka producer configuration file in order to publish
messages to Kafka. The file name of the Kafka producer configuration file is controlled
by the following configuration in the Kafka Handler properties.

gg.handler.kafkahandler.KafkaProducerConfigFile=custom_kafka_producer.properties

The Kafka Handler attempts to locate and load the Kafka producer configuration file by
using the Java classpath. Therefore, the Java classpath must include the directory
containing the Kafka Producer Configuration File.

The Kafka producer configuration file contains Kafka proprietary properties. The Kafka
documentation provides configuration information for the 0.8.2.0 Kafka producer
interface properties. The Kafka Handler uses these properties to resolve the host and
port of the Kafka brokers, and properties in the Kafka producer configuration file
control the behavior of the interaction between the Kafka producer client and the Kafka
brokers.

A sample of configuration file for the Kafka producer is as follows:

bootstrap.servers=localhost:9092
acks = 1
compression.type = gzip
reconnect.backoff.ms = 1000

value.serializer = org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer = org.apache.kafka.common.serialization.ByteArraySerializer
100KB per partition
batch.size = 102400
linger.ms = 0
max.request.size = 1048576
send.buffer.bytes = 131072

10.3.5 Using Templates to Resolve the Topic Name and Message Key
The Kafka Handler provides functionality to resolve the topic name and the message
key at runtime using a template configuration value. Templates allow you to configure
static values and keywords. Keywords are used to dynamically replace the keyword
with the context of the current processing. The templates use the following
configuration properties:

gg.handler.name.topicMappingTemplate
gg.handler.name.keyMappingTemplate

Template Modes

Source database transactions are made up of one or more individual operations that
are the individual inserts, updates, and deletes. The Kafka Handler can be configured
to send one message per operation (insert, update, delete), or alternatively can be
configured to group operations into messages at the transaction level. Many template
keywords resolve data based on the context of an individual source database
operation. Therefore, many of the keywords do not work when sending messages at
the transaction level. For example, using ${fullyQualifiedTableName} does not work
when sending messages at the transaction level rather it resolves to the qualified
source table name for an operation. However, transactions can contain multiple

Chapter 10
Setting Up and Running the Kafka Handler

10-7

operations for many source tables. Resolving the fully qualified table name for
messages at the transaction level is non-deterministic so abends at runtime.

Template Keywords

This table includes a column if the keyword is supported for transaction level
messages.

Keyword Explanation Transaction Message
Support

${fullyQualifiedTableName} Resolves to the fully qualified
table name including the
period (.) delimiter between
the catalog, schema, and table
names.

For example,
test.dbo.table1.

No

${catalogName} Resolves to the catalog name. No

${schemaName} Resolves to the schema
name.

No

${tableName} Resolves to the short table
name.

No

${opType} Resolves to the type of the
operation: (INSERT, UPDATE,
DELETE, or TRUNCATE)

No

${primaryKeys} Resolves to the concatenated
primary key values delimited
by an underscore (_)
character.

No

${position} The sequence number of the
source trail file followed by the
offset (RBA).

Yes

${opTimestamp} The operation timestamp from
the source trail file.

Yes

${emptyString} Resolves to “”. Yes

${groupName} Resolves to the name of the
Replicat process. If using
coordinated delivery, it
resolves to the name of the
Replicat process with the
Replicate thread number
appended.

Yes

${staticMap[]} Resolves to a static value
where the key is the fully-
qualified table name. The keys
and values are designated
inside of the square brace in
the following format:

$
{staticMap[dbo.table1=value
1,dbo.table2=value2]}

No

Chapter 10
Setting Up and Running the Kafka Handler

10-8

Keyword Explanation Transaction Message
Support

${columnValue[]} Resolves to a column value
where the key is the fully-
qualified table name and the
value is the column name to
be resolved. For example:

$
{staticMap[dbo.table1=col1,
dbo.table2=col2]}

No

${currentTimestamp}

Or

${currentTimestamp[]}

Resolves to the current
timestamp. You can control
the format of the current
timestamp using the Java
based formatting as described
in the SimpleDateFormat
class, see https://
docs.oracle.com/javase/8/
docs/api/java/text/
SimpleDateFormat.html.

Examples:

${currentDate}
${currentDate[yyyy-mm-dd
hh:MM:ss.SSS]}

Yes

${null} Resolves to a NULL string. Yes

${custom[]} It is possible to write a custom
value resolver. If required,
contact Oracle Support.

Implementation dependent

Example Templates

The following describes example template configuration values and the resolved
values.

Example Template Resolved Value

${groupName}_{fullyQualfiedTableName} KAFKA001_dbo.table1

prefix_${schemaName}_${tableName}_suffix prefix_dbo_table1_suffix

${currentDate[yyyy-mm-dd hh:MM:ss.SSS]} 2017-05-17 11:45:34.254

10.3.6 Kafka Configuring with Kerberos on a Hadoop Platform
Use these steps to configure a Kafka Handler Replicat with Kerberos to enable a
Cloudera instance to process an Oracle GoldenGate for Big Data trail to a Kafka topic:

1. In GGSCI, add a Kafka Replicat:

GGSCI> add replicat kafka, exttrail dirdat/gg

2. Configure a prm file with these properties:

Chapter 10
Setting Up and Running the Kafka Handler

10-9

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

replicat kafka
discardfile ./dirrpt/kafkax.dsc, purge
SETENV (TZ=PST8PDT)
GETTRUNCATES
GETUPDATEBEFORES
ReportCount Every 1000 Records, Rate
MAP qasource.*, target qatarget.*;

3. Configure a Replicat properties file as follows:

###KAFKA Properties file ###
gg.log=log4j
gg.log.level=info
gg.report.time=30sec

###Kafka Classpath settings ###
gg.classpath=/opt/cloudera/parcels/KAFKA-2.1.0-1.2.1.0.p0.115/lib/kafka/libs/*
jvm.bootoptions=-Xmx64m -Xms64m -Djava.class.path=./ggjava/ggjava.jar -
Dlog4j.configuration=log4j.properties -Djava.security.auth.login.config=/scratch/
ydama/ogg/v123211/dirprm/jaas.conf -Djava.security.krb5.conf=/etc/krb5.conf

javawriter.stats.full=TRUE
javawriter.stats.display=TRUE

native library config
goldengate.userexit.nochkpt=TRUE
goldengate.userexit.timestamp=utc

Kafka handler properties
gg.handlerlist = kafkahandler
gg.handler.kafkahandler.type=kafka
gg.handler.kafkahandler.KafkaProducerConfigFile=kafka-producer.properties
gg.handler.kafkahandler.format=delimitedtext
gg.handler.kafkahandler.format.PkUpdateHandling=update
gg.handler.kafkahandler.mode=tx
gg.handler.kafkahandler.format.includeCurrentTimestamp=false
#gg.handler.kafkahandler.maxGroupSize=100
#gg.handler.kafkahandler.minGroupSize=50
gg.handler.kafkahandler.format.fieldDelimiter=|
gg.handler.kafkahandler.format.lineDelimiter=CDATA[\n]
gg.handler.kafkahandler.topicMappingTemplate=myoggtopic
gg.handler.kafkahandler.keyMappingTemplate=${position}

4. Configure a Kafka Producer file with these properties:

bootstrap.servers=10.245.172.52:9092
acks=1
#compression.type=snappy
reconnect.backoff.ms=1000
value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
batch.size=1024
linger.ms=2000

security.protocol=SASL_PLAINTEXT

sasl.kerberos.service.name=kafka
sasl.mechanism=GSSAPI

5. Configure a jaas.conf file with these properties:

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required

Chapter 10
Setting Up and Running the Kafka Handler

10-10

useKeyTab=true
storeKey=true
keyTab="/scratch/ydama/ogg/v123211/dirtmp/keytabs/slc06unm/kafka.keytab"
principal="kafka/slc06unm.us.oracle.com@HADOOPTEST.ORACLE.COM";
};

6. Ensure that you have the latest key.tab files from the Cloudera instance to connect
secured Kafka topics.

7. Start the Replicat from GGSCI and make sure that it is running with INFO ALL.

8. Review the Replicat report to see the total number of records processed. The
report is similar to:

Oracle GoldenGate for Big Data, 12.3.2.1.1.005

Copyright (c) 2007, 2018. Oracle and/or its affiliates. All rights reserved

Built with Java 1.8.0_161 (class version: 52.0)

2018-08-05 22:15:28 INFO OGG-01815 Virtual Memory Facilities for: COM
anon alloc: mmap(MAP_ANON) anon free: munmap
file alloc: mmap(MAP_SHARED) file free: munmap
target directories:
/scratch/ydama/ogg/v123211/dirtmp.

Database Version:

Database Language and Character Set:

** Run Time Messages **

2018-08-05 22:15:28 INFO OGG-02243 Opened trail file /scratch/ydama/ogg/v123211/
dirdat/kfkCustR/gg000000 at 2018-08-05 22:15:28.258810.

2018-08-05 22:15:28 INFO OGG-03506 The source database character set, as
determined from the trail file, is UTF-8.

2018-08-05 22:15:28 INFO OGG-06506 Wildcard MAP resolved (entry qasource.*): MAP
"QASOURCE"."BDCUSTMER1", target qatarget."BDCUSTMER1".

2018-08-05 22:15:28 INFO OGG-02756 The definition for table QASOURCE.BDCUSTMER1
is obtained from the trail file.

2018-08-05 22:15:28 INFO OGG-06511 Using following columns in default map by
name: CUST_CODE, NAME, CITY, STATE.

2018-08-05 22:15:28 INFO OGG-06510 Using the following key columns for target
table qatarget.BDCUSTMER1: CUST_CODE.

2018-08-05 22:15:29 INFO OGG-06506 Wildcard MAP resolved (entry qasource.*): MAP
"QASOURCE"."BDCUSTORD1", target qatarget."BDCUSTORD1".

2018-08-05 22:15:29 INFO OGG-02756 The definition for table QASOURCE.BDCUSTORD1
is obtained from the trail file.

2018-08-05 22:15:29 INFO OGG-06511 Using following columns in default map by
name: CUST_CODE, ORDER_DATE, PRODUCT_CODE, ORDER_ID, PRODUCT_PRICE,
PRODUCT_AMOUNT, TRANSACTION_ID.

Chapter 10
Setting Up and Running the Kafka Handler

10-11

2018-08-05 22:15:29 INFO OGG-06510 Using the following key columns for target
table qatarget.BDCUSTORD1: CUST_CODE, ORDER_DATE, PRODUCT_CODE, ORDER_ID.

2018-08-05 22:15:33 INFO OGG-01021 Command received from GGSCI: STATS.

2018-08-05 22:16:03 INFO OGG-01971 The previous message, 'INFO OGG-01021',
repeated 1 times.

2018-08-05 22:43:27 INFO OGG-01021 Command received from GGSCI: STOP.

* ** Run Time Statistics ** *

Last record for the last committed transaction is the following:

Trail name : /scratch/ydama/ogg/v123211/dirdat/kfkCustR/gg000000
Hdr-Ind : E (x45) Partition : . (x0c)
UndoFlag : . (x00) BeforeAfter: A (x41)
RecLength : 0 (x0000) IO Time : 2015-08-14 12:02:20.022027
IOType : 100 (x64) OrigNode : 255 (xff)
TransInd : . (x03) FormatType : R (x52)
SyskeyLen : 0 (x00) Incomplete : . (x00)
AuditRBA : 78233 AuditPos : 23968384
Continued : N (x00) RecCount : 1 (x01)

2015-08-14 12:02:20.022027 GGSPurgedata Len 0 RBA 6473
TDR Index: 2

Reading /scratch/ydama/ogg/v123211/dirdat/kfkCustR/gg000000, current RBA 6556,
20 records, m_file_seqno = 0, m_file_rba = 6556

Report at 2018-08-05 22:43:27 (activity since 2018-08-05 22:15:28)

From Table QASOURCE.BDCUSTMER1 to qatarget.BDCUSTMER1:
inserts: 5
updates: 1
deletes: 0
discards: 0
From Table QASOURCE.BDCUSTORD1 to qatarget.BDCUSTORD1:
inserts: 5
updates: 3
deletes: 5
truncates: 1
discards: 0

9. Ensure that the secure Kafka topic is created:

/kafka/bin/kafka-topics.sh --zookeeper slc06unm:2181 --list
myoggtopic

10. Review the contents of the secure Kafka topic:

a. Create a consumer.properties file containing:

security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka

b. Set this environment variable:

Chapter 10
Setting Up and Running the Kafka Handler

10-12

export KAFKA_OPTS="-Djava.security.auth.login.config="/scratch/ogg/v123211/
dirprm/jaas.conf"

c. Run the consumer utility to check the records:

/kafka/bin/kafka-console-consumer.sh --bootstrap-server sys06:9092 --topic
myoggtopic --new-consumer --consumer.config consumer.properties

10.4 Schema Propagation
The Kafka Handler provides the ability to publish schemas to a schema topic.
Currently, the Avro Row and Operation formatters are the only formatters that are
enabled for schema publishing. If the Kafka Handler schemaTopicName property is set,
then the schema is published for the following events:

• The Avro schema for a specific table is published the first time an operation for
that table is encountered.

• If the Kafka Handler receives a metadata change event, the schema is flushed.
The regenerated Avro schema for a specific table is published the next time an
operation for that table is encountered.

• If the Avro wrapping functionality is enabled, then the generic wrapper Avro
schema is published the first time that any operation is encountered. To enable the
generic wrapper, Avro schema functionality is enabled in the Avro formatter
configuration, see Avro Row Formatter and The Avro Operation Formatter.

The Kafka ProducerRecord value is the schema, and the key is the fully qualified table
name.

Because Avro messages directly depend on an Avro schema, user of Avro over Kafka
may encounter issues. Avro messages are not human readable because they are
binary. To deserialize an Avro message, the receiver must first have the correct Avro
schema, but because each table from the source database results in a separate Avro
schema, this can be difficult. The receiver of a Kafka message cannot determine which
Avro schema to use to deserialize individual messages when the source Oracle
GoldenGate trail file includes operations from multiple tables. To solve this problem,
you can wrap the specialized Avro messages in a generic Avro message wrapper.
This generic Avro wrapper provides the fully-qualified table name, the hashcode of the
schema string, and the wrapped Avro message. The receiver can use the fully-
qualified table name and the hashcode of the schema string to resolve the associated
schema of the wrapped message, and then use that schema to deserialize the
wrapped message.

10.5 Performance Considerations
Oracle recommends that you do not use the linger.ms setting in the Kafka producer
config file when gg.handler.name.BlockingSend.is set to true. This causes each send to
block for at least the value of linger.ms, leading to major performance issues because
the Kafka Handler configuration and the Kafka Producer configuration are in conflict
with each other. This configuration results in a temporary deadlock scenario, where
the Kafka Handler is waits to received a send acknowledgement while the Kafka
producer waits for more messages before sending. The deadlock resolves when the
linger.ms period expires. This behavior repeats for every message sent.

Chapter 10
Schema Propagation

10-13

For the best performance, Oracle recommends that you set the Kafka Handler to
operate in operation mode using non-blocking (asynchronous) calls to the Kafka
producer. Use the following configuration in your Java Adapter properties file:

gg.handler.name.mode = op
gg.handler.name.BlockingSend = false

Additionally, Oracle recommends that you set the batch.size and linger.ms values in
the Kafka Producer properties file. These values are highly dependent upon the use
case scenario. Typically, higher values result in better throughput, but latency is
increased. Smaller values in these properties reduces latency but overall throughput
decreases. If you have a high volume of input data from the source trial files, then set
the batch.size and linger.ms size as high as possible.

Use of the Replicat variable GROUPTRANSOPS also improves performance. The
recommended setting is 10000.

If the serialized operations from the source trail file must be delivered in individual
Kafka messages, then the Kafka Handler must be set to operation mode.

gg.handler.name.mode = op

However, the result is many more Kafka messages and adversely affected
performance.

10.6 About Security
Kafka version 0.9.0.0 introduced security through SSL/TLS and SASL (Kerberos). You
can secure the Kafka Handler using one or both of the SSL/TLS and SASL security
offerings. The Kafka producer client libraries provide an abstraction of security
functionality from the integrations that use those libraries. The Kafka Handler is
effectively abstracted from security functionality. Enabling security requires setting up
security for the Kafka cluster, connecting machines, and then configuring the Kafka
producer properties file with the required security properties. For detailed instructions
about securing the Kafka cluster, see the Kafka documentation at

You may encounter the inability to decrypt the Kerberos password from the keytab
file. This causes the Kerberos authentication to fall back to interactive mode which
cannot work because it is being invoked programmatically. The cause of this problem
is that the Java Cryptography Extension (JCE) is not installed in the Java Runtime
Environment (JRE). Ensure that the JCE is loaded in the JRE, see http://
www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html.

10.7 Metadata Change Events
Metadata change events are now handled in the Kafka Handler. This is relevant only if
you have configured a schema topic and the formatter used supports schema
propagation (currently Avro row and Avro Operation formatters). The next time an
operation is encountered for a table for which the schema has changed, the updated
schema is published to the schema topic.

To support metadata change events, the Oracle GoldenGate process capturing
changes in the source database must support the Oracle GoldenGate metadata in trail
feature, which was introduced in Oracle GoldenGate 12c (12.2).

Chapter 10
About Security

10-14

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

10.8 Snappy Considerations
The Kafka Producer Configuration file supports the use of compression. One of the
configurable options is Snappy, an open source compression and decompression
(codec) library that provides better performance than other codec libraries. The Snappy
JAR does not run on all platforms. Snappy may work on Linux systems though may or
may not work on other UNIX and Windows implementations. If you want to use
Snappy compression, test Snappy on all required systems before implementing
compression using Snappy. If Snappy does not port to all required systems, then
Oracle recommends using an alternate codec library.

10.9 Troubleshooting
Topics:

• Verify the Kafka Setup

• Classpath Issues

• Invalid Kafka Version

• Kafka Producer Properties File Not Found

• Kafka Connection Problem

10.9.1 Verify the Kafka Setup
You can use the command line Kafka producer to write dummy data to a Kafka topic,
and you can use a Kafka consumer to read this data from the Kafka topic. Use this
method to verify the setup and read/write permissions to Kafka topics on disk, see
http://kafka.apache.org/documentation.html#quickstart.

10.9.2 Classpath Issues
Java classpath problems are common. Such problems may include a
ClassNotFoundException problem in the log4j log file or may be an error resolving the
classpath because of a typographic error in the gg.classpath variable. The Kafka client
libraries do not ship with the Oracle GoldenGate for Big Data product. You must obtain
the correct version of the Kafka client libraries and properly configure the gg.classpath
property in the Java Adapter Properties file to correctly resolve the Java the Kafka
client libraries as described in Classpath Configuration.

10.9.3 Invalid Kafka Version
The Kafka Handler does not support Kafka versions 0.8.2.2 or older. If you run an
unsupported version of Kafka, a runtime Java exception, java.lang.NoSuchMethodError,
occurs. It implies that the org.apache.kafka.clients.producer.KafkaProducer.flush()
method cannot be found. If you encounter this error, migrate to Kafka version 0.9.0.0
or later.

10.9.4 Kafka Producer Properties File Not Found
This problem typically results in the following exception:

Chapter 10
Snappy Considerations

10-15

http://kafka.apache.org/documentation.html#quickstart

ERROR 2015-11-11 11:49:08,482 [main] Error loading the kafka producer properties

Check the gg.handler.kafkahandler.KafkaProducerConfigFile configuration variable to
ensure that the Kafka Producer Configuration file name is set correctly. Check the
gg.classpath variable to verify that the classpath includes the path to the Kafka
Producer properties file, and that the path to the properties file does not contain a *
wildcard at the end.

10.9.5 Kafka Connection Problem
This problem occurs when the Kafka Handler is unable to connect to Kafka. You
receive the following warnings:

WARN 2015-11-11 11:25:50,784 [kafka-producer-network-thread | producer-1] WARN
(Selector.java:276) - Error in I/O with localhost/127.0.0.1
java.net.ConnectException: Connection refused

The connection retry interval expires, and the Kafka Handler process abends. Ensure
that the Kafka Broker is running and that the host and port provided in the Kafka
Producer Properties file are correct. You can use network shell commands (such as
netstat -l) on the machine hosting the Kafka broker to verify that Kafka is listening on
the expected port.

Chapter 10
Troubleshooting

10-16

11
Using the Kafka Connect Handler

Learn how to use the Kafka Connect Handler, which is an extension of the standard
Kafka messaging functionality.

Topics:

• Overview

• Detailed Functionality

• Setting Up and Running the Kafka Connect Handler

• Kafka Connect Handler Performance Considerations

• Troubleshooting the Kafka Connect Handler

11.1 Overview
The Oracle GoldenGate Kafka Connect is an extension of the standard Kafka
messaging functionality. Kafka Connect is a functional layer on top of the standard
Kafka Producer and Consumer interfaces. It provides standardization for messaging to
make it easier to add new source and target systems into your topology.

Confluent is a primary adopter of Kafka Connect and their Confluent Platform offering
includes extensions over the standard Kafka Connect functionality. This includes Avro
serialization and deserialization, and an Avro schema registry. Much of the Kafka
Connect functionality is available in Apache Kafka. A number of open source Kafka
Connect integrations are found at:

https://www.confluent.io/product/connectors/

The Kafka Connect Handler is a Kafka Connect source connector. You can capture
database changes from any database supported by Oracle GoldenGate and stream
that change of data through the Kafka Connect layer to Kafka. You can also connect to
Oracle Event Hub Cloud Services (EHCS) with this handler.

Kafka Connect uses proprietary objects to define the schemas
(org.apache.kafka.connect.data.Schema) and the messages
(org.apache.kafka.connect.data.Struct). The Kafka Connect Handler can be
configured to manage what data is published and the structure of the published data.

The Kafka Connect Handler does not support any of the pluggable formatters that are
supported by the Kafka Handler.

Topics:

11.2 Detailed Functionality
The Kafka Connect framework provides converters to convert in-memory Kafka
Connect messages to a serialized format suitable for transmission over a network.
These converters are selected using configuration in the Kafka Producer properties
file.

11-1

https://www.confluent.io/product/connectors/

JSON Converter

Kafka Connect and the JSON converter is available as part of the Apache Kafka
download. The JSON Converter converts the Kafka keys and values to JSONs which
are then sent to a Kafka topic. You identify the JSON Converters with the following
configuration in the Kafka Producer properties file:

key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=true
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=true

The format of the messages is the message schema information followed by the
payload information. JSON is a self describing format so you should not include the
schema information in each message published to Kafka.

To omit the JSON schema information from the messages set the following:

key.converter.schemas.enable=false
value.converter.schemas.enable=false

Avro Converter

Confluent provides Kafka installations, support for Kafka, and extended functionality
built on top of Kafka to help realize the full potential of Kafka. Confluent provides both
open source versions of Kafka (Confluent Open Source) and an enterprise edition
(Confluent Enterprise), which is available for purchase.

A common Kafka use case is to send Avro messages over Kafka. This can create a
problem on the receiving end as there is a dependency for the Avro schema in order to
deserialize an Avro message. Schema evolution can increase the problem because
received messages must be matched up with the exact Avro schema used to generate
the message on the producer side. Deserializing Avro messages with an incorrect
Avro schema can cause runtime failure, incomplete data, or incorrect data. Confluent
has solved this problem by using a schema registry and the Confluent schema
converters.

The following shows the configuration of the Kafka Producer properties file.

key.converter=io.confluent.connect.avro.AvroConverter
value.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter.schema.registry.url=http://localhost:8081

When messages are published to Kafka, the Avro schema is registered and stored in
the schema registry. When messages are consumed from Kafka, the exact Avro
schema used to create the message can be retrieved from the schema registry to
deserialize the Avro message. This creates matching of Avro messages to
corresponding Avro schemas on the receiving side, which solves this problem.

Following are the requirements to use the Avro Converters:

• This functionality is available in both versions of Confluent Kafka (open source or
enterprise).

• The Confluent schema registry service must be running.

• Source database tables must have an associated Avro schema. Messages
associated with different Avro schemas must be sent to different Kafka topics.

Chapter 11
Detailed Functionality

11-2

• The Confluent Avro converters and the schema registry client must be available in
the classpath.

The schema registry keeps track of Avro schemas by topic. Messages must be sent to
a topic that has the same schema or evolving versions of the same schema. Source
messages have Avro schemas based on the source database table schema so Avro
schemas are unique for each source table. Publishing messages to a single topic for
multiple source tables will appear to the schema registry that the schema is evolving
every time the message sent from a source table that is different from the previous
message.

11.3 Setting Up and Running the Kafka Connect Handler
Instructions for configuring the Kafka Connect Handler components and running the
handler are described in this section.

Classpath Configuration

Two things must be configured in the gg.classpath configuration variable so that the
Kafka Connect Handler can to connect to Kafka and run. The required items are the
Kafka Producer properties file and the Kafka client JARs. The Kafka client JARs must
match the version of Kafka that the Kafka Connect Handler is connecting to. For a
listing of the required client JAR files by version, see Kafka Handler Client
Dependencies Kafka Connect Handler Client Dependencies. The recommended
storage location for the Kafka Producer properties file is the Oracle GoldenGate dirprm
directory.

The default location of the Kafka Connect client JARs is the Kafka_Home/libs/*
directory.

The gg.classpath variable must be configured precisely. Pathing to the Kafka Producer
properties file should contain the path with no wildcard appended. The inclusion of the
asterisk (*) wildcard in the path to the Kafka Producer properties file causes it to be
discarded. Pathing to the dependency JARs should include the * wildcard character to
include all of the JAR files in that directory in the associated classpath. Do not use
*.jar.

Following is an example of a correctly configured Apache Kafka classpath:

gg.classpath=dirprm:{kafka_install_dir}/libs/*

Following is an example of a correctly configured Confluent Kafka classpath:

gg.classpath={confluent_install_dir}/share/java/kafka-serde-tools/*:
{confluent_install_dir}/share/java/kafka/*:{confluent_install_dir}/share/java/
confluent-common/*

Topics:

• Kafka Connect Handler Configuration

• Using Templates to Resolve the Topic Name and Message Key

• Configuring Security in the Kafka Connect Handler

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-3

11.3.1 Kafka Connect Handler Configuration
The following are the configurable values for the Kafka Connect Handler. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

To enable the selection of the Kafka Connect Handler, you must first configure the
handler type by specifying gg.handler.jdbc.type=kafkaconnect and the other Kafka
Connect properties as follows:

Table 11-1 Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.type

Required kafkaconnect None The configuration
to select the
Kafka Connect
Handler.

gg.handler.name
.kafkaProducerC
onfigFile

Required string None A path to a
properties file
containing the
properties of the
Kafka and Kafka
Connect
configuration
properties.

gg.handler.name
.topicMappingTe
mplate

Required A template string
value to resolve
the Kafka topic
name at runtime.

None See Using
Templates to
Resolve the
Topic Name and
Message Key.

gg.handler.name
.keyMappingTemp
late

Required A template string
value to resolve
the Kafka
message key at
runtime.

None See Using
Templates to
Resolve the
Topic Name and
Message Key.

gg.handler.name
.includeTableNa
me

Optional true | false true Set to true to
create a field in
the output
messages called
“table” for which
the value is the
fully qualified
table name.

Set to false to
omit this field in
the output.

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-4

Table 11-1 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.includeOpType

Optional true | false true Set to true to
create a field in
the output
messages called
op_type for which
the value is is an
indicator of the
type of source
database
operation (for
example, I for
insert, U for
update, and Dfor
delete). Set to
false to omit this
field in the output.

gg.handler.name
.includeOpTimes
tamp

Optional true | false true Set to true to
create a field in
the output
messages called
op_ts for which
the value is the
operation
timestamp
(commit
timestamp) from
the source trail
file.

Set to false to
omit this field in
the output.

gg.handler.name
.includeCurrent
Timestamp

Optional true | false true Set to true to
create a field in
the output
messages called
current_ts for
which the value is
the current
timestamp of
when the handler
processes the
operation.

Set to false to
omit this field in
the output.

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-5

Table 11-1 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.includePositio
n

Optional true | false true Set to true to
create a field in
the output
messages called
pos for which the
value is the
position
(sequence
number + offset)
of the operation
from the source
trail file.

Set to false to
omit this field in
the output.

gg.handler.name
.includePrimary
Keys

Optional true | false false Set to true to
include a field in
the message
called
primary_keys
and the value of
which is an array
of the column
names of the
primary key
columns.

Set to false to
suppress this
field.

gg.handler.name
.includeTokens

Optional true | false false Set to true to
include a map
field in output
messages. The
key is tokens
and the value is a
map where the
keys and values
are the token
keys and values
from the Oracle
GoldenGate
source trail file.

Set to false to
suppress this
field.

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-6

Table 11-1 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.messageFormatt
ing

Optional row | op row Controls how
output messages
are modeled.
Selecting row and
the output
messages will be
modeled as row.
Set to op and the
output messages
will be modeled
as operations
messages.

gg.handler.name
.insertOpKey

Optional any string I The value of the
field op_type to
indicate an insert
operation.

gg.handler.name
.updateOpKey

Optional any string U The value of the
field op_type to
indicate an insert
operation.

gg.handler.name
.deleteOpKey

Optional any string D The value of the
field op_type to
indicate a delete
operation.

gg.handler.name
.truncateOpKey

Optional any string T The value of the
field op_type to
indicate a
truncate
operation.

gg.handler.name
.treatAllColumn
sAsStrings

Optional true | false false Set to true to
treat all output
fields as strings.
Set to false and
the Handler will
map the
corresponding
field type from the
source trail file to
the best
corresponding
Kafka Connect
data type.

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-7

Table 11-1 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.mapLargeNumber
sAsStrings

Optional true | false false Large numbers
are mapping to
number fields as
Doubles. It is
possible to lose
precision in
certain scenarios.

If set to true
these fields will
be mapped as
Strings in order to
preserve
precision.

gg.handler.name
.iso8601Format

Optional True | False false Set to true to
output the current
date in the
ISO8601 format.

gg.handler.name
.pkUpdateHandli
ng

Optional abend | update
| delete-insert

abend Only applicable if
modeling row
messages
gg.handler.name
.messageFormatt
ing=row. Not
applicable if
modeling
operations
messages as the
before and after
images are
propagated to the
message in the
case of an
update.

See Using Templates to Resolve the Stream Name and Partition Name for more
information.

Review a Sample Configuration

gg.handlerlist=kafkaconnect

#The handler properties
gg.handler.kafkaconnect.type=kafkaconnect
gg.handler.kafkaconnect.kafkaProducerConfigFile=kafkaconnect.properties
gg.handler.kafkaconnect.mode=op
#The following selects the topic name based on the fully qualified table name
gg.handler.kafkaconnect.topicMappingTemplate=$

{fullyQualifiedTableName}
#The following selects the message key using the concatenated primary keys
gg.handler.kafkaconnect.keyMappingTemplate=$

{primaryKeys}

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-8

#The formatter properties
gg.handler.kafkaconnect.messageFormatting=row
gg.handler.kafkaconnect.insertOpKey=I
gg.handler.kafkaconnect.updateOpKey=U
gg.handler.kafkaconnect.deleteOpKey=D
gg.handler.kafkaconnect.truncateOpKey=T
gg.handler.kafkaconnect.treatAllColumnsAsStrings=false
gg.handler.kafkaconnect.iso8601Format=false
gg.handler.kafkaconnect.pkUpdateHandling=abend
gg.handler.kafkaconnect.includeTableName=true
gg.handler.kafkaconnect.includeOpType=true
gg.handler.kafkaconnect.includeOpTimestamp=true
gg.handler.kafkaconnect.includeCurrentTimestamp=true
gg.handler.kafkaconnect.includePosition=true
gg.handler.kafkaconnect.includePrimaryKeys=false
gg.handler.kafkaconnect.includeTokens=false

11.3.2 Using Templates to Resolve the Topic Name and Message Key
The Kafka Connect Handler provides functionality to resolve the topic name and the
message key at runtime using a template configuration value. Templates allow you to
configure static values and keywords. Keywords are used to dynamically replace the
keyword with the context of the current processing. Templates are applicable to the
following configuration parameters:

gg.handler.name.topicMappingTemplate
gg.handler.name.keyMappingTemplate

Template Modes

The Kafka Connect Handler can only send operation messages. The Kafka Connect
Handler cannot group operation messages into a larger transaction message.

Template Keywords

Keyword Explanation

${fullyQualifiedTableName} Resolves to the fully qualified table name
including the period (.) delimiter between the
catalog, schema, and table names.

For example, test.dbo.table1.

${catalogName} Resolves to the catalog name.

${schemaName} Resolves to the schema name.

${tableName} Resolves to the short table name.

${opType} Resolves to the type of the operation: (INSERT,
UPDATE, DELETE, or TRUNCATE)

${primaryKeys} Resolves to the concatenated primary key
values delimited by an underscore (_)
character.

${position} The sequence number of the source trail file
followed by the offset (RBA).

${opTimestamp} The operation timestamp from the source trail
file.

${emptyString} Resolves to “”.

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-9

Keyword Explanation

${groupName} Resolves to the name of the Replicat process.
If using coordinated delivery, it resolves to the
name of the Replicat process with the
Replicate thread number appended.

${staticMap[]} Resolves to a static value where the key is the
fully-qualified table name. The keys and
values are designated inside of the square
brace in the following format:

$
{staticMap[dbo.table1=value1,dbo.table2=v
alue2]}

${columnValue[]} Resolves to a column value where the key is
the fully-qualified table name and the value is
the column name to be resolved. For example:

$
{staticMap[dbo.table1=col1,dbo.table2=col
2]}

${currentTimestamp}

Or

${currentTimestamp[]}

Resolves to the current timestamp. You can
control the format of the current timestamp
using the Java based formatting as described
in the SimpleDateFormat class, see https://
docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html.

Examples:

${currentDate}
${currentDate[yyyy-mm-dd hh:MM:ss.SSS]}

${null} Resolves to a NULL string.

${custom[]} It is possible to write a custom value resolver.
If required, contact Oracle Support.

Example Templates

The following describes example template configuration values and the resolved
values.

Example Template Resolved Value

${groupName}_{fullyQualfiedTableName} KAFKA001_dbo.table1

prefix_${schemaName}_${tableName}_suffix prefix_dbo_table1_suffix

${currentDate[yyyy-mm-dd hh:MM:ss.SSS]} 2017-05-17 11:45:34.254

11.3.3 Configuring Security in the Kafka Connect Handler
Kafka version 0.9.0.0 introduced security through SSL/TLS or Kerberos. The Kafka
Connect Handler can be secured using SSL/TLS or Kerberos. The Kafka producer
client libraries provide an abstraction of security functionality from the integrations
utilizing those libraries. The Kafka Connect Handler is effectively abstracted from

Chapter 11
Setting Up and Running the Kafka Connect Handler

11-10

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

security functionality. Enabling security requires setting up security for the Kafka
cluster, connecting machines, and then configuring the Kafka Producer properties file,
that the Kafka Handler uses for processing, with the required security properties.

You may encounter the inability to decrypt the Kerberos password from the keytab
file. This causes the Kerberos authentication to fall back to interactive mode which
cannot work because it is being invoked programmatically. The cause of this problem
is that the Java Cryptography Extension (JCE) is not installed in the Java Runtime
Environment (JRE). Ensure that the JCE is loaded in the JRE, see http://
www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html.

11.4 Kafka Connect Handler Performance Considerations
There are multiple configuration settings both for the Oracle GoldenGate for Big Data
configuration and in the Kafka producer which affect performance.

The Oracle GoldenGate parameter have the greatest affect on performance is the
Replicat GROUPTRANSOPS parameter. The GROUPTRANSOPS parameter allows Replicat to
group multiple source transactions into a single target transaction. At transaction
commit, the Kafka Connect Handler calls flush on the Kafka Producer to push the
messages to Kafka for write durability followed by a checkpoint. The flush call is an
expensive call and setting the Replicat GROUPTRANSOPS setting to larger amount allows
the replicat to call the flush call less frequently thereby improving performance.

The default setting for GROUPTRANSOPS is 1000 and performance improvements can be
obtained by increasing the value to 2500, 5000, or even 10000.

The Op mode gg.handler.kafkaconnect.mode=op parameter can also improve
performance than the Tx mode gg.handler.kafkaconnect.mode=tx.

A number of Kafka Producer properties can affect performance. The following are the
parameters with significant impact:

• linger.ms

• batch.size

• acks

• buffer.memory

• compression.type

Oracle recommends that you start with the default values for these parameters and
perform performance testing to obtain a base line for performance. Review the Kafka
documentation for each of these parameters to understand its role and adjust the
parameters and perform additional performance testing to ascertain the performance
effect of each parameter.

11.5 Troubleshooting the Kafka Connect Handler
Topics:

• Java Classpath for Kafka Connect Handler

• Invalid Kafka Version

• Kafka Producer Properties File Not Found

• Kafka Connection Problem

Chapter 11
Kafka Connect Handler Performance Considerations

11-11

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

11.5.1 Java Classpath for Kafka Connect Handler
Issues with the Java classpath are one of the most common problems. The indication
of a classpath problem is a ClassNotFoundException in the Oracle GoldenGate Java
log4j log file or and error while resolving the classpath if there is a typographic error in
the gg.classpath variable.

The Kafka client libraries do not ship with the Oracle GoldenGate for Big Data product.
You are required to obtain the correct version of the Kafka client libraries and to
properly configure the gg.classpath property in the Java Adapter Properties file to
correctly resolve the Java the Kafka client libraries as described in Setting Up and
Running the Kafka Connect Handler.

11.5.2 Invalid Kafka Version
Kafka Connect was introduced in Kafka 0.9.0.0 version. The Kafka Connect Handler
does not work with Kafka versions 0.8.2.2 and older. Attempting to use Kafka Connect
with Kafka 0.8.2.2 version typically results in a ClassNotFoundException error at runtime.

11.5.3 Kafka Producer Properties File Not Found
Typically, the following exception message occurs:

ERROR 2015-11-11 11:49:08,482 [main] Error loading the kafka producer properties

Verify that the gg.handler.kafkahandler.KafkaProducerConfigFile configuration property
for the Kafka Producer Configuration file name is set correctly.

Ensure that the gg.classpath variable includes the path to the Kafka Producer
properties file and that the path to the properties file does not contain a * wildcard at
the end.

11.5.4 Kafka Connection Problem
Typically, the following exception message appears:

WARN 2015-11-11 11:25:50,784 [kafka-producer-network-thread | producer-1]

WARN (Selector.java:276) - Error in I/O with localhost/127.0.0.1
java.net.ConnectException: Connection refused

When this occurs, the connection retry interval expires and the Kafka Connection
Handler process abends. Ensure that the Kafka Brokers are running and that the host
and port provided in the Kafka Producer properties file is correct.

Network shell commands (such as, netstat -l) can be used on the machine hosting
the Kafka broker to verify that Kafka is listening on the expected port.

Chapter 11
Troubleshooting the Kafka Connect Handler

11-12

12
Using the Kafka REST Proxy Handler

Learn how to use the Kafka REST Proxy Handler to stream messages to the Kafka
REST Proxy distributed by Confluent.

Topics:

• Overview

• Setting Up and Starting the Kafka REST Proxy Handler Services

• Consuming the Records

• Performance Considerations

• Kafka REST Proxy Handler Metacolumns Template Property

12.1 Overview
The Kafka REST Proxy Handler allows Kafka messages to be streamed using an
HTTPS protocol. The use case for this functionality is to stream Kafka messages from
an Oracle GoldenGate On Premises installation to cloud or alternately from cloud to
cloud.

The Kafka REST proxy provides a RESTful interface to a Kafka cluster. It makes it
easy for you to:

• produce and consume messages,

• view the state of the cluster,

• and perform administrative actions without using the native Kafka protocol or
clients.

Kafka REST Proxy is part of the Confluent Open Source and Confluent Enterprise
distributions. It is not available in the Apache Kafka distribution. To access Kafka
through the REST proxy, you have to install the Confluent Kafka version see https://
docs.confluent.io/current/kafka-rest/docs/index.html.

12.2 Setting Up and Starting the Kafka REST Proxy Handler
Services

You must download and install the Confluent Open Source or Confluent Enterprise
Distribution. You have several installation formats to choose from including ZIP or tar
archives, Docker, and Packages.

• Using the Kafka REST Proxy Handler

• Kafka REST Proxy Handler Configuration

• Security

• Generating a Keystore

12-1

https://docs.confluent.io/current/kafka-rest/docs/index.html
https://docs.confluent.io/current/kafka-rest/docs/index.html

• Using Templates to Resolve the Topic Name and Message Key

• Kafka REST Proxy Handler Formatter Properties

• Setting Metacolumn Output

12.2.1 Using the Kafka REST Proxy Handler
You must download and install the Confluent Open Source or Confluent Enterprise
Distribution because the Kafka REST Proxy is not included in Apache, Cloudera, or
Hortonworks. You have several installation formats to choose from including ZIP or
TAR archives, Docker, and Packages.

The Kafka REST Proxy has dependency on ZooKeeper, Kafka, and the Schema
Registry

12.2.2 Kafka REST Proxy Handler Configuration
The following are the configurable values for the Kafka REST Proxy Handler. Oracle
recommend that you store the Kafka REST Proxy properties file in the Oracle
GoldenGate dirprm directory.

To enable the selection of the Kafka REST Proxy Handler, you must first configure the
handler type by specifying gg.handler.name.type=kafkarestproxy and the other Kafka
REST Proxy Handler properties as follows:

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.type

Required kafkarestproxy None The configuration
to select the
Kafka REST
Proxy Handler.

gg.handler.name
.topicMappingTe
mplate

Required A template string
value to resolve
the Kafka topic
name at runtime.

None See Using
Templates to
Resolve the
Topic Name and
Message Key.

gg.handler.name
.keyMappingTemp
late

Required A template string
value to resolve
the Kafka
message key at
runtime.

None See Using
Templates to
Resolve the
Topic Name and
Message Key.

gg.handler.name
.postDataUrl

Required The Listener
address of the
Rest Proxy.

None Set to the URL of
the Kafka REST
proxy.

gg.handler.name
.format

Required avro | json None Set to the REST
proxy payload
data format

gg.handler.name
.payloadsize

Optional A value
representing the
payload size in
mega bytes.

