PostgreSQL 9.3.25 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.3.25 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2018 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2018 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface Ixiv
1. What 1S POStZIeSQLT ..cc.eoiiiiiiiiiieiireeeeeete ettt ettt st Ixiv
2. A Brief History of PoStreSQLu........coviiiiiiiiieiiieieeriiesteeieeite sttt eve e s Ixv

2.1. The Berkeley POSTGRES Projectccceecieviiisiieniienieeieeieeeie et eieeniee e Ixv
2.2, POSEEIESOS ..ottt ettt ettt ettt st b et s be e be e taesabeebaebee e Ixv
2.3, POSEEIESQLou. ittt ettt st ettt et e sabeebeebee s Ixvi
3. COMNVENTIONS ...ttt ettt ettt ettt et e bt e atesaesat e be s bt easenbesbeensesaeemaenbeeanensene Ixvi
4. Further INfOrmation........c.ccocueriirieiiinieiincre ettt sttt st Ixvii
5. Bug Reporting GUIEIINES........cecveeiiiriiiriieiieiieeie ettt ettt sbe et s beesieesaeeeas Ixvii
5.1, Tdentifying BUgSoooueiiiiiiiiieeiee ettt Ixviii
5.2. What t0 REPOTT c...eeiiiiniiiiiiiieeeeeee ettt sttt et Ixviii
5.3. Where to RepOrt BUZS ...c..covuiiiiiiiiiiiiiiiiciee ettt Ixx
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONSccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANESeeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-style EScapes.........cccceccevirrenerieneneenne 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 28

4.1.2.4. Dollar-quoted String CONStaNtscceeeeerierreerienieeieneneeee e 28

4.1.2.5. Bit-String CONSLANLSc..ccveueeurririinrerereeeieeestenteeeeeee e e seeaenenene 29

4.1.2.6. NUMEIIC CONSLANLSovereieniietieienieeieniesiteie ettt sttt sbe e 29

4.1.2.7. Constants of Other TYPEScccevereerererienenieieneeee e 30

iii

1.3, OPCTALOTSeeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 31

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 31
4.1.5. COMMENLS ...t 32
4.1.6. Operator PreCedeNCeoouiriiiriirieniieiieteee ettt 32

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 33
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 34
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 34
4.2.3. SUDSCIIPLS ..ottt ettt et 35
4.2.4. Field SEIECHONooueiiiiiiieiieiieeiteetee ettt st 35
4.2.5. Operator INVOCAtIONSc..coueevuiriiiiiiieiieie et 36
4.2.6. FUNCHON CallSeoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS.cccueiviiiiiirieriierieentenite ettt st 36
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 38
4.2.9. TYPE CaSS .. s 39
4.2.10. Collation EXPreSSionsccceeeeuertieienieneeniesieeiesieeieete st eee et 40
4.2.11. Scalar SUDQUETIES........covirieiirtieietieiieee ettt ettt 41
4.2.12. Array CONSLIUCTOTS .. .veenvienieriienieeniterteeieeeree st et esreesbeesreesseesbeesaresneeebees 41
4.2.13. ROW CONSLIUCLOTS....cuveeurenierrienieenitentteieesieesiteereesseesieeeteesseesreesmnesaneenbees 43
4.2.14. Expression Evaluation RuUlescccccocoviinininiininiiicccee 44

4.3. Calling FUNCHONS.ccuteiiriieiintieterieeterte sttt ettt sttt et sbe e b e 45
4.3.1. Using Positional NOtationcccueverierireenienenienienieeieneeeene e 46
4.3.2. Using Named NOtAtioNcccevueeieriirieniineeienentenienitetesieete et 46
4.3.3. Using Mixed NOtation......c..ccoeriieiiniirieniinienienenteeseeteseeee et 47

5. Data DefINItIONccoiiiiiiiiiiiicieieiccec et 48
5.1, Table BaSICScouiiuiiiiiiiiicieieireee e e 48
5.2. Default ValUEScccovuiiiiiiiiiiiiiiiiiiictcteeeee et 49
5.3 CONSLIANEScuiiiiiiiiieeiee ettt sttt s 50
5.3.1. Check CONSLIAINESo.ceuiiuiriiiiieiiiiiietiteeee e 50
5.3.2. Not-NUll CONSLIAINLSooviiiiiiiiiiiiiiiiiieieeeeeeese e 52
5.3.3. UnNiqUe CONSLIAINES. ..c.uveruiertieriienieeieenteeteeieesieesteeteesbeesteeteesbeesaresaseenseas 53
5.3.4. Primary KEYS.....cueoiieriirieiiiesieeieetest ettt st s 54
5.3.5. FOr@ign KEYS ...ccuviiiiiiiiiiiiiiesteeeetet ettt e 54
5.3.6. EXClusion CONSIIAINLScc.eecviruieiiniirieienieerenieeieere et enesneeaeennes 57

5.4, SyStem COIUMIS ...c..veitiiriieiiieieeite ettt ettt sttt e st st e bt et e sateebeebeesaee 57
5.5. Modifying TabIes........ccoociiriiriiiiiiiiiiieieeeceeeeeeee et 59
5.5.1. Adding @ COIUMN.....cccoeiiiiiiiiiieieic e 59
5.5.2. Removing @ COIUMINcccoeviiiiiiiiiiiiieieeecteeeee e 60
5.5.3. Adding @ COonStraintccuevuieiiiriiiienienieete et 60
5.5.4. Removing @ CONSIAINEccuevuiiiiiriiiieiiiieiceeeete e 60
5.5.5. Changing a Column’s Default Value............cccccoeveninienenineeeceeeeeee, 61
5.5.6. Changing a Column’s Data TYPEccceveruieiinieieieieereeeee e 61
5.5.7. Renaming @ COIUMN ...cc.eeuiiiiiiieiiiieieie e 61
5.5.8. Renaming @ Tablecccoeieiiiiiiiiiniiiiee e 61

5.6, PLIVIIEZES ..ttt ettt sttt et 62
5.7 SCREIMAS ...ttt ettt et sa e st b ettt 62
5.7.1. Creating @ SCheMAcceiiiiiiiiiiirieieeeeee e 63
5.7.2. The Public SChemaccccoivieiiiiiiiniiicicicieieereeeee e 64
5.7.3. The Schema Search Path..........cc.cccccoiniiiniiiiiiiccceee 64
5.7.4. Schemas and Privileges..........coceevuereriineniniiiniinieicsceeneetee e 65
5.7.5. The System Catalog SChemac.ccoceveririiiniiniiininieieneceeeeeeceee 66
5.7.6. USAZE PALEINIS ...ccuveveiuiiiiriieieeieetente ettt sttt 66
577 POTtabIlitycvoviiiicieiieiiirecece e 67

v

5.8, INNETILANCE ...t et e et e et e e e eeaar e e e eeetaeeeeeenanreeeeen 67

581 CAVEALS ...t 70

5.9, PartitIONING ..cc.veevuieiiiieiienite ettt sttt ettt ettt e st sttt e sbt e sabe e be e bt e saneebeebeesane 71
5.9 10 OVEIVIEW ..uiiiiiiiicic e 71
5.9.2. Implementing Partitioningc.cceevveerieriieiiienienieeieesieeeeeee et 71
5.9.3. Managing Partitionsccoeeeveenirienenieieniieeetesceeese e 74
5.9.4. Partitioning and Constraint EXCIUSIONcc.ccceeveeviniiiininienenicicceeenne. 75
5.9.5. Alternative Partitioning Methods.........c..coceeceeiiiiiiniiiiniicncceeeene, 76
5.9.6. CAVEALS ...eouviiieeiieeiteeteete ettt ettt et et st b e st e b s 77

5.10. FOreign Datac..cocoeiiiiiiiiiiieiieeceecee et e 78
5.11. Other Database ObBJECLSccceriiiiiiiriiiiiieieeeeeeee et 78
5.12. Dependency Tracking.........ccccceererierieieieinenienieieeetee sttt s seeeeneenes 79
6. Data Manipulation.........cceeieitieieienie ettt ettt sttt et et e bt et esbees e e tesbeeneeseeeneenees 81
6.1. INSErting DAtaocuiiiiiiiiiee et ettt 81
6.2. UPdating Datal......cc.eeeeiiieiieiieiieiesieeee ettt ettt sttt 82
6.3. DEleting DAata.......ccueeuieiieiieiieieeiesieeete ettt sttt sttt et 83
6.4. Returning Data From Modified ROWScocoeviiiiiiiiniiiieeeeeeeece, 83
T QUBTIES ..ottt e et e ettt et e e et e e et e e e eteeeetteeeetaeeeetaeeeeaeseetaeeeaaseeeateeeeteseeaeeeeaeaeeateeeenreeeanes 85
T 1 OVEIVIEW ittt ettt ettt ettt st 85
7.2. Table EXPIESSIONSccuveuiiiieiiniieitintieiterte sttt ettt ettt et sb ettt st e b sbeeae b esnenee 85
7.2.1. The FROM CIAUSE.....c.cevruiriiiiieieiieiiniietiteiereteit et 86
7.2.1.1. Joined Tablesccccoveiririniniiicicicc e 86

7.2.1.2. Table and Column ALASES........cccccueiriririinienieieieieene e 90

7.2.1.3. SUDQUETIESeeuvienvieiieeieeieesiteeieesiee st e ereeieesteesreeseenteesabeenseeseesens 91

7.2.1.4. Table FUNCHONS ..c..cooviriiiiiniiiiiieniieieieeeetc ettt 91

7.2.1.5. LATERAL SUDQUETIESeevuveenieeiieniieeieeieesieesteeieenieesieeseeesveenaeenanes 92

7.2.2. The WHERE ClaUSE......cceviruiriiiiiiiiiiiciictiieeceecetec et 93
7.2.3. The GROUP BY and HAVING ClauSes........cccceevueiiiririniiieicieiiieeieeenes 94
7.2.4. Window Function ProCesSingcceeceevueerienieriiienieniesieeieeneesee e 96

7.3 SEIECE LSS ...t e 97
7.3.1. Select-List ItEmMScccoiiiiiiiiiiiiiiiiiecccee e 97
7.3.2. Column Labelsccocviiiiiiniiiiiiiiiiccce s 97

733 DISTINCT tuiiiiiieieiieiiet ittt st 98

7.4, Combining QUETIES......cc.ceueeteriieiiriieieiereetente et eee et esre st an et st esae e esne s e eanenne 98
7.5, SOTtING ROWS ...ciiiiiiiieiiiieieeee ettt st s s 99
7.6. LIMIT QDA OFFSET.ccuteiiiiieieieeieeteereeresaeeneeneeneeaesueesnesseeseessesseenesseeneesaesaeennesnens 100
TT. VALUES LSS 1ottt st 101
7.8. wITH Queries (Common Table EXPIressions)cceeveeveereeneerieeneeneenieenieenieenae 101
7.8.1. SELECT 1N WITH c.uiiiiiieiieiiiieeenie ettt et s 102
7.8.2. Data-Modifying Statements in WITHcccceveeiererierieneeeieneeeeeneeeeeeeesnea 105

8. DALA TYPES ..ttt ettt et ettt st e be et sttt e bt e naees 108
8.1, INUMETIC TYPES.cucuiuiiiitititeeeeeteee sttt ettt s sttt ebe e 109
8.1 1. INtEZEL TYPES .ecneeeiiiiiieeiteete ettt sttt 110