5MB Set to the
maximum size of
the payload of the
HTTP messages.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-2

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.circularRedire
ctsAllowed

Optional true | false false Set to allow or
disallow circular
redirects.

gg.handler.name
.connectionRequ
estTimeout

Optional A value
representing
milliseconds.

—1 Set the maximum
time to wait for
the connection
manager to return
a connection. The
connection
manager may not
be able to return
a connection if
the max number
of connections in
the pool are
used.

gg.handler.name
.connectTimeout

Optional true | false -1 Set the timeout in
milliseconds until
a connection is
established.

gg.handler.name
.contentCompres
sionEnabled

Optional true | false true Sets content
compression to
on or off.

gg.handler.name
.maxRedirects

Optional Integer value
representing the
redirect count.

50 Sets the
maximum
number of
redirects.

gg.handler.name
.proxy

Optional host:port None Sets the proxy.

gg.handler.name
.userName

Optional Any string. None Sets the
username for the
proxy
authentication.

gg.handler.name
.password

Optional Any string. None Sets the
password for the
proxy
authentication.

gg.handler.name
.redirectsEnabl
ed

Optional true | false true Set to check if
redirects using
relative naming is
enabled.

gg.handler.name
.relativeRedire
ctsAllowed

Optional true | false true Set to check if
redirects is
enabled.

gg.handler.name
.socketTimeout

Optional A value
representing
milliseconds.

—1 Set the maximum
time allowable
between data
packets on a
read.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-3

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.httpClientRese
tInterval

Optional A value
representing
milliseconds.

0 Sets the wait
interval between
when the HTTP
client is
destroyed and
when it is
recreated.

gg.handler.name
.apiVersion

Optional v1 | v2 v2 Sets the API
version to use.

gg.handler.name
.mode

Optional op | tx op Sets how
operations are
processed. In op
mode, operations
are processed as
they are received.
In tx mode,
operations are
cached and
processed at the
transaction
commit.

See Using Templates to Resolve the Stream Name and Partition Name for more
information.

12.2.3 Security
REST Proxy supports SSL for securing communication between clients and the Kafka
REST Proxy Handler. To configure SSL:

1. Generate a keystore using the keytool for the server. This is also the client-side
truststore. Follow the instructions to generate KeyStore in session Procedure to
generate KeyStore.

2. Update the Kafka REST Proxy server configuration, kafka-rest.properties
file with these properties:

listeners=https://server.domain.com:8082
ssl.keystore.location= path_of_serverkeystore.jks file
ssl.keystore.password=kafkarest
ssl.key.password=kafkarest
ssl.client.auth=false

3. Restart your server.

4. Append the client-side boot options, in the handler properties file, with:

-Djavax.net.ssl.trustStore=path_of_serverkeystore.jks file
-Djavax.net.ssl.trustStorePassword=pwd

For example, in the krp.properties file:

javawriter.bootoptions=-Xmx512m-Xms32m
-Djava.class.path=.:ggjava/ggjava.jar:./dirprm
-Djavax.net.ssl.trustStore=/scratch/sabbabu/view_storage/serverkeystore.jks
-Djavax.net.ssl.trustStorePassword=kafkarest

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-4

12.2.4 Generating a Keystore
You generate the keystore.jks keystore file by executing this statement from the
command line:

keytool -genkey -keyalg RSA -alias fun -keystore serverkeystore.jks -validity 365 -
keysize 2048

The first name and last name should be the server machine name.

For example:

$ keytool -genkey -keyalg RSA -alias fun –keystore ~/serverkeystore.jks -validity
365 -keysize 2048
Enter keystore password:
Re-enter new password:
What is your first and last name?
 [Unknown]: kkm00cfb.in.oracle.com
What is the name of your organizational unit?
 [Unknown]: goldengate
What is the name of your organization?
 [Unknown]: oracle
What is the name of your City or Locality?
 [Unknown]: bangalore
What is the name of your State or Province?
 [Unknown]: karnataka
What is the two-letter country code for this unit?
 [Unknown]: in
Is CN=kkm00cfb.in.oracle.com , OU=goldengate, O=oracle, L=bangalore, ST= karnataka,
C=in correct?
 [no]: yes

Enter key password for fun
(RETURN if same as keystore password):

This creates a file called serverkeystore.jks. There are two passwords that you
need to provide. The keystore password and the key password. These passwords can
be the same or different.

You update the Kafka HTTP proxy server configuration file, kafka-rest.properties, and
then restart your REST server

12.2.5 Using Templates to Resolve the Topic Name and Message Key
The Kafka REST Proxy Handler provides functionality to resolve the topic name and
the message key at runtime using a template configuration value. Templates allow you
to configure static values and keywords. Keywords are used to dynamically replace
the keyword with the context of the current processing. The templates use the
following configuration properties:

gg.handler.name.topicMappingTemplate
gg.handler.name.keyMappingTemplate

Template Modes

The Kafka REST Proxy Handler can be configured to send one message per operation
(insert, update, delete). Alternatively, it can be configured to group operations into
messages at the transaction level.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-5

Template Keywords

This table includes a column if the keyword is supported for transaction level
messages.

Keyword Explanation Transaction Message
Support

${fullyQualifiedTableName} Resolves to the fully qualified
table name including the
period (.) delimiter between
the catalog, schema, and table
names.

For example,
test.dbo.table1.

No

${catalogName} Resolves to the catalog name. No

${schemaName} Resolves to the schema
name.

No

${tableName} Resolves to the short table
name.

No

${opType} Resolves to the type of the
operation: (INSERT, UPDATE,
DELETE, or TRUNCATE)

No

${primaryKeys} Resolves to the concatenated
primary key values delimited
by an underscore (_)
character.

No

${position} The sequence number of the
source trail file followed by the
offset (RBA).

Yes

${opTimestamp} The operation timestamp from
the source trail file.

Yes

${emptyString} Resolves to “”. Yes

${groupName} Resolves to the name of the
Replicat process. If using
coordinated delivery, it
resolves to the name of the
Replicat process with the
Replicate thread number
appended.

Yes

${staticMap[]} Resolves to a static value
where the key is the fully-
qualified table name. The keys
and values are designated
inside of the square brace in
the following format:

$
{staticMap[dbo.table1=value
1,dbo.table2=value2]}

No

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-6

Keyword Explanation Transaction Message
Support

${columnValue[]} Resolves to a column value
where the key is the fully-
qualified table name and the
value is the column name to
be resolved. For example:

$
{staticMap[dbo.table1=col1,
dbo.table2=col2]}

No

${currentTimestamp}

Or

${currentTimestamp[]}

Resolves to the current
timestamp. You can control
the format of the current
timestamp using the Java
based formatting as described
in the SimpleDateFormat
class, see https://
docs.oracle.com/javase/8/
docs/api/java/text/
SimpleDateFormat.html.

Examples:

${currentDate}
${currentDate[yyyy-mm-dd
hh:MM:ss.SSS]}

Yes

${null} Resolves to a NULL string. Yes

${custom[]} It is possible to write a custom
value resolver. If required,
contact Oracle Support.

Implementation dependent

Example Templates

The following describes example template configuration values and the resolved
values.

Example Template Resolved Value

${groupName}_${fullyQualfiedTableName} KAFKA001_dbo.table1

prefix_${schemaName}_${tableName}_suffix prefix_dbo_table1_suffix

${currentDate[yyyy-mm-dd hh:MM:ss.SSS]} 2017-05-17 11:45:34.254

12.2.6 Kafka REST Proxy Handler Formatter Properties
The following are the configurable values for the Kafka REST Proxy Handler
Formatter.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-7

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Table 12-1 Kafka REST Proxy Handler Formatter Properties

Properties Optional/
Optional

Legal Values Default Explanation

gg.handler.name
.format.include
OpType

Optional true | false true Set to true to
create a field in
the output
messages called
op_ts. The value
is an indicator of
the type of source
database
operation (for
example, Ifor
insert, Ufor
update, Dfor
delete).

Set to false to
omit this field in
the output.

gg.handler.name
.format.include
OpTimestamp

Optional true | false true Set to true to
create a field in
the output
messages called
op_type. The
value is the
operation
timestamp
(commit
timestamp) from
the source trail
file.

Set to false to
omit this field in
the output.

gg.handler.name
.format.include
CurrentTimestam
p

Optional true | false true Set to true to
create a field in
the output
messages called
current_ts. The
value is the
current
timestamp of
when the handler
processes the
operation.

Set to false to
omit this field in
the output.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-8

Table 12-1 (Cont.) Kafka REST Proxy Handler Formatter Properties

Properties Optional/
Optional

Legal Values Default Explanation

gg.handler.name
.format.include
Position

Optional true | false true Set to true to
create a field in
the output
messages called
pos. The value is
the position
(sequence
number + offset)
of the operation
from the source
trail file.

Set to false to
omit this field in
the output.

gg.handler.name
.format.include
PrimaryKeys

Optional true | false true Set to true to
create a field in
the output
messages called
primary_keys.
The value is an
array of the
column names of
the primary key
columns.

Set to false to
omit this field in
the output.

gg.handler.name
.format.include
Tokens

Optional true | false true Set to true to
include a map
field in output
messages. The
key is tokens and
the value is a
map where the
keys and values
are the token
keys and values
from the Oracle
GoldenGate
source trail file.

Set to false to
suppress this
field.

gg.handler.name
.format.insertO
pKey

Optional Any string. I The value of the
field op_type that
indicates an
insert operation.

gg.handler.name
.format.updateO
pKey

Optional Any string. U The value of the
field op_type that
indicates an
update operation.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-9

Table 12-1 (Cont.) Kafka REST Proxy Handler Formatter Properties

Properties Optional/
Optional

Legal Values Default Explanation

gg.handler.name
.format.deleteO
pKey

Optional Any string. D The value of the
field op_type that
indicates an
delete operation.

gg.handler.name
.format.truncat
eOpKey

Optional Any string. T The value of the
field op_type that
indicates an
truncate
operation.

gg.handler.name
.format.treatAl
lColumnsAsStrin
gs

Optional true | false false Set to true treat
all output fields
as strings.

Set to false and
the handler maps
the
corresponding
field type from the
source trail file to
the best
corresponding
Kafka data type.

gg.handler.name
.format.mapLarg
eNumbersAsStrin
gs

Optional true | false false Set to true and
these fields are
mapped as
strings to
preserve
precision. This
property is
specific to the
Avro Formatter; it
cannot be used
with other
formatters.

gg.handler.name
.format.iso8601
Format

Optional true | false false Set to true to
output the current
date in the
ISO8601 format.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-10

Table 12-1 (Cont.) Kafka REST Proxy Handler Formatter Properties

Properties Optional/
Optional

Legal Values Default Explanation

gg.handler.name
.format.pkUpdat
eHandling

Optional abend | update
| delete-insert

abend It is only
applicable if you
are modeling row
messages with
the .
(gg.handler.nam
e.format.messag
eFormatting=row
property. It is not
applicable if you
are modeling
operations
messages as the
before and after
images are
propagated to the
message with an
update.

12.2.7 Setting Metacolumn Output
The following are the configurable values for the Kafka REST Proxy Handler
metacolumns template property that controls metacolumn output.

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-11

Table 12-2 Metacolumns Template Property

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.format.metaCol
umnsTemplate

Optional ${alltokens}
| ${token} | $
{env} | ${sys}
| ${javaprop}
| ${optype} | $
{position} | $
{timestamp} | $
{catalog} | $
{schema} | $
{table} | $
{objectname}
| ${csn} | $
{xid} | $
{currenttimesta
mp} | $
{opseqno} | $
{timestampmicro
} | $
{currenttimesta
mpmicro}

None The current meta
column
information can
be configured in a
simple manner
and removes the
explicit need to
use:

insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey
|
includeTableNam
e |
includeOpTimest
amp |
includeOpType
|
includePosition
 |
includeCurrentT
imestamp,
useIso8601Forma
t

It is a comma-
delimited string
consisting of one
or more
templated values
that represent the
template.

This is an example that would produce a list of metacolumns:

${optype}, ${token.ROWID}, ${sys.username}, ${currenttimestamp}

Explanation of the Metacolumn Keywords

${alltokens}

All of the Oracle GoldenGate tokens.

${token}

The value of a specific Oracle GoldenGate token. The token key should follow token
key should follow the token using the period (.) operator. For example:

${token.MYTOKEN}

${sys}

A system environmental variable. The variable name should follow sys using the
period (.) operator. For example:

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-12

${sys.MYVAR}

${env}

An Oracle GoldenGate environment variable. The variable name should follow env
using the period (.) operator. For example:

${env.someVariable}

${javaprop}

A Java JVM variable. The variable name should follow javaprop using the period (.)
operator. For example:

${javaprop.MYVAR}

${optype}

Operation Type

${position}

Record Position

${timestamp}

Record Timestamp

${catalog}

Catalog Name

${schema}

Schema Name

${table}

Table Name

${objectname}

The fully qualified table name.

${csn}

Source Commit Sequence Number

${xid}

Source Transaction ID

${currenttimestamp}

Current Timestamp

${opseqno}

Record sequence number within the transaction.

${timestampmicro}

Record timestamp (in microseconds after epoch).

${currenttimestampmicro}

Current timestamp (in microseconds after epoch).

Sample Configuration:

gg.handlerlist=kafkarestproxy

#The handler properties
gg.handler.kafkarestproxy.type=kafkarestproxy

Chapter 12
Setting Up and Starting the Kafka REST Proxy Handler Services

12-13

gg.handler.kafkarestproxy.mode=tx
#The following selects the topic name based on the fully qualified table name
gg.handler.kafkarestproxy.topicMappingTemplate=${fullyQualifiedTableName}
#The following selects the message key using the concatenated primary keys
gg.handler.kafkarestproxy.keyMappingTemplate=${primaryKeys}
gg.handler.kafkarestproxy.postDataUrl=https://kkm00cfb.in.oracle.com:8082
gg.handler.kafkarestproxy.format=avro
gg.handler.kafkarestproxy.payloadsize=1

gg.handler.kafkarestproxy.socketTimeout=1000
gg.handler.kafkarestproxy.connectTimeout=1000
gg.handler.kafkarestproxy.proxy=host:port
gg.handler.kafkarestproxy.username=username
gg.handler.kafkarestproxy.password=pwd

#The MetaColumnTemplate formatter properties
gg.handler.kafkarestproxy.format.metaColumnsTemplate=${optype},${timestampmicro},$
{currenttimestampmicro}

12.3 Consuming the Records
A simple way to consume data from Kafka topics using the Kafka REST Proxy Handler
is Curl.

Consume JSON Data

1. Create a consumer for JSON data.

curl -k -X POST -H "Content-Type: application/vnd.kafka.v2+json"

https://localhost:8082/consumers/my_json_consumer

2. Subscribe to a topic.

curl -k -X POST -H "Content-Type: application/vnd.kafka.v2+json" --data
'{"topics":["topicname"]}' \

https://localhost:8082/consumers/my_json_consumer/instances/my_consumer_instance/
subscription

3. Consume records.

curl –k -X GET -H "Accept: application/vnd.kafka.json.v2+json" \

https://localhost:8082/consumers/my_json_consumer/instances/my_consumer_instance/
records

Consume Avro Data

1. Create a consumer for Avro data.

curl -k -X POST -H "Content-Type: application/vnd.kafka.v2+json" \
 --data '{"name": "my_consumer_instance", "format": "avro", "auto.offset.reset":
"earliest"}' \

https://localhost:8082/consumers/my_avro_consumer

2. Subscribe to a topic.

curl –k -X POST -H "Content-Type: application/vnd.kafka.v2+json" --data
'{"topics":["topicname"]}' \

Chapter 12
Consuming the Records

12-14

https://localhost:8082/consumers/my_avro_consumer/instances/my_consumer_instance/
subscription

3. Consume records.

curl -X GET -H "Accept: application/vnd.kafka.avro.v2+json" \

https://localhost:8082/consumers/my_avro_consumer/instances/my_consumer_instance/
records

12.4 Performance Considerations
There are several configuration settings both for the Oracle GoldenGate for Big Data
configuration and in the Kafka producer that affects performance.

The Oracle GoldenGate parameter that has the greatest affect on performance is the
Replicat GROUPTRANSOPS parameter. It allows Replicat to group multiple source
transactions into a single target transaction. At transaction commit, the Kafka REST
Proxy Handler POST’s the data to the Kafka Producer.

Setting the Replicat GROUPTRANSOPS to a larger number allows the Replicat to call the
POST less frequently improving performance. The default value for GROUPTRANSOPS is
1000 and performance can be improved by increasing the value to 2500, 5000, or
even 10000.

12.5 Kafka REST Proxy Handler Metacolumns Template
Property

Problems Starting Kafka REST Proxy server

Sometimes, Flume is set in the classpath, which may stop your REST Proxy server
from starting up. Reset the CLASSPATH to “” to overcome the problem.

Problems with Consuming Records

Your proxy could block the calls while consuming the records from Kafka. Disabling
the http_proxy variable resolves the issue.

Chapter 12
Performance Considerations

12-15

13
Using the Kinesis Streams Handler

Learn how to use the Kinesis Streams Handler, which streams data to applications
hosted on the Amazon Cloud or in your environment.

Topics:

• Overview

• Detailed Functionality

• Setting Up and Running the Kinesis Streams Handler

• Kinesis Handler Performance Considerations

• Troubleshooting

13.1 Overview
Amazon Kinesis is a messaging system that is hosted in the Amazon Cloud. Kinesis
streams can be used to stream data to other Amazon Cloud applications such as
Amazon S3 and Amazon Redshift. Using the Kinesis Streams Handler, you can also
stream data to applications hosted on the Amazon Cloud or at your site. Amazon
Kinesis streams provides functionality similar to Apache Kafka.

The logical concepts map is as follows:

• Kafka Topics = Kinesis Streams

• Kafka Partitions = Kinesis Shards

A Kinesis stream must have at least one shard.

13.2 Detailed Functionality

Topics:

• Amazon Kinesis Java SDK

• Kinesis Streams Input Limits

13.2.1 Amazon Kinesis Java SDK
The Oracle GoldenGate Kinesis Streams Handler uses the AWS Kinesis Java SDK to
push data to Amazon Kinesis, see Amazon Kinesis Streams Developer Guide at:

http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html.

The Kinesis Steams Handler was designed and tested with the latest AWS Kinesis
Java SDK version 1.11.107. These are the dependencies:

• Group ID: com.amazonaws

13-1

http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html

• Artifact ID: aws-java-sdk-kinesis

• Version: 1.11.107

Oracle GoldenGate for Big Data does not ship with the AWS Kinesis Java SDK.
Oracle recommends that you use the AWS Kinesis Java SDK identified in the
Certification Matrix, see Verifying Certification and System Requirements.

Note:

It is assumed by moving to the latest AWS Kinesis Java SDK that there are
no changes to the interface, which can break compatibility with the Kinesis
Streams Handler.

You can download the AWS Java SDK, including Kinesis from:

https://aws.amazon.com/sdk-for-java/

13.2.2 Kinesis Streams Input Limits
The upper input limit for a Kinesis stream with a single shard is 1000 messages per
second up to a total data size of 1MB per second. Adding streams or shards can
increase the potential throughput such as the following:

• 1 stream with 2 shards = 2000 messages per second up to a total data size of
2MB per second

• 3 streams of 1 shard each = 3000 messages per second up to a total data size of
3MB per second

The scaling that you can achieve with the Kinesis Streams Handler depends on how
you configure the handler. Kinesis stream names are resolved at runtime based on the
configuration of the Kinesis Streams Handler.

Shards are selected by the hash the partition key. The partition key for a Kinesis
message cannot be null or an empty string (""). A null or empty string partition key
results in a Kinesis error that results in an abend of the Replicat process.

Maximizing throughput requires that the Kinesis Streams Handler configuration evenly
distributes messages across streams and shards.

13.3 Setting Up and Running the Kinesis Streams Handler
Instructions for configuring the Kinesis Streams Handler components and running the
handler are described in the following sections.

Use the following steps to set up the Kinesis Streams Handler:

1. Create an Amazon AWS account at https://aws.amazon.com/.

2. Log into Amazon AWS.

3. From the main page, select Kinesis (under the Analytics subsection).

4. Select Amazon Kinesis Streams Go to Streams to create Amazon Kinesis
streams and shards within streams.

5. Create a client ID and secret to access Kinesis.

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-2

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/

The Kinesis Streams Handler requires these credentials at runtime to successfully
connect to Kinesis.

6. Create the client ID and secret:

a. Select your name in AWS (upper right), and then in the list select My Security
Credentials.

b. Select Access Keys to create and manage access keys.

Note your client ID and secret upon creation.

The client ID and secret can only be accessed upon creation. If lost, you have
to delete the access key, and then recreate it.

Topics:

• Set the Classpath in Kinesis Streams Handler

• Kinesis Streams Handler Configuration

• Using Templates to Resolve the Stream Name and Partition Name

• Configuring the Client ID and Secret in Kinesis Handler

• Configuring the Proxy Server for Kinesis Streams Handler

• Configuring Security in Kinesis Streams Handler

13.3.1 Set the Classpath in Kinesis Streams Handler
You must configure the gg.classpath property in the Java Adapter properties file to
specify the JARs for the AWS Kinesis Java SDK as follows:

gg.classpath={download_dir}/aws-java-sdk-1.11.107/lib/*:{download_dir}/aws-java-

sdk-1.11.107/third-party/lib/*

13.3.2 Kinesis Streams Handler Configuration
You configure the Kinesis Streams Handler operation using the properties file. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

To enable the selection of the Kinesis Streams Handler, you must first configure the
handler type by specifying gg.handler.name.type=kinesis_streams and the other Kinesis
Streams properties as follows:

Table 13-1 Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.type

Required kinesis_streams None Selects the
Kinesis Streams
Handler for
streaming change
data capture into
Kinesis.

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-3

Table 13-1 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.region

Required The Amazon
region name
which is hosting
your Kinesis
instance.

None Setting of the
Amazon AWS
region name is
required.

gg.handler.name
.proxyServer

Optional The host name of
the proxy server.

None Set the host
name of the
proxy server if
connectivity to
AWS is required
to go through a
proxy server.

gg.handler.name
.proxyPort

Optional The port number
of the proxy
server.

None Set the port name
of the proxy
server if
connectivity to
AWS is required
to go through a
proxy server.

gg.handler.name
.proxyUsername

Optional The username of
the proxy server
(if credentials are
required).

None Set the username
of the proxy
server if
connectivity to
AWS is required
to go through a
proxy server and
the proxy server
requires
credentials.

gg.handler.name
.proxyPassword

Optional The password of
the proxy server
(if credentials are
required).

None Set the password
of the proxy
server if
connectivity to
AWS is required
to go through a
proxy server and
the proxy server
requires
credentials.

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-4

Table 13-1 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.deferFlushAtTx
Commit

Optional true | false false When set to
false, the Kinesis
Streams Handler
will flush data to
Kinesis at
transaction
commit for write
durability.
However, it may
be preferable to
defer the flush
beyond the
transaction
commit for
performance
purposes, see
Kinesis Handler
Performance
Considerations.

gg.handler.name
.deferFlushOpCo
unt

Optional Integer None Only applicable if
gg.handler.name
.deferFlushAtTx
Commit is set to
true. This
parameter marks
the minimum
number of
operations that
must be received
before triggering
a flush to Kinesis.
Once this number
of operations are
received, a flush
will occur on the
next transaction
commit and all
outstanding
operations will be
moved from the
Kinesis Streams
Handler to AWS
Kinesis.

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-5

Table 13-1 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.formatPerOp

Optional true | false true When set to true,
it will send
messages to
Kinesis, once per
operation (insert,
delete, update).
When set to
false, operations
messages will be
concatenated for
all the operations
and a single
message will be
sent at the
transaction level.
Kinesis has a
limitation of 1MB
max massage
size. If 1MB is
exceeded then
transaction level
message will be
broken up into
multiple
messages.

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-6

Table 13-1 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.customMessageG
rouper

Optional oracle.goldenga
te.handler.kine
sis.KinesisJson
TxMessageGroupe
r

None This configuration
parameter
provides the
ability to group
Kinesis
messages using
custom logic.
Only one
implementation is
included in the
distribution at this
time. The
oracle.goldenga
te.handler.kine
sis.KinesisJson
TxMessageGroupe
ris a custom
message which
groups JSON
operation
messages
representing
operations into a
wrapper JSON
message that
encompasses the
transaction.
Setting of this
value overrides
the setting of the
gg.handler.form
atPerOp setting.
Using this feature
assumes that the
customer is using
the JSON
formatter (that is
gg.handler.name
.format=json).

gg.handler.name
.streamMappingT
emplate

Required A template string
value to resolve
the Kinesis
message partition
key (message
key) at runtime.

None See Using
Templates to
Resolve the
Stream Name
and Partition
Name for more
information.

gg.handler.name
.partitionMappi
ngTemplate

Required A template string
value to resolve
the Kinesis
message partition
key (message
key) at runtime.

None See Using
Templates to
Resolve the
Stream Name
and Partition
Name for more
information.

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-7

Table 13-1 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.hander.name.
format

Required Any supported
pluggable
formatter.

delimitedtext |
json | json_row
| xml |
avro_row |
avro_opt

Selects the
operations
message
formatter. JSON
is likely the best
fit for Kinesis.

gg.hander.name.
enableStreamCre
ation

Optional true true | false By default, the
Kinesis Handler
automatically
creates Kinesis
streams if they do
not already exist.
Set to false to
disable to
automatic
creation of
Kinesis streams.

gg.hander.name.
shardCount

Optional Positive integer. 1 A Kinesis stream
contains 1 or
more shards.
Controls the
number of shards
on Kinesis
streams that the
Kinesis Handler
creates. Multiple
shards can help
improve the
ingest
performance to a
Kinesis stream.
Use only when
gg.handler.name
.enableStreamCr
eation is set to
true.

13.3.3 Using Templates to Resolve the Stream Name and Partition
Name

The Kinesis Streams Handler provides the functionality to resolve the stream name
and the partition key at runtime using a template configuration value. Templates allow
you to configure static values and keywords. Keywords are used to dynamically
replace the keyword with the context of the current processing. Templates are
applicable to the following configuration parameters:

gg.handler.name.streamMappingTemplate
gg.handler.name.partitionMappingTemplate

Template Modes

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-8

Source database transactions are made up of 1 or more individual operations which
are the individual inserts, updates, and deletes. The Kinesis Handler can be
configured to send one message per operation (insert, update, delete, Alternatively, it
can be configured to group operations into messages at the transaction level. Many of
the template keywords resolve data based on the context of an individual source
database operation. Therefore, many of the keywords do not work when sending
messages at the transaction level. For example ${fullyQualifiedTableName} does not
work when sending messages at the transaction level. The ${fullyQualifiedTableName}
property resolves to the qualified source table name for an operation. Transactions
can contain multiple operations for many source tables. Resolving the fully-qualified
table name for messages at the transaction level is non-deterministic and so abends at
runtime.

Template Keywords

The following table lists the currently supported keyword templates and includes a
column if the keyword is supported for transaction level messages:

Keyword Explanation Transaction
Message
Support

$
{fullyQualifiedTa
bleName}

Resolves to the fully qualified table name including
the period (.) Delimiter between the catalog, schema,
and table names.

For example, test.dbo.table1.

No

${catalogName} Resolves to the catalog name. No

${schemaName} Resolves to the schema name No

${tableName} Resolves to the short table name. No

${opType} Resolves to the type of the operation: (INSERT,
UPDATE, DELETE, or TRUNCATE)

No

${primaryKeys} Resolves to the concatenated primary key values
delimited by an underscore (_) character.

No

${position} The sequence number of the source trail file followed
by the offset (RBA).

Yes

${opTimestamp} The operation timestamp from the source trail file. Yes

${emptyString} Resolves to “”. Yes

${groupName} Resolves to the name of the replicat process. If using
coordinated delivery it resolves to the name of the
Replicat process with the replicate thread number
appended.

Yes

${staticMap[]} Resolves to a static value where the key is the fully
qualified table name. The keys and values are
designated inside of the square brace in the following
format:

$
{staticMap[dbo.table1=value1,dbo.table2=value2
]}

No

${columnValue[]} Resolves to a column value where the key is the fully
qualified table name and the value is the column
name to be resolved. For example:

${staticMap[dbo.table1=col1,dbo.table2=col2]}

No

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-9

Keyword Explanation Transaction
Message
Support

$
{currentTimestamp
}

Or

$
{currentTimestam
p[]}

Resolves to the current timestamp. You can control
the format of the current timestamp using the Java
based formatting as described in the
SimpleDateFormat class, see https://docs.oracle.com/
javase/8/docs/api/java/text/SimpleDateFormat.html.

Examples:

${currentDate}

${currentDate[yyyy-mm-dd hh:MM:ss.SSS]}

Yes

${null} Resolves to a null string. Yes

${custom[]} It is possible to write a custom value resolver. Depends on the
implementation.

Example Templates

The following describes example template configuration values and the resolved
values.

Example Template Resolved Value

${groupName}_{fullyQualifiedTableName} KINESIS001_dbo.table1

prefix_${schemaName}_${tableName}_suffix prefix_dbo_table1_suffix

${currentDate[yyyy-mm-dd hh:MM:ss.SSS]} 2017-05-17 11:45:34.254

13.3.4 Configuring the Client ID and Secret in Kinesis Handler
A client ID and secret are required credentials for the Kinesis Streams Handler to
interact with Amazon Kinesis. A client ID and secret are generated through the
Amazon AWS website. The retrieval of these credentials and presentation to the
Kinesis server are performed on the client side by the AWS Kinesis Java SDK. The
AWS Kinesis Java SDK provides multiple ways that the client ID and secret can be
resolved at runtime.

The client ID and secret can be set

• as Java properties, on one line, in the Java Adapter properties file as follows:

javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=ggjava/ggjava.jar -
Daws.accessKeyId=your_access_key -Daws.secretKey=your_secret_key

• as environmental variables using the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
variables.

• in the E2C environment on the local machine.

13.3.5 Configuring the Proxy Server for Kinesis Streams Handler
Oracle GoldenGate can be used with a proxy server using the following parameters to
enable the proxy server:

• gg.handler.name.proxyServer=

Chapter 13
Setting Up and Running the Kinesis Streams Handler

13-10

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

•
gg.handler.name.proxyPort=80

Access to the proxy servers can be secured using credentials and the following
configuration parameters:

• gg.handler.name.proxyUsername=username

• gg.handler.name.proxyPassword=password

Sample configurations:

gg.handlerlist=kinesis
gg.handler.kinesis.type=kinesis_streams
gg.handler.kinesis.mode=op
gg.handler.kinesis.format=json
gg.handler.kinesis.region=us-west-2
gg.handler.kinesis.partitionMappingTemplate=TestPartitionName
gg.handler.kinesis.streamMappingTemplate=TestStream
gg.handler.kinesis.deferFlushAtTxCommit=true
gg.handler.kinesis.deferFlushOpCount=1000
gg.handler.kinesis.formatPerOp=true
#gg.handler.kinesis.customMessageGrouper=oracle.goldengate.handler.kinesis.KinesisJso
nTxMessageGrouper
gg.handler.kinesis.proxyServer=www-proxy.myhost.com
gg.handler.kinesis.proxyPort=80

13.3.6 Configuring Security in Kinesis Streams Handler
The AWS Kinesis Java SDK uses HTTPS to communicate with Kinesis. The Kinesis
Streams Handler is authenticated by presenting the client ID and secret credentials at
runtime using a trusted certificate.

The Kinesis Streams Handler can also be configured to authenticate the server
providing mutual authentication. You can do this by generating a certificate from the
Amazon AWS website and configuring server authentication. A trust store must be
generated on the machine hosting Oracle GoldenGate for Big Data. The trust store
and trust store password must be configured in the Kinesis Streams Handler Java
Adapter properties file.

The following is an example configuration:

javawriter.bootoptions=-Xmx512m -Xms32m
-Djava.class.path=ggjava/ggjava.jar
–Djavax.net.ssl.trustStore=path_to_trust_store_file
–Djavax.net.ssl.trustStorePassword=trust_store_password

13.4 Kinesis Handler Performance Considerations
Topics:

• Kinesis Streams Input Limitations

• Transaction Batching

• Deferring Flush at Transaction Commit

Chapter 13
Kinesis Handler Performance Considerations

13-11

13.4.1 Kinesis Streams Input Limitations
The maximum write rate to a Kinesis stream with a single shard to be 1000 messages
per second up to a maximum of 1MB of data per second. You can scale input to
Kinesis by adding additional Kinesis streams or adding shards to streams. Both adding
streams and adding shards can linearly increase the Kinesis input capacity and
thereby improve performance of the Oracle GoldenGate Kinesis Streams Handler.

Adding streams or shards can linearly increase the potential throughput such as
follows:

• 1 stream with 2 shards = 2000 messages per second up to a total data size of
2MB per second.

• 3 streams of 1 shard each = 3000 messages per second up to a total data size of
3MB per second.

To fully take advantage of streams and shards, you must configure the Oracle
GoldenGate Kinesis Streams Handler to distribute messages as evenly as possible
across streams and shards.

Adding additional Kinesis streams or shards does nothing to scale Kinesis input if all
data is sent to using a static partition key into a single Kinesis stream. Kinesis streams
are resolved at runtime using the selected mapping methodology. For example,
mapping the source table name as the Kinesis stream name may provide good
distribution of messages across Kinesis streams if operations from the source trail file
are evenly distributed across tables. Shards are selected by a hash of the partition
key. Partition keys are resolved at runtime using the selected mapping methodology.
Therefore, it is best to choose a mapping methodology to a partition key that rapidly
changes to ensure a good distribution of messages across shards.

13.4.2 Transaction Batching
The Oracle GoldenGate Kinesis Streams Handler receives messages and then
batches together messages by Kinesis stream before sending them via synchronous
HTTPS calls to Kinesis. At transaction commit all outstanding messages are flushed to
Kinesis. The flush call to Kinesis impacts performance. Therefore, deferring the flush
call can dramatically improve performance.

The recommended way to defer the flush call is to use the GROUPTRANSOPS configuration
in the replicat configuration. The GROUPTRANSOPS groups multiple small transactions into
a single larger transaction deferring the transaction commit call until the larger
transaction is completed. The GROUPTRANSOPS parameter works by counting the
database operations (inserts, updates, and deletes) and only commits the transaction
group when the number of operations equals or exceeds the GROUPTRANSOPS
configuration setting. The default GROUPTRANSOPS setting for replicat is 1000.

Interim flushes to Kinesis may be required with the GROUPTRANSOPS setting set to a large
amount. An individual call to send batch messages for a Kinesis stream cannot exceed
500 individual messages or 5MB. If the count of pending messages exceeds 500
messages or 5MB on a per stream basis then the Kinesis Handler is required to
perform an interim flush.

Chapter 13
Kinesis Handler Performance Considerations

13-12

13.4.3 Deferring Flush at Transaction Commit
The messages are by default flushed to Kinesis at transaction commit to ensure write
durability. However, it is possible to defer the flush beyond transaction commit. This is
only advisable when messages are being grouped and sent to Kinesis at the
transaction level (that is one transaction = one Kinesis message or chunked into a
small number of Kinesis messages), when the user is trying to capture the transaction
as a single messaging unit.

This may require setting the GROUPTRANSOPS replication parameter to 1 so as not to
group multiple smaller transactions from the source trail file into a larger output
transaction. This can impact performance as only one or few messages are sent per
transaction and then the transaction commit call is invoked which in turn triggers the
flush call to Kinesis.

In order to maintain good performance the Oracle GoldenGate Kinesis Streams
Handler allows the user to defer the Kinesis flush call beyond the transaction commit
call. The Oracle GoldenGate replicat process maintains the checkpoint in the .cpr file
in the {GoldenGate Home}/dirchk directory. The Java Adapter also maintains a
checkpoint file in this directory named .cpj. The Replicat checkpoint is moved beyond
the checkpoint for which the Oracle GoldenGate Kinesis Handler can guarantee
message loss will not occur. However, in this mode of operation the GoldenGate
Kinesis Streams Handler maintains the correct checkpoint in the .cpj file. Running in
this mode will not result in message loss even with a crash as on restart the
checkpoint in the .cpj file is parsed if it is before the checkpoint in the .cpr file.

13.5 Troubleshooting
Topics:

• Java Classpath

• Kinesis Handler Connectivity Issues

• Logging

13.5.1 Java Classpath
The most common initial error is an incorrect classpath to include all the required AWS
Kinesis Java SDK client libraries and creates a ClassNotFound exception in the log file.

You can troubleshoot by setting the Java Adapter logging to DEBUG, and then rerun the
process. At the debug level, the logging includes information about which JARs were
added to the classpath from the gg.classpath configuration variable.

The gg.classpath variable supports the wildcard asterisk (*) character to select all
JARs in a configured directory. For example, /usr/kinesis/sdk/*, see Setting Up and
Running the Kinesis Streams Handler.

13.5.2 Kinesis Handler Connectivity Issues
If the Kinesis Streams Handler is unable to connect to Kinesis when running on
premise, the problem can be the connectivity to the public Internet is protected by a
proxy server. Proxy servers act a gateway between the private network of a company

Chapter 13
Troubleshooting

13-13

and the public Internet. Contact your network administrator to get the URLs of your
proxy server, and then follow the directions in Configuring the Proxy Server for Kinesis
Streams Handler.

13.5.3 Logging
The Kinesis Streams Handler logs the state of its configuration to the Java log file.

This is helpful because you can review the configuration values for the handler.
Following is a sample of the logging of the state of the configuration:

**** Begin Kinesis Streams Handler - Configuration Summary ****
Mode of operation is set to op.
 The AWS region name is set to [us-west-2].
 A proxy server has been set to [www-proxy.us.oracle.com] using port [80].
 The Kinesis Streams Handler will flush to Kinesis at transaction commit.
 Messages from the GoldenGate source trail file will be sent at the operation
level.
 One operation = One Kinesis Message
The stream mapping template of [${fullyQualifiedTableName}] resolves to [fully
qualified table name].
 The partition mapping template of [${primaryKeys}] resolves to [primary keys].
**** End Kinesis Streams Handler - Configuration Summary ****

Chapter 13
Troubleshooting

13-14

14
Using the MongoDB Handler

Learn how to use the MongoDB Handler, which can replicate transactional data from
Oracle GoldenGate to a target MongoDB database.

Topics:

• Overview

• Detailed Functionality

• Setting Up and Running the MongoDB Handler

• Review a Sample Configuration

14.1 Overview
MongoDB is an open-source document database that provides high performance, high
availability, and automatic scaling, see https://www.mongodb.com/.

14.2 Detailed Functionality
The MongoDB Handler takes operations from the source trail file and creates
corresponding documents in the target MongoDB database.

A record in MongoDB is a Binary JSON (BSON) document, which is a data structure
composed of field and value pairs. A BSON data structure is a binary representation of
JSON documents. MongoDB documents are similar to JSON objects. The values of
fields may include other documents, arrays, and arrays of documents.

A collection is a grouping of MongoDB documents and is the equivalent of an RDBMS
table. In MongoDB, databases hold collections of documents. Collections do not
enforce a schema. MongoDB documents within a collection can have different fields.

Topics:

• Document Key Column

• Primary Key Update Operation

• MongoDB Trail Data Types

14.2.1 Document Key Column
MongoDB databases require every document (row) to have a column named _id
whose value should be unique in a collection (table). This is similar to a primary key for
RDBMS tables. If a document does not contain a top-level _id column during an insert,
the MongoDB driver adds this column.

The MongoDB Handler builds custom _id field values for every document based on
the primary key column values in the trail record. This custom _id is built using all the
key column values concatenated by a : (colon) separator. For example:

14-1

https://www.mongodb.com/

KeyColValue1:KeyColValue2:KeyColValue3

The MongoDB Handler enforces uniqueness based on these custom _id values. This
means that every record in the trail must be unique based on the primary key columns
values. Existence of non-unique records for the same table results in a MongoDB
Handler failure and in Replicat abending with a duplicate key error.

The behavior of the _id field is:

• By default, MongoDB creates a unique index on the column during the creation of
a collection.

• It is always the first column in a document.

• It may contain values of any BSON data type except an array.

14.2.2 Primary Key Update Operation
MongoDB databases do not allow the _id column to be modified. This means a
primary key update operation record in the trail needs special handling. The MongoDB
Handler converts a primary key update operation into a combination of a DELETE (with
old key) and an INSERT (with new key). To perform the INSERT, a complete before-image
of the update operation in trail is recommended. You can generate the trail to populate
a complete before image for update operations by enabling the Oracle GoldenGate
GETUPDATEBEFORES and NOCOMPRESSUPDATES parameters, see Reference for Oracle
GoldenGate.

14.2.3 MongoDB Trail Data Types
The MongoDB Handler supports delivery to the BSON data types as follows:

• 32-bit integer

• 64-bit integer

• Double

• Date

• String

• Binary data

14.3 Setting Up and Running the MongoDB Handler
The following sections provide instructions for configuring the MongoDB Handler
components and running the handler.

Topics:

• Classpath Configuration

• MongoDB Handler Configuration

• Connecting and Authenticating

• Using Bulk Write

• Using Write Concern

• Using Three-Part Table Names

Chapter 14
Setting Up and Running the MongoDB Handler

14-2

• Using Undo Handling

14.3.1 Classpath Configuration
The MongoDB Java Driver is required for Oracle GoldenGate for Big Data to connect
and stream data to MongoDB. The minimum required version of the MongoDB Java
Driver is 3.4.3. The MongoDB Java Driver is not included in the Oracle GoldenGate for
Big Data product. You must download the driver from:

https://docs.mongodb.com/ecosystem/drivers/java/#download-upgrade

Select mongo-java-driver and the 3.4.3 version to download the recommended driver
JAR file.

You must configure the gg.classpath variable to load the MongoDB Java Driver JAR at
runtime. For example: gg.classpath=/home/mongodb/mongo-java-driver-3.4.3.jar

Oracle GoldenGate for Big Data supports the MongoDB Decimal 128 data type that
was added in MongoDB 3.4. Use of a MongoDB Java Driver prior to 3.4.3 results in a
ClassNotFound exception. You can disable the use of the Decimal128 data type to
support MongoDB server versions older than 3.4 by setting this configuration
parameter:

gg.handler.name.enableDecimal128=false

14.3.2 MongoDB Handler Configuration
You configure the MongoDB Handler operation using the properties file. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

To enable the selection of the MongoDB Handler, you must first configure the handler
type by specifying gg.handler.name.type=mongodb and the other MongoDB properties as
follows:

Table 14-1 MongoDB Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.type

Required mongodb None Selects the MongoDB Handler for use with
Replicat.

gg.handler.name
.bulkWrite

Optional true |
false

true Set to true, the handler caches operations
until a commit transaction event is
received. When committing the transaction
event, all the cached operations are written
out to the target MongoDB database,
which provides improved throughput.