8.1.2. Arbitrary Precision NUMDETScccecivieiiiniiieienieeeeee e 110

8.1.3. Floating-Point TYPESccceruerieriiniieiieieienieeteiesite ettt 112

814, SErTal TYPES . ..ecuvetieuieiieiteie sttt ettt sttt ettt ettt sbe et nae e 113

8.2. MONELATY TYPES ..ttt ettt ettt sttt sttt e nee e 114
8.3, Character TYPES ..c..eeueeuiriieieriieiteieettete ettt ettt ettt e 115
8.4. BINary Data TYPEScevuerueeieriieiieieeitetesteet ettt sttt sttt 116
8.4.1. bytea HEX FOrmMAaL........cc.ccooiiiiiiiiiiiiecciecee e e 117

8.4.2. bytea Escape FOrmat........c.ccocueviriiiiiniiiiniiiiieniciceeteeeeeeseeeeae 117

8.5. DAte/TIME TYPES..eurierieriierieiieeieeite ettt et ebe et e sbeeteebeesbaessbeenseesbaesssesnseenee 119

8.5.1. Date/Time INPULcocveeviiiiiiiieieeeeetee ettt 121

8.5, 1.1 DALeS ... 121

8.5.1.2. TIMES ..t 122

8.5.1.3. TIME StAMPS...eeeiieiiiriiieieiiterite ettt ettt sae e 123

8.5.1.4. Special ValUEScceeviiriiiiiiiiieieeiteiteee ettt 124

8.5.2. Date/Time OULPULeevuieriiiiieriieeieeieeit ettt sttt st 124
8.5.3. TIME ZIOMNES ...ceeeniiiiiiieiieieieeeeteeit ettt ettt ne e 125
8.5.4. Interval INPUL.....c..cccoiiiiiiiiiiieee e 127
8.5.5. INterval OULPULceiiiiieiiiieieeeeeeeeeee e 129

8.6. BOOLEAN TYPE....ceiniiiiiiiiiieieiieeeee e e e 129
8.7. Enumerated TYPESccueriiiiiiiiiiiiiiciet e e 130
8.7.1. Declaration of Enumerated TYPes........ccceeereriereniesiineeiere e 130

8. 7.2, OTAETING ..ottt ettt sttt ettt e e e e 131
8.7.3. TYPE SALCLY ...ttt ettt s 131
8.7.4. Implementation Details...........ccocieieiiniiiiiiiee e 132

8.8, GEOMELIIC TYPES ..uvieientireieieiteeitete ettt ettt ettt et s be et be et e b st e e eae 132
881 POINLS ..ottt sttt 133
8.8.2. LN SEZMENLS.......eeuiiiiriieieiieeiieieetteie ettt sttt st sbe et e e 133
8.8.3. BOXES .ttt e e 133
884 PathS ... e 134
8.8.5. POLYZOMNS. ...ttt 134
8.8.0. CICIES ...t 134

8.9. Network Address TYPES.......coeeveriirieiirinienieniteienteeiteie ettt ettt 135
B0 1. ANEE ettt st sttt et s b e e aeenaeeeneas 135
IR o e oSO S PR SRRSTR 135
8.0.3. ANEL V8. CoAT tttiiitiiiieeieeie ettt ettt sttt et e ettt e st e ebeenaeesneas 136
8.9.4. MACAAAT tuttetieeiieeiteiteete ettt ettt ettt e sttt e st e st e e bt e sate st e ebeenaeesanas 136

810, Bit SINEZ TYPES couvrierieiiesiieiieeieestte sttt ettt siteste e beesbeessbesbeesbeesanesnneenne 136
.11, TeXt SEATCH TYPES ..ceuveeeierieiiieitente sttt ettt st e te et e sbee st eteesbeesabesaneenee 137
Bl L. L. £ SVECEOT totterieiieeiteete ettt ettt sttt st ettt be et saeas 137

Bl 1.2, £ SUETLY tiitetriiee ettt et eette e e ee e e e eee e e e e e e e e e eetreaeeeenareeeeeennnres 138

12, UUID TYPE oottt ettt ettt ettt ettt et st st e sbeesabesabeenbeesanesaneenne 140
BL3. XIML TYPE ettt ettt sttt sttt ettt ettt e s bt st et e beesabesane e 140
8.13.1. Creating XIML ValUescccevvieriiiriiinienieniteniteste ettt 141
8.13.2. Encoding Handlingc..ccceeirieiiinieiiniiieienieieeeeciceeeeseereiene 141
8.13.3. Accessing XML ValUues.........c.cccoeieviirieiiniiieienieieeeeceeeee e 142

814 JSON TYPE....eiueeuieiieiirtietententeteitete ettt ettt ettt ettt st sttt sbe b b naens 142
SIS ATTAYS ..ottt ettt e 143
8.15.1. Declaration of Array TYPES........cccuecuirieiieniiieiinieieiceere e 143
8.15.2. Array Value INPUL......ccuiiiiiiiiieeieeete et 144
8.15.3. ACCESSING AITAYS ..ecuviuieierieeieiteetieteeteeee st ete e st et ettt e see st eeesbeeneeneeene 145
8.15.4. MOAIfYING ATTAYS...cuteueeiiiieeieitietiete ettt ettt ettt sttt see s e saesbeenne e ene 147
8.15.5. Searching in ATTAYS......ccccereeuerieieiieeete sttt ene 150
8.15.6. Array Input and OUtPUt SYNLAXccuevierieririeieniieieeieeeene e 150

8.16. COMPOSIE TYPES ..eveeneieienieitieiieieettete ettt et sttt s be e et e e 151
8.16.1. Declaration of COMPOSIte TYPES....ccuerueeuererieriiniieienieeiene st 152
8.16.2. Constructing Composite Valtes...........cecererienienienienenieneneenenieeeeniene 153
8.16.3. Accessing Composite TYPES ...cc.cevevuirieriererierieniieieneetenie et 153
8.16.4. Modifying CompoSite TYPES......cevevuireeriererienieniieienieeteneeeieesaesieerenieene 154
8.16.5. Using Composite Types in QUETIES.......ccceverierierierienenieneneenienieereniene 154
8.16.6. Composite Type Input and Output SYNtax.........ceceevveverreenereenenensrenenne 157

817, RANZE TYPES weeuveeeiieiieiieniieeieeitesite st este et esetesbeebeesatesbeesbeesbaessbesnseeseesssesnsesnse 158

Vi

8.17.1. Built-in Range TYPEScccveeruierieriiiiieritenie ettt 158

8.17. 2. EXAMPIES.c.uviiiiiiiiiiieeieeie ettt ettt sttt st et 158
8.17.3. Inclusive and Exclusive Boundscccccoceeceeninieniininiincnienenecrenene 159
8.17.4. Infinite (Unbounded) Ranges.........ccccevieviiiiiiienieniieniieienieeieeieeee e 159
8.17.5. Range INPU/OULPUL......eevuiiiiiiiieeieeieeteeee ettt 159
8.17.6. Constructing Rangesc..coceeueeieviinieiieniiieienicieceeene e 160
8.17.7. Discrete Range TYPEScoccecvervirieiinieieniecicieneeteeeecee e 161
8.17.8. Defining New Range TYPESccceeuevieiiiniiieniinieiceeecre e 161
8179 INAEXING ..ottt 162
8.17.10. Constraints on Ranges...........cc.cecveeuirieiiniiiiiniinieieniceceeeeeseeeeene 162

8.18. Object Identifier TYPEScceeveiiriiiiiieieieneeteie e e 163
8.19. PSEUAO-TYPES ...ttt 165
9. Functions and OPETALOTSccceceruirrerierieieinenenienieteteseeseesesseteseeneesessesaessessensenessessensense 167
0.1. LoZICAl OPETALOTSeovevirrenieiieiieieriintitetetent ettt see sttt sae st e b e e eseeresuesaesaennen 167
9.2. COmMPATISON OPETALOTS....c.eeuveururrueriirtiteiententetteresresteteneeetesesuestessesseseeseesessesaesaennes 167
9.3. Mathematical Functions and OPerators............ccceererueeeieeneneneneeneeeneneneeneenne 169
9.4. String Functions and OPErators..........ccccueeeiruirerenuenieieieenessesieseeeeseeressessesaennes 172
.4, 1. FOTTAL tvterteeeieeiteerttesteeite e teesteeteesteessseesseeseessseesseenseessessseenseenseesssenssennes 186

9.5. Binary String Functions and OPEeratorsccccevererierieneenienieenieneneenieneenenieene 188
9.6. Bit String Functions and OPeratorscceeeeerererienenienieneeteneseeniesieeeenieene 190
0.7. Pattern MatChiNngc..ccouiriiiiiniiiieieiiete ettt ettt 191
0.7 1. LIKE ctetiiteiteiteti ettt sttt ettt s sttt e 191
9.7.2. SIMILAR TO Regular EXpPressionsc..cecceveeienereenienenieneneeneneeneennns 192
9.7.3. POSIX Regular EXPressionsc..cecuerereerienerieneneeneneereneseeneeseeneennens 193
9.7.3.1. Regular Expression Detailsccccevvervieeneenieniieenieeniesieeieeieene 197

9.7.3.2. Bracket EXPIeSSIONSccceerveerieerieenienieenieenieesieenieesieesseeseenaeens 199

9.7.3.3. Regular Expression ESCapes........ccccevueriierieenieniieieenee e 200

9.7.3.4. Regular Expression MetasyntaX........c.eecveereereerieenieeneeseeenueenneens 202

9.7.3.5. Regular Expression Matching Rules...........ccoceevviveniinieniinncnnnenn. 204

9.7.3.6. Limits and CompatibDilitycccecceereerrierreenienieenieeneesieesieeiens 205

9.7.3.7. Basic Regular EXPressionscoceeveervieeneeneenieenieeneesieesieeniens 206

9.8. Data Type Formatting FUNCHONSccceerieriiiiiiiienieeieeeetc et 206
9.9. Date/Time Functions and OPErators..........cceeveerueerieriersieeneeneesieenieesieesseeneeenieens 213
9.9.1. EXTRACT, date_Part ccceiriiiiiiiiiiiiiiicieieecceeec et 217

S NG N o oY o o 8 o o R OROURRRRRRR 221
9.9.3. AT TIME ZONE..cocisiiesirietenteeeerteneeresieesesseeseesaesneesesseessesseeneesesmeennensens 222
9.9.4. Current Date/Timecocueevvieriiriiiiienieeieeeeteeteee ettt 222
9.9.5. Delaying EXECULION......c..ccceviiiiiniiiiiiiieieie et 224

9.10. Enum Support FUNCHONSccccoiuiiiiiiiiiiiiiiieie et 225
9.11. Geometric Functions and OPErators..........c.ceceeerererierereenenreneneeneeeeeneneenaennes 226
9.12. Network Address Functions and OpPerators..........c.ccouecveeeerenrenenueneeenenerenuenne 229
9.13. Text Search Functions and OPerators...........c.ceceverueruerereerenenenieneeenenennenaennes 231
0.14. XML FUNCHONSetteuiitieiientieiiesie sttt ettt sttt st eae et sttt esae st e saesbeensenaeene 235
9.14.1. Producing XML CONteNt........cc.cceeveirinrinenieieieinenesesteeeeeeereenesrenaens 236
9.14.1.1. XIMLCOMMENT tuvieeeiiieeiieeeiieeeiteeeite e st e e sbeeesateeestbeeesabeeenaseeeaeeas 236

9.14.1.2. XINLCONCAL tertuieeeiiieeiiee ettt e eite e eite st e e st e e stee e s bt e e sabeeenabeesaeeas 236

9.14.1.3. XIMLELEMENT wveertieruiieieeriiesireereerieestteeteesseesseesseesseesseessseenseenseens 237

0.14.1.4. XINLEOTESE tevteerrreriieieerieesreeteesteestaeeteesseesteesseeseenseessseeseeseens 238

0. 14.1.5. KIMLIPI cuteuiriiiiieiieieeiteiietestereeet et sttt st s 239

9.14.1.6. XINLT OO terutiereeieesiieeieeieesiteereeteestaesbeesseesseessbeeseesaesnseensesseens 239

0.14.1.7. XIMLAGG ttiiiiiittrieeeeeitreeeeeeeireeeeeeraeeeeeeeeraeeeseesareeeeeesareeeeesareeseeens 239

9.14.2. XML PrediCatesc..coceeviererrienerieieniteienieetenie sttt eiee e st 240

Vii

9.14.2.1. IS DOCUMENT veeeeerrrreeeeerrreeeeeeirreeeeesisreeeeeesisreseeessisreseeessssesseeenns 240

9.14.2.2. IS NOT DOCUMENT....cctirtiuiemiimieririerteieienteneeresse e seeseeneenesnesaennas 240

0.14.2.3. XMLEXISTS weeteuiiuiiiiiuiireieieieiiencsie ettt 240

0.14.2.4. xm1_1S_ WELL FOTMEA tuuueiieeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeaeeans 241

9.14.3. Processing XMLcocueiiiiinieniiiieeniteeie ettt ettt 242
9.14.4. Mapping Tables to XMLccccccoveiinieiiinieiencneienecreeeeeee e 243

9.15. JSON Functions and OPEratorsccccecueeuieierereerenieneerenieeresreeeesseseenenneene 246
9.16. Sequence Manipulation FUNCHONSccccoirieiiiniiiiiniiiiciccecceeceeeee 250
9.17. Conditional EXPreSSIONS........cccuevuirieieriieiiiiiieie ettt 252
0. 17,1 CASE ettt ettt ettt s bttt 252
9.17.2. COALESCE vttt sttt s 254
9173 NULLIF .ttt e st e st 254
9.17.4. GREATEST aNd LEAST ...eociiiiiiiiiiiiieiesieeee ettt 254

9.18. Array Functions and OPETatorscceeeeeruererenuenueeeieeneensenseseeeeneerenressesaennes 255
9.19. Range Functions and OPETators...........cceeueeruirerierenieieieenenrenseneeeereeresresuesaennes 257
9.20. Aggregate FUNCHIONS.....c..ccucoiiiiiriirtiteietetetteene ettt s s 259
0.21. WiIndoW FUNCHONSoiuiiiiiiiiiieitees ettt 263
9.22. Subquery EXPIESSIONScccccveueruiriiriirieieieieiieiesestetenete ettt 265
0.22. 1. EXISTS ittt 265
9.22.2. TN ttttetetet ettt s sttt 265
9.22.3. NOT INuiiiiiiiiiiiiiiiiiiiec ittt 266
9.22.4. ANY/SOME ...cuviiiuiiiiniiiiiiiiiiiieiceicet st 266
0.22.5. ALL ittt 267
9.22.6. ROW-WiS€ COMPATISON ...eeuvieeieriieeiieniieeieeieenieestesaeesseesseesseesseessesseenne 267

9.23. Row and Array COMPATISONS ...cueerurirrueeriiernreerieeniienresseesseesseessseesseesseesssesssesnseens 268
9.23. 1. TNt e 268
9.23.2. NOT INuuiiuiiuiriitiieieee ittt sttt ettt s sttt e 268
9.23.3. ANY/SOME (QITAY) .veeruveerreerreerurerrersieessressesnseesseessessseesseesssesssessseesssesssesnne 269
9.23.4. ALL (AITAY) cvveeureereerreeteesteestesteeteesttestesteesstesssesseesseesssesseenseessessseenne 269
9.23.5. ROW-WiS€ COMPATISOM ...euvieiieriiiriieniienieeieeniiestesieenteestesteenbeesasesseenne 269

9.24. Set Returning FUNCLIONScceviiiiiiriiiniienieeieeitesite ettt st 270
9.25. System Information FUNCHIONScooueerieniiiiiiiienie ettt 273
9.26. System Administration FUNCHONScovieriiiiieinienieiieeieeeceeceiee e 283
9.26.1. Configuration Settings FUNCHions...........ccccoceeveenirieneniecienineenienceenen. 284
9.26.2. Server Signaling FUNCHONSc..coceervirieiiiniiiecieienecceeeee e 284
9.26.3. Backup Control FUNCHIONScccocoiiiiiiiniiiiniiiicienecrceceee e 285
9.26.4. Recovery Control FUNCHONSccevieciiniieiieniiiieieneceeeeeeee e 287
9.26.5. Snapshot Synchronization FUnctions............cccceccoceevininiininicncnicnnennen. 289
9.26.6. Database Object Management Functions............c.cccceveeienieicncnicnnennen. 290
9.26.7. Generic File Access FUNCHONS..........ccceeiiirieiiiniiieieseeeeee e 292
9.26.8. Advisory Lock FUNCHONS........c.cceevetririinenieieieincre et 292

9.27. Triger FUNCHONS ...cc.evvirieieiieiiiiiiiintetcictetettee sttt sttt s s 295
9.28. Event Trigger FUNCHIONSccoociririiniiieieiiiininenteteeetee et 295
10. TYPE CONVETSION......couiiiiiniiiieiieiintieteteteteitete sttt ettt sttt es e b b sae st en et eaesae st nenne 297
LO. 1. OVEIVIBW ..ttt sttt sttt b ettt et ae st et s bt e et eaee bt saeeaesbeas 297
1O.2. OPETALOTS ...t s 298
10.3. FUNCHIOMS ...ttt sttt ettt sttt ettt saenes 302
10.4. ValUe SOTAZE.....cccviruieiitieiieieeitete ettt ettt ettt ettt b et ebee e et e e sbeas 306
10.5. UNION, CASE, and Related CONSITUCTS.uvvviiiieieeieeieieeeeeeeeeeeeeeereeeeeeeeeeeeeeseeaans 307
L1 INAEXES ..ttt sttt st s 309
11,1, INErOAUCLION ...ttt s 309
11,2, TNACX TYPES e utietieriieeiieieete ettt et et e s teete et esebeeabeebeesaaesssesabeenseesseessseenseenseens 310

viii

11.3. Multicolummn INAEXESvvviieeiiriieeeeireee et eeere e e et e e earaeee s 312

11.4. Indexes and ORDER BY c..cccuevuireerierieeienieneentenieetenteesnesesieesesseeseessesseessessessnensenne 313
11.5. Combining Multiple INAEXESccouerierriieniiiieiiierie ettt 313
11.6. UNIQUE INAEXES ..eevvveenieeiieiiiieieeitesite ettt ettt sttt sttt e b enaee s 314
11.7. Indexes On EXPreSSIONScccueirueiriiiiriiiiiieniieeieeitenite sttt st 315
11.8. Partial INAEXEScocvevuiriiriiiieieiieieee ettt 315
11.9. Operator Classes and Operator Familiescccoceevenirieniniinninincncieeeene 318
11.10. Indexes and COlLAtIONS.ccouveeierrieeriierieeieeritesteete ettt ettt 319
11.11. Examining Index USage........cccoeouiriiiiiriiiiiiiieienie e 319
12, FUll TEXE SCATCH ...ttt ettt ettt b e s saee e 321
12.1. INEFOAUCTION ..ottt ettt sttt ettt e b e st st e b eaee e 321
12.1.1. What Is @ DOCUMENE?.....cc.coiiiiiiiiiiiiieececteeeeeeee e 322
12.1.2. Basic Text MatChingcccoeceeriiierieiieieseee et 322
12.1.3. CONFIGUIALIONS ...ttt ettt e e e saeeee e 323

12.2. Tables and INAEXES......c.eoueeierieieiieieee ettt s 324
12.2.1. Searching @ Tablecooeiiiiiiiiiieeseeeee e 324
12.2.2. Creating INAEXEScc.eeueeiiriiiieniieieiest ettt 325

12.3. Controlling Text SEarch..........cccevirierinirieiiieeseeee e 326
12.3.1. Parsing DOCUMENLScccueruieiirinieieniieienieetee sttt 326
12.3.2. Parsing QUETIES ...c..ceouerueeuieniieienieiiteiesteetent ettt st et sbeas 327
12.3.3. Ranking Search Resultsccocevieriniiiiininiiniiieenccccec e 329
12.3.4. Highlighting REeSUILSccccoiriiniriinieniiiieieteceeeeeeeecee e 331

12.4. Additional FEaturesccouevueieiiiiiiiiieicieieicestceeee et 332
12.4.1. Manipulating DOCUMENLS.........ccuerieiiririenienienienieeieneeeene et 332
12.4.2. Manipulating QUETIES........ceoveerierieeieenieenieeieenieenteeteesieeseeseseeseesenesenas 333
12.4.2.1. QUErY REWITNZ .eovveevieiieeiieeiieieesteeie ettt ettt eie e 334

12.4.3. Triggers for Automatic UPdatesccceeveeriieneenieriieneeneenieenieenieenanes 335
12.4.4. Gathering Document StatiStiCscovvervierieirieerienieeieente e e 336

L2.5. PaTSEIS ..ottt 337
12.6. DICHONALIES.couiiuiiiiiiiiciicicr et 339
12.6.1. StOP WOTAS ..ottt sttt ettt st 340
12.6.2. SIMPle DICHONATYoovieiieriiiiieeiiete ettt ettt et 340
12.6.3. Synonym DiCHONATYcc.ceviirieiniiinieiiieieeiteste ettt 342
12.6.4. Thesaurus DIiCIONATYcceecveririenierieieniieeene et 343
12.6.4.1. Thesaurus Configurationcoccecevreeeesieneereeneneeneneecnennene 344

12.6.4.2. Thesaurus EXampleccccocooceniiiiiininiiiinicccceeeneeeene 345

12.6.5. ISpell DICHONATY......c.couiiiiiieiieiiieeieeteeee et 346
12.6.6. SNowball DICONATYoocuieuiiiiiiiieienieiee et 347

12.7. Configuration Example............ccccciriiiiniiiiiiiiiiicce e 347
12.8. Testing and Debugging Text Searchccccceeceevereniiniecieninenineneneeeeeeene e 349
12.8.1. Configuration TeStING.......ccccoeeveueieirinrinenieieeeeee e srereteeene e naene 349
12.8.2. Parser TeSINE ...ccueeueeientieieniieieste ettt ettt sttt saeas 351
12.8.3. Dictionary TeSHNG......ccueeueruieieiieiieiesieee ittt 352

12.9. GiST and GIN INdeX TYPES ...ccvecueueeuirrirrenieieieiinienesteteieteie ettt 353
12.10. PSQL SUPPOLL ...ttt ettt ettt sttt et b e et nae e ae b 354
12,11, LAMIEALIONS ..ttt ettt et ettt ettt sttt st b et beesee b saeeaesbeas 356
12.12. Migration from Pre-8.3 Text Search..........cccoeoveveviiiininieniniccceecceeee 357
13. ConcurrencCy CONIOL......coueiuiiriirieiiriteieieeit ettt sttt ettt sae st sbe e e b eae 358
13.1. INETOAUCLION ...ttt s s 358
13.2. Transaction ISOIAtiONcc.ceueeieiiiiiiiinieiciciee e 358
13.2.1. Read Committed Isolation Levelccccooeveciiiiniinininiiiciniiiiciene 359
13.2.2. Repeatable Read Isolation Level........ccocoviiiiienieniiiniieieieeieeeeeee 360

ix

13.2.3. Serializable Isolation LeVel..........ccccooovviiiiiiiiiiiiieiireee e 361

13.3. EXPICIt LOCKINGeeeiiiiiiiiiieeieetece ettt e 364
13.3.1. Table-1eVel LOCKSc..coveiiririiiiiieienitcieiceeee ettt 364
13.3.2. ROW-18VEL LOCKSeoviiiiiiiiiiiiiicniecicsiccecc e 366
13.3.3. DEadIOCKS.....coueeiiriieieiieieiieeec ettt e 367
13.3.4. AdVISOTY LOCKS ...c..eeiiiiiiiiieiiiiceceieeteece e 368