Set to false, there is no caching within the
handler and operations are immediately
written to the MongoDB database.

Chapter 14
Setting Up and Running the MongoDB Handler

14-3

Table 14-1 (Cont.) MongoDB Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.WriteConcern

Optional {“w”:
“value” ,
“wtimeout
”:
“number”
}

None Sets the required write concern for all the
operations performed by the MongoDB
Handler.

The property value is in JSON format and
can only accept keys as w and wtimeout,
see https://docs.name.com/manual/
reference/write-concern/.

gg.handler.name
.username

Optional A legal
username
string.

None Sets the authentication username to be
used. Use with the
AuthenticationMechanism property.

gg.handler.name
.password

Optional A legal
password
string.

None Sets the authentication password to be
used. Use with the
AuthenticationMechanism property.

gg.handler.name
.ServerAddressL
ist

Optional IP:PORT
with
multiple
port
values
delimited
by a
comma

None Enables the connection to a list of Replicat
set members or a list of MongoDB
databases.

This property accepts a comma separated
list of [hostnames:port]. For example,
localhost1:27017,localhost2:27018,loc
alhost3:27019, see http://api.name.com/
java/3.0/com/mongodb/
MongoClient.html#MongoClient-
java.util.List-java.util.List-
com.name.MongoClientOptions-.

gg.handler.name
.Authentication
Mechanism

Optional Comma
separated
list of
authentica
tion
mechanis
m

None Sets the authentication mechanism which
is a process of verifying the identity of a
client. The input would be a comma
separated list of various authentication
options. For example,
GSSAPI,MONGODB_CR,MONGODB_X509,PLAIN,
SCRAM_SHA_1. see http://api.name.com/
java/3.0/com/mongodb/
MongoCredential.html.

gg.handler.name
.source

Optional Valid
authentica
tion
source

None Sets the source of the user name, typically
the name of the database where the user
is defined. Use with the
AuthenticationMechanism property.

gg.handler.name
.clientURI

Optional Valid
MongoDB
client URI

None Sets the MongoDB client URI. A client URI
can also be used to set other MongoDB
connection properties, such as
authentication and WriteConcern. For
example, mongodb://localhost:27017/,
see: http://api.name.com/java/3.0/com/
mongodb/MongoClientURI.html.

Chapter 14
Setting Up and Running the MongoDB Handler

14-4

https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.util.List-java.util.List-com.mongodb.MongoClientOptions-
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.util.List-java.util.List-com.mongodb.MongoClientOptions-
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.util.List-java.util.List-com.mongodb.MongoClientOptions-
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.util.List-java.util.List-com.mongodb.MongoClientOptions-
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.util.List-java.util.List-com.mongodb.MongoClientOptions-
http://api.mongodb.com/java/3.0/com/mongodb/MongoCredential.html
http://api.mongodb.com/java/3.0/com/mongodb/MongoCredential.html
http://api.mongodb.com/java/3.0/com/mongodb/MongoCredential.html
http://api.mongodb.com/java/3.0/com/mongodb/MongoClientURI.html
http://api.mongodb.com/java/3.0/com/mongodb/MongoClientURI.html

Table 14-1 (Cont.) MongoDB Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.Host

Optional Valid
MongoDB
server
name or
IP address

None Sets the MongoDB database hostname to
connect to based on a (single) MongoDB
node, see http://api.name.com/
java/3.0/com/mongodb/
MongoClient.html#MongoClient-
java.lang.String-.

gg.handler.name
.Port

Optional Valid
MongoDB
port

None Sets the MongoDB database instance port
number. Use with the Host property.

gg.handler.name
.CheckMaxRowSiz
eLimit

Optional true |
false

false When set to true, the handler verifies that
the size of the BSON document inserted or
modified is within the limits defined by the
MongoDB database. Calculating the size
involves the use of a default codec to
generate a RawBsonDocument, leading to a
small degradation in the throughput of the
MongoDB Handler.

If the size of the document exceeds the
MongoDB limit, an exception occurs and
Replicat abends.

gg.handler.name
.upsert

Optional true |
false

false When set to true, a new Mongo document
is inserted if there are no matches to the
query filter when performing an UPDATE
operation.

gg.handler.name
.enableDecimal1
28

Optional true |
false

true MongoDB version 3.4 added support for a
128 bit decimal data type called
Decimal128. This data type was needed
since supports both integer and decimal
data types that do not fit into a 64 bit Long
or Double. Setting this property to true
enables mapping into the Double128 data
type for source data types that require it.
Set to false to process these source data
types as 64 bit Doubles.

14.3.3 Connecting and Authenticating
In the handler properties file, you can configure various connection and authentication
properties. When multiple connection properties are specified, the MongoDB Handler
chooses the properties according to the following priority:

Priority 1:

ServerAddressList
AuthentictionMechanism
UserName
Password
Source
Write Concern

Chapter 14
Setting Up and Running the MongoDB Handler

14-5

http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.lang.String-
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.lang.String-
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.lang.String-
http://api.mongodb.com/java/3.0/com/mongodb/MongoClient.html#MongoClient-java.lang.String-

Priority 2:

ServerAddressList
AuthentictionMechanism
UserName
Password
Source

Priority 3:

clientURI

Priority 4:

Host
Port

Priority 5:

Host

If none of the connection and authentication properties are specified, the handler tries
to connect to localhost on port 27017.

14.3.4 Using Bulk Write
Bulk write is enabled by default. For better throughput, Oracle recommends that you
use bulk write.

You can also enable bulk write by using the BulkWrite handler property. To enable or
disable bulk write use the gg.handler.handler.BulkWrite=true | false. The MongoDB
Handler does not use the gg.handler.handler.mode=op | tx property that is used by
Oracle GoldenGate for Big Data.

With bulk write, the MongoDB Handler uses the GROUPTRANSOPS parameter to retrieve
the batch size. The handler converts a batch of trail records to MongoDB documents,
which are then written to the database in one request.

14.3.5 Using Write Concern
Write concern describes the level of acknowledgement that is requested from
MongoDB for write operations to a standalone MongoDB, replica sets, and sharded-
clusters. With sharded-clusters, Mongo instances pass the write concern on to the
shards, see https://docs.mongodb.com/manual/reference/write-concern/.

Use the following configuration:

w: value
wtimeout: number

14.3.6 Using Three-Part Table Names
An Oracle GoldenGate trail may have data for sources that support three-part table
names, such as Catalog.Schema.Table. MongoDB only supports two-part names, such
as DBName.Collection. To support the mapping of source three-part names to
MongoDB two-part names, the source Catalog and Schema is concatenated with an
underscore delimiter to construct the Mongo DBName.

For example, Catalog.Schema.Table would become catalog1_schema1.table1.

Chapter 14
Setting Up and Running the MongoDB Handler

14-6

https://docs.mongodb.com/manual/reference/write-concern/

14.3.7 Using Undo Handling
The MongoDB Handler can recover from bulk write errors using a lightweight undo
engine. This engine works differently from typical RDBMS undo engines, rather the
best effort to assist you in error recovery. Error recovery works well when there are
primary violations or any other bulk write error where the MongoDB database provides
information about the point of failure through BulkWriteException.

Table 14-2Table 1 lists the requirements to make the best use of this functionality.

Table 14-2 Undo Handling Requirements

Operation to Undo Require Full Before Image in the Trail?

INSERT No

DELETE Yes

UPDATE No (before image of fields in the SET clause.)

If there are errors during undo operations, it may be not possible to get the MongoDB
collections to a consistent state. In this case, you must manually reconcile the data.

14.4 Review a Sample Configuration
The following is a sample configuration for the MongoDB Handler from the Java
adapter properties file:

gg.handlerlist=mongodb
gg.handler.mongodb.type=mongodb

#The following handler properties are optional.
#Please refer to the Oracle GoldenGate for BigData documentation
#for details about the configuration.
#gg.handler.mongodb.clientURI=mongodb://localhost:27017/
#gg.handler.mongodb.Host=<MongoDBServer address>
#gg.handler.mongodb.Port=<MongoDBServer port>
#gg.handler.mongodb.WriteConcern={ w: <value>, wtimeout: <number> }
#gg.handler.mongodb.AuthenticationMechanism=GSSAPI,MONGODB_CR,MONGODB_X509,PLAIN,SCRA
M_SHA_1
#gg.handler.mongodb.UserName=<Authentication username>
#gg.handler.mongodb.Password=<Authentication password>
#gg.handler.mongodb.Source=<Authentication source>
#gg.handler.mongodb.ServerAddressList=localhost1:27017,localhost2:27018,localhost3:27
019,...
#gg.handler.mongodb.BulkWrite=<false|true>
#gg.handler.mongodb.CheckMaxRowSizeLimit=<true|false>

goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec

#Path to MongoDB Java driver.
maven co-ordinates

Chapter 14
Review a Sample Configuration

14-7

<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongo-java-driver</artifactId>
<version>3.2.2</version>
</dependency>
gg.classpath=/path/to/mongodb/java/driver/mongo-java-driver-3.2.2.jar
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./
dirprm

Chapter 14
Review a Sample Configuration

14-8

15
Using the Metadata Providers

Learn how to use the Metadata Providers, which can replicate from a source to a
target using a Replicat parameter file.

Topics:

• About the Metadata Providers

• Avro Metadata Provider

• Java Database Connectivity Metadata Provider

• Hive Metadata Provider

15.1 About the Metadata Providers
Metadata Providers work only if handlers are configured to run with a Replicat
process.

The Replicat process maps source table to target table and source column to target
column mapping using syntax in the Replicat configuration file. The source metadata
definitions are included in the Oracle GoldenGate trail file (or by source definitions files
in Oracle GoldenGate releases 12.2 and later). When the replication target is a
database, the Replicat process obtains the target metadata definitions from the target
database. However, this is a shortcoming when pushing data to Big Data applications
or during Java delivery in general. Typically, Big Data applications provide no target
metadata, so Replicat mapping is not possible. The metadata providers exist to
address this deficiency. You can use a metadata provider to define target metadata
using either Avro or Hive, which enables Replicat mapping of source table to target
table and source column to target column.

The use of the metadata provider is optional and is enabled if the gg.mdp.type property
is specified in the Java Adapter Properties file. If the metadata included in the source
Oracle GoldenGate trail file is acceptable for output, then do not use the metadata
provider. Use a metadata provider should be used in the following cases:

• You need to map source table names into target table names that do not match.

• You need to map source column names into target column name that do not
match.

• You need to include certain columns from the source trail file and omit other
columns.

A limitation of Replicat mapping is that the mapping defined in the Replicat
configuration file is static. Oracle GoldenGate provides functionality for DDL
propagation when using an Oracle database as the source. The proper handling of
schema evolution can be problematic when the Metadata Provider and Replicat
mapping are used. Consider your use cases for schema evolution and plan for how
you want to update the Metadata Provider and the Replicat mapping syntax for
required changes.

15-1

For every table mapped in Replicat using COLMAP, the metadata is retrieved from a
configured metadata provider and retrieved metadata then be used by Replicat for
column mapping.

Only the Hive and Avro Metadata Providers are supported and you must choose one
or the other to use in your metadata provider implementation.

Scenarios - When to use a metadata provider

1. The following scenarios do not require a metadata provider to be configured:

A mapping in which the source schema named GG is mapped to the target schema
named GGADP.*

A mapping in which the schema and table name whereby the schema GG.TCUSTMER
is mapped to the table name GGADP.TCUSTMER_NEW

MAP GG.*, TARGET GGADP.*;
(OR)
MAP GG.TCUSTMER, TARGET GG_ADP.TCUSTMER_NEW;

2. The following scenario requires a metadata provider to be configured:

A mapping in which the source column name does not match the target column
name. For example, a source column of CUST_CODE mapped to a target column of
CUST_CODE_NEW.

MAP GG.TCUSTMER, TARGET GG_ADP.TCUSTMER_NEW, COLMAP(USEDEFAULTS,
CUST_CODE_NEW=CUST_CODE, CITY2=CITY);

15.2 Avro Metadata Provider
The Avro Metadata Provider is used to retrieve the table metadata from Avro Schema
files. For every table mapped in Replicat using COLMAP, the metadata is retrieved from
Avro Schema. Retrieved metadata is then used by Replicat for column mapping.

This section contains the following:

Topics:

• Detailed Functionality

• Runtime Prerequisites

• Classpath Configuration

• Avro Metadata Provider Configuration

• Review a Sample Configuration

• Metadata Change Events

• Limitations

• Troubleshooting

15.2.1 Detailed Functionality
The Avro Metadata Provider uses Avro schema definition files to retrieve metadata.
Avro schemas are defined using JSON. For each table mapped in the process_name.
prm file, you must create a corresponding Avro schema definition file. For information
about how to define Avro schemas, see Defining a Schema.

Chapter 15
Avro Metadata Provider

15-2

http://avro.apache.org/docs/current/gettingstartedjava.html#Defining+a+schema

Avro Metadata Provider Schema Definition Syntax

{"namespace": "[$catalogname.]$schemaname",
"type": "record",
"name": "$tablename",
"fields": [
 {"name": "$col1", "type": "$datatype"},
 {"name": "$col2 ", "type": "$datatype ", "primary_key":true},
 {"name": "$col3", "type": "$datatype ", "primary_key":true},
 {"name": "$col4", "type": ["$datatype","null"]}
]
}

namespace - name of catalog/schema being mapped
name - name of the table being mapped
fields.name - array of column names
fields.type - datatype of the column
fields.primary_key - indicates the column is part of primary key.

Representing nullable and not nullable columns:

"type":"$datatype" - indicates the column is not nullable, where "$datatype" is the
actual datatype.
"type": ["$datatype","null"] - indicates the column is nullable, where "$datatype"
is the actual datatype

The names of schema files that are accessed by the Avro Metadata Provider must be
in the following format:

[$catalogname.]$schemaname.$tablename.mdp.avsc

$catalogname - name of the catalog if exists
$schemaname - name of the schema
$tablename - name of the table
.mdp.avsc - constant, which should be appended always

Supported Avro Data Types

• boolean

• bytes

• double

• float

• int

• long

• string

See https://avro.apache.org/docs/1.7.5/spec.html#schema_primitive.

15.2.2 Runtime Prerequisites
Before you start the Replicat process, create Avro schema definitions for all tables
mapped in Replicat's parameter file.

Chapter 15
Avro Metadata Provider

15-3

https://avro.apache.org/docs/1.7.5/spec.html#schema_primitive

15.2.3 Classpath Configuration
The Avro Metadata Provider requires no additional classpath setting.

15.2.4 Avro Metadata Provider Configuration

Property Required/
Optional

Legal Values Default Explanation

gg.mdp.type Required avro - Selects the Avro
Metadata Provider

gg.mdp.schema
FilesPath

Required Example:/home/
user/ggadp/
avroschema/

- The path to the Avro
schema files
directory

gg.mdp.charse
t

Optional Valid character set UTF-8 Specifies the
character set of the
column with
character data type.
Used to convert the
source data from the
trail file to the correct
target character set.

gg.mdp.nation
alCharset

Optional Valid character set UTF-8 Specifies the
character set of the
column with
character data type.
Used to convert the
source data from the
trail file to the correct
target character set.

Example: Used to
indicate character set
of columns, such as
NCHAR, NVARCHAR in
an Oracle database.

15.2.5 Review a Sample Configuration
This is an example for configuring the Avro Metadata Provider. Consider a source that
includes the following table:

TABLE GG.TCUSTMER {
 CUST_CODE VARCHAR(4) PRIMARY KEY,
 NAME VARCHAR(100),
 CITY VARCHAR(200),
 STATE VARCHAR(200)
}

This table maps the(CUST_CODE (GG.TCUSTMER) in the source to CUST_CODE2
(GG_AVRO.TCUSTMER_AVRO) on the target and the column CITY (GG.TCUSTMER) in source to
CITY2 (GG_AVRO.TCUSTMER_AVRO) on the target. Therefore, the mapping in the
process_name. prm file is:

Chapter 15
Avro Metadata Provider

15-4

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS,
CUST_CODE2=CUST_CODE, CITY2=CITY);

In this example the mapping definition is as follows:

• Source schema GG is mapped to target schema GG_AVRO.

• Source column CUST_CODE is mapped to target column CUST_CODE2.

• Source column CITY is mapped to target column CITY2.

• USEDEFAULTS specifies that rest of the columns names are same on both source and
target (NAME and STATE columns).

This example uses the following Avro schema definition file:

File path: /home/ggadp/avromdpGG_AVRO.TCUSTMER_AVRO.mdp.avsc

{"namespace": "GG_AVRO",
"type": "record",
"name": "TCUSTMER_AVRO",
"fields": [
 {"name": "NAME", "type": "string"},
 {"name": "CUST_CODE2", "type": "string", "primary_key":true},
 {"name": "CITY2", "type": "string"},
 {"name": "STATE", "type": ["string","null"]}
]
}

The configuration in the Java Adapter properties file includes the following:

gg.mdp.type = avro
gg.mdp.schemaFilesPath = /home/ggadp/avromdp

The following sample output uses a delimited text formatter with a semi-colon as the
delimiter:

I;GG_AVRO.TCUSTMER_AVRO;2013-06-02 22:14:36.000000;NAME;BG SOFTWARE
CO;CUST_CODE2;WILL;CITY2;SEATTLE;STATE;WA

Oracle GoldenGate for Big Data includes a sample Replicat configuration file, a
sample Java Adapter properties file, and sample Avro schemas at the following
location:

GoldenGate_install_directory/AdapterExamples/big-data/metadata_provider/avro

15.2.6 Metadata Change Events
If the DDL changes in the source database tables, you may need to modify the Avro
schema definitions and the mappings in the Replicat configuration file. You may also
want to stop or suspend the Replicat process in the case of a metadata change event.
You can stop the Replicat process by adding the following line to the Replicat
configuration file (process_name. prm):

DDL INCLUDE ALL, EVENTACTIONS (ABORT)

Alternatively, you can suspend the Replicat process by adding the following line to the
Replication configuration file:

Chapter 15
Avro Metadata Provider

15-5

DDL INCLUDE ALL, EVENTACTIONS (SUSPEND)

15.2.7 Limitations
Avro bytes data type cannot be used as primary key.

The source-to-target mapping that is defined in the Replicat configuration file is static.
Oracle GoldenGate 12.2 and later support DDL propagation and source schema
evolution for Oracle Databases as replication source. If you use DDL propagation and
source schema evolution, you lose the ability to seamlessly handle changes to the
source metadata.

15.2.8 Troubleshooting
This section contains the information about how to troubleshoot the following issues:

Topics:

• Invalid Schema Files Location

• Invalid Schema File Name

• Invalid Namespace in Schema File

• Invalid Table Name in Schema File

15.2.8.1 Invalid Schema Files Location
The Avro schema files directory specified in the gg.mdp.schemaFilesPath configuration
property must be a valid directory.If the path is not valid, you encounter following
exception:

oracle.goldengate.util.ConfigException: Error initializing Avro metadata provider
Specified schema location does not exist. {/path/to/schema/files/dir}

15.2.8.2 Invalid Schema File Name
For every table that is mapped in the process_name.prm file, you must create a
corresponding Avro schema file in the directory that is specified in
gg.mdp.schemaFilesPath.

For example, consider the following scenario:

Mapping:

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS,
cust_code2=cust_code, CITY2 = CITY);

Property:

gg.mdp.schemaFilesPath=/home/usr/avro/

In this scenario, you must create a file called GG_AVRO.TCUSTMER_AVRO.mdp.avsc in the /
home/usr/avro/ directory.

If you do not create the /home/usr/avro/GG_AVRO.TCUSTMER_AVRO.mdp.avsc file, you
encounter the following exception:

Chapter 15
Avro Metadata Provider

15-6

java.io.FileNotFoundException: /home/usr/avro/GG_AVRO.TCUSTMER_AVRO.mdp.avsc

15.2.8.3 Invalid Namespace in Schema File
The target schema name specified in Replicat mapping must be same as the
namespace in the Avro schema definition file.

For example, consider the following scenario:

Mapping:

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS, cust_code2 =
cust_code, CITY2 = CITY);

Avro Schema Definition:

{
"namespace": "GG_AVRO",
..
}

In this scenario, Replicat abends with following exception:

Unable to retrieve table matadata. Table : GG_AVRO.TCUSTMER_AVRO
Mapped [catalogname.]schemaname (GG_AVRO) does not match with the schema namespace
{schema namespace}

15.2.8.4 Invalid Table Name in Schema File
The target table name that is specified in Replicat mapping must be same as the name
in the Avro schema definition file.

For example, consider the following scenario:

Mapping:

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS, cust_code2 =
cust_code, CITY2 = CITY);

Avro Schema Definition:

{
"namespace": "GG_AVRO",
"name": "TCUSTMER_AVRO",
..
}

In this scenario, if the target table name specified in Replicat mapping does not match
with the Avro schema name, then REPLICAT abends with following exception:

Unable to retrieve table matadata. Table : GG_AVRO.TCUSTMER_AVRO
Mapped table name (TCUSTMER_AVRO) does not match with the schema table name {table
name}

15.3 Java Database Connectivity Metadata Provider
The Java Database Connectivity (JDBC) Metadata Provider is used to retrieve the
table metadata from any target database that supports a JDBC connection and has a
database schema. The JDBC Metadata Provider is the preferred metadata provider for

Chapter 15
Java Database Connectivity Metadata Provider

15-7

any target database that is an RDBMS, although various other non-RDBMS targets
also provide a JDBC driver.

Topics:

• JDBC Detailed Functionality

• Java Classpath

• JDBC Metadata Provider Configuration

• Review a Sample Configuration

15.3.1 JDBC Detailed Functionality
The JDBC Metadata Provider uses the JDBC driver that is provided with your target
database. The DBC driver retrieves the metadata for every target table that is mapped
in the Replicat properties file. Replicat processes use the retrieved target metadata to
map columns.

You can enable this feature for JDBC Handler by configuring the REPERROR property in
your Replicat parameter file. In addition, you need to define the error codes specific to
your RDBMS JDBC target in the JDBC Handler properties file as follows:

Table 15-1 JDBC REPERROR Codes

Property Value Required

gg.error.duplicateErrorCode
s

Comma-separated integer
values of error codes that
indicate duplicate errors

No

gg.error.notFoundErrorCodes
Comma-separated integer
values of error codes that
indicate Not Found errors

No

gg.error.deadlockErrorCodes
Comma-separated integer
values of error codes that
indicate deadlock errors

No

For example:

#ErrorCode
gg.error.duplicateErrorCodes=1062,1088,1092,1291,1330,1331,1332,1333
gg.error.notFoundErrorCodes=0
gg.error.deadlockErrorCodes=1213

To understand how the various JDBC types are mapped to database-specific SQL
types, see https://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/
mapping.html#table1.

15.3.2 Java Classpath
The JDBC Java Driver location must be included in the class path of the handler using
the gg.classpath property.

For example, the configuration for a MySQL database might be:

gg.classpath= /path/to/jdbc/driver/jar/mysql-connector-java-5.1.39-bin.jar

Chapter 15
Java Database Connectivity Metadata Provider

15-8

https://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/mapping.html#table1
https://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/mapping.html#table1

15.3.3 JDBC Metadata Provider Configuration
The following are the configurable values for the JDBC Metadata Provider. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

Table 15-2 JDBC Metadata Provider Properties

Properties Required
/
Optional

Legal
Values

Default Explanation

gg.mdp.type Required jdbc None Entering jdbc at a command prompt
activates the use of the JDBC
Metadata Provider.

gg.mdp.Connect
ionUrl

Required jdbc:subp
rotocol:s
ubname

None The target database JDBC URL.

gg.mdp.DriverC
lassName

Required Java class
name of
the JDBC
driver

None The fully qualified Java class name of
the JDBC driver.

gg.mdp.userNam
e

Optional A legal
username
string.

None The user name for the JDBC
connection. Alternatively, you can
provide the user name using the
ConnectionURL property.

gg.mdp.passwor
d

Optional A legal
password
string

None The password for the JDBC
connection. Alternatively, you can
provide the password using the
ConnectionURL property.

15.3.4 Review a Sample Configuration
MySQL Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:oracle:thin:@myhost:1521:orcl
gg.mdp.DriverClassName=oracle.jdbc.driver.OracleDriver
gg.mdp.UserName=username
gg.mdp.Password=password

Netezza Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:netezza://hostname:port/databaseName
gg.mdp.DriverClassName=org.netezza.Driver
gg.mdp.UserName=username
gg.mdp.Password=password

Oracle OCI Driver configuration

ggg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:oracle:oci:@myhost:1521:orcl
gg.mdp.DriverClassName=oracle.jdbc.driver.OracleDriver

Chapter 15
Java Database Connectivity Metadata Provider

15-9

gg.mdp.UserName=username
gg.mdp.Password=password

Oracle Teradata Driver configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:teradata://10.111.11.111/USER=username,PASSWORD=password
gg.mdp.DriverClassName=com.teradata.jdbc.TeraDriver
gg.mdp.UserName=username
gg.mdp.Password=password

Oracle Thin Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:mysql://localhost/databaseName?
user=username&password=password
gg.mdp.DriverClassName=com.mysql.jdbc.Driver
gg.mdp.UserName=username
gg.mdp.Password=password

Redshift Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:redshift://hostname:port/databaseName
gg.mdp.DriverClassName=com.amazon.redshift.jdbc42.Driver
gg.mdp.UserName=username
gg.mdp.Password=password

15.4 Hive Metadata Provider
The Hive Metadata Provider is used to retrieve the table metadata from a Hive
metastore. The metadata is retrieved from Hive for every target table that is mapped in
the Replicat properties file using the COLMAP parameter. The retrieved target metadata
is used by Replicat for the column mapping functionality.

Topics:

• Detailed Functionality

• Configuring Hive with a Remote Metastore Database

• Classpath Configuration

• Hive Metadata Provider Configuration Properties

• Review a Sample Configuration

• Security

• Metadata Change Event

• Limitations

• Additional Considerations

• Troubleshooting

Chapter 15
Hive Metadata Provider

15-10

15.4.1 Detailed Functionality
The Hive Metadata Provider uses both Hive JDBC and HCatalog interfaces to retrieve
metadata from the Hive metastore. For each table mapped in the process_name.prm file,
a corresponding table is created in Hive.

The default Hive configuration starts an embedded, local metastore Derby database.
Because, Apache Derby is designed to be an embedded database, it allows only a
single connection. The limitation of the Derby Database means that it cannot function
when working with the Hive Metadata Provider. To workaround this limitation this, you
must configure Hive with a remote metastore database. For more information about
how to configure Hive with a remote metastore database, see https://cwiki.apache.org/
confluence/display/Hive/AdminManual+Metastore+Administration.

Hive does not support Primary Key semantics, so the metadata retrieved from Hive
metastore does not include a primary key definition. When you use the Hive Metadata
Provider, use the Replicat KEYCOLS parameter to define primary keys.

KEYCOLS

Use the KEYCOLS parameter must be used to define primary keys in the target schema.
The Oracle GoldenGate HBase Handler requires primary keys. Therefore, you must
set primary keys in the target schema when you use Replicat mapping with HBase as
the target.

The output of the Avro formatters includes an Array field to hold the primary column
names. If you use Replicat mapping with the Avro formatters, consider using KEYCOLS to
identify the primary key columns.

For example configurations of KEYCOLS, see Review a Sample Configuration.

Supported Hive Data types

• BIGINT

• BINARY

• BOOLEAN

• CHAR

• DATE

• DECIMAL

• DOUBLE

• FLOAT

• INT

• SMALLINT

• STRING

• TIMESTAMP

• TINYINT

• VARCHAR

See https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types.

Chapter 15
Hive Metadata Provider

15-11

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

15.4.2 Configuring Hive with a Remote Metastore Database
You can find a list of supported databases that you can use to configure remote Hive
metastore can be found at https://cwiki.apache.org/confluence/display/Hive/
AdminManual+MetastoreAdmin#AdminManualMetastoreAdmin-
SupportedBackendDatabasesforMetastore.

The following example shows a MySQL database is configured as the Hive metastore
using properties in the ${HIVE_HOME}/conf/hive-site.xml Hive configuration file.

Note:

The ConnectionURL and driver class used in this example are specific to
MySQL database. If you use a database other than MySQL, then change the
values to fit your configuration.

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://MYSQL_DB_IP:MYSQL_DB_PORT/DB_NAME?
createDatabaseIfNotExist=false</value>
 </property>

 <property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
 </property>

 <property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>MYSQL_CONNECTION_USERNAME</value>
 </property>

 <property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>MYSQL_CONNECTION_PASSWORD</value>
 </property>

To see a list of parameters to configure in the hive-site.xml file for a remote
metastore, see https://cwiki.apache.org/confluence/display/Hive/AdminManual
+MetastoreAdmin#AdminManualMetastoreAdmin-RemoteMetastoreDatabase.

Chapter 15
Hive Metadata Provider

15-12

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-SupportedBackendDatabasesforMetastore
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-SupportedBackendDatabasesforMetastore
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-SupportedBackendDatabasesforMetastore
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-RemoteMetastoreDatabase
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-RemoteMetastoreDatabase

Note:

Follow these steps to add the MySQL JDBC connector JAR in the Hive
classpath:

1. In HIVE_HOME/lib/ directory. DB_NAME should be replaced by a valid
database name created in MySQL.

2. Start the Hive Server:

HIVE_HOME/bin/hiveserver2/bin/hiveserver2

3. Start the Hive Remote Metastore Server:

HIVE_HOME/bin/hive --service metastore

15.4.3 Classpath Configuration
For the Hive Metadata Provider to connect to Hive, you must configure thehive-
site.xml file and the Hive and HDFS client jars in the gg.classpath variable. The client
JARs must match the version of Hive to which the Hive Metadata Provider is
connecting.

For example, if the hive-site.xml file is created in the /home/user/oggadp/dirprm
directory, then gg.classpath entry is gg.classpath=/home/user/oggadp/dirprm/

1. Create a hive-site.xml file that has the following properties:

<configuration>
<!-- Mandatory Property -->
<property>
<name>hive.metastore.uris</name>
<value>thrift://HIVE_SERVER_HOST_IP:9083</value>
<property>

<!-- Optional Property. Default value is 5 -->
<property>
<name>hive.metastore.connect.retries</name>
<value>3</value>
</property>

<!-- Optional Property. Default value is 1 -->
<property>
<name>hive.metastore.client.connect.retry.delay</name>
<value>10</value>
</property>

<!-- Optional Property. Default value is 600 seconds -->
<property>
<name>hive.metastore.client.socket.timeout</name>
<value>50</value>
</property>

 </configuration>

2. By default, the following directories contain the Hive and HDFS client jars:

HIVE_HOME/hcatalog/share/hcatalog/*
HIVE_HOME/lib/*

Chapter 15
Hive Metadata Provider

15-13

HIVE_HOME/hcatalog/share/webhcat/java-client/*
HADOOP_HOME/share/hadoop/common/*
HADOOP_HOME/share/hadoop/common/lib/*
HADOOP_HOME/share/hadoop/mapreduce/*

Configure the gg.classpath exactly as shown in the step 1. The path to the hive-
site.xml file must be the path with no wildcard appended. If you include the *
wildcard in the path to the hive-site.xml file, it will not be located. The path to the
dependency JARs must include the * wildcard character to include all of the JAR
files in that directory in the associated classpath. Do not use *.jar.

15.4.4 Hive Metadata Provider Configuration Properties

Property Required/
Optional

Legal Values Default Explanation

gg.mdp.type Required hive - Selects the Hive
Metadata Provider

gg.mdp.connec
tionUrl

Required Format without Kerberos
Authentication:

jdbc:hive2://
HIVE_SERVER_IP:HIVE_JDBC_P
ORT/HIVE_DB

Format with Kerberos
Authentication:

jdbc:hive2://
HIVE_SERVER_IP:HIVE_JDBC_P
ORT/HIVE_DB;
principal=user/
FQDN@MY.REALM

- The JDBC connection
URL of the Hive server

gg.mdp.driver
ClassName

Required org.apache.hive.jdbc.HiveD
river

- The fully qualified Hive
JDBC driver class name

gg.mdp.userNa
me

Optional Valid username "" The user name for
connecting to the Hive
database. The
userName property is not
required when Kerberos
authentication is used.
The Kerberos principal
should be specified in
the connection URL as
specified in
connectionUrl
property's legal values.

gg.mdp.passwo
rd

Optional Valid Password "" The password for
connecting to the Hive
database

gg.mdp.charse
t

Optional Valid character set UTF-8 The character set of the
column with the
character data type.
Used to convert the
source data from the
trail file to the correct
target character set.

Chapter 15
Hive Metadata Provider

15-14

Property Required/
Optional

Legal Values Default Explanation

gg.mdp.nation
alCharset

Optional Valid character set UTF-8 The character set of the
column with the national
character data type.
Used to convert the
source data from the
trail file to the correct
target character set.

For example, this
property may indicate
the character set of
columns, such as NCHAR
and NVARCHAR in an
Oracle database.

gg.mdp.authTy
pe

Optional Kerberos none Allows you to designate
Kerberos authentication
to Hive.

gg.mdp.kerber
osKeytabFile

Optional
(Required
if
authType=
kerberos)

Relative or absolute path to a
Kerberos keytab file.

- The keytab file allows
Hive to access a
password to perform
the kinit operation for
Kerberos security.

gg.mdp.kerber
osPrincipal

Optional
(Required
if
authType=
kerberos)

A legal Kerberos principal
name(user/FQDN@MY.REALM)

- The Kerberos principal
name for Kerberos
authentication.

15.4.5 Review a Sample Configuration
This is an example for configuring the Hive Metadata Provider. Consider a source with
following table:

TABLE GG.TCUSTMER {
 CUST_CODE VARCHAR(4) PRIMARY KEY,
 NAME VARCHAR(100),
 CITY VARCHAR(200),
 STATE VARCHAR(200)}

The example maps the column CUST_CODE (GG.TCUSTMER) in the source to CUST_CODE2
(GG_HIVE.TCUSTMER_HIVE) on the target and column CITY (GG.TCUSTMER) in the source to
CITY2 (GG_HIVE.TCUSTMER_HIVE)on the target.

Mapping configuration in the process_name. prm file includes the following configuration:

MAP GG.TCUSTMER, TARGET GG_HIVE.TCUSTMER_HIVE, COLMAP(USEDEFAULTS,
CUST_CODE2=CUST_CODE, CITY2=CITY) KEYCOLS(CUST_CODE2);

In this example:

• The source schema GG is mapped to the target schema GG_HIVE.

• The source column CUST_CODE is mapped to the target column CUST_CODE2.

• The source column CITY is mapped to the target column CITY2.

Chapter 15
Hive Metadata Provider

15-15

• USEDEFAULTS specifies that rest of the column names are same on both source and
target (NAME and STATE columns).

• KEYCOLS is used to specify that CUST_CODE2 should be treated as primary key.

Because primary keys cannot be specified in the Hive DDL, the KEYCOLS parameter is
used to specify the primary keys.

Note:

You can choose any schema name and are not restricted to the gg_hive
schema name. The Hive schema can be pre-existing or newly created. You do
this by modifying the connection URL (gg.mdp.connectionUrl) in the Java
Adapter properties file and the mapping configuration in the Replicat.prm file.
Once the schema name is changed, update the connection URL
(gg.mdp.connectionUrl) and mapping in the Replicat.prm file.

You can create the schema and tables for this example in Hive by using the following
commands. You can create the schema and tables for this example in Hive by using
the following commands. To start the Hive CLI use the following command:

HIVE_HOME/bin/hive

To create the GG_HIVE schema, in Hive, use the following command:

hive> create schema gg_hive;
OK
Time taken: 0.02 seconds

To create the TCUSTMER_HIVE table in the GG_HIVE database, use the following command:

hive> CREATE EXTERNAL TABLE `TCUSTMER_HIVE`(
 > "CUST_CODE2" VARCHAR(4),
 > "NAME" VARCHAR(30),
 > "CITY2" VARCHAR(20),
 > "STATE" STRING);
OK
Time taken: 0.056 seconds

Configure the .properties file in a way that resembles the following:

gg.mdp.type=hive
gg.mdp.connectionUrl=jdbc:hive2://HIVE_SERVER_IP:10000/gg_hive
gg.mdp.driverClassName=org.apache.hive.jdbc.HiveDriver

The following sample output uses the delimited text formatter, with a comma as the
delimiter:

I;GG_HIVE.TCUSTMER_HIVE;2015-10-07T04:50:47.519000;cust_code2;WILL;name;BG SOFTWARE
CO;city2;SEATTLE;state;WA

A sample Replicat configuration file, Java Adapter properties file, and Hive create table
SQL script are included with the installation at the following location:

GoldenGate_install_directory/AdapterExamples/big-data/metadata_provider/hive

Chapter 15
Hive Metadata Provider

15-16

15.4.6 Security
You can secure the Hive server using Kerberos authentication. For information about
how to secure the Hive server, see the Hive documentation for the specific Hive
release. The Hive Metadata Provider can connect to a Kerberos secured Hive server.

Make sure that the paths to the HDFS core-site.xml file and the hive-site.xml file are
in the handler's classpath.

Enable the following properties in the core-site.xml file:

<property>
<name>hadoop.security.authentication</name>
<value>kerberos</value>
</property>

<property>
<name>hadoop.security.authorization</name>
<value>true</value>
</property>

Enable the following properties in the hive-site.xml file:

<property>
<name>hive.metastore.sasl.enabled</name>
<value>true</value>
</property>

<property>
<name>hive.metastore.kerberos.keytab.file</name>
<value>/path/to/keytab</value> <!-- Change this value -->
</property>

<property>
<name>hive.metastore.kerberos.principal</name>
<value>Kerberos Principal</value> <!-- Change this value -->
</property>

<property>
 <name>hive.server2.authentication</name>
 <value>KERBEROS</value>
</property>

<property>
 <name>hive.server2.authentication.kerberos.principal</name>
 <value>Kerberos Principal</value> <!-- Change this value -->
</property>

<property>
 <name>hive.server2.authentication.kerberos.keytab</name>
 <value>/path/to/keytab</value> <!-- Change this value -->
</property>

15.4.7 Metadata Change Event
Tables in Hive metastore should be updated, altered, or created manually if the source
database tables change. In the case of a metadata change event, you may wish to

Chapter 15
Hive Metadata Provider

15-17

terminate or suspend the Replicat process. You can terminate the Replicat process by
adding the following to the Replicat configuration file (process_name. prm):

DDL INCLUDE ALL, EVENTACTIONS (ABORT)

You can suspend, the Replicat process by adding the following to the Replication
configuration file:

DDL INCLUDE ALL, EVENTACTIONS (SUSPEND)

15.4.8 Limitations
Columns with binary data type cannot be used as primary keys.

The source-to-target mapping that is defined in the Replicat configuration file is static.
Oracle GoldenGate 12.2 and later versions supports DDL propagation and source
schema evolution for Oracle databases as replication sources. If you use DDL
propagation and source schema evolution, you lose the ability to seamlessly handle
changes to the source metadata.

15.4.9 Additional Considerations
The most common problems encountered are the Java classpath issues. The Hive
Metadata Provider requires certain Hive and HDFS client libraries to be resolved in its
classpath.

The required client JAR directories are listed in Classpath Configuration. Hive and
HDFS client JARs do not ship with Oracle GoldenGate for Big Data. The client JARs
should be of the same version as the Hive version to which the Hive Metadata
Provider is connecting.

To establish a connection to the Hive server, the hive-site.xml file must be in the
classpath.

15.4.10 Troubleshooting
If the mapped target table is not present in Hive, the Replicat process will terminate
with a "Table metadata resolution exception".

For example, consider the following mapping:

MAP GG.TCUSTMER, TARGET GG_HIVE.TCUSTMER_HIVE, COLMAP(USEDEFAULTS,
CUST_CODE2=CUST_CODE, CITY2=CITY) KEYCOLS(CUST_CODE2);

This mapping requires a table called TCUSTMER_HIVE to be created in the schema
GG_HIVE in the Hive metastore. If this table is not present in Hive, then the following
exception occurs:

ERROR [main) - Table Metadata Resolution Exception
Unable to retrieve table matadata. Table : GG_HIVE.TCUSTMER_HIVE
NoSuchObjectException(message:GG_HIVE.TCUSTMER_HIVE table not found)

Chapter 15
Hive Metadata Provider

15-18

16
Using the Oracle NoSQL Handler

Learn how to use the Oracle NoSQL Handler, which can replicate transactional data
from Oracle GoldenGate to a target Oracle NoSQL Database.

Topics:

• Overview

• Detailed Functionality

• Oracle NoSQL Handler Configuration

• Review a Sample Configuration

• Performance Considerations

• Full Image Data Requirements

16.1 Overview
Oracle NoSQL Database is a NoSQL-type distributed key-value database. It provides
a powerful and flexible transaction model that greatly simplifies the process of
developing a NoSQL-based application. It scales horizontally with high availability and
transparent load balancing even when dynamically adding new capacity.

Oracle NoSQL Database provides a very simple data model to the application
developer. Each row is identified by a unique key, and also has a value, of arbitrary
length, which is interpreted by the application. The application can manipulate (insert,
delete, update, read) a single row in a transaction. The application can also perform an
iterative, non-transactional scan of all the rows in the database, see https://
www.oracle.com/database/nosql and https://docs.oracle.com/cd/NOSQL/docs.htm.

The Oracle NoSQL Handler streams change data capture into Oracle NoSQL using
the Table API. The Table API provides some of the functionality of an RDBMS,
including tables, schemas, data types, and primary keys. Oracle NoSQL also supports
a Key Value API. The Key Value API stores raw data in Oracle NoSQL based on a
key. The NoSQL Handler does not support the Key Value API.

16.2 Detailed Functionality
Topics:

• Oracle NoSQL Data Types

• Performance Considerations

• Operation Processing Support

• Column Processing

• Table Check and Reconciliation Process

• Security

16-1

http://www.oracle.com/technetwork/database/database-technologies/nosqldb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/overview/index.html
https://docs.oracle.com/cd/NOSQL/docs.htm

16.2.1 Oracle NoSQL Data Types
Oracle NoSQL provides a number of column data types and most of these data types
are supported by the Oracle NoSQL Handler. A data type conversion from the column
value in the trail file to the corresponding Java type representing the Oracle NoSQL
column type in the Oracle NoSQL Handler is required.