13.4. Data Consistency Checks at the Application Level............ccccocoevieiiiinininnennn. 369
13.4.1. Enforcing Consistency With Serializable Transactions...........c...cccc.c..... 369
13.4.2. Enforcing Consistency With Explicit Blocking Locksccccocenenee. 369

13,5, CAVEALS ..ottt ettt ettt ettt et sb e sat e st e bt at e st ene e b s 370

13.6. Locking and INAEXES........cccceouieuiiiiiiiiiiiiiiieieee e 370

14, Performance TIPSceceeueeieriietieieeeete sttt ettt et e e sae e tesbees et e e st eneesaeestenseeneensenseene 372

14.1. USING EXPLATN .eetteuieteitieitenteesteteeteentesueententesseansesseeneessesseesesseensasseeneessesneensessens 372
14.1.1. EXPLATIN BaSICS .uveuieiiiiiiinierieictceetettetcsectetee ettt 372
14.1.2. EXPLAIN ANALYZE ittt sttt s 378
T4 1.3, CAVEALS ..ottt ettt ettt sttt sttt ettt ettt e ssee s 381

14.2. Statistics Used by the Plannercooceeieiiiiiiiniiiineeieecceeeeee e 382

14.3. Controlling the Planner with Explicit JOIN Clauses..........cccceveevvenereenerceneennens 383

14.4. Populating @ Databaseccceceeviirierienirienieniteiese ettt 385
14.4.1. Disable AULOCOMIMILceueruirieriiriieientieienteetenie sttt e e siee e e 385
14.4.2. USE COPY.uiiuiiiiiieieiteiieiesie sttt ettt et st ebe b 385
14.4.3. REMOVE INAEXEScovverieiiiiiiiieiiiiieiesieeteteetese ettt 386
14.4.4. Remove Foreign Key Constraintscccceeeceerereenenensieneneenencenennens 386
14.4.5. InCrease maint enance WOTK_ I M a e eeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeneennnnnnns 386
14.4.6. Increase checkpoint _SEQMENT S wuuiiiiiiiireeeeeiiireeeeeiireeeeeesrreeeeeenneeeees 386
14.4.7. Disable WAL Archival and Streaming Replicationcc.cceecveerueenuennee. 387
14.4.8. Run ANALYZE Afterwards.........cccecvevivinininiiieiiiiinencccecee 387
14.4.9. Some Notes AbOUL PE_AUMPveevieriiriieiiiiierieeie ettt 387

14.5. NOn-DUurable SEttNESccceoereeririeieniinieiineete ettt ettt eenenaeeae 388

I11. Server Administration 390
15. Installation from SOUTCE COAEcoveueriirieiiniieiiiietecrcereeee ettt st 392

15.1. SROTE VETSION ..ottt ettt ettt ettt st e s st e be e i 392

15.2. REQUITEIMENLS ...c..couviiienriiieiteiieiiete ettt ettt ettt et et ne e e sne s ene e 392

15.3. Getting The SOUICE.......co.eiiiiieieiieieeeceeeee e e 394

15.4. Installation ProCedure..........cooviiieriiiiniinieeeeiteteee ettt 394

15.5. Post-Installation SEUP.........ccceeeeeiiriiiiiiiiiiieeieee e e 404
15.5.1. Shared LiDrariescooeevieriiiieenienienieeececneeee et 404
15.5.2. Environment Variables...........cocceeveeriiiiinieiiiiiieeieeieceeeeeeeeeesee e 405

15.6. Supported PlatfOrmsccoiuieieiiiieierieeeee et 405

15.7. Platform-specific NOLESccueeieririeiiieetesieet ettt 406
I5.7. 1. ALX ettt bttt s 406

15.7.1.1. GCC ISSULS ..ttt ettt sttt s 407
15.7.1.2. Unix-Domain Sockets Broken.........c..ccoceecerenieneniniencncenennen. 407
15.7.1.3. Internet Address ISSUES.........coceererierieninienirieeeteeseeeee 407
15.7.1.4. Memory Managementcccceeeereenierienieneeneenienieniesieenenienne 408
References and RESOUICEScocvevuirieniinerienienieieeeec e 409

15.7.2. CYZWIN ettt ettt st sttt s ae e 409
I5.7.3 HP-UX ..ottt sttt s 410
I5.7.4 TRIX oottt sttt e 411
I5.7.5. MACOS ...ttt st 411
15.7.6. MINnGW/Native WINAOWScoevieiinirienienienienieetenieeeeniesieeniesieenenieene 412

15.7.6.1. Collecting Crash Dumps on Windowscccccceeeeveenienuennnennne 412

15.7.7. SCO OpenServer and SCO UnixWare........cccccevvuervuerrieenienieensieeneeneennnes 413
15.7.7.1. SKUDKWATIE ... 413

15.7.7.2. GNU MaKEcooiiiiiiiiiiiiiiicctcce e 413

15.7.7.3. Readline.........cccoeiriiiiiiiiiiiiiiiiiiccci e 413

15.7.7.4. Using the UDK on OpenServer..........cc.ceceeeveevienereeneneecuennene 413

15.7.7.5. Reading the PostgreSQL Man Pages.........c.ccceceniriinininnenncnne 414

15.7.7.6. C99 Issues with the 7.1.1b Feature Supplement 414

15.7.7.7. Threading on UnixXWareccccoceevieriiniiiininicncneeieneeienene 414

15.7.8. SOLALIS ettt ettt et 414
15.7.8.1. Required TOOIS ...cceeriiiiniiiniiiiieiiesieneececeee et 414

15.7.8.2. Problems with OpenSSLcoocieviiriiiiiiiieniieeeeneeeeeeee 415

15.7.8.3. configure Complains About a Failed Test Program 415

15.7.8.4. 64-bit Build Sometimes Crashes.........c.cceccevevieveniecienencenenen. 415

15.7.8.5. Compiling for Optimal Performance.............cccceceveevienencennennen. 415

15.7.8.6. Using DTrace for Tracing PostgreSQL.........ccccecevieienincenennen. 416

16. Installation from Source Code on WINAOWSccceerieriiriiieninieieneeie et 417
16.1. Building with Visual C++ or the Microsoft Windows SDK..........c..cccccecerveenennen. 417
16.1.1. REQUITEIMEILS ...cuveeienietieiieiieitenie ettt ettt et st sbe et e st ebee e s ae b 418
16.1.2. Special Considerations for 64-bit Windowsccccceceeveenineenencenennen. 420
16.1.3. BUIIAING ..eeviiiiiicicieiiie ettt 420
16.1.4. Cleaning and InStallingccocereenierieiieniniiineieeienieeeeecee e 420
16.1.5. Running the Regression Tests........cccceveeieririienenienenenieneeeenie e 421
16.1.6. Building the Documentationcoccecuererieneneesieneneeneneeneneereniene 421

16.2. Building libpq with Visual C++ or Borland CH++.......ooovevieviiiiienienieiieeieeene 421
16.2.1. Generated Filesccccooiviiiiiniiiiiiiiiiinicccceecee e 422

17. Server Setup and OPETALIONc.eevveeieeriierieeieerieerteeteeieeseesaeeteesbeessressseesbeessesseenne 423
17.1. The PostgreSQL USEr ACCOUNLeevveeriierieeieeriieniieeieeiteniee e eieesiee e eieenaee s 423
17.2. Creating a Database CIUSLETccvuerieiriierieeieeieerite ettt st see e 423
17.2.1. Use of Secondary File SYStemS.......cccceevuierieiniierieniieeiienieeieeieesieesee e 424
17.2.2. Use of Network File SYStemsccccevviievieiniienienieeieenieeieeieeieesee e 424

17.3. Starting the Database SETVET.........cccueeuerriiriiiiieiieie ettt 425
17.3.1. Server Start-up Failuresccceeeeviiiiiniieiiiinieeceeeeeeeeeeeeee e 426
17.3.2. Client Connection Problemscc.cocceceririininiinininiinieeciceceeeee 427

17.4. Managing Kernel ReSOUICES..........cccceceririiniiniiiiicecccccceeece e 428
17.4.1. Shared Memory and Semaphorescccccceeceevirienenieiienineeienceeennees 428
17.4.2. systemd RemoveIPC ..ot 433
17.4.3. ResoUIce LIMItScocueeiuieriiiniiiieeiiete ettt 434
17.4.4. Linux Memory OVETrCOMMILc.ceveeriieriernieenieeieeieeneeeeeeieenieesieenaees 435

17.5. Shutting DOWN the SEIVET........cceiirieiiiieieeeee ettt 436
17.6. Upgrading a PostgreSQL CIUSLETc.coutrieiierieiirieeierie et 437
17.6.1. Upgrading Data via pg_dumpccccerueeienieiieneiieesieeeeeeceie e 438
17.6.2. Non-Dump Upgrade Methods...........ccceeevenienieeniniinenenieieieieeseneneene 439

17.7. Preventing Server SPOOTINGccecveirinierienieieinenenteieietene ettt ee e 439
17.8. ENCIyPLION OPLIONS. ..ccueevieiieiieiieiieieete sttt ettt ettt st et sttt et et e saeenae b 440
17.9. Secure TCP/IP Connections wWith SSLccccooiiiiniiiiniiiiiceeeec e 441
17.9.1. Using Client CertifiCatescooereeruerrieienieeieneseeienieeeenieeieenieseeee e 442
17.9.2. SSL Server File USagecceecueririenieniieieniieeenieneeesieeeeieeeeae e 442
17.9.3. Creating CertifiCates..........coieiererienerieieneetene ettt e 443
17.10. Secure TCP/IP Connections with SSH Tunnels..........ccccceceviveneniecieinicncnenee 444
17.11. Registering Event Log on WindOwscocceveviireinienenienenieicneeeencseeneenneen 445
18. Server ConfIGUIAtIONcccvueiieriiriietirieetete ettt ettt sttt ettt ebeesae b esae s eane i eae 446