The Oracle NoSQL Handler does not support Array, Map and Record data types by
default. To support them, you can implement a custom data converter and override the
default data type conversion logic to override it with your own custom logic to support
your use case. Contact Oracle Support for guidance.

The following Oracle NoSQL data types are supported:

• Binary

• Boolean

• Double

• Float

• Integer

• Long

• Java String

16.2.2 Performance Considerations
Configuring the Oracle NoSQL Handler for batch mode provides better performance
than the interactive mode. The batch processing mode provides an efficient and
transactional mechanism for executing a sequence of operations associated with
tables that share the same shard key portion of their primary keys. The efficiency
results from the use of a single network interaction to accomplish the entire sequence
of operations. All the operations specified in a batch are executed within the scope of a
single transaction that effectively provides serializable isolation.

16.2.3 Operation Processing Support
The Oracle NoSQL Handler moves operations to Oracle NoSQL using synchronous
API. The Insert, update, and delete operations are processed differently in Oracle
NoSQL databases rather than in a traditional RDBMS:

The following explains how insert, update, and delete operations are interpreted by the
handler depending on the mode of operation:

• insert – If the row does not exist in your database, then an insert operation is
processed as an insert. If the row exists, then an insert operation is processed as
an update.

• update – If a row does not exist in your database, then an update operation is
processed as an insert. If the row exists, then an update operation is processed as
update.

• delete – If the row does not exist in your database, then a delete operation has no
effect. If the row exists, then a delete operation is processed as a delete.

Chapter 16
Detailed Functionality

16-2

The state of the data in Oracle NoSQL databases is eventually idempotent. You can
replay the source trail files or replay sections of the trail files. Ultimately, the state of an
Oracle NoSQL database is the same regardless of the number of times the trail data
was written into Oracle NoSQL.

Primary key values for a row in Oracle NoSQL databases are immutable. An update
operation that changes any primary key value for a Oracle NoSQL row must be treated
as a delete and insert. The Oracle NoSQL Handler can process update operations that
result in the change of a primary key in an Oracle NoSQL database only as a delete
and insert. To successfully process this operation, the source trail file must contain the
complete before and after change data images for all columns.

16.2.4 Column Processing
Add Column Functionality

You can configure the Oracle NoSQL Handler to add columns that exist in the source
trail file table definition though are missing in the Oracle NoSQL table definition. The
Oracle NoSQL Handler can accommodate metadata change events of adding a
column. A reconciliation process occurs that reconciles the source table definition to
the Oracle NoSQL table definition. When configured to add columns, any columns
found in the source table definition that do not exist in the Oracle NoSQL table
definition are added. The reconciliation process for a table occurs after application
start up the first time an operation for the table is encountered. The reconciliation
process reoccurs after a metadata change event on a source table, when the first
operation for the source table is encountered after the change event.

Drop Column Functionality

Similar to adding, you can configure the Oracle NoSQL Handler to drop columns. The
Oracle NoSQL Handler can accommodate metadata change events of dropping a
column. A reconciliation process occurs that reconciles the source table definition to
the Oracle NoSQL table definition. When configured to drop columns, any columns
found in the Oracle NoSQL table definition that are not in the source table definition
are dropped.

Caution:

Dropping a column is potentially dangerous because it is permanently
removing data from an Oracle NoSQL Database. Carefully consider your use
case before configuring dropping.

Primary key columns cannot be dropped.

Column name changes are not handled well because there is no DDL-processing. The
Oracle NoSQL Handler can handle any case change for the column name. A column
name change event on the source database appears to the handler like dropping an
existing column and adding a new column.

16.2.5 Table Check and Reconciliation Process
First, the Oracle NoSQL Handler interrogates the target Oracle NoSQL database for
the table definition. If the table does not exist, the Oracle NoSQL Handler does one of

Chapter 16
Detailed Functionality

16-3

two things. If gg.handler.name.ddlHandling includes CREATE, then a table is created in
the database. Otherwise, the process abends and a message is logged that tells you
the table that does not exist. If the table exists in the Oracle NoSQL database, then the
Oracle NoSQL Handler performs a reconciliation between the table definition from the
source trail file and the table definition in the database. This reconciliation process
searches for columns that exist in the source table definition and not in the
corresponding database table definition. If it locates columns fitting this criteria and the
gg.handler.name.ddlHandling property includes ADD, then the Oracle NoSQL Handler
alters the target table in the database to add the new columns. Otherwise, those
columns are ignored.

Next, the reconciliation process search for columns that exist in the target Oracle
NoSQL table though do not exist in the source table definition. If it locates columns
fitting this criteria and the gg.handler.name.ddlHandling property includes DROP then the
Oracle NoSQL Handler alters the target table in Oracle NoSQL to drop these columns.
Otherwise, those columns are ignored.

16.2.6 Security
The Oracle NoSQL Handler supports two authentication methods, Basic and Kerberos

Both of these authentication methods uses SSL as the transport mechanism to the KV
Store. You must specify the relative or absolute path of the public trust file for SSL as
a part of the Oracle NoSQL Handler configuration in the Adapter properties file.

The basic authentication mechanism tries to login into the Oracle NoSQL database
using the username and password specified as configuration parameters in the
properties file. You can create a credential store for your Big Data environment in
Oracle GoldenGate. After you create a credential store for your Big Data environment,
you can add users to the store.

To create a user, run this command in GGSCI:

ALTER CREDENTIALSTORE ADD USER userid PASSWORD password [ALIAS alias] [DOMAIN domain]

Where:

• userid is the user name. Only one instance of a user name can exist in the
credential store unless the ALIAS or DOMAIN option is used.

• password is the user's password. The password is echoed (not obfuscated) when
this option is used. If you don’t use this option, then you are prompted for the
password. The password is obfuscated as you type (recommended because it is
more secure).

• alias is an alias for the user name. The alias substitutes for the credential in
parameters and commands where a login credential is required. If you don’t use
the ALIAS option, the alias defaults to the user name.

The user created should have the access to read-write from the Oracle NoSQL
database. For details about Oracle NoSQL user management, see

https://docs.oracle.com/cd/NOSQL/html/SecurityGuide/config_auth.html.

The only supported external login mechanism to the Oracle NoSQL is Kerberos. The
Kerberos authentication mechanism tries to log in to the Oracle NoSQL database
using the Kerberos principal, realm, and the keytab file. You specify these values as
configuration parameters in the properties file.

Chapter 16
Detailed Functionality

16-4

https://docs.oracle.com/cd/NOSQL/html/SecurityGuide/config_auth.html#user_management

The handler first tries to check if the security properties file is available to the handler
for logging in to the Oracle NoSQL database as an administrator. If the user.security
file is available to the handler, it logs in as an administrator into the database. If the
security properties file is not available to the handler, it checks the AuthType, which can
be basic or Kerberos. If the Oracle NoSQL store is configured to run with security
disabled, then the handler allows access to the NoSQL store with authType set to none.

16.3 Oracle NoSQL Handler Configuration
You configure the Oracle NoSQL Handler operation using the properties file. These
properties are located in the Java Adapter properties file (not in the Replicat properties
file).

To enable the selection of the Oracle NoSQL Handler, you must first configure the
handler type by specifying gg.handler.name.type=nosql and the other Oracle NoSQL
properties as follows:

Properties Req
uire
d/
Opti
ona
l

Legal
Value
s

Default Explanation

gg.handlerlist Req
uire
d

Any
String.

None Provides a name for the Oracle NoSQL Handler.
The Oracle NoSQL Handler name becomes part
of the property names listed in the table.

gg.handler.name.
type

Req
uire
d

nosql None Selects the Oracle NoSQL Handler for streaming
change data capture into an Oracle NoSQL
Database.

gg.handler.name.
fullyQualifiedTa
bleName

Opti
onal

true |
false

false The Oracle NoSQL Handler adds the schema
name to the table name and stores it as a fully
qualified table name in the NoSQL store.

gg.handler.name.
mode

Opti
onal

op |
tx

op The default is recommended. In op mode,
operations are processed as received. In tx
mode, operations are cached and processed at
transaction commit. The tx mode is slower and
creates a larger memory footprint.

gg.handler.name.
nosqlStore

Req
uire
d

Any
String.

None The name of the store. The name you specify
must be identical to the name used when you
installed the store.

gg.handler.name.
nosqlURL

Req
uire
d

Any
String.

None The network name and the port information for
the node currently belonging to the store.

gg.handler.name.
interactiveMode

Opti
onal

true |
false

true The Oracle NoSQL Handler can operate in
either interactive mode where one operation is
processed each time or batch mode where a
group of operations are processed together.

Chapter 16
Oracle NoSQL Handler Configuration

16-5

Properties Req
uire
d/
Opti
ona
l

Legal
Value
s

Default Explanation

gg.handler.name.
ddlHandling

Opti
onal

CREATE
| ADD|
DROP in
any
combin
ation
with
values
delimit
ed by a
comma
.

None Configure the Oracle NoSQL Handler for the
DDL functionality to provide. Options include
CREATE, ADD and DROP.

When CREATE is enabled, the handler creates
tables in Oracle NoSQL if a corresponding table
does not exist.

When ADD is enabled, the handler adds columns
that exist in the source table definition, but do
not exist in the corresponding target Oracle
NoSQL table definition.

When DROP is enabled, the handler drops
columns that exist in the Oracle NoSQL table
definition, but do not exist in the corresponding
source table definition.

gg.handler.name.
retries

Opti
onal

Any
numbe
r.

3 The number of retries on any read or write
exception that the Oracle NoSQL Handler
encounters.

gg.handler.name.
username

Opti
onal

A legal
userna
me
string.

None A username for the connection to Oracle NoSQL
store. It is required if the AuthType is set to
basic.

gg.handler.name.
password

Opti
onal

A legal
passw
ord
string.

None A password for the connection to Oracle NoSQL
store. It is required if the AuthType is set to
basic.

gg.handler.name.
authType

Opti
onal

basic|
kerber
os|
none

None The authentication type to login into the Oracle
NoSQL store.

If authType is set to basic, it needs a username
and password to login.

If authType is set to Kerberos, it needs a
Kerberos principal, Kerberos realm, and a
Kerberos key tab file location to login.

gg.handler.name.
securityProperti
esFile

Opti
onal

Relativ
e or
absolut
e path
to the
securit
y file.

None The security file enables the Oracle NoSQL
Handler to have administrator access into the
KV Store.

gg.handler.name.
publicTrustFile

Opti
onal

Relativ
e or
absolut
e path
to the
trust
file.

None The public trust file to enable SSL transport.

Chapter 16
Oracle NoSQL Handler Configuration

16-6

Properties Req
uire
d/
Opti
ona
l

Legal
Value
s

Default Explanation

gg.handler.name.
kerberosKeyTabFi
le

Opti
onal

Relativ
e or
absolut
e path
to the
Kerber
os key
tab file

None The key tab file allows the Oracle NoSQL
Handler to access a password to perform kinit
operation for Kerberos security.

gg.handler.name.
kerberosPrincipa
l

Opti
onal

A legal
Kerber
os
princip
al
name
like
user/
FQDN@M
Y.REAL
M

None The Kerberos principal name for Kerberos
authentication.

gg.handler.name.
kerberosRealm

Opti
onal

A
Kerber
os
Realm
name

None The Kerberos realm name for Kerberos
authentication.

gg.handler.name.
dataConverterCla
ss

Opti
onal

The
fully
qualifie
d data
convert
er
class
name.

DefaultD
ataConve
rter

The custom data converter can be implemented
to override the default data conversion logic to
support your specific use case.

16.4 Review a Sample Configuration
The following excerpt shows a sample configuration for the Oracle NoSQL Handler as
it appears in the Java adapter properties file:

gg.handlerlist=nosql

#The handler properties
gg.handler.nosql.type= nosql
gg.handler.nosql.mode= op
gg.handler.nosql.nosqlStore= kvstore
gg.handler.nosql.nosqlURL= localhost:5000
gg.handler.nosql.ddlHandling= CREATE,ADD,DROP
gg.handler.nosql.interactiveMode=true
gg.handler.nosql.retries= 2
gg.handler.nosql.authType=basic

Chapter 16
Review a Sample Configuration

16-7

gg.handler.nosql.username= ORACLEWALLETUSERNAME[myalias mydomain]
gg.handler.nosql.password= ORACLEWALLETPASSWORD[myalias mydomain]

16.5 Performance Considerations
Configuring the Oracle NoSQL Handler for batch mode provides better performance
than the interactive mode. The batch processing mode provides an efficient and
transactional mechanism for executing a sequence of operations associated with
tables that share the same shard key portion of their primary keys. The efficiency
results from the use of a single network interaction to accomplish the entire sequence
of operations. All the operations specified in a batch are executed within the scope of a
single transaction that effectively provides serializable isolation.

16.6 Full Image Data Requirements
In Oracle NoSQL, update operations perform a complete reinsertion of the data for the
entire row. This Oracle NoSQL feature improves ingest performance, but in turn levies
a critical requirement. Updates must include data for all columns, also known as full
image updates. Partial image updates are not supported (updates with just the
primary key information and data for the columns that changed). Using the Oracle
NoSQL Handler with partial image update information results in incomplete data in the
target NoSQL table.

Chapter 16
Performance Considerations

16-8

17
Using the Pluggable Formatters

Learn how to use the pluggable formatters to convert operations from the Oracle
GoldenGate trail file into formatted messages that you can send to Big Data targets
using one of the Oracle GoldenGate for Big Data Handlers.

Topics:

• Using the Avro Formatter

• Using the Delimited Text Formatter

• Using the JSON Formatter

• Using the Length Delimited Value Formatter

• Using Operation-Based versus Row-Based Formatting

• Using the XML Formatter

17.1 Using the Avro Formatter
Apache Avro is an open source data serialization and deserialization framework
known for its flexibility, compactness of serialized data, and good serialization and
deserialization performance. Apache Avro is commonly used in Big Data applications.

Topics:

• Avro Row Formatter

• The Avro Operation Formatter

• Avro Object Container File Formatter

• Setting Metacolumn Output

17.1.1 Avro Row Formatter
The Avro Row Formatter formats operation data from the source trail file into
messages in an Avro binary array format. Each individual insert, update, delete, and
truncate operation is formatted into an individual Avro message. The source trail file
contains the before and after images of the operation data. The Avro Row Formatter
takes the before-image and after-image data and formats it into an Avro binary
representation of the operation data.

The Avro Row Formatter formats operations from the source trail file into a format that
represents the row data. This format is more compact than the output from the Avro
Operation Formatter for the Avro messages model the change data operation.

The Avro Row Formatter may be a good choice when streaming Avro data to HDFS.
Hive supports data files in HDFS in an Avro format.

This section contains the following topics:

• Operation Metadata Formatting Details

17-1

• Operation Data Formatting Details

• Sample Avro Row Messages

• Avro Schemas

• Avro Row Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Special Considerations

17.1.1.1 Operation Metadata Formatting Details
In Avro messages generated by the Avro Row Formatter, the following seven
metadata fields begin each message:

Table 17-1 Avro Formatter Metadata

Value Description

table The fully qualified table in the format is:
CATALOG_NAME.SCHEMA_NAME.TABLE_NAME

op_type The type of database operation from the source trail file. Default
values are I for insert, U for update, D for delete, and T for
truncate.

op_ts The timestamp of the operation from the source trail file. Since
this timestamp is from the source trail, it is fixed. Replaying the
trail file results in the same timestamp for the same operation.

current_ts The time when the formatter processed the current operation
record. This timestamp follows the ISO-8601 format and
includes microsecond precision. Replaying the trail file will not
result in the same timestamp for the same operation.

pos The concatenated sequence number and the RBA number from
the source trail file. This trail position lets you trace the
operation back to the source trail file. The sequence number is
the source trail file number. The RBA number is the offset in the
trail file.

primary_keys An array variable that holds the column names of the primary
keys of the source table.

tokens A map variable that holds the token key value pairs from the
source trail file.

17.1.1.2 Operation Data Formatting Details
The operation data follows the operation metadata. This data is represented as
individual fields identified by the column names.

Column values for an operation from the source trail file can have one of three states:
the column has a value, the column value is null, or the column value is missing. Avro
attributes only support two states, the column has a value or the column value is null.
Missing column values are handled the same as null values. Oracle recommends that
when you use the Avro Row Formatter, you configure the Oracle GoldenGate capture
process to provide full image data for all columns in the source trail file.

Chapter 17
Using the Avro Formatter

17-2

By default, the setting of the Avro Row Formatter maps the data types from the source
trail file to the associated Avro data type. Because Avro provides limited support for
data types, source columns map into Avro long, double, float, binary, or string data
types. You can also configure data type mapping to handle all data as strings.

17.1.1.3 Sample Avro Row Messages
Because Avro messages are binary, they are not human readable. The following
sample messages show the JSON representation of the messages.

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

17.1.1.3.1 Sample Insert Message
{"table": "GG.TCUSTORD",
"op_type": "I",
"op_ts": "2013-06-02 22:14:36.000000",
"current_ts": "2015-09-18T10:13:11.172000",
"pos": "00000000000000001444",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"],
"tokens": {"R": "AADPkvAAEAAEqL2AAA"},
"CUST_CODE": "WILL",
"ORDER_DATE": "1994-09-30:15:33:00",
"PRODUCT_CODE": "CAR",
"ORDER_ID": "144",
"PRODUCT_PRICE": 17520.0,
"PRODUCT_AMOUNT": 3.0,
"TRANSACTION_ID": "100"}

17.1.1.3.2 Sample Update Message
{"table": "GG.TCUSTORD",
"op_type": "U",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:13:11.492000",
"pos": "00000000000000002891",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqLzAAA"},
"CUST_CODE": "BILL",
"ORDER_DATE": "1995-12-31:15:00:00",
"PRODUCT_CODE": "CAR",
"ORDER_ID": "765",
"PRODUCT_PRICE": 14000.0,
"PRODUCT_AMOUNT": 3.0,
"TRANSACTION_ID": "100"}

17.1.1.3.3 Sample Delete Message
{"table": "GG.TCUSTORD",
"op_type": "D",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:13:11.512000",
"pos": "00000000000000004338",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":

Chapter 17
Using the Avro Formatter

17-3

 {"L": "206080450", "6": "9.0.80330", "R": "AADPkvAAEAAEqLzAAC"}, "CUST_CODE":
 "DAVE",
"ORDER_DATE": "1993-11-03:07:51:35",
"PRODUCT_CODE": "PLANE",
"ORDER_ID": "600",
"PRODUCT_PRICE": null,
"PRODUCT_AMOUNT": null,
"TRANSACTION_ID": null}

17.1.1.3.4 Sample Truncate Message
{"table": "GG.TCUSTORD",
"op_type": "T",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:13:11.514000",
"pos": "00000000000000004515",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqL2AAB"},
"CUST_CODE": null,
"ORDER_DATE": null,
"PRODUCT_CODE": null,
"ORDER_ID": null,
"PRODUCT_PRICE": null,
"PRODUCT_AMOUNT": null,
"TRANSACTION_ID": null}

17.1.1.4 Avro Schemas
Avro uses JSONs to represent schemas. Avro schemas define the format of generated
Avro messages and are required to serialize and deserialize Avro messages.
Schemas are generated on a just-in-time basis when the first operation for a table is
encountered. Because generated Avro schemas are specific to a table definition, a
separate Avro schema is generated for every table encountered for processed
operations. By default, Avro schemas are written to the GoldenGate_Home/dirdef
directory, although the write location is configurable. Avro schema file names adhere
to the following naming convention: Fully_Qualified_Table_Name.avsc.

The following is a sample Avro schema for the Avro Row Format for the references
examples in the previous section:

{
 "type" : "record",
 "name" : "TCUSTORD",
 "namespace" : "GG",
 "fields" : [{
 "name" : "table",
 "type" : "string"
 }, {
 "name" : "op_type",
 "type" : "string"
 }, {
 "name" : "op_ts",
 "type" : "string"
 }, {
 "name" : "current_ts",
 "type" : "string"
 }, {
 "name" : "pos",
 "type" : "string"
 }, {

Chapter 17
Using the Avro Formatter

17-4

 "name" : "primary_keys",
 "type" : {
 "type" : "array",
 "items" : "string"
 }
 }, {
 "name" : "tokens",
 "type" : {
 "type" : "map",
 "values" : "string"
 },
 "default" : { }
 }, {
 "name" : "CUST_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "ORDER_DATE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "PRODUCT_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "ORDER_ID",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "PRODUCT_PRICE",
 "type" : ["null", "double"],
 "default" : null
 }, {
 "name" : "PRODUCT_AMOUNT",
 "type" : ["null", "double"],
 "default" : null
 }, {
 "name" : "TRANSACTION_ID",
 "type" : ["null", "string"],
 "default" : null
 }]
}

17.1.1.5 Avro Row Configuration Properties

Table 17-2 Avro Row Configuration Properties

Properties Optional
/
Require
d

Legal
Values

Defa
ult

Explanation

gg.handler.name.format.
insertOpKey

Optional Any
string

I Indicator to be inserted into the
output record to indicate an insert
operation.

gg.handler.name.format.
updateOpKey

Optional Any
string

U Indicator to be inserted into the
output record to indicate an update
operation.

Chapter 17
Using the Avro Formatter

17-5

Table 17-2 (Cont.) Avro Row Configuration Properties

Properties Optional
/
Require
d

Legal
Values

Defa
ult

Explanation

gg.handler.name.format.
deleteOpKey

Optional Any
string

D Indicator to be inserted into the
output record to indicate a delete
operation.

gg.handler.name.format.
truncateOpKey

Optional Any
string

T Indicator to be inserted into the
output record to indicate a truncate
operation.

gg.handler.name.format.
encoding

Optional Any legal
encoding
name or
alias
supporte
d by
Java.

UTF-
8
(the
JSO
N
defau
lt)

Controls the output encoding of
generated JSON Avro schema. The
JSON default is UTF-8. Avro
messages are binary and support
their own internal representation of
encoding.

gg.handler.name.format.
treatAllColumnsAsString
s

Optional true |
false

fals
e

Controls the output typing of
generated Avro messages. If set to
false then the formatter will attempt
to map Oracle GoldenGate types to
the corresponding AVRO type. If set
to true then all data will be treated as
Strings in the generated Avro
messages and schemas.

gg.handler.name.format.
pkUpdateHandlingformat.
pkUpdateHandling

Optional abend |
update |
delete-
insert

aben
d

Specifies how the formatter handles
update operations that change a
primary key. Primary key operations
for the Avro Row formatter require
special consideration.

• abend: the process terminates.
• update: the process handles the

update as a normal update.
• delete or insert: the process

handles the update as a delete
and an insert. Full supplemental
logging must be enabled.
Without full before and after row
images, the insert data will be
incomplete.

gg.handler.name.format.
lineDelimiter

Optional Any
string

no
value

Inserts a delimiter after each Avro
message. This is not a best practice,
but in certain cases you may want to
parse a stream of data and extract
individual Avro messages from the
stream. Select a unique delimiter
that cannot occur in any Avro
message. This property supports
CDATA[] wrapping.

Chapter 17
Using the Avro Formatter

17-6

Table 17-2 (Cont.) Avro Row Configuration Properties

Properties Optional
/
Require
d

Legal
Values

Defa
ult

Explanation

gg.handler.name.format.
versionSchemas

Optional true|
false

fals
e

Avro schemas always follow
thefully_qualified_table_name.av
sc convention. Setting this property
to true creates an additional Avro
schema named
fully_qualified_table_name_curr
ent_timestamp.avsc in the schema
directory. Because the additional
Avro schema is not destroyed or
removed, provides a history of
schema evolution.

gg.handler.name.format.
wrapMessageInGenericAvr
oMessage

Optional true|
false

fals
e

Wraps the Avro messages for
operations from the source trail file in
a generic Avro wrapper message.
For more information, see Generic
Wrapper Functionality.

gg.handler.name.format.
schemaDirectory

Optional Any
legal,
existing
file
system
path.

./
dird
ef

The output location of generated
Avro schemas.

gg.handler.name.schemaF
ilePath=

Optional Any legal
encoding
name or
alias
supporte
d by
Java.

./
dird
ef

The directory in the HDFS where
schemas are output. A metadata
change overwrites the schema
during the next operation for the
associated table. Schemas follow
the same naming convention as
schemas written to the local file
system:catalog.schema.table.avsc
.

gg.handler.name.format.
iso8601Format

Optional true |
false

true The format of the current timestamp.
The default is the ISO 8601 format.
A setting of false removes the T
between the date and time in the
current timestamp, which outputs a
space instead.

17.1.1.6 Review a Sample Configuration
The following is a sample configuration for the Avro Row Formatter in the Java
Adapter properties file:

gg.handler.hdfs.format=avro_row
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.encoding=UTF-8

Chapter 17
Using the Avro Formatter

17-7

gg.handler.hdfs.format.pkUpdateHandling=abend
gg.handler.hafs.format.wrapMessageInGenericAvroMessage=false

17.1.1.7 Metadata Change Events
If the replicated database and upstream Oracle GoldenGate replication process can
propagate metadata change events, the Avro Row Formatter can take action when
metadata changes. Because Avro messages depend closely on their corresponding
schema, metadata changes are important when you use Avro formatting.

An updated Avro schema is generated as soon as a table operation occurs after a
metadata change event. You must understand the impact of a metadata change event
and change downstream targets to the new Avro schema. The tight dependency of
Avro messages to Avro schemas may result in compatibility issues. Avro messages
generated before the schema change may not be able to be deserialized with the
newly generated Avro schema.

Conversely, Avro messages generated after the schema change may not be able to
be deserialized with the previous Avro schema. It is a best practice to use the same
version of the Avro schema that was used to generate the message. For more
information, consult the Apache Avro documentation.

17.1.1.8 Special Considerations
This sections describes these special considerations:

• Troubleshooting

• Primary Key Updates

• Generic Wrapper Functionality

17.1.1.8.1 Troubleshooting
Because Avro is a binary format, it is not human readable. Since Avro messages are
in binary format, it is difficult to debug any issue, the Avro Row Formatter provides a
special feature to help debug issues. When the log4j Java logging level is set to
TRACE , Avro messages are deserialized and displayed in the log file as a JSON object,
letting you view the structure and contents of the created Avro messages. Do not
enable TRACE in a production environment as it has substantial negative impact on
performance. To troubleshoot content, you may want to consider switching to use a
formatter that produces human-readable content. The XML or JSON formatters both
produce content in human-readable format.

17.1.1.8.2 Primary Key Updates
In Big Data integrations, primary key update operations require special consideration
and planning. Primary key updates modify one or more of the primary keys of a given
row in the source database. Because data is appended in Big Data applications, a
primary key update operation looks more like a new insert than like an update without
special handling. You can use the following properties to configure the Avro Row
Formatter to handle primary keys:

Chapter 17
Using the Avro Formatter

17-8

Table 17-3 Configurable behavior

Value Description

abend The formatter terminates. This behavior is the default behavior.

update With this configuration the primary key update is treated like any
other update operation. Use this configuration only if you can
guarantee that the primary key is not used as selection criteria
row data from a Big Data system.

delete-insert The primary key update is treated as a special case of a delete,
using the before image data and an insert using the after-image
data. This configuration may more accurately model the effect
of a primary key update in a Big Data application. However, if
this configuration is selected, it is important to have full
supplemental logging enabled on Replication at the source
database. Without full supplemental logging the delete
operation will be correct, but insert operation will not contain all
of the data for all of the columns for a full representation of the
row data in the Big Data application.

17.1.1.8.3 Generic Wrapper Functionality
Because Avro messages are not self describing, the receiver of the message must
know the schema associated with the message before the message can be
deserialized. Avro messages are binary and provide no consistent or reliable way to
inspect the message contents in order to ascertain the message type. Therefore, Avro
can be troublesome when messages are interlaced into a single stream of data such
as Kafka.

The Avro formatter provides a special feature to wrap the Avro message in a generic
Avro message. You can enable this functionality by setting the following configuration
property.

gg.handler.name.format.wrapMessageInGenericAvroMessage=true

The generic message is Avro message wrapping the Avro payload message that is
common to all Avro messages that are output. The schema for the generic message is
name generic_wrapper.avsc and is written to the output schema directory. This
message has the following three fields:

• table_name :The fully qualified source table name.

• schema_fingerprint : The fingerprint of the Avro schema of the wrapped message.
The fingerprint is generated using the Avro
SchemaNormalization.parsingFingerprint64(schema) call.

• payload: The wrapped Avro message.

The following is the Avro Formatter generic wrapper schema.

{
 "type" : "record",
 "name" : "generic_wrapper",
 "namespace" : "oracle.goldengate",
 "fields" : [{
 "name" : "table_name",
 "type" : "string"
 }, {

Chapter 17
Using the Avro Formatter

17-9

 "name" : "schema_fingerprint",
 "type" : "long"
 }, {
 "name" : "payload",
 "type" : "bytes"
 }]
}

17.1.2 The Avro Operation Formatter
The Avro Operation Formatter formats operation data from the source trail file into
messages in an Avro binary array format. Each individual insert, update, delete, and
truncate operation is formatted into an individual Avro message. The source trail file
contains the before and after images of the operation data. The Avro Operation
Formatter formats this data into an Avro binary representation of the operation data.

This format is more verbose than the output of the Avro Row Formatter for which the
Avro messages model the row data.

This section contains the following topics:

• Operation Metadata Formatting Details

• Operation Data Formatting Details

• Sample Avro Operation Messages

• Avro Schema

• Avro Operation Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Special Considerations

17.1.2.1 Operation Metadata Formatting Details
Avro messages, generated by the Avro Operation Formatter, contain the following
metadata fields begin each Avro message:

Table 17-4 Avro Messages and its Metadata

Fields Description

table The fully qualified table name, in the format:
CATALOG_NAME.SCHEMA NAME.TABLE NAME

op_type The type of database operation from the source trail file. Default
values are I for insert, U for update, D for delete, and T for
truncate.

op_ts The timestamp of the operation from the source trail file. Since
this timestamp is from the source trail, it is fixed. Replaying the
trail file results in the same timestamp for the same operation.

current_ts The time when the formatter processed the current operation
record. This timestamp follows the ISO-8601 format and includes
microsecond precision. Replaying the trail file will not result in
the same timestamp for the same operation.

Chapter 17
Using the Avro Formatter

17-10

Table 17-4 (Cont.) Avro Messages and its Metadata

Fields Description

pos The concatenated sequence number and rba number from the
source trail file. The trail position provides traceability of the
operation back to the source trail file. The sequence number is
the source trail file number. The rba number is the offset in the
trail file.

primary_keys An array variable that holds the column names of the primary
keys of the source table.

tokens A map variable that holds the token key value pairs from the
source trail file.

17.1.2.2 Operation Data Formatting Details
The operation data is represented as individual fields identified by the column names.

Column values for an operation from the source trail file can have one of three states:
the column has a value, the column value is null, or the column value is missing. Avro
attributes only support two states: the column has a value or the column value is null.
The Avro Operation Formatter contains an additional Boolean field
COLUMN_NAME_isMissing for each column to indicate whether the column value is missing
or not. Using COLUMN_NAME field together with the COLUMN_NAME_isMissing field, all three
states can be defined.

• State 1: The column has a value

COLUMN_NAME field has a value

COLUMN_NAME_isMissing field is false

• State 2: The column value is null

COLUMN_NAME field value is null

COLUMN_NAME_isMissing field is false

• State 3: The column value is missing

COLUMN_NAME field value is null

COLUMN_NAME_isMissing field is true

By default the Avro Row Formatter maps the data types from the source trail file to the
associated Avro data type. Because Avro supports few data types, this functionality
usually results in the mapping of numeric fields from the source trail file to members
typed as numbers. You can also configure this data type mapping to handle all data as
strings.

17.1.2.3 Sample Avro Operation Messages
Because Avro messages are binary, they are not human readable. The following
topics show example Avro messages in JSON format:

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

Chapter 17
Using the Avro Formatter

17-11

• Sample Truncate Message

17.1.2.3.1 Sample Insert Message
{"table": "GG.TCUSTORD",
"op_type": "I",
"op_ts": "2013-06-02 22:14:36.000000",
"current_ts": "2015-09-18T10:17:49.570000",
"pos": "00000000000000001444",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqL2AAA"},
"before": null,
"after": {
"CUST_CODE": "WILL",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1994-09-30:15:33:00",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "CAR",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "144", "ORDER_ID_isMissing": false,
"PRODUCT_PRICE": 17520.0,
"PRODUCT_PRICE_isMissing": false,
"PRODUCT_AMOUNT": 3.0, "PRODUCT_AMOUNT_isMissing": false,
"TRANSACTION_ID": "100",
"TRANSACTION_ID_isMissing": false}}

17.1.2.3.2 Sample Update Message
{"table": "GG.TCUSTORD",
"op_type": "U",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:17:49.880000",
"pos": "00000000000000002891",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqLzAAA"},
"before": {
"CUST_CODE": "BILL",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1995-12-31:15:00:00",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "CAR",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "765",
"ORDER_ID_isMissing": false,
"PRODUCT_PRICE": 15000.0,
"PRODUCT_PRICE_isMissing": false,
"PRODUCT_AMOUNT": 3.0,
"PRODUCT_AMOUNT_isMissing": false,
"TRANSACTION_ID": "100",
"TRANSACTION_ID_isMissing": false},
"after": {
"CUST_CODE": "BILL",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1995-12-31:15:00:00",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "CAR",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "765",
"ORDER_ID_isMissing": false,
"PRODUCT_PRICE": 14000.0,

Chapter 17
Using the Avro Formatter

17-12

"PRODUCT_PRICE_isMissing": false,
"PRODUCT_AMOUNT": 3.0,
"PRODUCT_AMOUNT_isMissing": false,
"TRANSACTION_ID": "100",
"TRANSACTION_ID_isMissing": false}}

17.1.2.3.3 Sample Delete Message
{"table": "GG.TCUSTORD",
"op_type": "D",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:17:49.899000",
"pos": "00000000000000004338",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"L": "206080450", "6": "9.0.80330", "R": "AADPkvAAEAAEqLzAAC"}, "before": {
"CUST_CODE": "DAVE",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1993-11-03:07:51:35",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "PLANE",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "600",
"ORDER_ID_isMissing": false,
"PRODUCT_PRICE": null,
"PRODUCT_PRICE_isMissing": true,
"PRODUCT_AMOUNT": null,
"PRODUCT_AMOUNT_isMissing": true,
"TRANSACTION_ID": null,
"TRANSACTION_ID_isMissing": true},
"after": null}

17.1.2.3.4 Sample Truncate Message
{"table": "GG.TCUSTORD",
"op_type": "T",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:17:49.900000",
"pos": "00000000000000004515",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqL2AAB"},
"before": null,
"after": null}

17.1.2.4 Avro Schema
Avro schemas are represented as JSONs. Avro schemas define the format of
generated Avro messages and are required to serialize and deserialize Avro
messages.Avro schemas are generated on a just-in-time basis when the first operation
for a table is encountered. Because Avro schemas are specific to a table definition, a
separate Avro schema is generated for every table encountered for processed
operations. By default, Avro schemas are written to the GoldenGate_Home/dirdef
directory, although the write location is configurable. Avro schema file names adhere
to the following naming convention: Fully_Qualified_Table_Name.avsc .

The following is a sample Avro schema for the Avro Operation Format for the samples
in the preceding sections:

{
 "type" : "record",

Chapter 17
Using the Avro Formatter

17-13

 "name" : "TCUSTORD",
 "namespace" : "GG",
 "fields" : [{
 "name" : "table",
 "type" : "string"
 }, {
 "name" : "op_type",
 "type" : "string"
 }, {
 "name" : "op_ts",
 "type" : "string"
 }, {
 "name" : "current_ts",
 "type" : "string"
 }, {
 "name" : "pos",
 "type" : "string"
 }, {
 "name" : "primary_keys",
 "type" : {
 "type" : "array",
 "items" : "string"
 }
 }, {
 "name" : "tokens",
 "type" : {
 "type" : "map",
 "values" : "string"
 },
 "default" : { }
 }, {
 "name" : "before",
 "type" : ["null", {
 "type" : "record",
 "name" : "columns",
 "fields" : [{
 "name" : "CUST_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "CUST_CODE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "ORDER_DATE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "ORDER_DATE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "PRODUCT_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "PRODUCT_CODE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "ORDER_ID",
 "type" : ["null", "string"],
 "default" : null
 }, {

Chapter 17
Using the Avro Formatter

17-14

 "name" : "ORDER_ID_isMissing",
 "type" : "boolean"
 }, {
 "name" : "PRODUCT_PRICE",
 "type" : ["null", "double"],
 "default" : null
 }, {
 "name" : "PRODUCT_PRICE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "PRODUCT_AMOUNT",
 "type" : ["null", "double"],
 "default" : null
 }, {
 "name" : "PRODUCT_AMOUNT_isMissing",
 "type" : "boolean"
 }, {
 "name" : "TRANSACTION_ID",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "TRANSACTION_ID_isMissing",
 "type" : "boolean"
 }]
 }],
 "default" : null
 }, {
 "name" : "after",
 "type" : ["null", "columns"],
 "default" : null
 }]
}

17.1.2.5 Avro Operation Formatter Configuration Properties

Table 17-5 Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.insertOpKey

Optional Any string I Indicator to be inserted into
the output record to indicate
an insert operation

gg.handler.name.form
at.updateOpKey

Optional Any string U Indicator to be inserted into
the output record to indicate
an update operation.

gg.handler.name.form
at.deleteOpKey

Optional Any string D Indicator to be inserted into
the output record to indicate
a delete operation.

gg.handler.name.form
at.truncateOpKey

Optional Any string T Indicator to be inserted into
the output record to indicate
a truncate operation.

Chapter 17
Using the Avro Formatter

17-15

Table 17-5 (Cont.) Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.encoding

Optional Any legal
encoding name
or alias
supported by
Java

UTF-8
(the
JSON
default)

Controls the output encoding
of generated JSON Avro
schema. The JSON default
is UTF-8. Avro messages
are binary and support their
own internal representation
of encoding.

gg.handler.name.form
at.treatAllColumnsAs
Strings

Optional true | false false Controls the output typing of
generated Avro messages. If
set to false, then the
formatter attempts to map
Oracle GoldenGate types to
the corresponding Avro type.
If set to true, then all data is
treated as Strings in the
generated Avro messages
and schemas.

gg.handler.name.form
at.lineDelimiter

Optional Any string no value Inserts delimiter after each
Avro message. This is not a
best practice, but in certain
cases you may want to parse
a stream of data and extract
individual Avro messages
from the stream, use this
property to help. Select a
unique delimiter that cannot
occur in any Avro message.
This property supports
CDATA[] wrapping.

gg.handler.name.form
at.schemaDirectory

Optional Any legal,
existing file
system path.

./dirdef The output location of
generated Avro schemas.

gg.handler.name.form
at.wrapMessageInGene
ricAvroMessage

Optional true|false false Wraps Avro messages for
operations from the source
trail file in a generic Avro
wrapper message. For more
information, see Generic
Wrapper Functionality.

gg.handler.name.form
at.iso8601Format

Optional true | false true The format of the current
timestamp. By default the
 ISO 8601 is set to false,
removes the T between the
date and time in the current
timestamp, which outputs a
space instead.

17.1.2.6 Review a Sample Configuration
The following is a sample configuration for the Avro Operation Formatter in the Java
Adapter properg.handlerties file:

Chapter 17
Using the Avro Formatter

17-16

gg.hdfs.format=avro_op
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.encoding=UTF-8
gg.handler.hdfs.format.wrapMessageInGenericAvroMessage=false

17.1.2.7 Metadata Change Events
If the replicated database and upstream Oracle GoldenGate replication process can
propagate metadata change events, the Avro Operation Formatter can take action
when metadata changes. Because Avro messages depend closely on their
corresponding schema, metadata changes are important when you use Avro
formatting.

An updated Avro schema is generated as soon as a table operation occurs after a
metadata change event.

You must understand the impact of a metadata change event and change downstream
targets to the new Avro schema. The tight dependency of Avro messages to Avro
schemas may result in compatibility issues. Avro messages generated before the
schema change may not be able to be deserialized with the newly generated Avro
schema. Conversely, Avro messages generated after the schema change may not be
able to be deserialized with the previous Avro schema. It is a best practice to use the
same version of the Avro schema that was used to generate the message

For more information, consult the Apache Avro documentation.

17.1.2.8 Special Considerations
This section describes these special considerations:

• Troubleshooting

• Primary Key Updates

• Generic Wrapper Message

17.1.2.8.1 Troubleshooting
Because Avro is a binary format, it is not human readable. However, when the log4j
Java logging level is set to TRACE, Avro messages are deserialized and displayed in the
log file as a JSON object, letting you view the structure and contents of the created
Avro messages. Do not enable TRACE in a production environment, as it has a
substantial impact on performance.

17.1.2.8.2 Primary Key Updates
The Avro Operation Formatter creates messages with complete data of before-image
and after-images for update operations. Therefore, the Avro Operation Formatter
requires no special treatment for primary key updates.

17.1.2.8.3 Generic Wrapper Message
Because Avro messages are not self describing, the receiver of the message must
know the schema associated with the message before the message can be

Chapter 17
Using the Avro Formatter

17-17

deserialized. Avro messages are binary and provide no consistent or reliable way to
inspect the message contents in order to ascertain the message type. Therefore, Avro
can be troublesome when messages are interlaced into a single stream of data such
as Kafka.

The Avro formatter provides a special feature to wrap the Avro message in a generic
Avro message. You can enable this functionality by setting the following configuration
property:

gg.handler.name.format.wrapMessageInGenericAvroMessage=true

The generic message is Avro message wrapping the Avro payload message that is
common to all Avro messages that are output. The schema for the generic message is
name generic_wrapper.avsc and is written to the output schema directory. This
message has the following three fields:

• table_name: The fully qualified source table name.

• schema_fingerprint : The fingerprint of the of the Avro schema generating the
messages. The fingerprint is generated using the parsingFingerprint64(Schema s)
method on the org.apache.avro.SchemaNormalization class.

• payload: The wrapped Avro message.

The following is the Avro Formatter generic wrapper schema:

{
 "type" : "record",
 "name" : "generic_wrapper",
 "namespace" : "oracle.goldengate",
 "fields" : [{
 "name" : "table_name",
 "type" : "string"
 }, {
 "name" : "schema_fingerprint",
 "type" : "long"
 }, {
 "name" : "payload",
 "type" : "bytes"
 }]
}

17.1.3 Avro Object Container File Formatter
Oracle GoldenGate for Big Data can write to HDFS in Avro Object Container File
(OCF) format. Avro OCF handles schema evolution more efficiently than other
formats. The Avro OCF Formatter also supports compression and decompression to
allow more efficient use of disk space.

The HDFS Handler integrates with the Avro formatters to write files to HDFS in Avro
OCF format. The Avro OCF format is required for Hive to read Avro data in HDFS. The
Avro OCF format is detailed in the Avro specification, see http://avro.apache.org/docs/
current/spec.html#Object+Container+Files.

You can configure the HDFS Handler to stream data in Avro OCF format, generate
table definitions in Hive, and update table definitions in Hive in the case of a metadata
change event.

• Avro OCF Formatter Configuration Properties

Chapter 17
Using the Avro Formatter

17-18

http://avro.apache.org/docs/current/spec.html#Object+Container+Files
http://avro.apache.org/docs/current/spec.html#Object+Container+Files

17.1.3.1 Avro OCF Formatter Configuration Properties

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.insertO
pKey

Optional Any string I Indicator to be
inserted into the
output record to
indicate an insert
operation.

gg.handler.name
.format.updateO
pKey

Optional Any string U Indicator to be
inserted into the
output record to
indicate an
update operation.

gg.handler.name
.format.truncat
eOpKey

Optional Any string T Indicator to be
truncated into the
output record to
indicate a
truncate
operation.

gg.handler.name
.format.deleteO
pKey

Optional Any string D Indicator to be
inserted into the
output record to
indicate a
truncate
operation.

gg.handler.name
.format.encodin
g

Optional Any legal
encoding name
or alias supported
by Java.

UTF-8 Controls the
output encoding
of generated
JSON Avro
schema. The
JSON default is
UTF-8. Avro
messages are
binary and
support their own
internal
representation of
encoding.

Chapter 17
Using the Avro Formatter

17-19

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.treatAl
lColumnsAsStrin
gs

Optional true | false false Controls the
output typing of
generated Avro
messages. When
the setting is
false, the
formatter
attempts to map
Oracle
GoldenGate
types to the
corresponding
Avro type. When
the setting is
true, all data is
treated as strings
in the generated
Avro messages
and schemas.

Chapter 17
Using the Avro Formatter

17-20

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.pkUpdat
eHandling

Optional abend | update |
delete-insert

abend Controls how the
formatter should
handle update
operations that
change a primary
key. Primary key
operations can be
problematic for
the Avro Row
formatter and
require special
consideration by
you.

• abend : the
process will
terminates.

• update : the
process
handles this
as a normal
update

• delete and
insert: the
process
handles thins
operation as
a delete and
an insert.
The full
before image
is required
for this
feature to
work
properly.
This can be
achieved by
using full
supplemental
logging in
Oracle.
Without full
before and
after row
images the
insert data
will be
incomplete.

Chapter 17
Using the Avro Formatter

17-21

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.generat
eSchema

Optional true | false true Because
schemas must be
generated for
Avro serialization
to false to
suppress the
writing of the
generated
schemas to the
local file system.

gg.handler.name
.format.schemaD
irectory

Optional Any legal,
existing file
system path

./dirdef The directory
where generated
Avro schemas
are saved to the
local file system.
This property
does not control
where the Avro
schema is written
to in HDFS; that
is controlled by
an HDFS Handler
property.

gg.handler.name
.format.iso8601
Format

Optional true | false true By default, the
value of this
property is true,
and the format for
the current
timestamp is
ISO8601. Set to
false to remove
the T between the
date and time in
the current
timestamp and
output a space
instead.

gg.handler.name
.format.version
Schemas

Optional true | false false If set to true, an
Avro schema is
created in the
schema directory
and versioned by
a time stamp.
The schema uses
the following
format:

fully_qualified
table_name_time
stamp.avsc

Chapter 17
Using the Avro Formatter

17-22

17.1.4 Setting Metacolumn Output
The following are the configurable values for all Avro Formatter metacolumns template
property that controls metacolumn output.

Table 17-6 Metacolumns Template Property

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.format.metaCol
umnsTemplate

Optional ${alltokens}
| ${token} | $
{env} | ${sys}
| ${javaprop}
| ${optype} | $
{position} | $
{timestamp} | $
{catalog} | $
{schema} | $
{table} | $
{objectname}
| ${csn} | $
{xid} | $
{currenttimesta
mp} | $
{opseqno} | $
{timestampmicro
} | $
{currenttimesta
mpmicro}

None The current meta
column
information can
be configured in a
simple manner
and removes the
explicit need to
use:

insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey
|
includeTableNam
e |
includeOpTimest
amp |
includeOpType
|
includePosition
 |
includeCurrentT
imestamp,
useIso8601Forma
t

It is a comma-
delimited string
consisting of one
or more
templated values
that represent the
template.

Explanation of the Metacolumn Keywords

${alltokens}

All of the Oracle GoldenGate tokens.

${token}

The value of a specific Oracle GoldenGate token. The token key should follow token
key should follow the token using the period (.) operator. For example:

${token.MYTOKEN}

Chapter 17
Using the Avro Formatter

17-23

${sys}

A system environmental variable. The variable name should follow sys using the
period (.) operator. For example:

${sys.MYVAR}

${env}

An Oracle GoldenGate environment variable. The variable name should follow env
using the period (.) operator. For example:

${env.someVariable}

${javaprop}

A Java JVM variable. The variable name should follow javaprop using the period (.)
operator. For example:

${javaprop.MYVAR}

${optype}

Operation Type

${position}

Record Position

${timestamp}

Record Timestamp

${catalog}

Catalog Name

${schema}

Schema Name

${table}

Table Name

${objectname}

The fully qualified table name.

${csn}

Source Commit Sequence Number

${xid}

Source Transaction ID

${currenttimestamp}

Current Timestamp

${opseqno}

Record sequence number within the transaction.

${timestampmicro}

Record timestamp (in microseconds after epoch).

${currenttimestampmicro}

Current timestamp (in microseconds after epoch).

Chapter 17
Using the Avro Formatter

17-24

17.2 Using the Delimited Text Formatter
The Delimited Text Formatter is a row-based formatter. It formats database operations
from the source trail file into a delimited text output. Each insert, update, delete, or
truncate operation from the source trail is formatted into an individual delimited
message. Delimited text output includes a fixed number of fields for each table
separated by a field delimiter and terminated by a line delimiter. The fields are
positionally relevant. Many Big Data analytical tools including Hive work well with
HDFS files that contain delimited text.

Column values for an operation from the source trail file can have one of three states:
the column has a value, the column value is null, or the column value is missing. By
default, the delimited text maps these column value states into the delimited text
output as follows:

• Column has a value: The column value is output.

• Column value is null: The default output value is NULL. The output for the case of a
null column value is configurable.

• Column value is missing: The default output value is an empty string (""). The
output for the case of a missing column value is configurable.

Topics:

• Message Formatting Details

• Sample Formatted Messages

• Output Format Summary Log

• Delimited Text Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Setting Metacolumn Output

• Additional Considerations

17.2.1 Message Formatting Details
The default output format uses a semicolon as the delimiter and resembles the
following:

First is the row metadata:

operation_type;fully_qualified_table_name;operation_timestamp;current_timestamp;trail
_position;tokens;

Next is the row data:

column_1_value;column_n_value_then_line_delimeter

Optionally, the column name may be included before each column value that changes
the output format for the row data:

column_1_name;column_1_value;column_n_name;column_n_value_then_line_delimeter

Formatting details:

Chapter 17
Using the Delimited Text Formatter

17-25

• Operation Type : Indicates the type of database operation from the source trail
file. Default values are I for insert, U for update, D for delete, T for truncate. Output
of this field is suppressible.

• Fully Qualified Table Name: The fully qualified table name is the source
database table including the catalog name, and the schema name. The format of
the fully qualified table name is catalog_name.schema_name.table_name. The output
of this field is suppressible.

• Operation Timestamp : The commit record timestamp from the source system.
All operations in a transaction (unbatched transaction) will have the same
operation timestamp. This timestamp is fixed, and the operation timestamp is the
same if the trail file is replayed. The output of this field is suppressible.

• Current Timestamp : The timestamp of the current time when the delimited text
formatter processes the current operation record. This timestamp follows the
ISO-8601 format and includes microsecond precision. Replaying the trail file does
not result in the same timestamp for the same operation. The output of this field is
suppressible.

• Trail Position :The concatenated sequence number and RBA number from the
source trail file. The trail position lets you trace the operation back to the source
trail file. The sequence number is the source trail file number. The RBA number is
the offset in the trail file. The output of this field is suppressible.

• Tokens : The token key value pairs from the source trail file. The output of this
field in the delimited text output is suppressed unless the includeTokens
configuration property on the corresponding handler is explicitly set to true.

17.2.2 Sample Formatted Messages
The following sections contain sample messages from the Delimited Text Formatter.
The default field delimiter has been changed to a pipe character, |, to more clearly
display the message.

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

17.2.2.1 Sample Insert Message
I|GG.TCUSTORD|2013-06-02
22:14:36.000000|2015-09-18T13:23:01.612001|00000000000000001444|R=AADPkvAAEAAEqL2A
AA|WILL|1994-09-30:15:33:00|CAR|144|17520.00|3|100

17.2.2.2 Sample Update Message
U|GG.TCUSTORD|2013-06-02
22:14:41.000000|2015-09-18T13:23:01.987000|00000000000000002891|R=AADPkvAAEAAEqLzA
AA|BILL|1995-12-31:15:00:00|CAR|765|14000.00|3|100

Chapter 17
Using the Delimited Text Formatter

17-26

17.2.2.3 Sample Delete Message
D|GG.TCUSTORD|2013-06-02
22:14:41.000000|2015-09-18T13:23:02.000000|00000000000000004338|L=206080450,6=9.0.
80330,R=AADPkvAAEAAEqLzAAC|DAVE|1993-11-03:07:51:35|PLANE|600|||

17.2.2.4 Sample Truncate Message
T|GG.TCUSTORD|2013-06-02
22:14:41.000000|2015-09-18T13:23:02.001000|00000000000000004515|R=AADPkvAAEAAEqL2A
AB|||||||

17.2.3 Output Format Summary Log
If INFO level logging is enabled, the Java log4j logging logs a summary of the delimited
text output format . A summary of the delimited fields is logged for each source table
encountered and occurs when the first operation for that table is received by the
Delimited Text formatter. This detailed explanation of the fields of the delimited text
output may be useful when you perform an initial setup. When a metadata change
event occurs, the summary of the delimited fields is regenerated and logged again at
the first subsequent operation for that table.

17.2.4 Delimited Text Formatter Configuration Properties

Table 17-7 Delimited Text Formatter Configuration Properties

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.include
ColumnNames

Optional true | false false Controls the output of writing the column
names as a delimited field preceding the
column value. When true, the output
resembles:

COL1_Name|COL1_Value|COL2_Name|
COL2_Value

When false, the output resembles:

COL1_Value|I

gg.handler.nam
e.format.inclu
deOpTimestamp

Optional true | false true A false value suppresses the output of the
operation timestamp from the source trail
file in the output.

gg.handler.nam
e.format.inclu
deCurrentTimes
tamp

Optional true | false true A false value suppresses the output of the
current timestamp in the output.

gg.handler.nam
e.format.inclu
deOpType

Optional true | false true A false value suppresses the output of the
operation type in the output.

gg.handler.nam
e.format.inser
tOpKey

Optional Any string I Indicator to be inserted into the output
record to indicate an insert operation.

Chapter 17
Using the Delimited Text Formatter

17-27

Table 17-7 (Cont.) Delimited Text Formatter Configuration Properties

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.nam
e.format.updat
eOpKey

Optional Any string U Indicator to be inserted into the output
record to indicate an update operation.

gg.handler.nam
e.format.delet
eOpKey

Optional Any string D Indicator to be inserted into the output
record to indicate a delete operation.

gg.handler.nam
e.format.trunc
ateOpKey

Optional Any string T Indicator to be inserted into the output
record to indicate a truncate operation.

gg.handler.nam
e.format.encod
ing

Optional Any encoding
name or alias
supported by
Java.

The native system
encoding of the
machine hosting the
Oracle GoldenGate
process.

Determines the encoding of the output
delimited text.

gg.handler.nam
e.format.field
Delimiter

Optional Any String ASCII 001 (the
default Hive
delimiter)

The delimiter used between delimited
fields. This value supports CDATA[]
wrapping.

gg.handler.nam
e.format.lineD
elimiter

Optional Any String Newline (the default
Hive delimiter)

The delimiter used between records. This
value supports CDATA[] wrapping.

gg.handler.nam
e.format.inclu
deTableName

Optional true | false true Use false to suppress the output of the
table name in the output delimited data.

gg.handler.nam
e.format.keyVa
lueDelimiter

Optional Any string = Specifies a delimiter between keys and
values in a map. Key1=value1. Tokens are
mapped values. Configuration value
supports CDATA[] wrapping.

gg.handler.nam
e.format.keyVa
luePairDelimit
er

Optional Any string , Specifies a delimiter between key value
pairs in a map. Key1=Value1,Key2=Value2.
Tokens are mapped values. Configuration
value supports CDATA[] wrapping.

gg.handler.nam
e.format.pkUpd
ateHandling

Optional abend | update
| delete-
insert

 abend Specifies how the formatter handles
update operations that change a primary
key. Primary key operations can be
problematic for the text formatter and
require special consideration by you.

• abend : indicates the process will
abend

• update : indicates the process will
treat this as a normal update

• delete-insert: indicates the process
handles this as a delete and an insert.
Full supplemental logging must be
enabled for this to work. Without full
before and after row images, the insert
data will be incomplete.

Chapter 17
Using the Delimited Text Formatter

17-28

Table 17-7 (Cont.) Delimited Text Formatter Configuration Properties

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.nam
e.format.nullV
alueRepresenta
tion

Optional Any string NULL Specifies what is included in the delimited
output in the case of a NULL value.
Configuration value supports CDATA[]
wrapping.

gg.handler.nam
e.format.missi
ngValueReprese
ntation

Optional Any string "" (no value) Specifies what is included in the delimited
text output in the case of a missing value.
Configuration value supports CDATA[]
wrapping.

gg.handler.nam
e.format.inclu
dePosition

Optional true | false true When true, suppresses the output of the
operation position from the source trail file.

gg.handler.nam
e.format.iso86
01Format

Optional true | false true Controls the format of the current
timestamp. The default is the ISO 8601
format. When false, removes the T
between the date and time in the current
timestamp, which outputs a space instead.

gg.handler.nam
e.format.inclu
deMetaColumnNa
mes

Optional true | false false Set to true, a field is included prior to each
metadata column value, which is the
column name of the metadata column. You
can use it to make delimited messages
more self-describing.

gg.handler.nam
e.format.wrapS
tringsInQuotes

Optional true | false false Set to true to wrap string value output in
the delimited text format in double quotes
(").

17.2.5 Review a Sample Configuration
The following is a sample configuration for the Delimited Text formatter in the Java
Adapter configuration file:

gg.handler.hdfs.format.includeColumnNames=false
gg.handler.hdfs.format.includeOpTimestamp=true
gg.handler.hdfs.format.includeCurrentTimestamp=true
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.encoding=UTF-8
gg.handler.hdfs.format.fieldDelimiter=CDATA[\u0001]
gg.handler.hdfs.format.lineDelimiter=CDATA[\n]
gg.handler.hdfs.format.includeTableName=true
gg.handler.hdfs.format.keyValueDelimiter=CDATA[=]
gg.handler.hdfs.format.kevValuePairDelimiter=CDATA[,]
gg.handler.hdfs.format.pkUpdateHandling=abend
gg.handler.hdfs.format.nullValueRepresentation=NULL
gg.handler.hdfs.format.missingValueRepresentation=CDATA[]
gg.handler.hdfs.format.includePosition=true
gg.handler.hdfs.format=delimitedtext

Chapter 17
Using the Delimited Text Formatter

17-29

17.2.6 Metadata Change Events
Oracle GoldenGate for Big Data now handles metadata change events at runtime.
This assumes that the replicated database and upstream replication processes are
propagating metadata change events. The Delimited Text Formatter changes the
output format to accommodate the change and the Delimited Text Formatter continue
running.

Note that a metadata change may affect downstream applications. Delimited text
formats include a fixed number of fields that are positionally relevant. Deleting a
column in the source table can be handled seamlessly during Oracle GoldenGate
runtime, but results in a change in the total number of fields, and potentially changes
the positional relevance of some fields. Adding an additional column or columns is
probably the least impactful metadata change event, assuming that the new column is
added to the end. Consider the impact of a metadata change event before executing
the event. When metadata change events are frequent, Oracle recommends that you
consider a more flexible and self-describing format, such as JSON or XML.

17.2.7 Setting Metacolumn Output
The following are the configurable values for the Delimited Text Format metacolumns
template property that controls metacolumn output.

Chapter 17
Using the Delimited Text Formatter

17-30

Table 17-8 Metacolumns Template Property

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.format.metaCol
umnsTemplate

Optional ${alltokens}
| ${token} | $
{env} | ${sys}
| ${javaprop}
| ${optype} | $
{position} | $
{timestamp} | $
{catalog} | $
{schema} | $
{table} | $
{objectname}
| ${csn} | $
{xid} | $
{currenttimesta
mp} | $
{opseqno} | $
{timestampmicro
} | $
{currenttimesta
mpmicro}

None The current meta
column
information can
be configured in a
simple manner
and removes the
explicit need to
use:

insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey
|
includeTableNam
e |
includeOpTimest
amp |
includeOpType
|
includePosition
 |
includeCurrentT
imestamp,
useIso8601Forma
t

It is a comma-
delimited string
consisting of one
or more
templated values
that represent the
template.

Explanation of the Metacolumn Keywords

${alltokens}

All of the Oracle GoldenGate tokens.

${token}

The value of a specific Oracle GoldenGate token. The token key should follow token
key should follow the token using the period (.) operator. For example:

${token.MYTOKEN}

${sys}

A system environmental variable. The variable name should follow sys using the
period (.) operator. For example:

${sys.MYVAR}

Chapter 17
Using the Delimited Text Formatter

17-31

${env}

An Oracle GoldenGate environment variable. The variable name should follow env
using the period (.) operator. For example:

${env.someVariable}

${javaprop}

A Java JVM variable. The variable name should follow javaprop using the period (.)
operator. For example:

${javaprop.MYVAR}

${optype}

Operation Type

${position}

Record Position

${timestamp}

Record Timestamp

${catalog}

Catalog Name

${schema}

Schema Name

${table}

Table Name

${objectname}

The fully qualified table name.

${csn}

Source Commit Sequence Number

${xid}

Source Transaction ID

${currenttimestamp}

Current Timestamp

${opseqno}

Record sequence number within the transaction.

${timestampmicro}

Record timestamp (in microseconds after epoch).

${currenttimestampmicro}

Current timestamp (in microseconds after epoch).

17.2.8 Additional Considerations
Exercise care when you choose field and line delimiters. It is important to choose
delimiter values that will not occur in the content of the data.

The Java Adapter configuration trims leading and trailing characters from configuration
values when they are determined to be whitespace. However, you may want to choose

Chapter 17
Using the Delimited Text Formatter

17-32

field delimiters, line delimiters, null value representations, and missing value
representations that include or are fully considered to be whitespace . In these cases,
you must employ specialized syntax in the Java Adapter configuration file to preserve
the whitespace. To preserve the whitespace, when your configuration values contain
leading or trailing characters that are considered whitespace, wrap the configuration
value in a CDATA[] wrapper. For example, a configuration value of \n should be
configured as CDATA[\n].

You can use regular expressions to search column values then replace matches with a
specified value. You can use this search and replace functionality together with the
Delimited Text Formatter to ensure that there are no collisions between column value
contents and field and line delimiters. For more information, see Using Regular
Expression Search and Replace.

Big Data applications sore data differently from RDBMSs. Update and delete
operations in an RDBMS result in a change to the existing data. However, in Big Data
applications, data is appended instead of changed. Therefore, the current state of a
given row consolidates all of the existing operations for that row in the HDFS system.
This leads to some special scenarios as described in the following sections.

• Primary Key Updates

• Data Consolidation

17.2.8.1 Primary Key Updates
In Big Data integrations, primary key update operations require special consideration
and planning. Primary key updates modify one or more of the primary keys for the
given row from the source database. Because data is appended in Big Data
applications, a primary key update operation looks more like an insert than an update
without any special handling. You can configure how the Delimited Text formatter
handles primary key updates. These are the configurable behaviors:

Table 17-9 Configurable Behavior

Value Description

abend By default the delimited text formatter terminates in the case of
a primary key update.

update The primary key update is treated like any other update
operation. Use this configuration alternative only if you can
guarantee that the primary key is not used as selection criteria
to select row data from a Big Data system.

delete-insert The primary key update is treated as a special case of a delete,
using the before-image data and an insert using the after-image
data. This configuration may more accurately model the effect
of a primary key update in a Big Data application. However, if
this configuration is selected it is important to have full
supplemental logging enabled on replication at the source
database. Without full supplemental logging, the delete
operation will be correct, but the insert operation will not contain
all of the data for all of the columns for a full representation of
the row data in the Big Data application.

Chapter 17
Using the Delimited Text Formatter

17-33

17.2.8.2 Data Consolidation
Big Data applications append data to the underlying storage. Analytic tools generally
spawn MapReduce programs that traverse the data files and consolidate all the
operations for a given row into a single output. Therefore, it is important to specify the
order of operations. The Delimited Text formatter provides a number of metadata fields
to do this. The operation timestamp may be sufficient to fulfill this requirement.
Alternatively, the current timestamp may be the best indicator of the order of
operations. In this situation, the trail position can provide a tie-breaking field on the
operation timestamp. Lastly, the current timestamp may provide the best indicator of
order of operations in Big Data.

17.3 Using the JSON Formatter
The JavaScripts Object Notation (JSON) formatter can output operations from the
source trail file in either row-based format or operation-based format. It formats
operation data from the source trail file into a JSON objects. Each insert, update,
delete, and truncate operation is formatted into an individual JSON message.

Topics:

• Operation Metadata Formatting Details

• Operation Data Formatting Details

• Row Data Formatting Details

• Sample JSON Messages

• JSON Schemas

• JSON Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Setting Metacolumn Output

• JSON Primary Key Updates

• Integrating Oracle Stream Analytics

17.3.1 Operation Metadata Formatting Details
JSON objects generated by the JSON Formatter contain the following metadata fields
at the beginning of each message:

Table 17-10 JSON Metadata

Value Description

table Contains the fully qualified table name. The format of the fully
qualified table name is: CATALOG NAME.SCHEMA NAME.TABLE
NAME

op_type Indicates the type of database operation from the source trail
file. Default values are I for insert, U for update, D for delete, and
T for truncate.

Chapter 17
Using the JSON Formatter

17-34

Table 17-10 (Cont.) JSON Metadata

Value Description

op_ts The timestamp of the operation from the source trail file.
Because this timestamp is from the source trail, it is fixed.
Replaying the trail file results in the same timestamp for the
same operation.

current_ts The time when the delimited text formatter processes the
current operation record. This timestamp follows the ISO-8601
format and includes microsecond precision. Replaying the trail
file will not result in the same timestamp for the same operation.

pos The trail file position, which includes the concatenated
sequence number and the RBA number from the source trail
file. The trail position provides traceability of the operation back
to the source trail file. The sequence number is the source trail
file number. The RBA number is the offset in the trail file.

primary_keys An array variable that holds the column names of the primary
keys of the source table. The primary_keys field is only
included in the JSON output if the includePrimaryKeys
configuration property is set to true.

tokens The tokens field is only included in the output if the
includeTokens handler configuration property is set to true.

17.3.2 Operation Data Formatting Details
JSON messages begin with the operation metadata fields, which are followed by the
operation data fields. This data is represented by before and after members that are
objects. These objects contain members whose keys are the column names and
whose values are the column values.

Operation data is modeled as follows:

• Inserts: Includes the after-image data.

• Updates: Includes both the before-image and the after-image data.

• Deletes: Includes the before-image data.

Column values for an operation from the source trail file can have one of three states:
the column has a value, the column value is null, or the column value is missing. The
JSON Formatter maps these column value states into the created JSON objects as
follows:

• The column has a value: The column value is output. In the following example, the
member STATE has a value.

 "after":{ "CUST_CODE":"BILL", "NAME":"BILL'S USED
CARS", "CITY":"DENVER", "STATE":"CO" }

• The column value is null: The default output value is a JSON NULL. In the
following example, the member STATE is null.

 "after":{ "CUST_CODE":"BILL", "NAME":"BILL'S USED
CARS", "CITY":"DENVER", "STATE":null }

• The column value is missing: The JSON contains no element for a missing column
value. In the following example, the member STATE is missing.

Chapter 17
Using the JSON Formatter

17-35

 "after":{ "CUST_CODE":"BILL", "NAME":"BILL'S USED
CARS", "CITY":"DENVER", }

The default setting of the JSON Formatter is to map the data types from the source
trail file to the associated JSON data type. JSON supports few data types, so this
functionality usually results in the mapping of numeric fields from the source trail file to
members typed as numbers. This data type mapping can be configured treat all data
as strings.

17.3.3 Row Data Formatting Details
JSON messages begin with the operation metadata fields, which are followed by the
operation data fields. For row data formatting, this are the source column names and
source column values as JSON key value pairs. This data is represented by before
and after members that are objects. These objects contain members whose keys are
the column names and whose values are the column values.

Row data is modeled as follows:

• Inserts: Includes the after-image data.

• Updates: Includes the after-image data.

• Deletes: Includes the before-image data.

Column values for an operation from the source trail file can have one of three states:
the column has a value, the column value is null, or the column value is missing. The
JSON Formatter maps these column value states into the created JSON objects as
follows:

• The column has a value: The column value is output. In the following example, the
member STATE has a value.

 "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", "STATE":"CO" }

• The column value is null :The default output value is a JSON NULL. In the
following example, the member STATE is null.

 "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", "STATE":null }

• The column value is missing: The JSON contains no element for a missing column
value. In the following example, the member STATE is missing.

 "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", }

The default setting of the JSON Formatter is to map the data types from the source
trail file to the associated JSON data type. JSON supports few data types, so this
functionality usually results in the mapping of numeric fields from the source trail file to
members typed as numbers. This data type mapping can be configured to treat all
data as strings.

17.3.4 Sample JSON Messages
The following topics are sample JSON messages created by the JSON Formatter for
insert, update, delete, and truncate operations.

• Sample Operation Modeled JSON Messages

Chapter 17
Using the JSON Formatter

17-36

• Sample Flattened Operation Modeled JSON Messages

• Sample Row Modeled JSON Messages

• Sample Primary Key Output JSON Message

17.3.4.1 Sample Operation Modeled JSON Messages

Insert

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"I",
 "op_ts":"2015-11-05 18:45:36.000000",
 "current_ts":"2016-10-05T10:15:51.267000",
 "pos":"00000000000000002928",
 "after":{
 "CUST_CODE":"WILL",
 "ORDER_DATE":"1994-09-30:15:33:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":144,
 "PRODUCT_PRICE":17520.00,
 "PRODUCT_AMOUNT":3,
 "TRANSACTION_ID":100
 }
}

Update

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:15:51.310002",
 "pos":"00000000000000004300",
 "before":{
 "CUST_CODE":"BILL",
 "ORDER_DATE":"1995-12-31:15:00:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":765,
 "PRODUCT_PRICE":15000.00,
 "PRODUCT_AMOUNT":3,
 "TRANSACTION_ID":100
 },
 "after":{
 "CUST_CODE":"BILL",
 "ORDER_DATE":"1995-12-31:15:00:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":765,
 "PRODUCT_PRICE":14000.00
 }
}

Delete

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:15:51.312000",
 "pos":"00000000000000005272",

Chapter 17
Using the JSON Formatter

17-37

 "before":{
 "CUST_CODE":"DAVE",
 "ORDER_DATE":"1993-11-03:07:51:35",
 "PRODUCT_CODE":"PLANE",
 "ORDER_ID":600,
 "PRODUCT_PRICE":135000.00,
 "PRODUCT_AMOUNT":2,
 "TRANSACTION_ID":200
 }
}

Truncate

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"T",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:15:51.312001",
 "pos":"00000000000000005480",
}

17.3.4.2 Sample Flattened Operation Modeled JSON Messages

Insert

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"I",
 "op_ts":"2015-11-05 18:45:36.000000",
 "current_ts":"2016-10-05T10:34:47.956000",
 "pos":"00000000000000002928",
 "after.CUST_CODE":"WILL",
 "after.ORDER_DATE":"1994-09-30:15:33:00",
 "after.PRODUCT_CODE":"CAR",
 "after.ORDER_ID":144,
 "after.PRODUCT_PRICE":17520.00,
 "after.PRODUCT_AMOUNT":3,
 "after.TRANSACTION_ID":100
}

Update

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:34:48.192000",
 "pos":"00000000000000004300",
 "before.CUST_CODE":"BILL",
 "before.ORDER_DATE":"1995-12-31:15:00:00",
 "before.PRODUCT_CODE":"CAR",
 "before.ORDER_ID":765,
 "before.PRODUCT_PRICE":15000.00,
 "before.PRODUCT_AMOUNT":3,
 "before.TRANSACTION_ID":100,
 "after.CUST_CODE":"BILL",
 "after.ORDER_DATE":"1995-12-31:15:00:00",
 "after.PRODUCT_CODE":"CAR",
 "after.ORDER_ID":765,
 "after.PRODUCT_PRICE":14000.00
}

Chapter 17
Using the JSON Formatter

17-38

Delete

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:34:48.193000",
 "pos":"00000000000000005272",
 "before.CUST_CODE":"DAVE",
 "before.ORDER_DATE":"1993-11-03:07:51:35",
 "before.PRODUCT_CODE":"PLANE",
 "before.ORDER_ID":600,
 "before.PRODUCT_PRICE":135000.00,
 "before.PRODUCT_AMOUNT":2,
 "before.TRANSACTION_ID":200
}

Truncate

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:34:48.193001",
 "pos":"00000000000000005480",
 "before.CUST_CODE":"JANE",
 "before.ORDER_DATE":"1995-11-11:13:52:00",
 "before.PRODUCT_CODE":"PLANE",
 "before.ORDER_ID":256,
 "before.PRODUCT_PRICE":133300.00,
 "before.PRODUCT_AMOUNT":1,
 "before.TRANSACTION_ID":100
}

17.3.4.3 Sample Row Modeled JSON Messages

Insert

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"I",
 "op_ts":"2015-11-05 18:45:36.000000",
 "current_ts":"2016-10-05T11:10:42.294000",
 "pos":"00000000000000002928",
 "CUST_CODE":"WILL",
 "ORDER_DATE":"1994-09-30:15:33:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":144,
 "PRODUCT_PRICE":17520.00,
 "PRODUCT_AMOUNT":3,
 "TRANSACTION_ID":100
}

Update

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T11:10:42.350005",

Chapter 17
Using the JSON Formatter

17-39

 "pos":"00000000000000004300",
 "CUST_CODE":"BILL",
 "ORDER_DATE":"1995-12-31:15:00:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":765,
 "PRODUCT_PRICE":14000.00
}

Delete

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T11:10:42.351002",
 "pos":"00000000000000005272",
 "CUST_CODE":"DAVE",
 "ORDER_DATE":"1993-11-03:07:51:35",
 "PRODUCT_CODE":"PLANE",
 "ORDER_ID":600,
 "PRODUCT_PRICE":135000.00,
 "PRODUCT_AMOUNT":2,
 "TRANSACTION_ID":200
}

Truncate

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"T",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T11:10:42.351003",
 "pos":"00000000000000005480",
}

17.3.4.4 Sample Primary Key Output JSON Message
{
 "table":"DDL_OGGSRC.TCUSTMER",
 "op_type":"I",
 "op_ts":"2015-10-26 03:00:06.000000",
 "current_ts":"2016-04-05T08:59:23.001000",
 "pos":"00000000000000006605",
 "primary_keys":[
 "CUST_CODE"
],
 "after":{
 "CUST_CODE":"WILL",
 "NAME":"BG SOFTWARE CO.",
 "CITY":"SEATTLE",
 "STATE":"WA"
 }
}

17.3.5 JSON Schemas
By default, JSON schemas are generated for each source table encountered. JSON
schemas are generated on a just in time basis when an operation for that table is first
encountered. A JSON schema is not required to parse a JSON object. However, many

Chapter 17
Using the JSON Formatter

17-40

JSON parsers can use a JSON schema to perform a validating parse of a JSON
object. Alternatively, you can review the JSON schemas to understand the layout of
output JSON objects. By default, the JSON schemas are created in the
GoldenGate_Home/dirdef directory and are named by the following convention:

FULLY_QUALIFIED_TABLE_NAME.schema.json

The generation of the JSON schemas is suppressible.

The following JSON schema example is for the JSON object listed in Sample
Operation Modeled JSON Messages.

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"QASOURCE.TCUSTORD",
 "description":"JSON schema for table QASOURCE.TCUSTORD",
 "definitions":{
 "row":{
 "type":"object",
 "properties":{
 "CUST_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "ORDER_ID":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]
 },
 "TRANSACTION_ID":{
 "type":[
 "number",

Chapter 17
Using the JSON Formatter

17-41

 "null"
]
 }
 },
 "additionalProperties":false
 },
 "tokens":{
 "type":"object",
 "description":"Token keys and values are free form key value pairs.",
 "properties":{
 },
 "additionalProperties":true
 }
 },
 "type":"object",
 "properties":{
 "table":{
 "description":"The fully qualified table name",
 "type":"string"
 },
 "op_type":{
 "description":"The operation type",
 "type":"string"
 },
 "op_ts":{
 "description":"The operation timestamp",
 "type":"string"
 },
 "current_ts":{
 "description":"The current processing timestamp",
 "type":"string"
 },
 "pos":{
 "description":"The position of the operation in the data source",
 "type":"string"
 },
 "primary_keys":{
 "description":"Array of the primary key column names.",
 "type":"array",
 "items":{
 "type":"string"
 },
 "minItems":0,
 "uniqueItems":true
 },
 "tokens":{
 "$ref":"#/definitions/tokens"
 },
 "before":{
 "$ref":"#/definitions/row"
 },
 "after":{
 "$ref":"#/definitions/row"
 }
 },
 "required":[
 "table",
 "op_type",
 "op_ts",

Chapter 17
Using the JSON Formatter

17-42

 "current_ts",
 "pos"
],
 "additionalProperties":false
}

The following JSON schema example is for the JSON object listed in Sample
Flattened Operation Modeled JSON Messages.

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"QASOURCE.TCUSTORD",
 "description":"JSON schema for table QASOURCE.TCUSTORD",
 "definitions":{
 "tokens":{
 "type":"object",
 "description":"Token keys and values are free form key value pairs.",
 "properties":{
 },
 "additionalProperties":true
 }
 },
 "type":"object",
 "properties":{
 "table":{
 "description":"The fully qualified table name",
 "type":"string"
 },
 "op_type":{
 "description":"The operation type",
 "type":"string"
 },
 "op_ts":{
 "description":"The operation timestamp",
 "type":"string"
 },
 "current_ts":{
 "description":"The current processing timestamp",
 "type":"string"
 },
 "pos":{
 "description":"The position of the operation in the data source",
 "type":"string"
 },
 "primary_keys":{
 "description":"Array of the primary key column names.",
 "type":"array",
 "items":{
 "type":"string"
 },
 "minItems":0,
 "uniqueItems":true
 },
 "tokens":{
 "$ref":"#/definitions/tokens"
 },
 "before.CUST_CODE":{
 "type":[
 "string",
 "null"

Chapter 17
Using the JSON Formatter

17-43

]
 },
 "before.ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "before.PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "before.ORDER_ID":{
 "type":[
 "number",
 "null"
]
 },
 "before.PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "before.PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]
 },
 "before.TRANSACTION_ID":{
 "type":[
 "number",
 "null"
]
 },
 "after.CUST_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "after.ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "after.PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "after.ORDER_ID":{
 "type":[
 "number",

Chapter 17
Using the JSON Formatter

17-44

 "null"
]
 },
 "after.PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "after.PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]
 },
 "after.TRANSACTION_ID":{
 "type":[
 "number",
 "null"
]
 }
 },
 "required":[
 "table",
 "op_type",
 "op_ts",
 "current_ts",
 "pos"
],
 "additionalProperties":false
}

The following JSON schema example is for the JSON object listed in Sample
Row Modeled JSON Messages.

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"QASOURCE.TCUSTORD",
 "description":"JSON schema for table QASOURCE.TCUSTORD",
 "definitions":{
 "tokens":{
 "type":"object",
 "description":"Token keys and values are free form key value pairs.",
 "properties":{
 },
 "additionalProperties":true
 }
 },
 "type":"object",
 "properties":{
 "table":{
 "description":"The fully qualified table name",
 "type":"string"
 },
 "op_type":{
 "description":"The operation type",
 "type":"string"
 },
 "op_ts":{
 "description":"The operation timestamp",

Chapter 17
Using the JSON Formatter

17-45

 "type":"string"
 },
 "current_ts":{
 "description":"The current processing timestamp",
 "type":"string"
 },
 "pos":{
 "description":"The position of the operation in the data source",
 "type":"string"
 },
 "primary_keys":{
 "description":"Array of the primary key column names.",
 "type":"array",
 "items":{
 "type":"string"
 },
 "minItems":0,
 "uniqueItems":true
 },
 "tokens":{
 "$ref":"#/definitions/tokens"
 },
 "CUST_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "ORDER_ID":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]
 },
 "TRANSACTION_ID":{

Chapter 17
Using the JSON Formatter

17-46

 "type":[
 "number",
 "null"
]
 }
 },
 "required":[
 "table",
 "op_type",
 "op_ts",
 "current_ts",
 "pos"
],
 "additionalProperties":false
}

17.3.6 JSON Formatter Configuration Properties

Table 17-11 JSON Formatter Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name.format Optional json |
json_row

None Controls whether the generated JSON
output messages are operation modeled
or row modeled. Set to json for
operation modeled orjson_row for row
modeled.

gg.handler.name.format.i
nsertOpKey

Optional Any string I Indicator to be inserted into the output
record to indicate an insert operation.

gg.handler.name.format.u
pdateOpKey

Optional Any string U Indicator to be inserted into the output
record to indicate an update operation.

gg.handler.name.format.d
eleteOpKey

Optional Any string D Indicator to be inserted into the output
record to indicate a delete operation.

gg.handler.name.format.t
runcateOpKey

Optional Any string T Indicator to be inserted into the output
record to indicate a truncate operation.

gg.handler.name.format.p
rettyPrint

Optional true | false false Controls the output format of the JSON
data. True formats the data with white
space for easy reading. False generates
more compact output that is difficult to
read..

gg.handler.name.format.j
sonDelimiter

Optional Any string "" (no value) Inserts a delimiter between generated
JSONs so that they can be more easily
parsed in a continuous stream of data.
Configuration value supports CDATA[]
wrapping.

gg.handler.name.format.g
enerateSchema

Optional true | false true Controls the generation of JSON
schemas for the generated JSON
documents. JSON schemas are
generated on a table-by-table basis. A
JSON schema is not required to parse a
JSON document. However, a JSON
schemahelp indicate what the JSON
documents look like and can be used for
a validating JSON parse.

Chapter 17
Using the JSON Formatter

17-47

Table 17-11 (Cont.) JSON Formatter Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name.format.s
chemaDirectory

Optional Any legal,
existing file
system path

./dirdef Controls the output location of generated
JSON schemas.

gg.handler.name.format.t
reatAllColumnsAsStrings

Optional true |
false

false Controls the output typing of generated
JSON documents. When false, the
formatter attempts to map Oracle
GoldenGate types to the corresponding
JSON type. When true, all data is
treated as strings in the generated
JSONs and JSON schemas.

gg.handler.name.format.e
ncoding

Optional Any legal
encoding
name or alias
supported by
Java.

UTF-8 (the
JSON
default)

Controls the output encoding of
generated JSON schemas and
documents.

gg.handler.name.format.v
ersionSchemas

Optional true |
false

false Controls the version of created
schemas. Schema versioning creates a
schema with a timestamp in the schema
directory on the local file system every
time a new schema is created. True
enables schema versioning. False
disables schema versioning.

gg.handler.name.format.i
so8601Format

Optional true | false true Controls the format of the current
timestamp. The default is the ISO 8601
format. A setting of false removes the
“T” between the date and time in the
current timestamp, which outputs a
single space(“ “) instead.

gg.handler.name.format.i
ncludePrimaryKeys

Optional true | false false When set to true, to include an array of
the primary key column names from the
source table in the JSON output.

gg.handler.name.format.f
latten

Optional true | false false Controls sending flattened JSON
formatted data to the target entity. Must
be set to true for the flatten Delimiter
property to work.

This property is applicable only to
Operation Formatted JSON
(gg.handler.name.format=json).

gg.handler.name.format.f
lattenDelimiter

Optional Any legal
character or
character
string for a
JSON field
name.

. Controls the delimiter for concatenated
JSON element names. This property
supports CDATA[] wrapping to preserve
whitespace. It is only relevant when
gg.handler.name.format.flatten is set
to true.

Chapter 17
Using the JSON Formatter

17-48

Table 17-11 (Cont.) JSON Formatter Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name.format.b
eforeObjectName

Optional Any legal
character or
character
string for a
JSON field
name.

Any legal
JSON
attribute
name.

Allows you to set whether the JSON
element-before, that contains the
change column values, can be renamed.

This property is only applicable to
Operation Formatted JSON
(gg.handler.name.format=json).

gg.handler.name.format.a
fterObjectName

Optional Any legal
character or
character
string for a
JSON field
name.

Any legal
JSON
attribute
name.

Allows you to set whether the JSON
element, that contains the after-change
column values, can be renamed.

This property is only applicable to
Operation Formatted JSON
(gg.handler.name.format=json).

gg.handler.name.format.p
kUpdateHandling

Optional abend |
update |
delete-
insert

abend Specifies how the formatter handles
update operations that change a primary
key. Primary key operations can be
problematic for the JSON formatter and
require special consideration by you.
You can only use this property in
conjunction with the row modeled JSON
output messages.