Xi

18.1. Setting Parametersc.cevuierueerierieeieeitesiie ettt ettt ettt e b e sbeesateebeenaee s 446

18.1.1. Parameter Names and Values..........cc.coceecveririenenienenieniicnineeicnceeenneee 446
18.1.2. Setting Parameters via the Configuration Filec.ccocvevvieriiiinieniennee. 446
18.1.3. Other Ways to Set Parameters.ccoocveeveeiniienieniiennieenieeieeieeieesee e 446
18.1.4. Examining Parameter Settingscccceevveevierniierieniiensieenieeieeieeieesee e 447
18.1.5. Configuration File InCludes............ccoceeriirneiiiiniiniiiieieeeeeeeeeeee 447
18.2. AL LLOCALIONS ..ottt ettt ettt ettt sttt et sat e st e sbe e bt st e beenaee s 449
18.3. Connections and AUthentiCatioN...........eeeuerrueerierieriieeieerieree et 450
18.3.1. Connection SELtNEScceeuieieruirienieniieieiieeeee st s 450
18.3.2. Security and AuthentiCation............ccceeeecierieiienieiieneeneeeeeeeeee e 452
18.4. Resource CONSUMPLION.........cc.ieiiiiiriieiieniiiieieeit ettt 454
L84, 1. IMIBIMOTY ...ttt ettt sttt st et ettt et et 454
18.4.2. DISK .ttt ettt 455
18.4.3. Kernel Resource USage..........covueevueeriiriiniieiiienieeieeieeneeeeeeieeiee e 456
18.4.4. Cost-based Vacuum Delaycceoerieiiininiiniiieenieeeeee e 456
18.4.5. Back@round WIIter........ccceruieiiriiieieniieieie et 457
18.4.6. Asynchronous Behavior..........cccccoceereiiiiininiieniiieesceeeeee e 458
18.5. Write ARad Lo ..c.ccuviiiiiiiiiiicieieieieecee ettt s 459
18.5. 1. SEUNES...cueiutienteieiiieieet ettt ettt ettt st ettt ae b 459
18.5.2. CheCKPOINES. ... corueriienientieiieieeitenie ettt s sie s 462
18.5.3. ATCRIVINE ..cnviiiiiiiiiieieeee ettt s 463
18.6. REPLICALION. ..c..euiiuiiiieieitieiteieettee ettt ettt ettt ettt s eae s 463
18.6.1. Sending SEIVET(S)ccveereeuerririenierieeienteetenteeitente sttt eiee e seeeae i 464
18.6.2. MASLET SEIVET ..cueuviiuiiiieiienieeiteieettete sttt st sttt sttt ettt et sbeeaesbeeane st ene 464
18.6.3. StandDy SEIVETS ...cccueeruiiriieiieniieeieeieeniteete et et esatesebeeieesaeesebeebeesaeesaeas 465
18.7. QUETY Planningcccueeiuiiiiieiieiieiie ettt ettt sttt et sttt ebeeaee s 467
18.7.1. Planner Method Configuration............ecceevverieeneeneenieeneeneesieeieeseee e 467
18.7.2. Planner Cost CONSLANEScc.eeueruireenieriieieniieeenieneeienieerenteeseenaesaeeeennens 468
18.7.3. Genetic QUETY OPUMIZETeovveerieeriieiiieieeiee et eiee st ereebe e esieesaees 469
18.7.4. Other Planner OPtONS.ooviiieerienieiiieieeite ettt ee et siee e 470
18.8. Error Reporting and LOZZINGccccueiiirriiiniinieiiieriie ettt st 471
18.8.1. WHere TO LOZ ..ccouveiiiiiieiieeie ettt 471
18.8.2. WHen TO LOZ ..coeieiiiiieiee ettt 474
18.8.3. What TO LOZ ..ottt 476
18.8.4. Using CSV-Format Log Outputc..cccevieviiniriienenierenieeeie e 479
18.9. RUN-tIME STAtISTICS...cuvtitiiriieritieieeieerite ettt ettt sttt st e e i 480
18.9.1. Query and Index Statistics COllECtOrccevirieniniriienieicieeeceeee 480
18.9.2. Statistics MONIOIINEc..couiiieriiiieieniieieii e e 481
18.10. Automatic VACUUMINEcc.oeiiiiiiiiiiiiiiieieiieiee e s 482
18.11. Client Connection Defaultsccoccoviriieiirieiinieeeeee e 483
18.11.1. Statement Behavior.........cceeciiiiiieieiieeeee e 483
18.11.2. Locale and FOrmattingcccoeceeieriieienieienie et 487
18.11.3. Other Defaults.......ccooieiiiiiieieieest e e 488
18.12. Lock Management
18.13. Version and Platform Compatibilityc.ccccecevverininienienininineniciceeeneneseeee 490
18.13.1. Previous PostgreSQL Versionsc..cecereeeenereenienieeienieneeniescenee e 490
18.13.2. Platform and Client Compatibility..........ccccecererieneniniieniniencrceeene 492
18.14. Error Handling........cooeiueeiiiiinieiiiieteiectete ettt s 492
18.15. Preset OPtiONS....cueeuteierieeiteieeiteie ettt ettt ettt st e e sttt bt e e saeeaesbeas 493
18.16. CuStOmMIZEd OPLIONS ...c.veeuveiiriieiiriieierieeiteieet ettt ettt ettt see e e 494
18.17. DeVElOPEr OPHIONS ..c.veveritiiiriieiinieetenieeitentesitete sttt st et sttt et e e saeeae b 494
18.18. SHOTT OPLIONS ...veevieriiieiieiteeiieeieeritesiteete et e st e sereeteebeesssessaessbeesseesseessseesesnseens 497

Xii

19. Client AUtNENTICATIONceeuvrvieeeeiirieeeeeeireeeeeeireeeeeeetreeeeeeeareeeeeesarreeeeesaseeeeeesrreeeeeensrreeees 499

19.1. The pg_hba . Conf FIlE ..o 499
19.2. USer Name MapScccueerueeriiiiieiiesiie ettt ettt ste et siee st ssseesbeesateeseeaee s 505
19.3. Authentication MethOdsccceoerieiieniiniiiniinieienccteeeeeeseere e 507
19.3.1. Trust AuthentiCationc..ceceevereerierierienieeene et 507
19.3.2. Password AUthentiCationccccceeveeriierieiniienienieeieeneeeee e 507
19.3.3. GSSAPI AUthentiCationccveereueeeriieeriieeciieeiieeeieeeseeeesreeesereeeeneas 507
19.3.4. SSPI AUthentiCation.........cccveeeuiririieeiiieerteeeree e e eeeeesaeeesereeesnseeenneas 508
19.3.5. Kerberos AUthentiCationc..ceecueeerieeesiieeeieeeiieeeieeesieeesveeeseeeenneas 509
19.3.6. Ident AUtheNtiCAtION.cccueeeerieeeieeecieeeteeeeteeeire e e e e eieeesebeeesneeeeeneas 510
19.3.7. Peer AUthentiCatioN..........cccueeeeeiiieeiieeriieesieeeteeeireeeeeeesaeeesebeeessseeseeees 511
19.3.8. LDAP AUthentiCatioNcccueeeueerieerieerieieesieeseeesaeesreesseeesesseesseesssesnnes 511
19.3.9. RADIUS AUthentiCationceeeverieeciierieerieenieesieesreesreeveeseesssesseennnes 513
19.3.10. Certificate AUthentiCAtiONccovereieieiierieeiiecreeie e e ee e e e e eeee e 514
19.3.11. PAM AUthentiCaAtiONccecvieeiierieniieiiieieenieesveesaeeseesereeveenseesseessnensnas 515

19.4. Authentication Problemsccceeriieriieiiieiieeiieciecie ettt e sve e 515
20. Database ROIESccueevieiiiiiieiieie ettt e et ettt e e veebeestbeesaeebeesbaeessesnseesaesssassseenes 517
20.1. Database ROIEScccveriieiieiieiieeieerieesee et eieesteeseteebeesaeeseeesbeesseesseessseenseenseens 517
20.2. ROIE ALIITDULES ..ottt ettt ettt et st sbe e i eae 518
20.3. ROIE MeMDBEISHIPcouviiieiiiiiniieieitieeteeee ettt st 519
20.4. Dropping ROIES.....c..ccouiriiiiiriiieenieeseetee ettt 520
20.5. FUNCLON SECUIILYcetiriieuiiniiriieieiiietenteeitete ettt sttt sttt ettt ste st et sbeesnenieeae 521
21. Managing Databasescoeeveererierieniriinieetere ettt ettt sttt et s 522
21,1, OVEIVIBW ettt sttt ettt sttt sttt et sbe et e saesatenbesbeesnenbeene 522
21.2. Creating @ Databasecocuvevierieriieiierie ettt ettt ebeesieesbeebeeeee s 522
21.3. Template Databasescccverueereeriieriienienieeieenitesitesteesieesieesbeeseesseesseeseenseens 523
21.4. Database CONfIGUIATIONeevuieruieriiiriienienieeieertesteebeesieesitesbeeaeesteesbeenseeseens 524
21.5. Destroying a Databaseccceerieriieniienienieeieenitesite e esiee st st sieeste e eniee s 525
21.6. TADIESPACESeeeeeeuiieiieriie ettt ettt et e st e e bt e bt esatesabeebeesaeesabeenbeebeesabeenseenseens 525
22, LOCAIZATION ..c..eenieiieiietieitetcetete ettt ettt sttt ettt eae e e st she et ene st enaesae s 528
22.1. LOCALE SUPPOTIT...ciiuiiiiiiiieiiieiterite sttt site sttt ettt e st sbeesaeesbeesabeebeesbeesabeenseenseens 528
22,11 OVEIVIBW ..ottt sttt et sttt st 528
22.1.2. BERAVIOT ..ottt s 529
22.1.3. PTODICIIS ..ttt ettt sttt sttt 530

22.2. CONation SUPPOIT......cctiruieiiriieieiireetenteeeete et ettt et ste e saesaeenesaeesnenneene 530
22.2. 1. CONCOPLS....cnveenrenrerieeteeieeteete ettt sttt et st ene st et sae st enesaees 530
22.2.2. Managing Collations.........ccccecueruereeiienieieniieeenie et 532

22.3. Character SEt SUPPOTIt.......c.couieiiriirieieniieiete ettt ettt eae 533
22.3.1. Supported Character SELS.........ccccevueruiririiinieienieieeteseerese e 533
22.3.2. Setting the Character Set..........ccceevererierienieiene et 536
22.3.3. Automatic Character Set Conversion Between Server and Client........... 537
22.3.4. Further Readingc.cceceviriinienieiiieiniiienieeceetecse et 539

23. Routine Database Maintenance TasKS...........cccvevueerieiieerieeiiesieeieesieeseeeveesreeseessseeveenes 540
23.1. ROUINE VACUUIMINGovieiiiiieiieiesiieiesteeiie ettt sttt ettt see st eaesbeeneenaeeae 540
23.1.1. Vacuuming BasiCsccceevuiririiiniiieiiniieeseete et 540
23.1.2. Recovering DiSK SPaCecocueverienenieieniieieneeteesieee e e 541
23.1.3. Updating Planner StatiStiCsc.cevueruerieienerienieriieienieeeesieeieesee e 542
23.1.4. Updating The Visibility Mapcccccocevievieniriieniiienieneeieneeeene e 543
23.1.5. Preventing Transaction ID Wraparound Failures..........cc.ccoccecenvnienennen. 543
23.1.5.1. Multixacts and Wraparound............cccceecereerenercreneneenencenennen. 545

23.1.6. The Autovacuum Daemonccceevereeieniniienenienieneeeeeeene e 546

23.2. ROUting REINAEXINGcccvvieiiiiiiiieiiieiieriteeie ettt sttt sve e esiaesteebeeeee s 547

xiii

23.3. Log File Maintenance..........ccceereerieeriienienieeieenitesitesieesieesieesreeaeesieesaseeseenseens 548

24. Backup and RESTOTEcovuiiiiiiiieiieiiieieeite sttt sttt ettt ettt e st s beesbeesabesaneenne 550
24.1. SQL DUMP......oouiiiiiiiiiiiiiiicicir e 550
24.1.1. Restoring the DUMPcoceeriiriiiiienienieceeteeteeeete et 551
24.1.2. Using pg_dumpall........cccocuieriiriiiiiienienieeieesiteeeeeieesit et 551
24.1.3. Handling Large Databasescccccceviecienieieninieieneereneeeeie e 552