This property is only applicable to Row
Formatted JSON
(gg.handler.name.format=json_row).

• abend : indicates that the process
terminates.

• update: the process handles the
operation as a normal update.

• delete or insert: the process
handles the operation as a delete
and an insert. Full supplemental
logging must be enabled. Without
full before and after row images, the
insert data will be incomplete.

gg.handler.name.format.o
mitNullValues

Optional true | false true Set to false to omit fields that have null
values from being included in the
generated JSON output.

17.3.7 Review a Sample Configuration
The following is a sample configuration for the JSON Formatter in the Java Adapter
configuration file:

gg.handler.hdfs.format=json
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.prettyPrint=false
gg.handler.hdfs.format.jsonDelimiter=CDATA[]
gg.handler.hdfs.format.generateSchema=true

Chapter 17
Using the JSON Formatter

17-49

gg.handler.hdfs.format.schemaDirectory=dirdef
gg.handler.hdfs.format.treatAllColumnsAsStrings=false

17.3.8 Metadata Change Events
Metadata change events are handled at runtime. When metadata is changed in a
table, the JSON schema is regenerated the next time an operation for the table is
encountered. The content of created JSON messages changes to reflect the metadata
change. For example, if an additional column is added, the new column is included in
created JSON messages after the metadata change event.

17.3.9 Setting Metacolumn Output
The following are the configurable values for the Delimited Text Format metacolumns
template property that controls metacolumn output.

Table 17-12 Metacolumns Template Property

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.format.metaCol
umnsTemplate

Optional ${alltokens}
| ${token} | $
{env} | ${sys}
| ${javaprop}
| ${optype} | $
{position} | $
{timestamp} | $
{catalog} | $
{schema} | $
{table} | $
{objectname}
| ${csn} | $
{xid} | $
{currenttimesta
mp} | $
{opseqno} | $
{timestampmicro
} | $
{currenttimesta
mpmicro}

None The current meta
column
information can
be configured in a
simple manner
and removes the
explicit need to
use:

insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey
|
includeTableNam
e |
includeOpTimest
amp |
includeOpType
|
includePosition
 |
includeCurrentT
imestamp,
useIso8601Forma
t

It is a comma-
delimited string
consisting of one
or more
templated values
that represent the
template.

Explanation of the Metacolumn Keywords

Chapter 17
Using the JSON Formatter

17-50

${alltokens}

All of the Oracle GoldenGate tokens.

${token}

The value of a specific Oracle GoldenGate token. The token key should follow token
key should follow the token using the period (.) operator. For example:

${token.MYTOKEN}

${sys}

A system environmental variable. The variable name should follow sys using the
period (.) operator. For example:

${sys.MYVAR}

${env}

An Oracle GoldenGate environment variable. The variable name should follow env
using the period (.) operator. For example:

${env.someVariable}

${javaprop}

A Java JVM variable. The variable name should follow javaprop using the period (.)
operator. For example:

${javaprop.MYVAR}

${optype}

Operation Type

${position}

Record Position

${timestamp}

Record Timestamp

${catalog}

Catalog Name

${schema}

Schema Name

${table}

Table Name

${objectname}

The fully qualified table name.

${csn}

Source Commit Sequence Number

${xid}

Source Transaction ID

${currenttimestamp}

Current Timestamp

${opseqno}

Record sequence number within the transaction.

Chapter 17
Using the JSON Formatter

17-51

${timestampmicro}

Record timestamp (in microseconds after epoch).

${currenttimestampmicro}

Current timestamp (in microseconds after epoch).

17.3.10 JSON Primary Key Updates
When the JSON formatter is configured to model operation data, primary key updates
require no special treatment and are treated like any other update. The before and
after values reflect the change in the primary key.

When the JSON formatter is configured to model row data, primary key updates must
be specially handled. The default behavior is to abend. However, by using
thegg.handler.name.format.pkUpdateHandling configuration property, you can configure
the JSON formatter to model row data to treat primary key updates as either a regular
update or as delete and then insert operations. When you configure the formatter to
handle primary key updates as delete and insert operations, Oracle recommends that
you configure your replication stream to contain the complete before-image and after-
image data for updates. Otherwise, the generated insert operation for a primary key
update will be missing data for fields that did not change.

17.3.11 Integrating Oracle Stream Analytics
You can integrate Oracle GoldenGate for Big Data with Oracle Stream Analytics
(OSA) by sending operation-modeled JSON messages to the Kafka Handler. This
works only when the JSON formatter is configured to output operation-modeled JSON
messages.

Because OSA requires flattened JSON objects, a new feature in the JSON formatter
generates flattened JSONs. To use this feature, set the
gg.handler.name.format.flatten=false to true. (The default setting is false). The
following is an example of a flattened JSON file:

{
 "table":"QASOURCE.TCUSTMER",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-06-22T13:38:45.335001",
 "pos":"00000000000000005100",
 "before.CUST_CODE":"ANN",
 "before.NAME":"ANN'S BOATS",
 "before.CITY":"SEATTLE",
 "before.STATE":"WA",
 "after.CUST_CODE":"ANN",
 "after.CITY":"NEW YORK",
 "after.STATE":"NY"
}

17.4 Using the Length Delimited Value Formatter
The Length Delimited Value (LDV) Formatter is a row-based formatter. It formats
database operations from the source trail file into a length delimited value output. Each
insert, update, delete, or truncate operation from the source trail is formatted into an
individual length delimited message. With length delimited, there are no field
delimiters. The fields are variable in size based on the data.

Chapter 17
Using the Length Delimited Value Formatter

17-52

By default, the length delimited maps these column value states into the length
delimited value output. Column values for an operation from the source trail file can
have one of three states:

• Column has a value —The column value is output with the prefix indicator P.

• Column value is NULL —The default output value is N. The output for the case of a
NULL column value is configurable.

• Column value is missing - The default output value is M. The output for the case of
a missing column value is configurable.

Topics:

• Formatting Message Details

• Sample Formatted Messages

• LDV Formatter Configuration Properties

• Additional Considerations

17.4.1 Formatting Message Details
The default format for output of data is the following:

First is the row Length followed by metadata:

<ROW LENGTH><PRESENT INDICATOR><FIELD LENGTH><OPERATION TYPE><PRESENT
INDICATOR><FIELD LENGTH><FULLY QUALIFIED TABLE NAME><PRESENT INDICATOR><FIELD
LENGTH><OPERATION TIMESTAMP><PRESENT INDICATOR><FIELD LENGTH><CURRENT
TIMESTAMP><PRESENT INDICATOR><FIELD LENGTH><TRAIL POSITION><PRESENT
INDICATOR><FIELD LENGTH><TOKENS>

Or

<ROW LENGTH><FIELD LENGTH><FULLY QUALIFIED TABLE NAME><FIELD LENGTH><OPERATION
TIMESTAMP><FIELD LENGTH><CURRENT TIMESTAMP><FIELD LENGTH><TRAIL POSITION><FIELD
LENGTH><TOKENS>

Next is the row data:

<PRESENT INDICATOR><FIELD LENGTH><COLUMN 1 VALUE><PRESENT INDICATOR><FIELD
LENGTH><COLUMN N VALUE>

17.4.2 Sample Formatted Messages
Insert Message:

0133P01IP161446749136000000P161529311765024000P262015-11-05
18:45:36.000000P04WILLP191994-09-30 15:33:00P03CARP03144P0817520.00P013P03100

Update Message

0133P01UP161446749139000000P161529311765035000P262015-11-05
18:45:39.000000P04BILLP191995-12-31 15:00:00P03CARP03765P0814000.00P013P03100

Chapter 17
Using the Length Delimited Value Formatter

17-53

Delete Message

0136P01DP161446749139000000P161529311765038000P262015-11-05
18:45:39.000000P04DAVEP191993-11-03
07:51:35P05PLANEP03600P09135000.00P012P03200

17.4.3 LDV Formatter Configuration Properties

Table 17-13 LDV Formatter Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.f
ormat.binaryLengt
hMode

Optional true |
false

false The output can be controlled to display the
field or record length in either binary or ASCII
format. If set to true, the record or field
length is represented in binary format else in
ASCII.

gg.handler.name.
format.recordLen
gth

Optional 4 | 8 true Set to true, the record length is represented
using either a 4 or 8–byte big Endian integer.
Set to false, the string representation of the
record length with padded value with
configured length of 4 or 8 is used.

gg.handler.name.
format.fieldLeng
th

Optional 2 | 4 true Set to true, the record length is represented
using either a 2 or 4-byte big Endian integer.
Set to false, the string representation of the
record length with padded value with
configured length of 2 or 4 is used.

gg.handler.name.
format.format

Optional true |
false

true Use to configure the Pindicator with
MetaColumn. Set to false, enables the
indicator P before the MetaColumns. If set to
true, disables the indicator.

gg.handler.name.
format.presentVa
lue

Optional Any string P Use to configure what is included in the
output when a column value is present. This
value supports CDATA[] wrapping.

gg.handler.name.
format.missingVa
lue

Optional Any string M Use to configure what is included in the
output when a missing value is present. This
value supports CDATA[] wrapping.

gg.handler.name.
format.nullValue

Optional Any string N Use to configure what is included in the
output when a NULL value is present. This
value supports CDATA[] wrapping.

Chapter 17
Using the Length Delimited Value Formatter

17-54

Table 17-13 (Cont.) LDV Formatter Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.
format.metaColum
nsTemplate

Optional
$
{alltoke
ns}, $
{token},
 $
{env}, $
{sys},
 $
{javapro
p}, $
{optype}
, $
{positio
n}, $
{timesta
mp}, $
{catalog
}, $
{schema}
, $
{table},
 $
{objectn
ame}, $
{csn},
 $
{xid},
 $
{current
timestam
p}, $
{opseqno
}, $
{timesta
mpmicro}
, $
{current
timestam
pmicro}

None Use to configure the current meta column
information in a simple manner and removes
the explicit need of insertOpKey,
updateOpKey, deleteOpKey, truncateOpKey,
includeTableName, includeOpTimestamp,
includeOpType, includePosition,
includeCurrentTimestamp and
useIso8601Format.

A comma-delimited string consisting of one
or more templated values represents the
template. This example produces a list of
meta columns:

${optype}, ${token.ROWID},$
{sys.username},${currenttimestamp}

The valid properties are as follows:

AllTokens – to display All Tokens

Token – to display Specific Token

SysEnv – to display System Environment
Variable

GGEnv – to display GG Environment
Property

JavaProp – to display Java Property

OpType – to display Operation Type

Position – to display Record Position

TimeStamp – to display Record Timestamp

Catalog – to display Catalog Name

Schema – to display Schema Name

Table – to display Table Name

ObjectName – to display Fully Qualified
Object Name

CSN – to display Source Commit Sequence
Number

XID – to display Source Transaction ID

CurrentTimeStamp – to display The current
timestamp

OpSeqno – to display Record sequence
number within transaction

TimeStampMicro – to display Record
timestamp (in microseconds after epoch)

CurrentTimeStampMicro – to display Current
timestamp (in microseconds after epoch)

Chapter 17
Using the Length Delimited Value Formatter

17-55

Table 17-13 (Cont.) LDV Formatter Configuration Properties

Properties Require
d/
Option
al

Legal
Values

Defau
lt

Explanation

gg.handler.name.
format.pkUpdateH
andling

Optional abend |
update |
delete-
insert

abend Specifies how the formatter handles update
operations that change a primary key.
Primary key operations can be problematic
for the text formatter and require special
consideration by you.

• abend : indicates the process will abend
• update : indicates the process will treat

this as a normal update
• delete-insert: indicates the process

handles this as a delete and an insert.
Full supplemental logging must be
enabled for this to work. Without full
before and after row images, the insert
data will be incomplete.

gg.handler.name.
format.encoding

Optional Any
encoding
name or
alias
supported
by Java.

The
native
syste
m
encod
ing of
the
machi
ne
hostin
g the
Oracl
e
Golde
nGate
proce
ss.

Use to set the output encoding for character
data and columns.

Review a Sample Configuration

#The LDV Handler
gg.handler.filewriter.format=binary
gg.handler.filewriter.format.binaryLengthMode=false
gg.handler.filewriter.format.recordLength=4
gg.handler.filewriter.format.fieldLength=2
gg.handler.filewriter.format.legacyFormat=false
gg.handler.filewriter.format.presentValue=CDATA[P]
gg.handler.filewriter.format.missingValue=CDATA[M]
gg.handler.filewriter.format.nullValue=CDATA[N]
gg.handler.filewriter.format.metaColumnsTemplate=${optype},${timestampmicro},$
{currenttimestampmicro},${timestamp}
gg.handler.filewriter.format.pkUpdateHandling=abend

Chapter 17
Using the Length Delimited Value Formatter

17-56

17.4.4 Additional Considerations
Big Data applications differ from RDBMSs in how data is stored. Update and delete
operations in an RDBMS result in a change to the existing data. Data is not changed in
Big Data applications, it is simply appended to existing data. The current state of a
given row becomes a consolidation of all of the existing operations for that row in the
HDFS system.

Primary Key Updates

Primary key update operations require special consideration and planning for Big Data
integrations. Primary key updates are update operations that modify one or more of
the primary keys for the given row from the source database. Since data is simply
appended in Big Data applications, a primary key update operation looks more like a
new insert than an update without any special handling. The Length Delimited Value
Formatter provides specialized handling for primary keys that is configurable to you.
These are the configurable behaviors:

Table 17-14 Primary Key Update Behaviors

Value Description

Abend The default behavior is that the length delimited value formatter will abend in the
case of a primary key update.

Update With this configuration the primary key update will be treated just like any other
update operation. This configuration alternative should only be selected if you can
guarantee that the primary key that is being changed is not being used as the
selection criteria when selecting row data from a Big Data system.

Delete-
Insert

Using this configuration the primary key update is treated as a special case of a
delete using the before image data and an insert using the after image data. This
configuration may more accurately model the effect of a primary key update in a
Big Data application. However, if this configuration is selected it is important to
have full supplemental logging enabled on replication at the source database.
Without full supplemental logging, the delete operation will be correct, but the
insert operation do not contain all of the data for all of the columns for a full
representation of the row data in the Big Data application.

Consolidating Data

Big Data applications simply append data to the underlying storage. Typically, analytic
tools spawn map reduce programs that traverse the data files and consolidate all the
operations for a given row into a single output. It is important to have an indicator of
the order of operations. The Length Delimited Value Formatter provides a number of
metadata fields to fulfill this need. The operation timestamp may be sufficient to fulfill
this requirement. However, two update operations may have the same operation
timestamp especially if they share a common transaction. The trail position can
provide a tie breaking field on the operation timestamp. Lastly, the current timestamp
may provide the best indicator of order of operations in Big Data.

17.5 Using Operation-Based versus Row-Based Formatting
The Oracle GoldenGate for Big Data formatters include operation-based and row-
based formatters.

Chapter 17
Using Operation-Based versus Row-Based Formatting

17-57

The operation-based formatters represent the individual insert, update, and delete
events that occur on table data in the source database. Insert operations only provide
after-change data (or images), because a new row is being added to the source
database. Update operations provide both before-change and after-change data that
shows how existing row data is modified. Delete operations only provide before-
change data to identify the row being deleted. The operation-based formatters model
the operation as it is exists in the source trail file. Operation-based formats include
fields for the before-change and after-change images.

The row-based formatters model the row data as it exists after the operation data is
applied. Row-based formatters contain only a single image of the data. The following
sections describe what data is displayed for both the operation-based and the row-
based formatters.

Topics:

• Operation Formatters

• Row Formatters

• Table Row or Column Value States

17.5.1 Operation Formatters
The formatters that support operation-based formatting are JSON, Avro Operation,
and XML. The output of operation-based formatters are as follows:

• Insert operation: Before-image data is null. After image data is output.

• Update operation: Both before-image and after-image data is output.

• Delete operation: Before-image data is output. After-image data is null.

• Truncate operation: Both before-image and after-image data is null.

17.5.2 Row Formatters
The formatters that support row-based formatting are Delimited Text and Avro Row.
Row-based formatters output the following information for the following operations:

• Insert operation: After-image data only.

• Update operation: After-image data only. Primary key updates are a special case
which will be discussed in individual sections for the specific formatters.

• Delete operation: Before-image data only.

• Truncate operation: The table name is provided, but both before-image and after-
image data are null. Truncate table is a DDL operation, and it may not support
different database implementations. Refer to the Oracle GoldenGate
documentation for your database implementation.

17.5.3 Table Row or Column Value States
In an RDBMS, table data for a specific row and column can only have one of two
states: either the data has a value, or it is null. However; when data is transferred to
the Oracle GoldenGate trail file by the Oracle GoldenGate capture process, the data
can have three possible states: it can have a value, it can be null, or it can be missing.

Chapter 17
Using Operation-Based versus Row-Based Formatting

17-58

For an insert operation, the after-image contains data for all column values regardless
of whether the data is null.. However, the data included for update and delete
operations may not always contain complete data for all columns. When replicating
data to an RDBMS for an update operation only the primary key values and the values
of the columns that changed are required to modify the data in the target database. In
addition, only the primary key values are required to delete the row from the target
database. Therefore, even though values are present in the source database, the
values may be missing in the source trail file. Because data in the source trail file may
have three states, the Plugable Formatters must also be able to represent data in all
three states.

Because the row and column data in the Oracle GoldenGate trail file has an important
effect on a Big Data integration, it is important to understand the data that is required.
Typically, you can control the data that is included for operations in the Oracle
GoldenGate trail file. In an Oracle database, this data is controlled by the
supplemental logging level. To understand how to control the row and column values
that are included in the Oracle GoldenGate trail file, see the Oracle GoldenGate
documentation for your source database implementation..

17.6 Using the XML Formatter
The XML Formatter formats before-image and after-image data from the source trail
file into an XML document representation of the operation data. The format of the XML
document is effectively the same as the XML format in the previous releases of the
Oracle GoldenGate Java Adapter.

Topics:

• Message Formatting Details

• Sample XML Messages

• XML Schema

• XML Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Setting Metacolumn Output

• Primary Key Updates

17.6.1 Message Formatting Details
The XML formatted messages contain the following information:

Table 17-15 XML formatting details

Value Description

table The fully qualified table name.

type The operation type.

Chapter 17
Using the XML Formatter

17-59

Table 17-15 (Cont.) XML formatting details

Value Description

current_ts The current timestamp is the time when the formatter processed
the current operation record. This timestamp follows the
ISO-8601 format and includes micro second precision.
Replaying the trail file does not result in the same timestamp for
the same operation.

pos The position from the source trail file.

numCols The total number of columns in the source table.

col The col element is a repeating element that contains the before
and after images of operation data.

tokens The tokens element contains the token values from the source
trail file.

17.6.2 Sample XML Messages
The following sections provide sample XML messages.

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

17.6.2.1 Sample Insert Message
<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='I' ts='2013-06-02 22:14:36.000000'
current_ts='2015-10-06T12:21:50.100001' pos='00000000000000001444' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <before missing='true'/>
 <after><![CDATA[WILL]]></after>
 </col>
 <col name='ORDER_DATE' index='1'>
 <before missing='true'/>
 <after><![CDATA[1994-09-30:15:33:00]]></after>
 </col>
 <col name='PRODUCT_CODE' index='2'>
 <before missing='true'/>
 <after><![CDATA[CAR]]></after>
 </col>
 <col name='ORDER_ID' index='3'>
 <before missing='true'/>
 <after><![CDATA[144]]></after>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <before missing='true'/>
 <after><![CDATA[17520.00]]></after>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <before missing='true'/>
 <after><![CDATA[3]]></after>
 </col>

Chapter 17
Using the XML Formatter

17-60

 <col name='TRANSACTION_ID' index='6'>
 <before missing='true'/>
 <after><![CDATA[100]]></after>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[R]]></Name>
 <Value><![CDATA[AADPkvAAEAAEqL2AAA]]></Value>
 </token>
 </tokens>
</operation>

17.6.2.2 Sample Update Message
<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='U' ts='2013-06-02 22:14:41.000000'
current_ts='2015-10-06T12:21:50.413000' pos='00000000000000002891' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <before><![CDATA[BILL]]></before>
 <after><![CDATA[BILL]]></after>
 </col>
 <col name='ORDER_DATE' index='1'>
 <before><![CDATA[1995-12-31:15:00:00]]></before>
 <after><![CDATA[1995-12-31:15:00:00]]></after>
 </col>
 <col name='PRODUCT_CODE' index='2'>
 <before><![CDATA[CAR]]></before>
 <after><![CDATA[CAR]]></after>
 </col>
 <col name='ORDER_ID' index='3'>
 <before><![CDATA[765]]></before>
 <after><![CDATA[765]]></after>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <before><![CDATA[15000.00]]></before>
 <after><![CDATA[14000.00]]></after>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <before><![CDATA[3]]></before>
 <after><![CDATA[3]]></after>
 </col>
 <col name='TRANSACTION_ID' index='6'>
 <before><![CDATA[100]]></before>
 <after><![CDATA[100]]></after>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[R]]></Name>
 <Value><![CDATA[AADPkvAAEAAEqLzAAA]]></Value>
 </token>
 </tokens>
</operation>

17.6.2.3 Sample Delete Message
<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='D' ts='2013-06-02 22:14:41.000000'
current_ts='2015-10-06T12:21:50.415000' pos='00000000000000004338' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <before><![CDATA[DAVE]]></before>

Chapter 17
Using the XML Formatter

17-61

 <after missing='true'/>
 </col>
 <col name='ORDER_DATE' index='1'>
 <before><![CDATA[1993-11-03:07:51:35]]></before>
 <after missing='true'/>
 </col>
 <col name='PRODUCT_CODE' index='2'>
 <before><![CDATA[PLANE]]></before>
 <after missing='true'/>
 </col>
 <col name='ORDER_ID' index='3'>
 <before><![CDATA[600]]></before>
 <after missing='true'/>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <missing/>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <missing/>
 </col>
 <col name='TRANSACTION_ID' index='6'>
 <missing/>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[L]]></Name>
 <Value><![CDATA[206080450]]></Value>
 </token>
 <token>
 <Name><![CDATA[6]]></Name>
 <Value><![CDATA[9.0.80330]]></Value>
 </token>
 <token>
 <Name><![CDATA[R]]></Name>
 <Value><![CDATA[AADPkvAAEAAEqLzAAC]]></Value>
 </token>
 </tokens>
</operation>

17.6.2.4 Sample Truncate Message
<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='T' ts='2013-06-02 22:14:41.000000'
current_ts='2015-10-06T12:21:50.415001' pos='00000000000000004515' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <missing/>
 </col>
 <col name='ORDER_DATE' index='1'>
 <missing/>
 </col>
 <col name='PRODUCT_CODE' index='2'>
 <missing/>
 </col>
 <col name='ORDER_ID' index='3'>
 <missing/>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <missing/>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <missing/>

Chapter 17
Using the XML Formatter

17-62

 </col>
 <col name='TRANSACTION_ID' index='6'>
 <missing/>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[R]]></Name>
 <Value><![CDATA[AADPkvAAEAAEqL2AAB]]></Value>
 </token>
 </tokens>
</operation>

17.6.3 XML Schema
The XML Formatter does not generate an XML schema (XSD). The XSD applies to all
messages generated by the XML Formatter. The following XSD defines the structure
of the XML documents that are generated by the XML Formatter.

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="operation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="col" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="before" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute type="xs:string" name="missing"
use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="after" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute type="xs:string" name="missing"
use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element type="xs:string" name="missing" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute type="xs:string" name="name"/>
 <xs:attribute type="xs:short" name="index"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="tokens" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="token" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="Name"/>
 <xs:element type="xs:string" name="Value"/>

Chapter 17
Using the XML Formatter

17-63

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:string" name="table"/>
 <xs:attribute type="xs:string" name="type"/>
 <xs:attribute type="xs:string" name="ts"/>
 <xs:attribute type="xs:dateTime" name="current_ts"/>
 <xs:attribute type="xs:long" name="pos"/>
 <xs:attribute type="xs:short" name="numCols"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

17.6.4 XML Formatter Configuration Properties

Table 17-16 XML Formatter Configuration Properties

Properties Optional
Y/N

Legal
Values

Default Explanation

gg.handler.name
.format.insertO
pKey

Optional Any string I Indicator to be inserted into the
output record to indicate an insert
operation.

gg.handler.name
.format.updateO
pKey

Optional Any string U Indicator to be inserted into the
output record to indicate an
update operation.

gg.handler.name
.format.deleteO
pKey

Optional Any string D Indicator to be inserted into the
output record to indicate a delete
operation.

gg.handler.name
.format.truncat
eOpKey

Optional Any string T Indicator to be inserted into the
output record to indicate a
truncate operation.

gg.handler.name
.format.encodin
g

Optional Any legal
encoding
name or
alias
supported
by Java.

UTF-8 (the XML
default)

The output encoding of
generated XML documents.

gg.handler.name
.format.include
Prolog

Optional true | false false Determines whether an XML
prolog is included in generated
XML documents. An XML prolog
is optional for well-formed XML.
An XML prolog resembles the
following:<?xml version='1.0'
encoding='UTF-8'?>

Chapter 17
Using the XML Formatter

17-64

Table 17-16 (Cont.) XML Formatter Configuration Properties

Properties Optional
Y/N

Legal
Values

Default Explanation

gg.handler.name
.format.iso8601
Format

Optional true | false true Controls the format of the current
timestamp in the XML message.
The default adds a T between the
date and time. Set to false to
suppress the T between the date
and time and instead include
blank space.

17.6.5 Review a Sample Configuration
The following is a sample configuration for the XML Formatter in the Java Adapter
properties file:

gg.handler.hdfs.format=xml
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.encoding=ISO-8859-1
gg.handler.hdfs.format.includeProlog=false

17.6.6 Metadata Change Events
The XML Formatter seamlessly handles metadata change events. A metadata change
event does not result in a change to the XML schema. The XML schema is designed
to be generic so that the same schema represents the data of any operation from any
table.

If the replicated database and upstream Oracle GoldenGate replication process can
propagate metadata change events, the XML Formatter can take action when
metadata changes. Changes in the metadata are reflected in messages after the
change. For example, when a column is added, the new column data appears in XML
messages for the table.

17.6.7 Setting Metacolumn Output
The following are the configurable values for the XML metacolumns template property
that controls metacolumn output.

Chapter 17
Using the XML Formatter

17-65

Table 17-17 Metacolumns Template Property

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.format.metaCol
umnsTemplate

Optional ${alltokens}
| ${token} | $
{env} | ${sys}
| ${javaprop}
| ${optype} | $
{position} | $
{timestamp} | $
{catalog} | $
{schema} | $
{table} | $
{objectname}
| ${csn} | $
{xid} | $
{currenttimesta
mp} | $
{opseqno} | $
{timestampmicro
} | $
{currenttimesta
mpmicro}

None The current meta
column
information can
be configured in a
simple manner
and removes the
explicit need to
use:

insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey
|
includeTableNam
e |
includeOpTimest
amp |
includeOpType
|
includePosition
 |
includeCurrentT
imestamp,
useIso8601Forma
t

It is a comma-
delimited string
consisting of one
or more
templated values
that represent the
template.

Explanation of the Metacolumn Keywords

${alltokens}

All of the Oracle GoldenGate tokens.

${token}

The value of a specific Oracle GoldenGate token. The token key should follow token
key should follow the token using the period (.) operator. For example:

${token.MYTOKEN}

${sys}

A system environmental variable. The variable name should follow sys using the
period (.) operator. For example:

${sys.MYVAR}

Chapter 17
Using the XML Formatter

17-66

${env}

An Oracle GoldenGate environment variable. The variable name should follow env
using the period (.) operator. For example:

${env.someVariable}

${javaprop}

A Java JVM variable. The variable name should follow javaprop using the period (.)
operator. For example:

${javaprop.MYVAR}

${optype}

Operation Type

${position}

Record Position

${timestamp}

Record Timestamp

${catalog}

Catalog Name

${schema}

Schema Name

${table}

Table Name

${objectname}

The fully qualified table name.

${csn}

Source Commit Sequence Number

${xid}

Source Transaction ID

${currenttimestamp}

Current Timestamp

${opseqno}

Record sequence number within the transaction.

${timestampmicro}

Record timestamp (in microseconds after epoch).

${currenttimestampmicro}

Current timestamp (in microseconds after epoch).

17.6.8 Primary Key Updates
Updates to a primary key require no special handling by the XML formatter. The XML
formatter creates messages that model database operations. For update operations,
this includes before and after images of column values. Primary key changes are
represented in this format as a change to a column value just like a change to any
other column value.

Chapter 17
Using the XML Formatter

17-67

18
Using Oracle GoldenGate Capture for
Cassandra

Learn how to use Oracle GoldenGate capture (Extract) to get changes from Apache
Cassandra databases.

Topics:

• Overview

• Setting Up Cassandra Change Data Capture

• Deduplication

• Topology Changes

• Data Availability in the CDC Logs

• Using Extract Initial Load

• Using Change Data Capture Extract

• Replicating to RDMBS Targets

• Partition Update or Insert of Static Columns

• Partition Delete

• Security and Authentication

• Multiple Extract Support

• CDC Configuration Reference

• Troubleshooting

18.1 Overview
Apache Cassandra is a NoSQL Database Management System designed to store
large amounts of data. A Cassandra cluster configuration provides horizontal scaling
and replication of data across multiple machines. It can provide high availability and
eliminate a single point of failure by replicating data to multiple nodes within a
Cassandra cluster. Apache Cassandra is open source and designed to run on low-cost
commodity hardware.

Cassandra relaxes the axioms of a traditional relational database management
systems (RDBMS) regarding atomicity, consistency, isolation, and durability. When
considering implementing Cassandra, it is important to understand its differences from
a traditional RDBMS and how those differences affect your specific use case.

Cassandra provides eventual consistency. Under the eventual consistency model,
accessing the state of data for a specific row eventually returns the latest state of the
data for that row as defined by the most recent change. However, there may be a
latency period between the creation and modification of the state of a row and what is
returned when the state of that row is queried. The benefit of eventual consistency is
that the latency period is predicted based on your Cassandra configuration and the

18-1

level of work load that your Cassandra cluster is currently under, see http://
cassandra.apache.org/.

Review the data type support, see About the Cassandra Data Types.

18.2 Setting Up Cassandra Change Data Capture
Prerequisites

• Apache Cassandra cluster must have at least one node up and running.

• Read and write access to CDC commit log files on every live node in the cluster is
done through SFTP or NFS.

• Every node in the Cassandra cluster must have the cdc_enabled parameter set to
true in the cassandra.yaml configuration file.

• Virtual nodes must be enabled on every Cassandra node by setting the num_tokens
parameter in cassandra.yaml .

• You must download and provide the third party libraries listed in Cassandra
Capture Client Dependencies.

• New tables can be created with Change Data Capture (CDC) enabled using the
WITH CDC=true clause in the CREATE TABLE command. For example:

CREATE TABLE ks_demo_rep1.mytable (col1 int, col2 text, col3 text, col4 text,
PRIMARY KEY (col1)) WITH cdc=true;

You can enable CDC on existing tables as follows:

ALTER TABLE ks_demo_rep1.mytable WITH cdc=true;

• Data Types

• Cassandra Database Operations

18.2.1 Data Types
Supported Cassandra Data Types

The following are the supported data types:

• ASCII

• BIGINT

• BLOB

• BOOLEAN

• DATE

• DECIMAL

• DOUBLE

• DURATION

• FLOAT

• INET

• INT

Chapter 18
Setting Up Cassandra Change Data Capture

18-2

http://cassandra.apache.org/
http://cassandra.apache.org/

• SMALLINT

• TEXT

• TIME

• TIMESTAMP

• TIMEUUID

• TINYINT

• UUID

• VARCHAR

• VARINT

Unsupported Data Types

The following are the unsupported data types:

• COUNTER

• MAP

• SET

• LIST

• UDT (user defined type)

• TUPLE

• CUSTOM_TYPE

18.2.2 Cassandra Database Operations
Supported Operations

The following are the supported operations:

• INSERT

• UPDATE (Captured as INSERT)

• DELETE

Unsupported Operations

The TRUNCATE DDL (CREATE, ALTER, and DROP) operation is not supported. Because the
Cassandra commit log files do not record any before images for the UPDATE or DELETE
operations. The result is that the captured operations can never have a before image.
Oracle GoldenGate features that rely on before image records, such as Conflict
Detection and Resolution, are not available.

18.3 Deduplication
One of the features of a Cassandra cluster is its high availability. To support high
availability, multiple redundant copies of table data are stored on different nodes in the
cluster. Oracle GoldenGate for Big Data Cassandra Capture automatically filters out
duplicate rows (deduplicate). Deduplication is active by default. Oracle recommends

Chapter 18
Deduplication

18-3

using it if your data is captured and applied to targets where duplicate records are
discouraged (for example RDBMS targets).

18.4 Topology Changes
Cassandra nodes can change their status (topology change) and the cluster can still
be alive. Oracle GoldenGate for Big Data Cassandra Capture can detect the node
status changes and react to these changes when applicable. The Cassandra capture
process can detect the following events happening in the cluster:

• Node shutdown and boot.

• Node decommission and commission.

• New keyspace and table created.

Due to topology changes, if the capture process detects that an active producer node
goes down, it tries to recover any missing rows from an available replica node. During
this process, there is a possibility of data duplication for some rows. This is a transient
data duplication due to the topology change. For more details about reacting to
changes in topology, see Troubleshooting.

18.5 Data Availability in the CDC Logs
The Cassandra CDC API can only read data from commit log files in the CDC
directory. There is a latency for the data in the active commit log directory to be
archived (moved) to the CDC commit log directory.

The input data source for the Cassandra capture process is the CDC commit log
directory. There could be delays for the data to be captured mainly due to the commit
log files not yet visible to the capture process.

On a production cluster with a lot of activity, this latency is very minimal as the data is
archived from the active commit log directory to the CDC commit log directory in the
order of microseconds.

18.6 Using Extract Initial Load
Cassandra Extract supports the standard initial load capability to extract source table
data to Oracle GoldenGate trail files.

Initial load for Cassandra can be performed to synchronize tables, either as a
prerequisite step to replicating changes or as a standalone function.

Direct loading from a source Cassandra table to any target table is not supported.

Configuring the Initial Load

You need to add these parameters to your GLOBALS parameter file:

OGGSOURCE CASSANDRA
CLUSTERCONTACTPOINTS nodeadresses

For example, to write to a single trail file:

SOURCEISTABLE
SOURCEDB keyspace1, USERID user1, PASSWORD pass1

Chapter 18
Topology Changes

18-4

EXTFILE ./dirdat/load_data.dat, PURGE
TABLE keyspace1.table1;

Then you would run this command in GGSCI:

EXTRACT PARAMFILE ./dirprm/load.prm REPORTFILE ./dirrpt/load.rpt

If you want to write to multiple files, you could use:

EXTRACT load
SOURCEISTABLE
SOURCEDB keyspace1, USERID user1, PASSWORD pass1
EXTFILE ./dirdat/la, megabytes 2048, MAXFILES 999
TABLE keyspace1.table1;

Note:

Save the file with the name specified in the example (load.prm) into the
dirprm directory.

Then you would run these commands in GGSCI:

ADD EXTRACT load, SOURCEISTABLE
START EXTRACT load

18.7 Using Change Data Capture Extract
Review the example .prm files from Oracle GoldenGate for Big Datainstallation
directory under $HOME/AdapterExamples/big-data/cassandracapture.

1. When adding the Cassandra Extract trail, you need to use EXTTRAIL to create a
local trail file.

The Cassandra Extract trail file should not be configured with the RMTTRAIL option.

ggsci> ADD EXTRACT groupname, TRANLOG
ggsci> ADD EXTTRAIL trailprefix, EXTRACT groupname
Example:
ggsci> ADD EXTRACT cass, TRANLOG
ggsci> ADD EXTTRAIL ./dirdat/z1, EXTRACT cass

2. To configure the Extract, see the example .prm files in the Oracle GoldenGate for
Big Data installation directory in $HOME/AdapterExamples/big-data/cassandracapture.

3. Position the Extract.

ggsci> ADD EXTRACT groupname, TRANLOG, BEGIN NOW
ggsci> ADD EXTRACT groupname, TRANLOG, BEGIN ‘yyyy-mm-dd hh:mm:ss’
ggsci> ALTER EXTRACT groupname, BEGIN ‘yyyy-mm-dd hh:mm:ss’

4. Manage the transaction data logging for the tables.

ggsci> DBLOGIN SOURCEDB nodeaddress USERID userid PASSWORD password
ggsci> ADD TRANDATA keyspace.tablename
ggsci> INFO TRANDATA keyspace.tablename
ggsci> DELETE TRANDATA keyspace.tablename

Examples:

Chapter 18
Using Change Data Capture Extract

18-5

ggsci> DBLOGIN SOURCEDB 127.0.0.1
ggsci> INFO TRANDATA ks_demo_rep1.mytable
ggsci> INFO TRANDATA ks_demo_rep1.*
ggsci> INFO TRANDATA *.*
ggsci> INFO TRANDATA ks_demo_rep1.”CamelCaseTab”
ggsci> ADD TRANDATA ks_demo_rep1.mytable
ggsci> DELETE TRANDATA ks_demo_rep1.mytable

5. Append the following line in the GLOBALS parameter file:

JVMBOOTOPTIONS -Dlogback.configurationFile=AdapterExamples/big-data/
cassandracapture/logback.xml

6. Configure the Extract and GLOBALS parameter files:

Apache Cassandra 3.11 SDK, compatible with Apache Cassandra 3.9, 3.10,
3.11
Extract parameter file:

EXTRACT groupname
TRANLOGOPTIONS CDCREADERSDKVERSION 3.11
TRANLOGOPTIONS CDCLOGDIRTEMPLATE /path/to/data/cdc_raw
SOURCEDB nodeaddress
VAM libggbigdata_vam.so
EXTTRAIL trailprefix
TABLE *.*;

GLOBALS parameter file:

OGGSOURCE CASSANDRA
CLUSTERCONTACTPOINTS nodeadresses
JVMCLASSPATH ggjava/ggjava.jar:/path/to/cassandra-driver-core/3.3.1/cassandra-
driver-core-3.3.1.jar:dirprm:/path/to/apache-cassandra-3.11.0/lib/*:/path/to/
gson/2.3/gson-2.3.jar:/path/to/jsch/0.1.54/jsch-0.1.54.jar:/path/to/commons-
lang3/3.5/commons-lang3-3.5.jar

Oracle recommends that you use the latest Cassandra 3.11 JAR files
(TRANLOGOPTIONS CDCREADERSDKVERSION 3.11 and JVMCLASSPATH configuration) for all
supported Cassandra database versions.

Apache Cassandra 3.9 SDK
Extract parameter file:

EXTRACT groupname
TRANLOGOPTIONS CDCREADERSDKVERSION 3.9
TRANLOGOPTIONS CDCLOGDIRTEMPLATE /path/to/data/cdc_raw
SOURCEDB nodeaddress
VAM libggbigdata_vam.so
EXTTRAIL trailprefix
TABLE *.*;

GLOBALS parameter file:

OGGSOURCE CASSANDRA
CLUSTERCONTACTPOINTS nodeadresses
JVMCLASSPATH ggjava/ggjava.jar:/path/to/cassandra-driver-core/3.3.1/cassandra-
driver-core-3.3.1.jar:dirprm:/path/to/apache-cassandra-3.9/lib/*:/path/to/
gson/2.3/gson-2.3.jar:/path/to/jsch/0.1.54/jsch-0.1.54.jar:/path/to/commons-
lang3/3.5/commons-lang3-3.5.jar

Chapter 18
Using Change Data Capture Extract

18-6

18.8 Replicating to RDMBS Targets
You must take additional care when replicating source UPDATE operations from
Cassandra trail files to RDMBS targets. Any source UPDATE operation appears as an
INSERT record in the Oracle GoldenGate trail file. Replicat may abend when a source
UPDATE operation is applied as an INSERT operation on the target database.

You have these options:

• OVERRIDEDUPS: If you expect that the source database is to contain mostly INSERT
operations and very few UPDATE operations, then OVERRIDEDUPS is the recommended
option. Replicat can recover from duplicate key errors while replicating the small
number of the source UPDATE operations. See OVERRIDEDUPS \ NOOVERRIDEDUPS

• UPDATEINSERTS and INSERTMISSINGUPDATES: Use this configuration if the source
database is expected to contain mostly UPDATE operations and very few INSERT
operations. With this configuration, Replicat has fewer missing row errors to
recover, which leads to better throughput. See UPDATEINSERTS | NOUPDATEINSERTS and
INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES.

• No additional configuration is required if the target table can accept duplicate rows
or you want to abend Replicat on duplicate rows.

If you configure Replicat to use BATCHSQL, there may be duplicate row or missing row
errors in batch mode. Although there is a reduction in the Replicat throughput due to
these errors, Replicat automatically recovers from these errors. If the source
operations are mostly INSERTS, then BATCHSQL is a good option.

18.9 Partition Update or Insert of Static Columns
When the source Cassandra table has static columns, the static column values can be
modified by skipping any clustering key columns that are in the table.

For example:

create table ks_demo_rep1.nls_staticcol
(
 teamname text,
 manager text static,
 location text static,
 membername text,
 nationality text,
 position text,
 PRIMARY KEY ((teamname), membername)
)
WITH cdc=true;
insert into ks_demo_rep1.nls_staticcol (teamname, manager, location) VALUES ('Red
Bull', 'Christian Horner', '<unknown>

The insert CQL is missing the clustering key membername. Such an operation is a partition
insert.

Similarly, you could also update a static column with just the partition keys in the WHERE
clause of the CQL that is a partition update operation. Cassandra Extract cannot write a
INSERT or UPDATE operation into the trail with missing key columns. It abends on
detecting a partition INSERT or UPDATE operation.

Chapter 18
Replicating to RDMBS Targets

18-7

18.10 Partition Delete
A Cassandra table may have a primary key composed on one or more partition key
columns and clustering key columns. When a DELETE operation is performed on a
Cassandra table by skipping the clustering key columns from the WHERE clause, it
results in a partition delete operation.