24.2. File System Level BaCKup.........coccovevieniiiiiiniiincceecececeecre e 553
24.3. Continuous Archiving and Point-in-Time Recovery (PITR)........c..c.ccccccoceeenen. 554
24.3.1. Setting Up WAL ATChiving......ccccocoeiiiiiiiiiniiiiniicenecceeeeee e 555
24.3.2. Making a Base Backupccccoeeiiiiiiiiiniiiiicecccc e 557
24.3.3. Making a Base Backup Using the Low Level API...............cccoceee. 557
24.3.4. Recovering Using a Continuous Archive Backupcccceeveverincnennene 559
24.3.5. TIMELNES . ..c.veeueeeeeiieiiet ettt ettt ettt sbe e ettt esaeseeeneeeaeas 561
24.3.6. Tips and EXamplescccoveeiiiriiierinieeseee e 562
24.3.6.1. Standalone Hot Backupscccocceeviiiiniinniiniinccicniceceeee 562

24.3.6.2. Compressed Archive Logscccevieieniiieninieienceececee e 562

24.3.6.3. archive_command SCIPLS ..cceerieririenierieienieeienieeieenee e 562

24.3.77. CAVEALS ..ttt ettt ettt sttt et ae st et b et e sttt e st sae b nbeas 563

25. High Availability, Load Balancing, and Replication.............ccccevereeneninienenceneneenennen. 565
25.1. Comparison of Different SOIULIONS.cccueruereerererieniinieieneete et 565
25.2. Log-Shipping Standby SeIVErs.........ccccoeeieririinenenienieniteiesieetesie st 568
25.2.1. PIANNING «..viviiiiiieeiteieeiteetcetese ettt sttt st 569
25.2.2. Standby Server OPerationcecceeeeeevereeierereeneneereneseeneeseeeneennens 569
25.2.3. Preparing the Master for Standby Serverscc.cccceeveevvencrveenenencnenenne 570
25.2.4. Setting Up a Standby SeTrVeT........c.cccvverieriiiriiienienieeieeneeste et 570
25.2.5. Streaming Replication........cceevveriieriienienieeieenteste ettt 571
25.2.5.1. AuthentiCationcoeevueieiiiiininiiicieie e 572

25.2.5.2. MONIEOTINZ .eeuveenveeriieeieeieeniieeieeteesieesteesseesteesteesseenseesnseeseenseens 572

25.2.6. Cascading Replicationccecueeriienienieiiiienienieeieesiee e et esiee e 573
25.2.7. Synchronous Replicationccceevierieriiienieniieniieeniieeieeie et 573
25.2.7.1. Basic CoNfiguration.........coccueevveerueeniienieenieeniesieesieeniee e esieenieens 573

25.2.7.2. Planning for Performance.............ccocueevierneeniiniienneenienieeceeene 574

25.2.7.3. Planning for High Availabilityccccceeveeniinviinniiniinieeceeene 575

25.3. FALlOVET ...ttt st 575
25.4. Alternative Method for Log Shippingc..ccceeenieiiininieiiniienceeeenecrenene 576
25.4.1. IMPIeMENTATION «...c..eouriiieiiiiieieieeeetese ettt 577
25.4.2. Record-based Log Shipping..........ccccceeieiiinieiieninienieneeieeeeee e 577

25.5. HOt Standbycc.eouiiiiiiiiiiieiceeeeec et 578
25.5.1. USEI’'S OVEIVIEWeeeiiiiieiiieiieniieeieesiteete et ettt st e bt e sise st esbeessnesae e 578
25.5.2. Handling Query COnflictscoceriererieiieieiere e 580
25.5.3. AdMiniStrator’s OVEIVIEWcceeeerueruierienteeienieeieentesteeeesteeneeseeseeeeesaeas 582
25.5.4. Hot Standby Parameter Reference...........cocoeeeverieninieiininenceceeee 584
25.5.5. CAVEALS ..uteeieiieteeitete ettt ettt ettt b e ettt eae et naean 584

26. RecoVery CONTIGUIATIONoouiruieieiiieieitieitet ettt ettt et ettt b et e bt eaeentesaeeneesaeas 586
26.1. Archive ReCOVErY SEttNEScccevuerieiiriiriieiieieie ettt 586
26.2. Recovery Target SELHINEScc.eeeererierieniieienie ettt sttt sttt sbe e 587
26.3. Standby Server SEttINEZS......coeevererierieriieieie ettt ettt 587
27. Monitoring Database ACHVILYcceevueririiniirienierteesttetee ettt s e e b 589
27.1. Standard Unix TOOIScc.coveiiiiiriiniiieieicieieeseseeeetee e 589
27.2. The Statistics COIECTOT.......cciiiiriiriiieieieieiieere ettt 590
27.2.1. Statistics Collection CONfiGUIaAtioncoeeverereenenerereneneeneneeeennenn 590
27.2.2. Viewing Collected StatiStiCscecuevvereereererierienieienieneeneneesieseereniene 590

Xiv

27.2.3. StatistiCS FUNCLIONSccooviiviiiiieiiiiiec ettt 603

27.3. VIEBWING LOCKS ...ttt ettt sttt sttt st et 605

27.4. DYNAMIC TTACINEeevieiieiiieiieiie sttt e site sttt et e sttt e it e satesabeebeesbeesabeenseebeens 605
27.4.1. Compiling for Dynamic Tracing.........ccecceeveevieriierieenienieniieenieesieeieenne 606

27.4.2. BUIlt-in PrODEScoueeiiiiiiiiieiiiieiceseceece ettt 606

27.4.3. USING PrODES ..ottt 614

27.4.4. Defining New Probesccccoiiieiiniiiiiniiiniiecreseereeeecee e 615

28. Monitoring DisK USAZEcc.cecueruiiieiiniieiiiieieereeeseetete ettt 617
28.1. Determining Disk USAGeccccoueiieieniiiiiiiiieencceeeee e 617

28.2. Disk FUll FailUre.....ccc.coviiiiiiiiiiiiiieeeteeeeeteste ettt 618

29. Reliability and the Write-Ahead Log.........cccocceviiiiiiiiiiiiiiicecccec e 619
29.1. REHADIIILY ..evevvenreiiriietiierieteeete sttt ettt ettt e e 619

29.2. Write-Ahead Logging (WAL)cccooeviirieinininineicieieeneeeeeeceeeeeee e 621

29.3. Asynchronous COMIMIL.......cc.ecuetrirririerierteteineneneeeeeetee e seeeeseeueeresaesaenaes 621

29.4. WAL CONfIZUIALION ...c..eveuieiieiiiiiriintiteietetetteiesre sttt see st saeeeneeveevesaesaenaes 623

29.5. WAL INEEINALS ...cuveiieniiiieieiteeieieett ettt sttt ettt b b nte e eae 625

30. REZIESSION TESS ..cuueeueitieiietiiiieieet ettt ettt ettt st b et e bt eat et e s et eaesbeeanenteeae 627
30.1. RUNNING the TESESeeuiiiieiiiieiieieeiteest ettt st s 627
30.1.1. Running the Tests Against a Temporary Installation.............ccccceeeuennene 627

30.1.2. Running the Tests Against an Existing Installationcccccoceveeiennenne 627

30.1.3. Additional TeSt SUILESccuerrerierieiinieieneetetesieeteste et 628

30.1.4. Locale and Encoding...........coccoeeieviinienienenieneniieienieeeenee e 628

30.1.5. EXIIa TESES ..eeutetieiiiiirieeiesieeiteieettete sttt ettt ettt 629

30.1.6. Testing HOt Standbycoccecveririeriiniiniiniiieienteeeetene e 629

30.2. TeSt EVAlUALION ..c..eouviiiriiiiiiieiienienieetet ettt ettt s 630
30.2.1. Error Message Differences........coecvvevuierieriiiiniienienieeieeneesese e 630

30.2.2. Locale DIfferencesc.ccoeeverierieniinienieneiienienieeiesieeeenie e 630

30.2.3. Date and Time Differencescccccceeeevenerienenienieninicnceeenenecreniene 631

30.2.4. Floating-Point Differences.........coccoevvevieriiiiiiienienieceeiteseeeeeeeee e 631

30.2.5. Row Ordering Differencesccceevueerieriienniienienienieenieesieeieeieesee e 631

30.2.6. Insufficient Stack Depth.........cccueeuiriiiiniiniiiiiiiieceeeeeee e 632

30.2.7. The “random’ TeSt........ccccoverreriirieriinieieneeieteseereste et 632

30.2.8. Configuration Parameters.ccecueevueerieriieriieeniienienieesitesee et 632

30.3. Variant Comparison Filesccccocieiiiniiiiiniiiiininiceenicreceecse e 632

30.4. Test Coverage EXamination..........c.ceceeuieieniinieneneeiieniiniereseeeesre et sieenenneene 633

IV. Client Interfaces 635
31 TADPQ = C LADTATY ettt ettt sttt st e s 637
31.1. Database Connection Control FUNCtions...........ccccceveervieeseeniiineeneenecnieeceeene 637
31.1.1. CONNECION SEINZS . .veveeeirieeiieteetieieeieete sttt ete st tet ettt e see e seesbeeneeneeene 643

31.1.1.1. Keyword/Value Connection Stringsccceeeeeeerereeneseeseeniens 643

31.1.1.2. Connection URISccccoiriiiiiiiiiiieiec e 644

31.1.2. Parameter Key WOrdSccooueiieieiiinieienieieiee et 644

31.2. Connection Status FUNCHONScceeiiiriiiiiniiiee e 648

31.3. Command Execution FUNCHIONScceeoiiriiieniniiienenieeeeeese et 652
31.3.1. Main FUNCHONS ..c..coouiiiieiiiiiieieeiteceicetese ettt 652

31.3.2. Retrieving Query Result Informationcccceeeeveneniencnienencnencne 659

31.3.3. Retrieving Other Result Informationcccceeeevienenvincniencnenenene 663

31.3.4. Escaping Strings for Inclusion in SQL Commands.........c.cceccevereeuennenne 663

31.4. Asynchronous Command Processing.........c.ceccevererienenierieniennieneneeneneenenenne 666

31.5. Retrieving Query Results ROW-BY-ROWccccooiniriininiiiiniiiincnienenceieee 670

31.6. Canceling Queries in PrOgress........cvivierieriiiiiienienie ettt s 671

XV

31.7. The Fast-Path INterface...........cooovviiiiiiiiiiiiieiiie e 672

31.8. Asynchronous NOtHICAIONcevueeriiiriierienie ettt s 673
31.9. Functions Associated with the COPY Commandc..coceeevevereeneriienenieecnennene 674
31.9.1. Functions for Sending COPY Data.......c.ceecueriienienieniieniienienieeieeseeene 675
31.9.2. Functions for Receiving COPY Data........cocevvvievienieniiieniinienieeieeeene, 675
31.9.3. Obsolete Functions for COPYcccecuivieviinirienienieieeeeeneeeeeeseerenene 676
31.10. CoNtrol FUNCHONSeevuiiiiiiiiiiiieniieeieeite ettt ettt et st eiee s 678
31.11. Miscellaneous FUNCHONScooeiriiiiiiirieniiiieetenite ettt 679
31.12. NOtICE PrOCESSINGovieuiiiieiieiiiieienieeiete ettt st 681
3113 EVENt SYSIBIM .ouiiiiiiiiiieieiceeee et ettt 682
31131 EVENt TYPES ..ottt 683
31.13.2. Event Callback Procedure............cccccevieriiiniiiinieniieniiinicniceiceeceeeee 685
31.13.3. Event Support FUNCHONS.......cc.oeiiiiiieiirieeieieeiceee e 685
31.13.4. Event EXampIecccoeiiiiiiiiieiieieeieee e 686
31.14. Environment Variablesccocoiieriiririininiene ettt 689
31.15. The Password Filecccooieiiriiiiienieeee ettt 690
31.16. The Connection Service Fileccccoviiiiiiiiiniiiiieiceeeeese et 690
31.17. LDAP Lookup of Connection Parameters..........c.ccecuevereerieneenienenienenceienene 691
3118, SSL SUPPOIT..c.etiiiiiieiieiieiesteeite ettt ettt sttt ettt ettt e b sbeessenaeeae 692
31.18.1. Client Verification of Server Certificatesc..cecceverveerereenenensnenenne 692
31.18.2. Client CertifiCates.......ccoererieriirieienieeienieeitentesteete sttt nieene 693
31.18.3. Protection Provided in Different Modesccceceverreenenvencnencienenne 693
31.18.4. SSL Client File USage.......ccccoerieriirieienieiieieniieienieetenee e 695
31.18.5. SSL Library InitialiZationc.cccccvevieriieeiiienienieeieeneeseeeieenieeseee s 695
31.19. Behavior in Threaded Programs............ccoecvevvieenienieeiieenienieeieeieesee e 696
31.20. Building libpq Programs............cccceerierieniiiiiieienie et s 697
31.21. EXamPle PrOZrams.........cocveviierierieiiienienieeieeitesitesieesiee st e eaeesseesiseenseeseens 698
32, LarZ8 ODJECLS ..eeuvieiieiieeieeiite ettt ertteste et et e st e et e e bee s it e sabeesbeesatessbesabeenbeesatesabeenbeenaeesasas 708
32,1, TEOAUCHION ...ttt sttt et sae st sae e nneeae 708
32.2. Implementation FEAtUrescccceeviiirieriiniiiieeiteste ettt st 708
32.3. CHent INTErfaCeS. ...cc.eecviriieiiriieiieiereciet ettt ettt ettt 708
32.3.1. Creating a Large ODJECt........cevueriiiiiienienieiieeitesite ettt 709
32.3.2. Importing a Large ObJECT.......cccuevuirriiinienieiieeiterteeieeitesite et 709
32.3.3. Exporting a Large ODbJect........cceecveviirierieniiiiienieieneeeeeeeereneereiene 710
32.3.4. Opening an Existing Large ODJect........cc.coceecvevierieciinincieniieeenecreeene 710
32.3.5. Writing Data to a Large Object..........cccceririiiininiiinieecnceeeeneeieene 710
32.3.6. Reading Data from a Large Objectcoccoceeviiiiiiiininiiniicciccieeene 711
32.3.7. Seeking in a Large ObJect..........cccecirieiiiniiieiinieeiceceeeceseeeie 711
32.3.8. Obtaining the Seek Position of a Large Object...........ccccevriiiiniiicncnne 711
32.3.9. Truncating a Large ODJECtc..couecuriririiniinienieieeneneneneeeeeee e 712
32.3.10. Closing a Large Object DeSCIiPLOrcoeeeerierrierienieeieneecesie e 712
32.3.11. Removing a Large ODJECtceveriirierienieeieieeiieeeieee e 712

32.4. Server-side FUNCHONSc.ooiiiiiiiieiesieeiee et 713
32.5. EXample Programccccooiiiiiiiiiiinieee ettt 713
33. ECPG - Embedded SQL 0 C...oooiuiiiiiiiiiieiteee ettt st 719
33.1. The CONCEPL......oouiiiiiiiiiiiii e e s 719
33.2. Managing Database CONNECTIONSc..coueruieruiruierierienienienieetesieetenieseeniesieeeenaeene 719
33.2.1. Connecting to the Database Servercccoceverievienieniencnienenecenene 719
33.2.2. ChooSing @ CONNECIONc..eeuvetertieiiniieienieeiteienteetenieeete st sieeseesbeearenieene 721
33.2.3. CloSing @ CONNECHION........eruerureieriieiinieetenieeitetesteete et st st esaesbeearenieeee 722

33.3. Running SQL Commands..........c.cceceevuerierieniineenenenienieneetesieeteseeseentesieenenieene 722
33.3.1. Executing SQL Statementsccccecueveeruererienieneenieneneeneseeneseenenienne 722

xvi

33.3.2. USING CUISOTS...ecuttetieruierieeieeniieeteeteesitestesteesseesatessteesseesssessseenseesseessss 723

33.3.3. Managing TranSactionsccccueeveerieerieniiernieeniienteeieenieeseeseeenseeseeesaees 724
33.3.4. Prepared StatemENtS.cocueerveerierieeriieniienieeieesite et e st esatesteesaeesaeesaees 724

33.4. USINg HOSt Variablesc.eevuieriiiiiiiiieriienie ettt ettt 725
33.4.1. OVEIVIBW ..cueiiiniieiiiieeieetenieetete ettt ettt sbe e e sae st ae s eanenne e 725
33.4.2. DeClare SECHIONS.cc.eoeevirerrerenieetenieetente et st ere st eeeesaesaeesnesaeeenenneene 725
33.4.3. Retrieving Query ResultS........c..coceviiriiiiiniiiiiinieieieecceecesecreiene 726
33.4.4. TYPE MAPPINGoveiniieiieieiieeieieetete ettt s 727
33.4.4.1. Handling Character Stringsccceceevereeneneeceeniieeenneseenennens 728

33.4.4.2. Accessing Special Data Types........ccccceverieveniniininicniieeieene 728

33.4.4.2.1. timestamp, date.........cccceeveirieenienierieeeeee e 729
33.4.4.2.2.I0tEIVAl ..ot 729

33.4.4.2.3. numeric, deCimal......cccooueeeeeeeeeeeeeee e e 730

33.4.4.3. Host Variables with Nonprimitive Typescccceeevveererencienienns 731

334431 AITAYS weoveeiiiieieeit ettt 731

33.4.4.3.2. STIUCHUIES «..uveenveeieieiieeieenitenteeieeeiee ettt saee e 732

33.4.4.3.3. TYPeAefS..c..coiueeiieieiiriee e 733

33.4.4.3.4. POINLETS ...c.veeuiiiienieiieiieie sttt ettt 734

33.4.5. Handling Nonprimitive SQL Data TYPes.......cccceveevierenrieneneeneneeieniene 734
33.4.5. 1. ALTAYS .ottt ettt sttt 734

33.4.5.2. COMPOSILE TYPES ..cuverveemeirieenieiiniieieeitenee sttt 736

33.4.5.3. User-defined Base TYPESccceevevireeniiniineninienieeeencseeienen 738

33.4.6. INICALOTS.couiiiiiiiieieieiieeercce e 739

33.5. Dynamic SQL......ccieiiiiiieiieiieite ettt ettt st sbeebeetae s 739
33.5.1. Executing Statements without a Result Setccccecveviencienciieniennenen. 739
33.5.2. Executing a Statement with Input Parametersccoecvevevevcieeneeneennen. 740
33.5.3. Executing a Statement with a Result Setcccccoeceviiiniiniiniiinieeeen, 740

33.6. PELYPES LIDTATY ...cuiiiiiiiiiiiieiiete ettt sttt sttt st e be e 741
33.6.1. Character StrNEZS....cververieeriieniienieeieestesteeteesitesatesbeesbtesiresateenbeesaeesanas 742
33.6.2. The NUMETIC TYPE ...veeveiereiiiiieiieeieeiteteete ettt ettt et 742
33.6.3. The date TYPE...cccveerreerieeiieieeniteete ettt ettt ettt st e e e 744
33.6.4. The timestamp TYPE.....ceeverriierieriiiiienieete ettt ettt 748
33.6.5. The INterval TYPEeevuieriiiiieiieeiieieeteee ettt 751
33.6.6. The decimal TYPE.....coveeriiiiiieieeieeieeteee ettt 752
33.6.7. errno Values of pgtypeslibc..cocoevuivieiiniiiiiiinieiiieecceeceseeee 752
33.6.8. Special Constants of pgtypeslib.........ccccceviiiiiiiniiiininiiniceneeeee 753

33.7. USING DESCIIPLOT ATEASeorvieureniiieeiieiieiietieeeeee s eereste ettt eeesae e enesaeenesneene 754
33.7.1. Named SQL Descriptor AT€asccccecereeierienieiieniieeenieeeeeeseenenene 754
33.7.2. SQLDA DeSCIiptOr ATEASccueruieiieiieieniieieienieeeeeie e e s enesnene 756
33.7.2.1. SQLDA Data StIUCIUIE........cccvveeeeeirrieeeeecireeeeeecireeeeeeeveeeeeenenes 757

33.7.2.1.1. sqlda_t StruCturecccceeveirieeneeniiiieeeeececeeeeee e 757

33.7.2.1.2. 8qQIvar_t StrUCIUTEcocveeriiriieeeniiereeeeeee e 758

33.7.2.1.3. struct sqlname Structureccceeeveerierereeneneesiennenne 758

33.7.2.2. Retrieving a Result Set Using an SQLDAccccccceeviveninennee 759

33.7.2.3. Passing Query Parameters Using an SQLDA..........cccccecerieennen. 760

33.7.2.4. A Sample Application Using SQLDAcccceevininieninicenennen. 761

33.8. Error Handlingccuevuieiirinieiiiieiesieeee ettt s 767
33.8.1. Setting Callbackscccevererieriinieiineeieseeteesttee et 767
33.8.2. SQLCA ettt sttt 769
33.8.3. SQLSTATE VS. SQLCODE ..cviuiiiiuiiiiiiiiiiiiiiicinie e 770

33.9. Preprocessor DITECLIVEScoueviirierieieniieieieeieeie ettt ettt 774
33.9.1. Including FIlescooveeriniiiininieiieieceteeteecetee e 774

XVii

33.9.2. The define and undef DIT€CHIVEScccvveeieerivrieeeeeiireee e 774

33.9.3. ifdef, ifndef, else, elif, and endif Directives..........ccoovvvvviniviviveeeeeeenneennn. 775
33.10. Processing Embedded SQL Programs.............cccceevierrieeneenienieenieneesieeieeeeene 776
33.11. Library FUNCHONScooiiriiiiieiieniiteieesitesite ettt st st 777
33,12, Large ODJECLS...ceeuteeiieiieeiieeiteeite sttt ettt ettt sat e st e sbe e s bt st e bt e bt e sateebeebee s 777
33.13. CA4 APPLICALIONS ..ceiniieiiiiieiieienieteieetete ettt ettt et st ne s nneeae 779

33.13.1. Scope for Host Variables..........ccccecevierienirienenieiinieeeneeeeeseereiene 779

33.13.2. C++ Application Development with External C Module....................... 781
33.14. Embedded SQL COmmandscccceecuvreeiuererieeeniieesreeeieeeeireessneesseeessseessnnens 783

ALLOCATE DESCRIPTORouviiiiiiieeceeee ettt 783

CONNECT ...t e e et e e e e e e eaeeeenneas 785

DEALLOCATE DESCRIPTORoooootiiieieeeee e 788

DECLARE ...ttt e e e 789

DESCRIBEo e eae e e 791

DISCONNEC T ... et e e et e e et e eeaneas 792

EXECUTE IMMEDIATE ... 794

GET DESCRIPTORoooiiiiieeeeeee et e 795

OPEN ..ottt et ee e et e e et e e te e e e teeeeateeeaaeas 798

PREPARE ...t ettt et e e e e e et e e 800

SET AUTOCOMMIT ...ttt et et e 801

SET CONNECTIONoooiiiiiiieeeeeee ettt e et e 802

SET DESCRIPTORooootiiiieeeeeeee ettt ettt e 803

TYPE.ottt et et e e e e e e re e e abeeeaneas 805

VAR ..ottt et e e et e e e ta e e s beeeeabeeenreas 807

WHENEVER ..ottt et re e e veeeens 808
33.15. Informix Compatibility MOEcceeviiriiiiiiiiienieeieetesee e 810