For example:

create table ks_demo_rep1.table1
(
 col1 ascii, col2 bigint, col3 boolean, col4 int,
 PRIMARY KEY((col1, col2), col4)
) with cdc=true;

delete from ks_demo_rep1.table1 where col1 = 'asciival' and col2 = 9876543210; /**
skipped clustering key column col4 **/

Cassandra Extract cannot write a DELETE operation into the trail with missing key
columns and abends on detecting a partition DELETE operation.

18.11 Security and Authentication
• Cassandra Extract can connect to a Cassandra cluster using username and

password based authentication and SSL authentication.

• Connection to Kerberos enabled Cassandra clusters is not supported in this
release.

• Configuring SSL

18.11.1 Configuring SSL
To enable SSL, add the SSL parameter to your GLOBALS file or Extract parameter file.
Additionally, a separate configuration is required for the Java and CPP drivers, see
CDC Configuration Reference.

SSL configuration for Java driver

JVMBOOTOPTIONS -
Djavax.net.ssl.trustStore=/path/to/SSL/truststore.file -
Djavax.net.ssl.trustStorePassword=password -
Djavax.net.ssl.keyStore=/path/to/SSL/keystore.file -
Djavax.net.ssl.keyStorePassword=password

The keystore and truststore certificates can be generated using these instructions:

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/
secureSSLIntro.html

SSL configuration for Cassandra CPP driver

To operate with an SSL configuration, you have to add the following parameter in the
Oracle GoldenGate GLOBALS file or Extract parameter file:

CPPDRIVEROPTIONS SSL PEMPUBLICKEYFILE /path/to/PEM/formatted/public/key/file/
cassandra.pem CPPDRIVEROPTIONS SSL PEERCERTVERIFICATIONFLAG 0

Chapter 18
Partition Delete

18-8

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureSSLIntro.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureSSLIntro.html

This configuration is required to connect to a Cassandra cluster with SSL enabled.
Additionally, you need to add these settings to your cassandra.yaml file:

client_encryption_options:
 enabled: true
 # If enabled and optional is set to true encrypted and unencrypted connections
are handled.
 optional: false
 keystore: /path/to/keystore
 keystore_password: password
 require_client_auth: false

The PEM formatted certificates can be generated using these instructions:

https://docs.datastax.com/en/developer/cpp-driver/2.8/topics/security/ssl/

18.12 Multiple Extract Support
Multiple Extract groups in a single Oracle GoldenGate for Big Data installation can be
configured to connect to the same Cassandra cluster.

To run multiple Extract groups:

1. One (and only one) Extract group can be configured to move the commit log files
in the cdc_raw directory on the Cassandra nodes to a staging directory. The
movecommitlogstostagingdir parameter is enabled by default and no additional
configuration is required for this Extract group.

2. All the other Extract groups should be configured with the
nomovecommitlogstostagingdir parameter in the Extract parameter (.prm) file.

18.13 CDC Configuration Reference
The following properties are used with Cassandra change data capture.

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

DBOPTIONS
ENABLECASSANDRAC
PPDRIVERTRACE
true

Opti
onal

Extract
param
eter
(.prm)
file.

false Use only during initial load process.

When set to true, the Cassandra driver logs all
the API calls to a driver.log file. This file is
created in the Oracle GoldenGate for Big Data
installation directory. This is useful for debugging.

Chapter 18
Multiple Extract Support

18-9

https://docs.datastax.com/en/developer/cpp-driver/2.8/topics/security/ssl/

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

DBOPTIONS
FETCHBATCHSIZE
number

Opti
onal

Extract
param
eter
(.prm)
file.

1000

Minimu
m is 1

Maximu
m is
100000

Use only during initial load process.

Specifies the number of rows of data the driver
attempts to fetch on each request submitted to
the database server.

The parameter value should be lower than the
database configuration parameter,
tombstone_warn_threshold, in the database
configuration file, cassandra.yaml. Otherwise the
initial load process might fail.

Oracle recommends that you set this parameter
value to 5000 for initial load Extract optimum
performance.

TRANLOGOPTIONS
CDCLOGDIRTEMPLAT
E path

Req
uire
d

Extract
param
eter
(.prm)
file.

None The CDC commit log directory path template. The
template can optionally have the $nodeAddress
meta field that is resolved to the respective node
address.

TRANLOGOPTIONS
SFTP options

Opti
onal

Extract
param
eter
(.prm)
file.

None The secure file transfer protocol (SFTP)
connection details to pull and transfer the commit
log files. You can use one or more of these
options:

USER user
The SFTP user name.

PASSWORD password
The SFTP password.

KNOWNHOSTSFILE file
The location of the Secure Shell (SSH)known
hosts file.

LANDINGDIR dir
The SFTP landing directory for the commit log
files on the local machine.

PRIVATEKEY file
The SSH private key file.

PASSPHRASE password
The SSH private key pass phrase.

PORTNUMBER portnumber
The SSH port number.

Chapter 18
CDC Configuration Reference

18-10

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

CLUSTERCONTACTPO
INTS nodes USER
dbuser PASSWORD
dbpassword

Opti
onal

GLOBA
LS
param
eter file

127.0.0
.1

A comma separated list of nodes to be used for a
connection to the Cassandra cluster. You should
provide at least one node address. The
parameter options are:

USER dbuser
No default
Optional
The user name to use when connecting to the
database.

PASSWORD dbpassword
No default
Required when USER is used.
The user password to use when connecting to
the database.

PORT <port number
No default
Optional
The port to use when connecting to the
database.

TRANLOGOPTIONS
CDCREADERSDKVERS
ION version

Opti
onal

Extract
param
eter
(.prm)
file.

3.11 The SDK Version for the CDC reader capture
API.

ABENDONMISSEDREC
ORD |
NOABENDONMISSEDR
ECORD

Opti
onal

Extract
param
eter
(.prm)
file.

true When set to true and the possibility of a missing
record is found, the process stops with the
diagnostic information. This is generally detected
when a node goes down and the CDC reader
doesn't find a replica node with a matching last
record from the dead node. You can set this
parameter to false to continue processing. A
warning message is logged about the scenario.

TRANLOGOPTIONS
CLEANUPCDCCOMMIT
LOGS

Opti
onal

Extract
param
eter
(.prm)
file.

false Purge CDC commit log files post extract
processing. When the value is set to false, the
CDC commit log files are moved to the
cdc_raw_processed directory.

JVMBOOTOPTIONS
jvm_options

Opti
onal

GLOBA
LS
param
eter file

None The boot options for the Java Virtual Machine.
Multiple options are delimited by a space
character.

JVMCLASSPATH
classpath

Req
uire
d

GLOBA
LS
param
eter file

None The classpath for the Java Virtual Machine. You
can include an asterisk (*) wildcard to match all
JAR files in any directory. Multiple paths should
be delimited with a colon (:) character.

Chapter 18
CDC Configuration Reference

18-11

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

OGGSOURCE source Req
uire
d

None The source database for CDC capture or
database queries. The valid value is CASSANDRA.

SOURCEDB
nodeaddress
USERID dbuser
PASSWORD
dbpassword

Req
uire
d

Extract
param
eter
(.prm)
file.

None A single Cassandra node address that is used for
a connection to the Cassandra cluster and to
query the metadata for the captured tables.

USER dbuser
No default
Optional
The user name to use when connecting to the
database.

PASSWORD dbpassword
No default
Required when USER is used.
The user password to use when connecting to
the database.

ABENDONUPDATEREC
ORDWITHMISSINGKE
YS |
NOABENDONUPDATER
ECORDWITHMISSING
KEYS

Opti
onal

Extract
param
eter
(.prm)
file.

true If this value is true, anytime an UPDATE operation
record with missing key columns is found, the
process stops with the diagnostic information.
You can set this property to false to continue
processing and write this record to the trail file. A
warning message is logged about the scenario.
This operation is a partition update, see Partition
Update or Insert of Static Columns.

ABENDONDELETEREC
ORDWITHMISSINGKE
YS |
NOABENDONDELETER
ECORDWITHMISSING
KEYS

Opti
onal

Extract
param
eter
(.prm)
file.

true If this value is true, anytime an DELETE operation
record with missing key columns is found, the
process stops with the diagnostic information.
You can set this property to false to continue
processing and write this record to the trail file. A
warning message is logged about the scenario.
This operation is a partition update, see Partition
Delete.

MOVECOMMITLOGSTO
STAGINGDIR |
NOMOVECOMMITLOGS
TOSTAGINGDIR

Opti
onal

Extract
param
eter
(.prm)
file.

true Enabled by default and this instructs the Extract
group to move the commit log files in the cdc_raw
directory on the Cassandra nodes to a staging
directory for the commit log files. Only one
Extract group can have
movecommitlogstostagingdir enabled, and all
the other Extract groups disable this by specifying
nomovecommitlogstostagingdir.

Chapter 18
CDC Configuration Reference

18-12

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

SSL Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

false Use for basic SSL support during connection.
Additional JSSE configuration through Java
System properties is expected when enabling
this.

Note:

The following SSL
properties are in
CPPDRIVEROPTIONS
SSL so this keyword
must be added to
any other SSL
property to work.

CPPDRIVEROPTIONS
SSL
PEMPUBLICKEYFILE
cassadra.pem

Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

String
that
indicat
es the
absolut
e path
with
fully
qualifie
d
name.
This
file is
must
for the
SSL
connec
tion.

None,
unless
the
PEMPUBL
ICKEYFI
LE
property
is
specifie
d, then
you
must
specify
a value.

Indicates that it is PEM formatted public key file
used to verify the peer's certificate. This property
is needed for one-way handshake or basic SSL
connection.

Chapter 18
CDC Configuration Reference

18-13

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

CPPDRIVEROPTIONS
SSL
ENABLECLIENTAUTH
|
DISABLECLIENTAUT
H

Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

false Enabled indicates a two-way SSL encryption
between client and server. It is required to
authenticate both the client and the server
through PEM formatted certificates. This property
also needs the pemclientpublickeyfile and
pemclientprivatekeyfile properties to be set.
The pemclientprivatekeypasswd property must
be configured if the client private key is password
protected. Setting this property to false disables
client authentication for two-way handshake.

CPPDRIVEROPTIONS
SSL
PEMCLIENTPUBLICK
EYFILE
public.pem

Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

String
that
indicat
es the
absolut
e path
with
fully
qualifie
d
name.
This
file is
must
for the
SSL
connec
tion.

None,
unless
the
PEMCLIE
NTPUBLI
CKEYFIL
E
property
is
specifie
d, then
you
must
specify
a value.

Use for a PEM formatted public key file name
used to verify the client's certificate. This is must
if you are using CPPDRIVEROPTIONS SSL
ENABLECLIENTAUTH or for two-way handshake.

Chapter 18
CDC Configuration Reference

18-14

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

CPPDRIVEROPTIONS
SSL
PEMCLIENTPRIVATE
KEYFILE
public.pem

Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

String
that
indicat
es the
absolut
e path
with
fully
qualifie
d
name.
This
file is
must
for the
SSL
connec
tion.

None,
unless
the
PEMCLIE
NTPRIVA
TEKEYFI
LE
property
is
specifie
d, then
you
must
specify
a value.

Use for a PEM formatted private key file name
used to verify the client's certificate. This is must
if you are using CPPDRIVEROPTIONS SSL
ENABLECLIENTAUTH or for two-way handshake.

CPPDRIVEROPTIONS
SSL
PEMCLIENTPRIVATE
KEYPASSWD
privateKeyPasswd

Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

A
string

None,
unless
the
PEMCLIE
NTPRIVA
TEKEYPA
SSWD
property
is
specifie
d, then
you
must
specify
a value.

Sets the password for the PEM formatted private
key file used to verify the client's certificate. This
is must if the private key file is protected with the
password.

CPPDRIVEROPTIONS
SSL
PEERCERTVERIFICA
TIONFLAG value

Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

An
integer

0 Sets the verification required on the peer's
certificate. The range is 0–4:

0–Disable certificate identity verification.

1–Verify the peer certificate

2–Verify the peer identity

3– Not used so it is similar to disable certificate
identity verification.

4 –Verify the peer identity by its domain name

Chapter 18
CDC Configuration Reference

18-15

Properties Req
uire
d/
Opti
onal

Locati
on

Default Explanation

CPPDRIVEROPTIONS
SSL
ENABLEREVERSEDNS

Opti
onal

GLOB
ALS or
Extract
param
eter
(.prm)
file.

false Enables retrieving host name for IP addresses
using reverse IP lookup.

18.14 Troubleshooting
No data captured by the Cassandra Extract process.

• The Cassandra database has not flushed the data from the active commit log files
to the CDC commit log files. The flush is dependent on the load of the Cassandra
cluster.

• The Cassandra Extract captures data from the CDC commit log files only.

• Check the CDC property of the source table. The CDC property of the source table
should be set to true.

• Data is not captured if the TRANLOGOPTIONS CDCREADERSDKVERSION 3.9 parameter is in
use and the JVMCLASSPATH is configured to point to Cassandra 3.10 or 3.11 JAR
files.

Error: OGG-01115 Function getInstance not implemented.

• The following line is missing from the GLOBALS file.

OGGSOURCE CASSANDRA

• The GLOBALS file is missing from the Oracle GoldenGate directory.

Error: Unable to connect to Cassandra cluster, Exception:
com.datastax.driver.core.exceptions.NoHostAvailableException

This indicates that the connection to the Cassandra cluster was unsuccessful.

Check the following parameters:

CLUSTERCONTACTPOINTS

Error: Exception in thread "main" java.lang.NoClassDefFoundError: oracle/
goldengate/capture/cassandra/CassandraCDCProcessManager

Check the JVMCLASSPATH parameter in the GLOBALS file.

Error: oracle.goldengate.util.Util - Unable to invoke method while constructing
object. Unable to create object of class
"oracle.goldengate.capture.cassandracapture311.SchemaLoader3DOT11"

Chapter 18
Troubleshooting

18-16

Caused by: java.lang.NoSuchMethodError:
org.apache.cassandra.config.DatabaseDescriptor.clientInitialization()V

There is a mismatch in the Cassandra SDK version configuration. The TRANLOGOPTIONS
CDCREADERSDKVERSION 3.11 parameter is in use and the JVMCLASSPATH may have the
Cassandra 3.9 JAR file path.

Error: OGG-25171 Trail file '/path/to/trail/gg' is remote. Only local trail allowed for
this extract.

A Cassandra Extract should only be configured to write to local trail files. When adding
trail files for Cassandra Extract, use the EXTTRAIL option. For example:

ADD EXTTRAIL ./dirdat/z1, EXTRACT cass

Errors: OGG-868 error message or OGG-4510 error message

The cause could be any of the following:

• Unknown user or invalid password

• Unknown node address

• Insufficient memory

Another cause could be that the connection to the Cassandra database is broken. The
error message indicates the database error that has occurred.

Error: OGG-251712 Keyspace keyspacename does not exist in the database.

The issue could be due to these conditions:

• During the Extract initial load process, you may have deleted the KEYSPACE
keyspacename from the Cassandra database.

• The KEYSPACE keyspacename does not exist in the Cassandra database.

Error: OGG-25175 Unexpected error while fetching row.

This can occur if the connection to the Cassandra database is broken during initial
load process.

Error: “Server-side warning: Read 915936 live rows and 12823104 tombstone
cells for query SELECT * FROM keyspace.table(see
tombstone_warn_threshold)”.

When the value of the initial load DBOPTIONS FETCHBATCHSIZE parameter is greater than
the Cassandra database configuration parameter,tombstone_warn_threshold, this is
likely to occur.

Increase the value of tombstone_warn_threshold or reduce the DBOPTIONS FETCHBATCHSIZE
value to get around this issue.

Duplicate records in the Cassandra Extract trail.

Internal tests on a multi-node Cassandra cluster have revealed that there is a
possibility of duplicate records in the Cassandra CDC commit log files. The duplication
in the Cassandra commit log files is more common when there is heavy write
parallelism, write errors on nodes, and multiple retry attempts on the Cassandra

Chapter 18
Troubleshooting

18-17

nodes. In these cases, it is expected that Cassandra trail file will have duplicate
records.

JSchException or SftpException in the Extract Report File

Verify that the SFTP credentials (user, password, and privatekey) are correct. Check
that the SFTP user has read and write permissions for the cdc_raw directory on each of
the nodes in the Cassandra cluster.

ERROR o.g.c.c.CassandraCDCProcessManager - Exception during creation of
CDC staging directory [{}]java.nio.file.AccessDeniedException

The Extract process does not have permission to create CDC commit log staging
directory. For example, if the cdc_raw commit log directory is /path/to/cassandra/home/
data/cdc_raw, then the staging directory would be /path/to/cassandra/home/data/
cdc_raw/../cdc_raw_staged.

Extract report file shows a lot of DEBUG log statements

On production system, you do not need to enable debug logging. To use INFO level
logging, make sure that the GLOBALS file includes this parameter:

JVMBOOTOPTIONS -Dlogback.configurationFile=AdapterExamples/big-data/cassandracapture/
logback.xml

To enable SSL in Oracle Golden Gate Cassandra Extract you have to enable SSL
in the GLOBALS file or in the Extract Parameter file.

If SSL Keyword is missing, then Extract assumes that you wanted to connect without
SSL. So if the Cassandra.yaml file has an SSL configuration entry, then the connection
fails.

SSL is enabled and it is one-way handshake

You must specify the CPPDRIVEROPTIONS SSL PEMPUBLICKEYFILE /scratch/testcassandra/
testssl/ssl/cassandra.pem property.

If this property is missing, then Extract generates this error:.

2018-06-09 01:55:37 ERROR OGG-25180 The PEM formatted public key file used to
verify the peer's certificate is missing. If SSL is enabled, then it is must to set
PEMPUBLICKEYFILE in your Oracle GoldenGate GLOBALS file or in Extract
parameter file

SSL is enabled and it is two-way handshake

You must specify these properties for SSL two-way handshake:

CPPDRIVEROPTIONS SSL ENABLECLIENTAUTH
CPPDRIVEROPTIONS SSL PEMCLIENTPUBLICKEYFILE /scratch/testcassandra/testssl/ssl/
datastax-cppdriver.pem
CPPDRIVEROPTIONS SSL PEMCLIENTPRIVATEKEYFILE /scratch/testcassandra/testssl/ssl/
datastax-cppdriver-private.pem
CPPDRIVEROPTIONS SSL PEMCLIENTPRIVATEKEYPASSWD cassandra

Additionally, consider the following:

• If ENABLECLIENTAUTH is missing then Extract assumes that it is one-way handshake
so it ignores PEMCLIENTPRIVATEKEYFILE and PEMCLIENTPRIVATEKEYFILE. The following

Chapter 18
Troubleshooting

18-18

error occurs because the cassandra.yaml file should have require_client_auth
set to true.

2018-06-09 02:00:35 ERROR OGG-00868 No hosts available for the control
connection.

• If ENABLECLIENTAUTH is used and PEMCLIENTPRIVATEKEYFILE is missing, then this error
occurs:

2018-06-09 02:04:46 ERROR OGG-25178 The PEM formatted private key file used
to verify the client's certificate is missing. For two way handshake or if
ENABLECLIENTAUTH is set, then it is mandatory to set PEMCLIENTPRIVATEKEYFILE in
your Oracle GoldenGate GLOBALS file or in Extract parameter file.

• If ENABLECLIENTAUTH is use and PEMCLIENTPUBLICKEYFILE is missing, then this error
occurs:

2018-06-09 02:06:20 ERROR OGG-25179 The PEM formatted public key file used
to verify the client's certificate is missing. For two way handshake or if
ENABLECLIENTAUTH is set, then it is mandatory to set PEMCLIENTPUBLICKEYFILE in
your Oracle GoldenGate GLOBALS file or in Extract parameter file.

• If the password is set while generating the client private key file then you must add
PEMCLIENTPRIVATEKEYPASSWD to avoid this error:

2018-06-09 02:09:48 ERROR OGG-25177 The SSL certificate: /scratch/jitiwari/
testcassandra/testssl/ssl/datastax-cppdriver-private.pem can not be loaded.
Unable to load private key.

• If any of the PEM file is missing from the specified absolute path, then this error
occurs:

2018-06-09 02:12:39 ERROR OGG-25176 Can not open the SSL certificate: /
scratch/jitiwari/testcassandra/testssl/ssl/cassandra.pem.

General SSL Errors

Consider these general errors:

• The SSL connection may fail if you have enabled all SSL required parameters in
Extract or GLOBALS file and the SSL is not configured in the cassandra.yaml file.

• The absolute path or the qualified name of the PEM file may not correct. There
could be access issue on the PEM file stored location.

• The password added during generating the client private key file may not be
correct or you may not have enabled it in the Extract parameter or GLOBALS file.

Chapter 18
Troubleshooting

18-19

19
Connecting to Microsoft Azure Data Lake

Learn how to connect to Microsoft Azure Data Lake to process big data jobs with
Oracle GoldenGate for Big Data.

Use these steps to connect to Microsoft Azure Data Lake from Oracle GoldenGate for
Big Data.

1. Download Hadoop 2.9.1 from http://hadoop.apache.org/releases.html.

2. Unzip the file in a temporary directory. For example, /ggwork/hadoop/hadoop-2.9.

3. Edit the /ggwork/hadoop/hadoop-2.9/hadoop-env.sh file in the directory.

4. Add entries for the JAVA_HOME and HADOOP_CLASSPATH environment variables:

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
export HADOOP_CLASSPATH=/ggwork/hadoop/hadoop-2.9.1/share/hadoop/tools/lib/
*:$HADOOP_CLASSPATH

This points to Java 8 and adds the share/hadoop/tools/lib to the Hadoop
classpath. The library path is not in the variable by default and the required Azure
libraries are in this directory.

5. Edit the /ggwork/hadoop/hadoop-2.9.1/etc/hadoop/core-site.xml file and add:

<configuration>
<property>
<name>fs.adl.oauth2.access.token.provider.type</name>
<value>ClientCredential</value>
</property>
<property>
<name>fs.adl.oauth2.refresh.url</name>
<value>Insert the Azure https URL here to obtain the access token</value>
</property>
<property>
<name>fs.adl.oauth2.client.id</name>
<value>Insert the client id here</value>
</property>
<property>
<name>fs.adl.oauth2.credential</name>
<value>Insert the password here</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>adl://Account Name.azuredatalakestore.net</value>
</property>
</configuration>

6. Open your firewall to connect to both the Azure URL to get the token and the
Azure Data Lake URL. Or disconnect from your network or VPN. Access to Azure
Data Lake does not currently support using a proxy server per the Apache Hadoop
documentation.

19-1

http://hadoop.apache.org/releases.html

7. Use the Hadoop shell commands to prove connectivity to Azure Data Lake. For
example, in the 2.9.1 Hadoop installation directory, execute this command to get a
listing of the root HDFS directory.

./bin/hadoop fs -ls /

8. Verify connectivity to Azure Data Lake.

9. Configure either the HDFS Handler or the File Writer Handler using the HDFS
Event Handler to push data to Azure Data Lake, see Using the File Writer Handler.
Oracle recommends that you use the File Writer Handler with the HDFS Event
Handler.

Setting the gg.classpath example:

gg.classpath=/ggwork/hadoop/hadoop-2.9.1/share/hadoop/common/:/ggwork/hadoop/
hadoop-
2.9.1/share/hadoop/common/lib/:/ggwork/hadoop/hadoop-
2.9.1/share/hadoop/hdfs/:/ggwork/hadoop/hadoop-2.9.1/share/hadoop/hdfs/lib/:/
ggwork/hadoop/hadoop-
2.9.1/etc/hadoop:/ggwork/hadoop/hadoop-2.9.1/share/hadoop/tools/lib/*

See https://hadoop.apache.org/docs/current/hadoop-azure-datalake/index.html.

Chapter 19

19-2

https://hadoop.apache.org/docs/current/hadoop-azure-datalake/index.html

A
Cassandra Handler Client Dependencies

What are the dependencies for the Cassandra Handler to connect to Apache
Cassandra databases?

The maven central repository artifacts for Cassandra databases are:

Maven groupId: org.apache.cassandra

Maven atifactId: cassandra-clients

Maven version: the Cassandra version numbers listed for each section

Topics:

• Cassandra Datastax Java Driver 3.1.0

A.1 Cassandra Datastax Java Driver 3.1.0
cassandra-driver-core-3.1.0.jar
cassandra-driver-extras-3.1.0.jar
cassandra-driver-mapping-3.1.0.jar
asm-5.0.3.jar
asm-analysis-5.0.3.jar
asm-commons-5.0.3.jar
asm-tree-5.0.3.jar
asm-util-5.0.3.jar
guava-16.0.1.jar
HdrHistogram-2.1.9.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.3.jar
jackson-databind-2.6.3.jar
javax.json-api-1.0.jar
jffi-1.2.10.jar
jffi-1.2.10-native.jar
jnr-constants-0.9.0.jar
jnr-ffi-2.0.7.jar
jnr-posix-3.0.27.jar
jnr-x86asm-1.0.2.jar
joda-time-2.9.1.jar
lz4-1.3.0.jar
metrics-core-3.1.2.jar
netty-buffer-4.0.37.Final.jar
netty-codec-4.0.37.Final.jar
netty-common-4.0.37.Final.jar
netty-handler-4.0.37.Final.jar
netty-transport-4.0.37.Final.jar
slf4j-api-1.7.7.jar
snappy-java-1.1.2.6.jar

A-1

B
Cassandra Capture Client Dependencies

What are the dependencies for the Cassandra Capture (Extract) to connect to Apache
Cassandra databases?

The following third party libraries are needed to run Cassandra Change Data Capture.

cassandra-driver-core (com.datastax.cassandra)

Download version 3.3.1 from Maven central at: http://central.maven.org/maven2/com/
datastax/cassandra/cassandra-driver-core/3.3.1/cassandra-driver-core-3.3.1.jar

Maven coordinates:

<dependency>
 <groupId>com.datastax.cassandra</groupId>
 <artifactId>cassandra-driver-core</artifactId>
 <version>3.3.1</version>
</dependency>

cassandra-all (org.apache.cassandra)

When using 3.9 SDK (see the TRANLOGOPTIONS CDCREADERSDKVERSION parameter),
download version 3.9 from Maven central: http://central.maven.org/maven2/org/
apache/cassandra/cassandra-all/3.9/cassandra-all-3.9.jar

Maven coordinates:

<dependency>
 <groupId>org.apache.cassandra</groupId>
 <artifactId>cassandra-all</artifactId>
 <version>3.9</version>
</dependency>

When using 3.10 or 3.11 SDK, download version 3.11.0 from Maven central at: http://
central.maven.org/maven2/org/apache/cassandra/cassandra-all/3.11.0/cassandra-
all-3.11.0.jar

Maven coordinates:

<dependency>
 <groupId>org.apache.cassandra</groupId>
 <artifactId>cassandra-all</artifactId>
 <version>3.11.0</version>
</dependency>

commons-lang3 (org.apache.commons)

Download version 3.5 from Maven central at: http://central.maven.org/maven2/org/
apache/commons/commons-lang3/3.5/commons-lang3-3.5.jar

Maven coordinates

<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>

B-1

http://central.maven.org/maven2/com/datastax/cassandra/cassandra-driver-core/3.3.1/cassandra-driver-core-3.3.1.jar
http://central.maven.org/maven2/com/datastax/cassandra/cassandra-driver-core/3.3.1/cassandra-driver-core-3.3.1.jar
http://central.maven.org/maven2/org/apache/cassandra/cassandra-all/3.9/cassandra-all-3.9.jar
http://central.maven.org/maven2/org/apache/cassandra/cassandra-all/3.9/cassandra-all-3.9.jar
http://central.maven.org/maven2/org/apache/cassandra/cassandra-all/3.11.0/cassandra-all-3.11.0.jar
http://central.maven.org/maven2/org/apache/cassandra/cassandra-all/3.11.0/cassandra-all-3.11.0.jar
http://central.maven.org/maven2/org/apache/cassandra/cassandra-all/3.11.0/cassandra-all-3.11.0.jar
http://central.maven.org/maven2/org/apache/commons/commons-lang3/3.5/commons-lang3-3.5.jar
http://central.maven.org/maven2/org/apache/commons/commons-lang3/3.5/commons-lang3-3.5.jar

 <version>3.5</version>
</dependency>

gson (com.google.code.gson)

Download version 2.8.0 from Maven central at: http://central.maven.org/maven2/com/
google/code/gson/gson/2.8.0/gson-2.8.0.jar

Maven coordinates:

<dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.0</version>
</dependency>

jsch (com.jcraft)

Download version 0.1.54 from maven central:

http://central.maven.org/maven2/com/jcraft/jsch/0.1.54/jsch-0.1.54.jar

Maven coordinates:

<dependency>
 <groupId>com.jcraft</groupId>
 <artifactId>jsch</artifactId>
 <version>0.1.54</</version>
</dependency>

Appendix B

B-2

http://central.maven.org/maven2/com/google/code/gson/gson/2.8.0/gson-2.8.0.jar
http://central.maven.org/maven2/com/google/code/gson/gson/2.8.0/gson-2.8.0.jar
http://central.maven.org/maven2/com/jcraft/jsch/0.1.54/jsch-0.1.54.jar

C
Elasticsearch Handler Client Dependencies

What are the dependencies for the Elasticsearch Handler to connect to Elasticsearch
databases?

The maven central repository artifacts for Elasticsearch databases are:

Maven groupId: org.elasticsearch

Maven atifactId: elasticsearch

Maven version: 2.2.0

Topics:

• Elasticsearch 2.4.4 and Shield Plugin 2.2.2

• Elasticsearch 5.1.2 with X-Pack 5.1.2

C.1 Elasticsearch 2.4.4 and Shield Plugin 2.2.2
automaton-1.11-8.jar
commons-cli-1.3.1.jar
compress-lzf-1.0.2.jar
elasticsearch-2.4.4.jar
guava-18.0.jar
HdrHistogram-2.1.6.jar
hppc-0.7.1.jar
jackson-core-2.8.1.jar
jackson-dataformat-cbor-2.8.1.jar
jackson-dataformat-smile-2.8.1.jar
jackson-dataformat-yaml-2.8.1.jar
joda-time-2.9.5.jar
jsr166e-1.1.0.jar
lucene-analyzers-common-5.5.2.jar
lucene-backward-codecs-5.5.2.jar
lucene-core-5.5.2.jar
lucene-grouping-5.5.2.jar
lucene-highlighter-5.5.2.jar
lucene-join-5.5.2.jar
lucene-memory-5.5.2.jar
lucene-misc-5.5.2.jar
lucene-queries-5.5.2.jar
lucene-queryparser-5.5.2.jar
lucene-sandbox-5.5.2.jar
lucene-spatial3d-5.5.2.jar
lucene-spatial-5.5.2.jar
lucene-suggest-5.5.2.jar
netty-3.10.6.Final.jar
securesm-1.0.jar
shield-2.2.2.jar
snakeyaml-1.15.jar
spatial4j-0.5.jar
t-digest-3.0.jar
unboundid-ldapsdk-2.3.8.jar

C-1

C.2 Elasticsearch 5.1.2 with X-Pack 5.1.2
commons-codec-1.10.jar
commons-logging-1.1.3.jar
compiler-0.9.3.jar
elasticsearch-5.1.2.jar
HdrHistogram-2.1.6.jar
hppc-0.7.1.jar
httpasyncclient-4.1.2.jar
httpclient-4.5.2.jar
httpcore-4.4.5.jar
httpcore-nio-4.4.5.jar
jackson-core-2.8.1.jar
jackson-dataformat-cbor-2.8.1.jar
jackson-dataformat-smile-2.8.1.jar
jackson-dataformat-yaml-2.8.1.jar
jna-4.2.2.jar
joda-time-2.9.5.jar
jopt-simple-5.0.2.jar
lang-mustache-client-5.1.2.jar
lucene-analyzers-common-6.3.0.jar
lucene-backward-codecs-6.3.0.jar
lucene-core-6.3.0.jar
lucene-grouping-6.3.0.jar
lucene-highlighter-6.3.0.jar
lucene-join-6.3.0.jar
lucene-memory-6.3.0.jar
lucene-misc-6.3.0.jar
lucene-queries-6.3.0.jar
lucene-queryparser-6.3.0.jar
lucene-sandbox-6.3.0.jar
lucene-spatial3d-6.3.0.jar
lucene-spatial-6.3.0.jar
lucene-spatial-extras-6.3.0.jar
lucene-suggest-6.3.0.jar
netty-3.10.6.Final.jar
netty-buffer-4.1.6.Final.jar
netty-codec-4.1.6.Final.jar
netty-codec-http-4.1.6.Final.jar
netty-common-4.1.6.Final.jar
netty-handler-4.1.6.Final.jar
netty-resolver-4.1.6.Final.jar
netty-transport-4.1.6.Final.jar
percolator-client-5.1.2.jar
reindex-client-5.1.2.jar
rest-5.1.2.jar
securesm-1.1.jar
snakeyaml-1.15.jar
t-digest-3.0.jar
transport-5.1.2.jar
transport-netty3-client-5.1.2.jar
transport-netty4-client-5.1.2.jar
x-pack-transport-5.1.2.jar

Appendix C
Elasticsearch 5.1.2 with X-Pack 5.1.2

C-2

D
Flume Handler Client Dependencies

What are the dependencies for the Flume Handler to connect to Flume databases?

The maven central repository artifacts for Flume databases are:

Maven groupId: org.apache.flume

Maven atifactId: hadoop-ng-skd

Maven version: the Flume version numbers listed for each section

Topics:

• Flume 1.7.0

• Flume 1.6.0

• Flume 1.5.2

• Flume 1.4.0

D.1 Flume 1.7.0
avro-1.7.4.jar
avro-ipc-1.7.4.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-lang-2.5.jar
commons-logging-1.1.1.jar
flume-ng-sdk-1.7.0.jar
httpclient-4.1.3.jar
httpcore-4.1.3.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jetty-6.1.26.jar
jetty-util-6.1.26.jar
libthrift-0.9.0.jar
netty-3.9.4.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
snappy-java-1.0.4.1.jar
velocity-1.7.jar
xz-1.0.jar

D.2 Flume 1.6.0
avro-1.7.4.jar
avro-ipc-1.7.4.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-lang-2.5.jar

D-1

commons-logging-1.1.1.jar
flume-ng-sdk-1.6.0.jar
httpclient-4.1.3.jar
httpcore-4.1.3.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jetty-6.1.26.jar
jetty-util-6.1.26.jar
libthrift-0.9.0.jar
netty-3.5.12.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
snappy-java-1.0.4.1.jar
velocity-1.7.jar
xz-1.0.jar

D.3 Flume 1.5.2
avro-1.7.3.jar
avro-ipc-1.7.3.jar
commons-codec-1.3.jar
commons-collections-3.2.1.jar
commons-lang-2.5.jar
commons-logging-1.1.1.jar
flume-ng-sdk-1.5.2.jar
httpclient-4.0.1.jar
httpcore-4.0.1.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jetty-6.1.26.jar
jetty-util-6.1.26.jar
libthrift-0.7.0.jar
netty-3.5.12.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
snappy-java-1.0.4.1.jar
velocity-1.7.jar

D.4 Flume 1.4.0
avro-1.7.3.jar
avro-ipc-1.7.3.jar
commons-codec-1.3.jar
commons-collections-3.2.1.jar
commons-lang-2.5.jar
commons-logging-1.1.1.jar
flume-ng-sdk-1.4.0.jar
httpclient-4.0.1.jar
httpcore-4.0.1.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jetty-6.1.26.jar
jetty-util-6.1.26.jar
libthrift-0.7.0.jar
netty-3.4.0.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
snappy-java-1.0.4.1.jar
velocity-1.7.jar

Appendix D
Flume 1.5.2

D-2

E
HBase Handler Client Dependencies

What are the dependencies for the HBase Handler to connect to Apache HBase
databases?

The maven central repository artifacts for HBase databases are:

• Maven groupId: org.apache.hbase

• Maven atifactId: hbase-client

• Maven version: the HBase version numbers listed for each section

The hbase-client-x.x.x.jar file is not distributed with Apache HBase, nor is it
mandatory to be in the classpath. The hbase-client-x.x.x.jar file is an empty Maven
project whose purpose of aggregating all of the HBase client dependencies.

Topics:

• HBase 1.2.5

• HBase 1.1.1

• HBase 1.0.1.1

E.1 HBase 1.2.5
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-el-1.0.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.2.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
findbugs-annotations-1.3.9-1.jar
guava-12.0.1.jar
hadoop-annotations-2.5.1.jar
hadoop-auth-2.5.1.jar
hadoop-common-2.5.1.jar
hadoop-mapreduce-client-core-2.5.1.jar
hadoop-yarn-api-2.5.1.jar

E-1

hadoop-yarn-common-2.5.1.jar
hamcrest-core-1.3.jar
hbase-annotations-1.2.5.jar
hbase-client-1.2.5.jar
hbase-common-1.2.5.jar
hbase-protocol-1.2.5.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.6.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.42.jar
jsr305-1.3.9.jar
junit-4.12.jar
log4j-1.2.17.jar
metrics-core-2.2.0.jar
netty-3.6.2.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

E.2 HBase 1.1.1
HBase 1.1.1 is effectively the same as HBase 1.1.0.1. You can substitute 1.1.0.1 in
the libraries that are versioned as 1.1.1.

activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-el-1.0.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.2.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
findbugs-annotations-1.3.9-1.jar

Appendix E
HBase 1.1.1

E-2

guava-12.0.1.jar
hadoop-annotations-2.5.1.jar
hadoop-auth-2.5.1.jar
hadoop-common-2.5.1.jar
hadoop-mapreduce-client-core-2.5.1.jar
hadoop-yarn-api-2.5.1.jar
hadoop-yarn-common-2.5.1.jar
hamcrest-core-1.3.jar
hbase-annotations-1.1.1.jar
hbase-client-1.1.1.jar
hbase-common-1.1.1.jar
hbase-protocol-1.1.1.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.7.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.42.jar
jsr305-1.3.9.jar
junit-4.11.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

E.3 HBase 1.0.1.1
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-el-1.0.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.2.jar
commons-math3-3.1.1.jar

Appendix E
HBase 1.0.1.1

E-3

commons-net-3.1.jar
findbugs-annotations-1.3.9-1.jar
guava-12.0.1.jar
hadoop-annotations-2.5.1.jar
hadoop-auth-2.5.1.jar
hadoop-common-2.5.1.jar
hadoop-mapreduce-client-core-2.5.1.jar
hadoop-yarn-api-2.5.1.jar
hadoop-yarn-common-2.5.1.jar
hamcrest-core-1.3.jar
hbase-annotations-1.0.1.1.jar
hbase-client-1.0.1.1.jar
hbase-common-1.0.1.1.jar
hbase-protocol-1.0.1.1.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.7.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.42.jar
jsr305-1.3.9.jar
junit-4.11.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

Appendix E
HBase 1.0.1.1

E-4

F
HDFS Handler Client Dependencies

This appendix lists the HDFS client dependencies for Apache Hadoop. The hadoop-
client-x.x.x.jar is not distributed with Apache Hadoop nor is it mandatory to be in the
classpath. The hadoop-client-x.x.x.jar is an empty maven project with the purpose of
aggregating all of the Hadoop client dependencies.

Maven groupId: org.apache.hadoop

Maven atifactId: hadoop-client

Maven version: the HDFS version numbers listed for each section

Topics:

• Hadoop Client Dependencies

F.1 Hadoop Client Dependencies
This section lists the Hadoop client dependencies for each HDFS version.

• HDFS 2.8.0

• HDFS 2.7.1

• HDFS 2.6.0

• HDFS 2.5.2

• HDFS 2.4.1

• HDFS 2.3.0

• HDFS 2.2.0

F.1.1 HDFS 2.8.0
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar

F-1

commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.8.0.jar
hadoop-auth-2.8.0.jar
hadoop-client-2.8.0.jar
hadoop-common-2.8.0.jar
hadoop-hdfs-2.8.0.jar
hadoop-hdfs-client-2.8.0.jar
hadoop-mapreduce-client-app-2.8.0.jar
hadoop-mapreduce-client-common-2.8.0.jar
hadoop-mapreduce-client-core-2.8.0.jar
hadoop-mapreduce-client-jobclient-2.8.0.jar
hadoop-mapreduce-client-shuffle-2.8.0.jar
hadoop-yarn-api-2.8.0.jar
hadoop-yarn-client-2.8.0.jar
hadoop-yarn-common-2.8.0.jar
hadoop-yarn-server-common-2.8.0.jar
htrace-core4-4.0.1-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jcip-annotations-1.0.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-sslengine-6.1.26.jar
jetty-util-6.1.26.jar
json-smart-1.1.1.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
nimbus-jose-jwt-3.9.jar
okhttp-2.4.0.jar
okio-1.4.0.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.10.jar
slf4j-log4j12-1.7.10.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

F.1.2 HDFS 2.7.1
HDFS 2.7.1 (HDFS 2.7.0 is effectively the same, simply substitute 2.7.0 on the
libraries versioned as 2.7.1)

Appendix F
Hadoop Client Dependencies

F-2

activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.7.1.jar
hadoop-auth-2.7.1.jar
hadoop-client-2.7.1.jar
hadoop-common-2.7.1.jar
hadoop-hdfs-2.7.1.jar
hadoop-mapreduce-client-app-2.7.1.jar
hadoop-mapreduce-client-common-2.7.1.jar
hadoop-mapreduce-client-core-2.7.1.jar
hadoop-mapreduce-client-jobclient-2.7.1.jar
hadoop-mapreduce-client-shuffle-2.7.1.jar
hadoop-yarn-api-2.7.1.jar
hadoop-yarn-client-2.7.1.jar
hadoop-yarn-common-2.7.1.jar
hadoop-yarn-server-common-2.7.1.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-util-6.1.26.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.10.jar
slf4j-log4j12-1.7.10.jar

Appendix F
Hadoop Client Dependencies

F-3

snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xercesImpl-2.9.1.jar
xml-apis-1.3.04.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

F.1.3 HDFS 2.6.0
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.6.0.jar
curator-framework-2.6.0.jar
curator-recipes-2.6.0.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.6.0.jar
hadoop-auth-2.6.0.jar
hadoop-client-2.6.0.jar
hadoop-common-2.6.0.jar
hadoop-hdfs-2.6.0.jar
hadoop-mapreduce-client-app-2.6.0.jar
hadoop-mapreduce-client-common-2.6.0.jar
hadoop-mapreduce-client-core-2.6.0.jar
hadoop-mapreduce-client-jobclient-2.6.0.jar
hadoop-mapreduce-client-shuffle-2.6.0.jar
hadoop-yarn-api-2.6.0.jar
hadoop-yarn-client-2.6.0.jar
hadoop-yarn-common-2.6.0.jar
hadoop-yarn-server-common-2.6.0.jar
htrace-core-3.0.4.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar

Appendix F
Hadoop Client Dependencies

F-4

jetty-util-6.1.26.jar
jsr305-1.3.9.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xercesImpl-2.9.1.jar
xml-apis-1.3.04.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

F.1.4 HDFS 2.5.2
HDFS 2.5.2 (HDFS 2.5.1 and 2.5.0 are effectively the same, simply substitute 2.5.1 or
2.5.0 on the libraries versioned as 2.5.2)

activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
guava-11.0.2.jar
hadoop-annotations-2.5.2.jar
adoop-auth-2.5.2.jar
hadoop-client-2.5.2.jar
hadoop-common-2.5.2.jar
hadoop-hdfs-2.5.2.jar
hadoop-mapreduce-client-app-2.5.2.jar
hadoop-mapreduce-client-common-2.5.2.jar
hadoop-mapreduce-client-core-2.5.2.jar
hadoop-mapreduce-client-jobclient-2.5.2.jar
hadoop-mapreduce-client-shuffle-2.5.2.jar
hadoop-yarn-api-2.5.2.jar
hadoop-yarn-client-2.5.2.jar
hadoop-yarn-common-2.5.2.jar
hadoop-yarn-server-common-2.5.2.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar

Appendix F
Hadoop Client Dependencies

F-5

jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-util-6.1.26.jar
jsr305-1.3.9.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

F.1.5 HDFS 2.4.1
HDFS 2.4.1 (HDFS 2.4.0 is effectively the same, simply substitute 2.4.0 on the
libraries versioned as 2.4.1)

activation-1.1.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
guava-11.0.2.jar
hadoop-annotations-2.4.1.jar
hadoop-auth-2.4.1.jar
hadoop-client-2.4.1.jar
hadoop-hdfs-2.4.1.jar
hadoop-mapreduce-client-app-2.4.1.jar
hadoop-mapreduce-client-common-2.4.1.jar
hadoop-mapreduce-client-core-2.4.1.jar
hadoop-mapreduce-client-jobclient-2.4.1.jar
hadoop-mapreduce-client-shuffle-2.4.1.jar
hadoop-yarn-api-2.4.1.jar
hadoop-yarn-client-2.4.1.jar
hadoop-yarn-common-2.4.1.jar
hadoop-yarn-server-common-2.4.1.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar

Appendix F
Hadoop Client Dependencies

F-6

jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-util-6.1.26.jar
jsr305-1.3.9.jar
log4j-1.2.17.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.5.jar
hadoop-common-2.4.1.jar

F.1.6 HDFS 2.3.0
activation-1.1.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
guava-11.0.2.jar
hadoop-annotations-2.3.0.jar
hadoop-auth-2.3.0.jar
hadoop-client-2.3.0.jar
hadoop-common-2.3.0.jar
hadoop-hdfs-2.3.0.jar
hadoop-mapreduce-client-app-2.3.0.jar
hadoop-mapreduce-client-common-2.3.0.jar
hadoop-mapreduce-client-core-2.3.0.jar
hadoop-mapreduce-client-jobclient-2.3.0.jar
hadoop-mapreduce-client-shuffle-2.3.0.jar
hadoop-yarn-api-2.3.0.jar
hadoop-yarn-client-2.3.0.jar
hadoop-yarn-common-2.3.0.jar
hadoop-yarn-server-common-2.3.0.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jaxb-api-2.2.2.jar
jersey-core-1.9.jar
jetty-util-6.1.26.jar

Appendix F
Hadoop Client Dependencies

F-7

jsr305-1.3.9.jar
log4j-1.2.17.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.5.jar

F.1.7 HDFS 2.2.0
activation-1.1.jar
aopalliance-1.0.jar
asm-3.1.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.1.jar
commons-lang-2.5.jar
commons-logging-1.1.1.jar
commons-math-2.1.jar
commons-net-3.1.jar
gmbal-api-only-3.0.0-b023.jar
grizzly-framework-2.1.2.jar
grizzly-http-2.1.2.jar
grizzly-http-server-2.1.2.jar
grizzly-http-servlet-2.1.2.jar
grizzly-rcm-2.1.2.jar
guava-11.0.2.jar
guice-3.0.jar
hadoop-annotations-2.2.0.jar
hadoop-auth-2.2.0.jar
hadoop-client-2.2.0.jar
hadoop-common-2.2.0.jar
hadoop-hdfs-2.2.0.jar
hadoop-mapreduce-client-app-2.2.0.jar
hadoop-mapreduce-client-common-2.2.0.jar
hadoop-mapreduce-client-core-2.2.0.jar
hadoop-mapreduce-client-jobclient-2.2.0.jar
hadoop-mapreduce-client-shuffle-2.2.0.jar
hadoop-yarn-api-2.2.0.jar
hadoop-yarn-client-2.2.0.jar
hadoop-yarn-common-2.2.0.jar
hadoop-yarn-server-common-2.2.0.jar
jackson-core-asl-1.8.8.jar
jackson-jaxrs-1.8.3.jar
jackson-mapper-asl-1.8.8.jar
jackson-xc-1.8.3.jar
javax.inject-1.jar

Appendix F
Hadoop Client Dependencies

F-8

javax.servlet-3.1.jar
javax.servlet-api-3.0.1.jar
jaxb-api-2.2.2.jar
jaxb-impl-2.2.3-1.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jersey-grizzly2-1.9.jar
jersey-guice-1.9.jar
jersey-json-1.9.jar
jersey-server-1.9.jar
jersey-test-framework-core-1.9.jar
jersey-test-framework-grizzly2-1.9.jar
jettison-1.1.jar
jetty-util-6.1.26.jar
jsr305-1.3.9.jar
log4j-1.2.17.jar
management-api-3.0.0-b012.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0.1.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.5.jar

Appendix F
Hadoop Client Dependencies

F-9

G
Kafka Handler Client Dependencies

What are the dependencies for the Kafka Handler to connect to Apache Kafka
databases?

The maven central repository artifacts for Kafka databases are:

Maven groupId: org.apache.kafka

Maven atifactId: kafka-clients

Maven version: the Kafka version numbers listed for each section

Topics:

• Kafka 1.1.0

• Kafka 1.0.0

• Kafka 0.11.0.0

• Kafka 0.10.2.0

• Kafka 0.10.1.1

• Kafka 0.10.0.1

• Kafka 0.9.0.1

G.1 Kafka 1.1.0
kafka-clients-1.1.0.jar
lz4-java-1.4.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.7.1.jar

G.2 Kafka 1.0.0
kafka-clients-1.0.0.jar
lz4-java-1.4.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.4.jar

G.3 Kafka 0.11.0.0
kafka-clients-0.11.0.0.jar
lz4-1.3.0.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.2.6.jar

G-1

G.4 Kafka 0.10.2.0
kafka-clients-0.10.2.0.jar
lz4-1.3.0.jar
slf4j-api-1.7.21.jar
snappy-java-1.1.2.6.jar

G.5 Kafka 0.10.1.1
kafka-clients-0.10.1.1.jar
lz4-1.3.0.jar
slf4j-api-1.7.21.jar
snappy-java-1.1.2.6.jar

G.6 Kafka 0.10.0.1
kafka-clients-0.10.0.1.jar
lz4-1.3.0.jar
slf4j-api-1.7.21.jar
snappy-java-1.1.2.6.jar

G.7 Kafka 0.9.0.1
kafka-clients-0.9.0.1.jar
lz4-1.2.0.jar
slf4j-api-1.7.6.jar
snappy-java-1.1.1.7.jar

Appendix G
Kafka 0.10.2.0

G-2

H
Kafka Connect Handler Client
Dependencies

What are the dependencies for the Kafka Connect Handler to connect to Apache
Kafka Connect databases?

The maven central repository artifacts for Kafka Connect databases are:

Maven groupId: org.apache.kafka

Maven artifactId: kafka_2.11 & connect-json

Maven version: the Kafka Connect version numbers listed for each section

Topics:

• Kafka 0.11.0.0

• Kafka 0.10.2.0

• Kafka 0.10.2.0

• Kafka 0.10.0.0

• Kafka 0.9.0.1

• Confluent 4.1.2

• Confluent 4.0.0

• Confluent 3.2.1

• Confluent 3.2.0

• Confluent 3.2.1

• Confluent 3.1.1

• Confluent 3.0.1

• Confluent 2.0.1

• Confluent 2.0.1

H.1 Kafka 0.11.0.0
connect-api-0.11.0.0.jar
connect-json-0.11.0.0.jar
jackson-annotations-2.8.0.jar
jackson-core-2.8.5.jar
jackson-databind-2.8.5.jar
jopt-simple-5.0.3.jar
kafka_2.11-0.11.0.0.jar
kafka-clients-0.11.0.0.jar
log4j-1.2.17.jar
lz4-1.3.0.jar
metrics-core-2.2.0.jar

H-1

scala-library-2.11.11.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.7.25.jar
snappy-java-1.1.2.6.jar
zkclient-0.10.jar
zookeeper-3.4.10.jar

H.2 Kafka 0.10.2.0
connect-api-0.10.2.0.jar
connect-json-0.10.2.0.jar
jackson-annotations-2.8.0.jar
jackson-core-2.8.5.jar
jackson-databind-2.8.5.jar
jopt-simple-5.0.3.jar
kafka_2.11-0.10.2.0.jar
kafka-clients-0.10.2.0.jar
log4j-1.2.17.jar
lz4-1.3.0.jar
metrics-core-2.2.0.jar
scala-library-2.11.8.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.21.jar
slf4j-log4j12-1.7.21.jar
snappy-java-1.1.2.6.jar
zkclient-0.10.jar
zookeeper-3.4.9.jar

H.3 Kafka 0.10.2.0
connect-api-0.10.1.1.jar
connect-json-0.10.1.1.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.3.jar
jackson-databind-2.6.3.jar
jline-0.9.94.jar
jopt-simple-4.9.jar
kafka_2.11-0.10.1.1.jar
kafka-clients-0.10.1.1.jar
log4j-1.2.17.jar
lz4-1.3.0.jar
metrics-core-2.2.0.jar
netty-3.7.0.Final.jar
scala-library-2.11.8.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.21.jar
slf4j-log4j12-1.7.21.jar
snappy-java-1.1.2.6.jar
zkclient-0.9.jar
zookeeper-3.4.8.jar

H.4 Kafka 0.10.0.0
activation-1.1.jar
connect-api-0.10.0.0.jar
connect-json-0.10.0.0.jar
jackson-annotations-2.6.0.jar

Appendix H
Kafka 0.10.2.0

H-2

jackson-core-2.6.3.jar
jackson-databind-2.6.3.jar
jline-0.9.94.jar
jopt-simple-4.9.jar
junit-3.8.1.jar
kafka_2.11-0.10.0.0.jar
kafka-clients-0.10.0.0.jar
log4j-1.2.15.jar
lz4-1.3.0.jar
mail-1.4.jar
metrics-core-2.2.0.jar
netty-3.7.0.Final.jar
scala-library-2.11.8.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.21.jar
slf4j-log4j12-1.7.21.jar
snappy-java-1.1.2.4.jar
zkclient-0.8.jar
zookeeper-3.4.6.jar

H.5 Kafka 0.9.0.1
activation-1.1.jar
connect-api-0.9.0.1.jar
connect-json-0.9.0.1.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-databind-2.5.4.jar
jline-0.9.94.jar
jopt-simple-3.2.jar
junit-3.8.1.jar
kafka_2.11-0.9.0.1.jar
kafka-clients-0.9.0.1.jar
log4j-1.2.15.jar
lz4-1.2.0.jar
mail-1.4.jar
metrics-core-2.2.0.jar
netty-3.7.0.Final.jar
scala-library-2.11.7.jar
scala-parser-combinators_2.11-1.0.4.jar
scala-xml_2.11-1.0.4.jar
slf4j-api-1.7.6.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.1.1.7.jar
zkclient-0.7.jar
zookeeper-3.4.6.jar

H.6 Confluent 4.1.2
avro-1.8.1.jar
common-config-4.1.2.jar
commons-compress-1.8.1.jar
common-utils-4.1.2.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.6.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.6.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar

Appendix H
Kafka 0.9.0.1

H-3

kafka-avro-serializer-4.1.2.jar
kafka-clients-1.1.1-cp1.jar
kafka-schema-registry-client-4.1.2.jar
log4j-1.2.16.jar
lz4-java-1.4.1.jar
netty-3.10.5.Final.jar
paranamer-2.7.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.1.7.1.jar
xz-1.5.jar
zkclient-0.10.jar
zookeeper-3.4.10.jar

H.7 Confluent 4.0.0
avro-1.8.2.jar
common-config-4.0.0.jar
commons-compress-1.8.1.jar
common-utils-4.0.0.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.1.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.1.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
kafka-avro-serializer-4.0.0.jar
kafka-schema-registry-client-4.0.0.jar
log4j-1.2.16.jar
netty-3.10.5.Final.jar
paranamer-2.7.jar
slf4j-api-1.7.7.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.1.1.3.jar
xz-1.5.jar
zkclient-0.10.jar
zookeeper-3.4.10.jar

H.8 Confluent 3.2.1
avro-1.7.7.jar
common-config-3.2.1.jar
commons-compress-1.4.1.jar
common-utils-3.2.1.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.5.4.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
kafka-avro-serializer-3.2.1.jar
kafka-schema-registry-client-3.2.1.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.0.5.jar
xz-1.0.jar

Appendix H
Confluent 4.0.0

H-4

zkclient-0.10.jar
zookeeper-3.4.8.jar

H.9 Confluent 3.2.0
avro-1.7.7.jar
common-config-3.2.0.jar
commons-compress-1.4.1.jar
common-utils-3.2.0.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.5.4.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
kafka-avro-serializer-3.2.0.jar
kafka-schema-registry-client-3.2.0.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.0.5.jar
xz-1.0.jar
zkclient-0.10.jar
zookeeper-3.4.8.jar

H.10 Confluent 3.2.1
avro-1.7.7.jar
common-config-3.1.2.jar
commons-compress-1.4.1.jar
common-utils-3.1.2.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.5.4.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
kafka-avro-serializer-3.1.2.jar
kafka-schema-registry-client-3.1.2.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.0.5.jar
xz-1.0.jar
zkclient-0.9.jar
zookeeper-3.4.8.jar

H.11 Confluent 3.1.1
avro-1.7.7.jar
common-config-3.1.1.jar
commons-compress-1.4.1.jar
common-utils-3.1.1.jar
jackson-annotations-2.5.0.jar

Appendix H
Confluent 3.2.0

H-5

jackson-core-2.5.4.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.5.4.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
kafka-avro-serializer-3.1.1.jar
kafka-schema-registry-client-3.1.1.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.0.5.jar
xz-1.0.jar
zkclient-0.9.jar
zookeeper-3.4.8.jar

H.12 Confluent 3.0.1
avro-1.7.7.jar
common-config-3.0.1.jar
commons-compress-1.4.1.jar
common-utils-3.0.1.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.5.4.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
junit-3.8.1.jar
kafka-avro-serializer-3.0.1.jar
kafka-schema-registry-client-3.0.1.jar
log4j-1.2.17.jar
netty-3.2.2.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.0.5.jar
xz-1.0.jar
zkclient-0.5.jar
zookeeper-3.4.3.jar

H.13 Confluent 2.0.1
avro-1.7.7.jar
common-config-2.0.1.jar
commons-compress-1.4.1.jar
common-utils-2.0.1.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.5.4.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
junit-3.8.1.jar
kafka-avro-serializer-2.0.1.jar
kafka-schema-registry-client-2.0.1.jar
log4j-1.2.17.jar
netty-3.2.2.Final.jar

Appendix H
Confluent 3.0.1

H-6

paranamer-2.3.jar
slf4j-api-1.6.4.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.0.5.jar
xz-1.0.jar
zkclient-0.5.jar
zookeeper-3.4.3.jar

H.14 Confluent 2.0.1
avro-1.7.7.jar
common-config-2.0.0.jar
commons-compress-1.4.1.jar
common-utils-2.0.0.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.5.4.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
junit-3.8.1.jar
kafka-avro-serializer-2.0.0.jar
kafka-schema-registry-client-2.0.0.jar
log4j-1.2.17.jar
netty-3.2.2.Final.jar
paranamer-2.3.jar
slf4j-api-1.6.4.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.0.5.jar
xz-1.0.jar
zkclient-0.5.jar
zookeeper-3.4.3.jar

Appendix H
Confluent 2.0.1

H-7

I
MongoDB Handler Client Dependencies

What are the dependencies for the MongoDB Handler to connect to MongoDB
databases?

Oracle GoldenGate requires that you use the 3.4.3 MongoDB Java Driver or higher
integration with MongoDB. You can download this driver from:

http://mongodb.github.io/mongo-java-driver/

Topics:

• MongoDB Java Driver 3.4.3

I.1 MongoDB Java Driver 3.4.3
You must include the path to the MongoDB Java driver in the gg.classpath property.
To automatically download the Java driver from the Maven central repository, add the
following lines in the pom.xml file, substituting your correct information:

<!-- https://mvnrepository.com/artifact/org.mongodb/mongo-java-driver -->
<dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongo-java-driver</artifactId>
 <version>3.4.3</version>
</dependency>

I-1

J
Optimized Row Columnar Event Handler
Client Dependencies

What are the dependencies for the Optimized Row Columnar (OCR) Handler?

The maven central repository artifacts for ORC are:

Maven groupId: org.apache.orc

Maven atifactId: orc-core

Maven version: 1.4.0

The Hadoop client dependencies are also required for the ORC Event Handler, see
Hadoop Client Dependencies.

Topics:

• ORC Client Dependencies

J.1 ORC Client Dependencies
aircompressor-0.3.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
asm-3.1.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.6.0.jar
curator-framework-2.6.0.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.6.4.jar
hadoop-auth-2.6.4.jar
hadoop-common-2.6.4.jar
hive-storage-api-2.2.1.jar
htrace-core-3.0.4.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jdk.tools-1.6.jar

J-1

jersey-core-1.9.jar
jersey-server-1.9.jar
jsch-0.1.42.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
orc-core-1.4.0.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

Appendix J
ORC Client Dependencies

J-2

K
Parquet Event Handler Client
Dependencies

What are the dependencies for the Parquet Event Handler?

The maven central repository artifacts for Parquet are:

Maven groupId: org.apache.parquet

Maven atifactId: parquet-avro

Maven version: 1.9.0

Maven groupId: org.apache.parquet

Maven atifactId: parquet-hadoop

Maven version: 1.9.0

The Hadoop client dependencies are also required for the Parquet Event Handler, see
Hadoop Client Dependencies.

Topics:

• Parquet Client Dependencies

K.1 Parquet Client Dependencies
avro-1.8.0.jar
commons-codec-1.5.jar
commons-compress-1.8.1.jar
commons-pool-1.5.4.jar
fastutil-6.5.7.jar
jackson-core-asl-1.9.11.jar
jackson-mapper-asl-1.9.11.jar
paranamer-2.7.jar
parquet-avro-1.9.0.jar
parquet-column-1.9.0.jar
parquet-common-1.9.0.jar
parquet-encoding-1.9.0.jar
parquet-format-2.3.1.jar
parquet-hadoop-1.9.0.jar
parquet-jackson-1.9.0.jar
slf4j-api-1.7.7.jar
snappy-java-1.1.1.6.jar
xz-1.5.jar

K-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Information

	1 Introducing Oracle GoldenGate for Big Data
	1.1 Understanding What’s Supported
	1.1.1 Verifying Certification and System Requirements
	1.1.2 What are the Additional Support Considerations?

	1.2 Setting Up Oracle GoldenGate for Big Data
	1.2.1 About Oracle GoldenGate Properties Files
	1.2.2 Setting Up the Java Runtime Environment
	1.2.3 Configuring Java Virtual Machine Memory
	1.2.4 Grouping Transactions

	1.3 Configuring Oracle GoldenGate for Big Data
	1.3.1 Running with Replicat
	1.3.1.1 Configuring Replicat
	1.3.1.2 Adding the Replicat Process
	1.3.1.3 Replicat Grouping
	1.3.1.4 About Replicat Checkpointing
	1.3.1.5 About Initial Load Support
	1.3.1.6 About the Unsupported Replicat Features
	1.3.1.7 How the Mapping Functionality Works

	1.3.2 Overview of Logging
	1.3.2.1 About Replicat Process Logging
	1.3.2.2 About Java Layer Logging

	1.3.3 About Schema Evolution and Metadata Change Events
	1.3.4 About Configuration Property CDATA[] Wrapping
	1.3.5 Using Regular Expression Search and Replace
	1.3.5.1 Using Schema Data Replace
	1.3.5.2 Using Content Data Replace

	1.3.6 Scaling Oracle GoldenGate for Big Data Delivery
	1.3.7 Using Identities in Oracle GoldenGate Credential Store
	1.3.7.1 Creating a Credential Store
	1.3.7.2 Adding Users to a Credential Store
	1.3.7.3 Configuring Properties to Access the Credential Store

	2 Using the BigQuery Handler
	2.1 Detailing the Functionality
	2.1.1 Data Types
	2.1.2 Operation Modes
	2.1.3 Operation Processing Support

	2.2 Setting Up and Running the BigQuery Handler
	2.2.1 Understanding the BigQuery Handler Configuration
	2.2.2 Review a Sample Configuration
	2.2.3 Proxy Settings
	2.2.4 Configuring Handler Authentication

	3 Using the Cassandra Handler
	3.1 Overview
	3.2 Detailing the Functionality
	3.2.1 About the Cassandra Data Types
	3.2.2 About Catalog, Schema, Table, and Column Name Mapping
	3.2.3 About DDL Functionality
	3.2.3.1 About the Keyspaces
	3.2.3.2 About the Tables
	3.2.3.3 Addng Column Functionality
	3.2.3.4 Dropping Column Functionality

	3.2.4 How Operations are Processed
	3.2.5 About Compressed Updates vs. Full Image Updates
	3.2.6 About Primary Key Updates

	3.3 Setting Up and Running the Cassandra Handler
	3.3.1 Understanding the Cassandra Handler Configuration
	3.3.2 Review a Sample Configuration
	3.3.3 Configuring Security

	3.4 About Automated DDL Handling
	3.4.1 About the Table Check and Reconciliation Process
	3.4.2 Capturing New Change Data

	3.5 Performance Considerations
	3.6 Additional Considerations
	3.7 Troubleshooting
	3.7.1 Java Classpath
	3.7.2 Logging
	3.7.3 Write Timeout Exception
	3.7.4 Logging
	3.7.5 Datastax Driver Error

	4 Using the Elasticsearch Handler
	4.1 Overview
	4.2 Detailing the Functionality
	4.2.1 About the Elasticsearch Version Property
	4.2.2 About the Index and Type
	4.2.3 About the Document
	4.2.4 About the Primary Key Update
	4.2.5 About the Data Types
	4.2.6 Operation Mode
	4.2.7 Operation Processing Support
	4.2.8 About the Connection

	4.3 Setting Up and Running the Elasticsearch Handler
	4.3.1 Configuring the Elasticsearch Handler
	4.3.2 About the Transport Client Settings Properties File

	4.4 Performance Consideration
	4.5 About the Shield Plug-In Support
	4.6 About DDL Handling
	4.7 Troubleshooting
	4.7.1 Incorrect Java Classpath
	4.7.2 Elasticsearch Version Mismatch
	4.7.3 Transport Client Properties File Not Found
	4.7.4 Cluster Connection Problem
	4.7.5 Unsupported Truncate Operation
	4.7.6 Bulk Execute Errors

	4.8 Logging
	4.9 Known Issues in the Elasticsearch Handler

	5 Using the File Writer Handler
	5.1 Overview
	5.1.1 Detailing the Functionality
	5.1.1.1 Using File Roll Events
	5.1.1.2 Automatic Directory Creation
	5.1.1.3 About the Active Write Suffix
	5.1.1.4 Maintenance of State
	5.1.1.5 Using Templated Strings

	5.1.2 Configuring the File Writer Handler
	5.1.3 Review a Sample Configuration

	5.2 Using the HDFS Event Handler
	5.2.1 Detailing the Functionality
	5.2.1.1 Configuring the Handler
	5.2.1.2 Using Templated Strings
	5.2.1.3 Configuring the HDFS Event Handler

	5.3 Using the Optimized Row Columnar Event Handler
	5.3.1 Overview
	5.3.2 Detailing the Functionality
	5.3.2.1 About the Upstream Data Format
	5.3.2.2 About the Library Dependencies
	5.3.2.3 Requirements
	5.3.2.4 Using Templated Strings

	5.3.3 Configuring the ORC Event Handler

	5.4 Using the Oracle Cloud Infrastructure Event Handler
	5.4.1 Overview
	5.4.2 Detailing the Functionality
	5.4.3 Configuring the Oracle Cloud Infrastructure Event Handler
	5.4.4 Configuring Credentials for Oracle Cloud Infrastructure
	5.4.5 Using Templated Strings
	5.4.6 Troubleshooting

	5.5 Using the Oracle Cloud Infrastructure Classic Event Handler
	5.5.1 Overview
	5.5.2 Detailing the Functionality
	5.5.3 Configuring the Oracle Cloud Infrastructure Classic Event Handler
	5.5.4 Using Templated Strings
	5.5.5 Troubleshooting

	5.6 Using the Parquet Event Handler
	5.6.1 Overview
	5.6.2 Detailing the Functionality
	5.6.2.1 Configuring the Parquet Event Handler to Write to HDFS
	5.6.2.2 About the Upstream Data Format
	5.6.2.3 Using Templated Strings

	5.6.3 Configuring the Parquet Event Handler

	5.7 Using the S3 Event Handler
	5.7.1 Overview
	5.7.2 Detailing Functionality
	5.7.2.1 Configuring the Client ID and Secret
	5.7.2.2 About the AWS S3 Buckets
	5.7.2.3 Using Templated Strings
	5.7.2.4 Troubleshooting

	5.7.3 Configuring the S3 Event Handler

	6 Using the Flume Handler
	6.1 Overview
	6.2 Setting Up and Running the Flume Handler
	6.2.1 Classpath Configuration
	6.2.2 Flume Handler Configuration
	6.2.3 Review a Sample Configuration

	6.3 Data Mapping of Operations to Flume Events
	6.3.1 Operation Mode
	6.3.2 Transaction Mode and EventMapsTo Operation
	6.3.3 Transaction Mode and EventMapsTo Transaction

	6.4 Performance Considerations
	6.5 Metadata Change Events
	6.6 Example Flume Source Configuration
	6.6.1 Avro Flume Source
	6.6.2 Thrift Flume Source

	6.7 Advanced Features
	6.7.1 Schema Propagation
	6.7.2 Security
	6.7.3 Fail Over Functionality
	6.7.4 Load Balancing Functionality

	6.8 Troubleshooting the Flume Handler
	6.8.1 Java Classpath
	6.8.2 Flume Flow Control Issues
	6.8.3 Flume Agent Configuration File Not Found
	6.8.4 Flume Connection Exception
	6.8.5 Other Failures

	7 Using the HBase Handler
	7.1 Overview
	7.2 Detailed Functionality
	7.3 Setting Up and Running the HBase Handler
	7.3.1 Classpath Configuration
	7.3.2 HBase Handler Configuration
	7.3.3 Sample Configuration
	7.3.4 Performance Considerations

	7.4 Security
	7.5 Metadata Change Events
	7.6 Additional Considerations
	7.7 Troubleshooting the HBase Handler
	7.7.1 Java Classpath
	7.7.2 HBase Connection Properties
	7.7.3 Logging of Handler Configuration
	7.7.4 HBase Handler Delete-Insert Problem
	7.7.5 Cloudera CDH HBase Compatibility

	8 Using the HDFS Handler
	8.1 Overview
	8.2 Writing into HDFS in SequenceFile Format
	8.2.1 Integrating with Hive
	8.2.2 Understanding the Data Format

	8.3 Setting Up and Running the HDFS Handler
	8.3.1 Classpath Configuration
	8.3.2 HDFS Handler Configuration
	8.3.3 Review a Sample Configuration
	8.3.4 Performance Considerations
	8.3.5 Security

	8.4 Writing in HDFS in Avro Object Container File Format
	8.5 Generating HDFS File Names Using Template Strings
	8.6 Metadata Change Events
	8.7 Partitioning
	8.8 HDFS Additional Considerations
	8.9 Best Practices
	8.10 Troubleshooting the HDFS Handler
	8.10.1 Java Classpath
	8.10.2 HDFS Connection Properties
	8.10.3 Handler and Formatter Configuration

	9 Using the Java Database Connectivity Handler
	9.1 Overview
	9.2 Detailed Functionality
	9.2.1 Single Operation Mode
	9.2.2 Oracle Database Data Types
	9.2.3 MySQL Database Data Types
	9.2.4 Netezza Database Data Types
	9.2.5 Redshift Database Data Types

	9.3 Setting Up and Running the JDBC Handler
	9.3.1 Java Classpath
	9.3.2 Handler Configuration
	9.3.3 Statement Caching
	9.3.4 Setting Up Error Handling

	9.4 Sample Configurations
	9.4.1 Sample Oracle Database Target
	9.4.2 Sample Oracle Database Target with JDBC Metadata Provider
	9.4.3 Sample MySQL Database Target
	9.4.4 Sample MySQL Database Target with JDBC Metadata Provider

	10 Using the Kafka Handler
	10.1 Overview
	10.2 Detailed Functionality
	10.3 Setting Up and Running the Kafka Handler
	10.3.1 Classpath Configuration
	10.3.2 Kafka Handler Configuration
	10.3.3 Java Adapter Properties File
	10.3.4 Kafka Producer Configuration File
	10.3.5 Using Templates to Resolve the Topic Name and Message Key
	10.3.6 Kafka Configuring with Kerberos on a Hadoop Platform

	10.4 Schema Propagation
	10.5 Performance Considerations
	10.6 About Security
	10.7 Metadata Change Events
	10.8 Snappy Considerations
	10.9 Troubleshooting
	10.9.1 Verify the Kafka Setup
	10.9.2 Classpath Issues
	10.9.3 Invalid Kafka Version
	10.9.4 Kafka Producer Properties File Not Found
	10.9.5 Kafka Connection Problem

	11 Using the Kafka Connect Handler
	11.1 Overview
	11.2 Detailed Functionality
	11.3 Setting Up and Running the Kafka Connect Handler
	11.3.1 Kafka Connect Handler Configuration
	11.3.2 Using Templates to Resolve the Topic Name and Message Key
	11.3.3 Configuring Security in the Kafka Connect Handler

	11.4 Kafka Connect Handler Performance Considerations
	11.5 Troubleshooting the Kafka Connect Handler
	11.5.1 Java Classpath for Kafka Connect Handler
	11.5.2 Invalid Kafka Version
	11.5.3 Kafka Producer Properties File Not Found
	11.5.4 Kafka Connection Problem

	12 Using the Kafka REST Proxy Handler
	12.1 Overview
	12.2 Setting Up and Starting the Kafka REST Proxy Handler Services
	12.2.1 Using the Kafka REST Proxy Handler
	12.2.2 Kafka REST Proxy Handler Configuration
	12.2.3 Security
	12.2.4 Generating a Keystore
	12.2.5 Using Templates to Resolve the Topic Name and Message Key
	12.2.6 Kafka REST Proxy Handler Formatter Properties
	12.2.7 Setting Metacolumn Output

	12.3 Consuming the Records
	12.4 Performance Considerations
	12.5 Kafka REST Proxy Handler Metacolumns Template Property

	13 Using the Kinesis Streams Handler
	13.1 Overview
	13.2 Detailed Functionality
	13.2.1 Amazon Kinesis Java SDK
	13.2.2 Kinesis Streams Input Limits

	13.3 Setting Up and Running the Kinesis Streams Handler
	13.3.1 Set the Classpath in Kinesis Streams Handler
	13.3.2 Kinesis Streams Handler Configuration
	13.3.3 Using Templates to Resolve the Stream Name and Partition Name
	13.3.4 Configuring the Client ID and Secret in Kinesis Handler
	13.3.5 Configuring the Proxy Server for Kinesis Streams Handler
	13.3.6 Configuring Security in Kinesis Streams Handler

	13.4 Kinesis Handler Performance Considerations
	13.4.1 Kinesis Streams Input Limitations
	13.4.2 Transaction Batching
	13.4.3 Deferring Flush at Transaction Commit

	13.5 Troubleshooting
	13.5.1 Java Classpath
	13.5.2 Kinesis Handler Connectivity Issues
	13.5.3 Logging

	14 Using the MongoDB Handler
	14.1 Overview
	14.2 Detailed Functionality
	14.2.1 Document Key Column
	14.2.2 Primary Key Update Operation
	14.2.3 MongoDB Trail Data Types

	14.3 Setting Up and Running the MongoDB Handler
	14.3.1 Classpath Configuration
	14.3.2 MongoDB Handler Configuration
	14.3.3 Connecting and Authenticating
	14.3.4 Using Bulk Write
	14.3.5 Using Write Concern
	14.3.6 Using Three-Part Table Names
	14.3.7 Using Undo Handling

	14.4 Review a Sample Configuration

	15 Using the Metadata Providers
	15.1 About the Metadata Providers
	15.2 Avro Metadata Provider
	15.2.1 Detailed Functionality
	15.2.2 Runtime Prerequisites
	15.2.3 Classpath Configuration
	15.2.4 Avro Metadata Provider Configuration
	15.2.5 Review a Sample Configuration
	15.2.6 Metadata Change Events
	15.2.7 Limitations
	15.2.8 Troubleshooting
	15.2.8.1 	Invalid Schema Files Location
	15.2.8.2 Invalid Schema File Name
	15.2.8.3 Invalid Namespace in Schema File
	15.2.8.4 Invalid Table Name in Schema File

	15.3 Java Database Connectivity Metadata Provider
	15.3.1 JDBC Detailed Functionality
	15.3.2 Java Classpath
	15.3.3 JDBC Metadata Provider Configuration
	15.3.4 Review a Sample Configuration

	15.4 Hive Metadata Provider
	15.4.1 Detailed Functionality
	15.4.2 Configuring Hive with a Remote Metastore Database
	15.4.3 Classpath Configuration
	15.4.4 Hive Metadata Provider Configuration Properties
	15.4.5 Review a Sample Configuration
	15.4.6 Security
	15.4.7 Metadata Change Event
	15.4.8 Limitations
	15.4.9 Additional Considerations
	15.4.10 Troubleshooting

	16 Using the Oracle NoSQL Handler
	16.1 Overview
	16.2 Detailed Functionality
	16.2.1 Oracle NoSQL Data Types
	16.2.2 Performance Considerations
	16.2.3 Operation Processing Support
	16.2.4 Column Processing
	16.2.5 Table Check and Reconciliation Process
	16.2.6 Security

	16.3 Oracle NoSQL Handler Configuration
	16.4 Review a Sample Configuration
	16.5 Performance Considerations
	16.6 Full Image Data Requirements

	17 Using the Pluggable Formatters
	17.1 Using the Avro Formatter
	17.1.1 Avro Row Formatter
	17.1.1.1 Operation Metadata Formatting Details
	17.1.1.2 Operation Data Formatting Details
	17.1.1.3 Sample Avro Row Messages
	17.1.1.3.1 Sample Insert Message
	17.1.1.3.2 Sample Update Message
	17.1.1.3.3 Sample Delete Message
	17.1.1.3.4 Sample Truncate Message

	17.1.1.4 Avro Schemas
	17.1.1.5 Avro Row Configuration Properties
	17.1.1.6 Review a Sample Configuration
	17.1.1.7 Metadata Change Events
	17.1.1.8 Special Considerations
	17.1.1.8.1 Troubleshooting
	17.1.1.8.2 Primary Key Updates
	17.1.1.8.3 Generic Wrapper Functionality

	17.1.2 The Avro Operation Formatter
	17.1.2.1 Operation Metadata Formatting Details
	17.1.2.2 Operation Data Formatting Details
	17.1.2.3 Sample Avro Operation Messages
	17.1.2.3.1 Sample Insert Message
	17.1.2.3.2 Sample Update Message
	17.1.2.3.3 Sample Delete Message
	17.1.2.3.4 Sample Truncate Message

	17.1.2.4 Avro Schema
	17.1.2.5 Avro Operation Formatter Configuration Properties
	17.1.2.6 Review a Sample Configuration
	17.1.2.7 Metadata Change Events
	17.1.2.8 Special Considerations
	17.1.2.8.1 Troubleshooting
	17.1.2.8.2 Primary Key Updates
	17.1.2.8.3 Generic Wrapper Message

	17.1.3 Avro Object Container File Formatter
	17.1.3.1 Avro OCF Formatter Configuration Properties

	17.1.4 Setting Metacolumn Output

	17.2 Using the Delimited Text Formatter
	17.2.1 Message Formatting Details
	17.2.2 Sample Formatted Messages
	17.2.2.1 Sample Insert Message
	17.2.2.2 Sample Update Message
	17.2.2.3 Sample Delete Message
	17.2.2.4 Sample Truncate Message

	17.2.3 Output Format Summary Log
	17.2.4 Delimited Text Formatter Configuration Properties
	17.2.5 Review a Sample Configuration
	17.2.6 Metadata Change Events
	17.2.7 Setting Metacolumn Output
	17.2.8 Additional Considerations
	17.2.8.1 Primary Key Updates
	17.2.8.2 Data Consolidation

	17.3 Using the JSON Formatter
	17.3.1 Operation Metadata Formatting Details
	17.3.2 Operation Data Formatting Details
	17.3.3 Row Data Formatting Details
	17.3.4 Sample JSON Messages
	17.3.4.1 Sample Operation Modeled JSON Messages
	17.3.4.2 Sample Flattened Operation Modeled JSON Messages
	17.3.4.3 Sample Row Modeled JSON Messages
	17.3.4.4 Sample Primary Key Output JSON Message

	17.3.5 JSON Schemas
	17.3.6 JSON Formatter Configuration Properties
	17.3.7 Review a Sample Configuration
	17.3.8 Metadata Change Events
	17.3.9 Setting Metacolumn Output
	17.3.10 JSON Primary Key Updates
	17.3.11 Integrating Oracle Stream Analytics

	17.4 Using the Length Delimited Value Formatter
	17.4.1 Formatting Message Details
	17.4.2 Sample Formatted Messages
	17.4.3 LDV Formatter Configuration Properties
	17.4.4 Additional Considerations

	17.5 Using Operation-Based versus Row-Based Formatting
	17.5.1 Operation Formatters
	17.5.2 Row Formatters
	17.5.3 Table Row or Column Value States

	17.6 Using the XML Formatter
	17.6.1 Message Formatting Details
	17.6.2 Sample XML Messages
	17.6.2.1 Sample Insert Message
	17.6.2.2 Sample Update Message
	17.6.2.3 Sample Delete Message
	17.6.2.4 Sample Truncate Message

	17.6.3 XML Schema
	17.6.4 XML Formatter Configuration Properties
	17.6.5 Review a Sample Configuration
	17.6.6 Metadata Change Events
	17.6.7 Setting Metacolumn Output
	17.6.8 Primary Key Updates

	18 Using Oracle GoldenGate Capture for Cassandra
	18.1 Overview
	18.2 Setting Up Cassandra Change Data Capture
	18.2.1 Data Types
	18.2.2 Cassandra Database Operations

	18.3 Deduplication
	18.4 Topology Changes
	18.5 Data Availability in the CDC Logs
	18.6 Using Extract Initial Load
	18.7 Using Change Data Capture Extract
	18.8 Replicating to RDMBS Targets
	18.9 Partition Update or Insert of Static Columns
	18.10 Partition Delete
	18.11 Security and Authentication
	18.11.1 Configuring SSL

	18.12 Multiple Extract Support
	18.13 CDC Configuration Reference
	18.14 Troubleshooting

	19 Connecting to Microsoft Azure Data Lake
	A Cassandra Handler Client Dependencies
	A.1 Cassandra Datastax Java Driver 3.1.0

	B Cassandra Capture Client Dependencies
	C Elasticsearch Handler Client Dependencies
	C.1 Elasticsearch 2.4.4 and Shield Plugin 2.2.2
	C.2 Elasticsearch 5.1.2 with X-Pack 5.1.2

	D Flume Handler Client Dependencies
	D.1 Flume 1.7.0
	D.2 Flume 1.6.0
	D.3 Flume 1.5.2
	D.4 Flume 1.4.0

	E HBase Handler Client Dependencies
	E.1 HBase 1.2.5
	E.2 HBase 1.1.1
	E.3 HBase 1.0.1.1

	F HDFS Handler Client Dependencies
	F.1 Hadoop Client Dependencies
	F.1.1 HDFS 2.8.0
	F.1.2 HDFS 2.7.1
	F.1.3 HDFS 2.6.0
	F.1.4 HDFS 2.5.2
	F.1.5 HDFS 2.4.1
	F.1.6 HDFS 2.3.0
	F.1.7 HDFS 2.2.0

	G Kafka Handler Client Dependencies
	G.1 Kafka 1.1.0
	G.2 Kafka 1.0.0
	G.3 Kafka 0.11.0.0
	G.4 Kafka 0.10.2.0
	G.5 Kafka 0.10.1.1
	G.6 Kafka 0.10.0.1
	G.7 Kafka 0.9.0.1

	H Kafka Connect Handler Client Dependencies
	H.1 Kafka 0.11.0.0
	H.2 Kafka 0.10.2.0
	H.3 Kafka 0.10.2.0
	H.4 Kafka 0.10.0.0
	H.5 Kafka 0.9.0.1
	H.6 Confluent 4.1.2
	H.7 Confluent 4.0.0
	H.8 Confluent 3.2.1
	H.9 Confluent 3.2.0
	H.10 Confluent 3.2.1
	H.11 Confluent 3.1.1
	H.12 Confluent 3.0.1
	H.13 Confluent 2.0.1
	H.14 Confluent 2.0.1

	I MongoDB Handler Client Dependencies
	I.1 MongoDB Java Driver 3.4.3

	J Optimized Row Columnar Event Handler Client Dependencies
	J.1 ORC Client Dependencies

	K Parquet Event Handler Client Dependencies
	K.1 Parquet Client Dependencies