33.15.1. Additional TYPESceveeeiiiiienieeieeieerteete ettt ettt st e e 810

33.15.2. Additional/Missing Embedded SQL Statementsccccceecveerueenneennee. 810

33.15.3. Informix-compatible SQLDA Descriptor Areas........cc.ceeeeeeveeeenveeneeennnn. 811

33.15.4. Additional FUNCLIONS.........c.eevieriiiiieriienie ettt 814

33.15.5. Additional CONSLANLS........cc.eerieriirriieriienieeieenteste ettt esieesiee e 822
33,16, INLETNALS ...enieiiieiieeeete ettt ettt sttt st eb e b 823

34. The Information SChEMA.ccueevuiiriiiiieiieeiieeteee ettt sttt st e s 826
7 o T N o TR o] T4 4 T SRR 826
34.2. Data TYPES ..ottt ettt et st 826
34.3. information_schema_catalog _NAME ..eiieeeiieeeeeeiirreeeeeeireeeeeeenreeeeeeenseeeeas 827
34.4. administrable_role_authorizZationsS .o ieieieeeeeeeeeeeeeesirsreeeeeeees 827
R Rt o NIk Ty o Y RSN oo B I =Y SRS 827
R ST ol ot ok S o1 N == TRt 828
B,] C AT A O O T SO S e e ettt e e e e e e e e e ettt e e e e e e e e e ee e ettt ———————————. 832
34.8. check_constraint_roULine_USAGE .cciiieeeiiiiiieeeciieeeeeereee e e eetree e e erree s 833
34.9. CheCk _CONSETAINES wiiiiiiiiiiiiieieciierreeee e ee e e eeee e s eeeeeeeeeeeeeeessasaranereeees 833
34,10, COL LAt dOnS umiiurrirereiiiieeeeeeeeeeeeeeiitrrrereeeeeeeeeeeeeeesesararaarereeeeeeeeeeseeaesararararaeaes 834
34.11. collation_character_set_applicability .cciiiiiiieeeiiiieeeeeeneeenn. 834
34.12. coOlUumN_dOMAIiN_USAGE wureeieeruireeeieirireeeeieireeeeeiitreeeeesetrereesssraseeessssreseessssseees 835
34,13, COLUMN_OPEIOMNS ttttieiiiiiiieeieeiieeeeeettte e e e eettreeeeetbeeeeesestaeeeessssaeeeeessreeeeeansseeens 835
34,14, COLUMN_PTiViLeges iiiiiiieiiieeitieeeitieeeiteeeeteeeeteeeeteeeeteeeeeteeeeaeeeeteeeeaseseeaneas 836
34,15, COLUMN_ UL TS AT tittiieitiieeitieeeiteeeeteeeeiteeeeaeeeetreeeetseeeetseeeeseeeesseeassesansseseeseeas 836
34,16, COLUIMIIS tiieuriieeitieeetieeetteeeetteeeetaeeetaeeeteeeeaaeeeeasaeeetseeeessaeesseeensseeanssesassesanssesenseas 837
34.17. constraint_COLUMN_USATE wiiiiireerrereeieeeireeeeireeeereeeeteeeenseeessseessesessesensnens 842
34.18. CONStraint _tabl e USAGE i iiiieieeeiiieeeeeeeireeeeeeeireeeeeeiraeeeeesareeeeennareeees 843
34.19. data L YPE PrivVileges ciimiieeiiiireieeeieieeeeeeeiteeeeeeerreeeeeentaeeeeesareeeeeeerreeees 843

XViii

34.20. AOmMAIin. CONSEIAINTS tiittettititteteeeeeeeeeeeeeeeeee et eeeeaeeeeeeeeeeeeereeeaaenaaaaaaeaeees 844

34.21. AOMain_ UL _USATC e iiiitrieeieeteeeeeeeitreeeeeeeiteeeeeeeereeeeeeeitreeeeeeeraeeeeeetreeeeesnrreeeas 845
34,22, AOMAIIIS tieetrieirieeerieeiieeesteeestteesstteesteeeesseeessseeassseeassseessssaassseessssesssseeanssesassses 845
34,23, L EmMENT LY DO tettrieeeeeirreeeieetreeeeeeett e e e ee e e e e e e e e e etra e e e e eebaa e e e eetraaeeeenrraeean 848
3. 24, CNIAD L A T Ol S aueeeeeeeee et e e e e e et ——————aeaeae e e e et e et —————————————. 851
34.25. foreign_data_WrappPer_ OPLiONS e eeeiireeeeeeitreeeeeeireeeeeeerreeeeeeerreeees 852
34.26. fOreign_data_WIaPDETS ciererierrreesirreerirreesireeesseeasseesssssesssseesssseessseessssesssssees 852
34,27, foreign_Server _ODPLIiONS miiiiieeiieeeiteesrteesteeesereessreeesreesssseessseeensseeennses 852
RN T oY aloh K oM 1= a4 = of = B P 853
34.29. foreign_table_OPLiONS e eieeeiieeseeesreeesteestreeeereessneessseeennseeesnnens 853
RGO} aroh K o ur=Y o Y K=Y SRR 854
34.3]. KeY_COLUMN_USAGC ciiiitiiieeeeeriieeeeeitreeeeeeetteeeeeeitreeeeeeesseeeeeeassaseeeeasreeeeeaassseeens 854
3.3 DAL AME L T S uuiiiiieiiiieeeeeiteeeeeette e e e e ettt e e e e eette e e e e ette e e e e eetbeeeeeeataeeeeeanrraeeeeanraaaaas 855
34.33. referential CONSTIAINTS it e e e e e e eee et e e e eaees 858
34.34. r0le_COLUMN_GIANTS tiiieiieeirieeeeeeiiteeeeeeeteeeeeeeisreeeeeaesreseeessssaseesassseseesssssssens 859
34,35, r0le_TOULINE_GTANTES citiieiiieeitieeeteeeeiteeeeteeeeteeeeteeeeeteeeeeteeeeeseeeeeseeeeaseseeaneas 859
34.36. 101 _t a1 _GTaNt S wuiiiiiieeeieeeiieeeiteeeeiteeeeiteeeereeeeaeeeeteeeeeseeeeeseeeeteeeeaseeeeaneas 860
34,37, £0le_UAL_ GIrant S .iiiiiiieeiiieeetieeeiteeeeeteeeeiteeeeteeeeteeeetaeeeeteeeestseeeseeseateeeeaseeeeaneas 861
34.38. £0lEe_USAGE_GTANES wurreiriieeitieeeitieeeiteeeeiteeeeiteeeeteeeeaeeeeteeeesseeeeesseessesaesseseenneas 861
34.39. rOUtiNe_PIrivViLleges iiiiiiieiiieeeitieeeiteeeeteeeeteeeeteeeeteeeeeteeeeeaaeeeteeeeareseeaneas 862
3440, LOUT IINES cetiieiiieeetieeeteeeetteeeeteeeeetteeeteeeeaeeeeaseeeetbeeeeaseeesseeesseeeassesaasesanasesennseas 863
344, SCREMALT A cetiieitieeeiieeeiee ettt e eeteeeeetteeeteeeeteeeebeeeeabeseeaaeeetaeeetseeeaaeeaabeeenareeenreas 869
R Yo (=Y o Lo L= Y= TSRS 869
34,43, SOL_FEATUTES cierteiieeeeitreeeeeeeeeeeeeete e e e eeee e e e eerateeeeeeetaeeeeeeeataeeeeenareeeeeenaareeeas 870
34.44. sql_implementation_INFO wiiieieeeeiieee et 871
34,45, SOl _LANGUAGES teureeeeeeitrrieeeeeiereeeeeriareeeeeeitareeeeesteeeeeeestaeeeeeesrareeeenareeeeennrreeeas 872
34,40, SAL_PACKAGTES ceeerreeeeeeitrrieeeeeieeeeeeesiteeeeeeeetareeeeesteeeeeeestreeeeeeerareeeentreeeeeanrreeees 872
R =Yoo Y- o if= TSROSO OO PR STERRR ORI 873
3448, SOl S1 Z AN Gurtiiiiiiitriie ettt e e et e e e et ar e e eetaeaeeeenrraae s 873
34.49. sl _S1zZing ProfileS ciiiiieeieiiiieeeeeiieee e eerraee s 874
34.50. £aDLe CONMSETAINES teettteeitiiitteeeeee e e e e e et e ettt eeeeaeeeeeeeeeeeeereeeaaaaaaaaaaeeees 874
REZBeN B =Y N RN oF ok v R =T 1= Y- FUU R U U OO PRSP RPN 875
T B oY oY Y= TSRS PRR 876
34.53. triggered_UpPdate_COLUMNS .iicuiiirieeeeeireeeeeetreeeeeeerreeeeeeenreeeeeessreeeeeeearreeeas 877
7 B T ok e 1o =8 o= USRS 877
7/ 3T TR DUe Lol o8 o i I =Y 1N = SRR 879
K7 e IR PEETTe TN o bk v B K=Y oY= BRI 880
K7 el B PETSValile IS8 i s =Ye L o 4 o T=Y= SOUN PR 880
R e RPETSVall (o) o) ok Bale il o) o) ul e s k= SNSRI 882
34,59, USET_MAPDPINGS teetreerreeeriiieesiieeeitteesteeeeseeesseeessseesssseesssseeansseessssesssseessseessnses 883
34.60. VieW_COLUMN_USAGE tirrrreeeeeirrrreeeeirreeeeeiirrreeeeaisreseeesesseseessasaseesesssseseessssssseens 883
34.6]. VieW _TOULINE_USAGE ciiiiiieeeiieeetieeeteeeeiteeeeeeeeeteeeeaeeeeteeeeeteeeeeaeeeeteeeeseeeenneas 884
34,602, VieW £ AL USAGC citiiiitiieeeieeeetee e et e eeitee e et e e et e e eeteeeeteeeeeteeeeetae e eteeeeteeeeaneas 884
303, VA EWS ceutiieetie ettt e e e et e e et e e eett e e eett e e etteeeteeeeateeeeaneas 885
V. Server Programming 887
35. EXtending SQL....c.ooiiiiiieeeeee ettt sttt 889
35.1. How ExXtensibility WOTKS.......coccoviiiiiiniiniiiiiieienceteieeiteesieeeese st 889
35.2. The PostgreSQL Type SYStIM......cceeiiriiriiniinieieneeieniesitetesteete et 889
35.2.1. BASE TYPES ..ttt sttt sttt ettt 889
35.2.2. COMPOSIE TYPES..eeuiirureeiieiiierieeieeieenteete et esetesiteebeestaesaesebeenseesanesenas 889
35.2.3. DOMAINS «.enveitiniieiieiinieeiesieet ettt ettt ettt ettt sae st eae e nie e 890

Xix

35.2.4. PSEUAO-TYPES ..eeeuviiiieiieeiteitesite ettt sttt et sttt st ebe e 890

35.2.5. POlymOTPhic TYPES ..eevueeruiiiiieiieeiieiteniteete ettt ettt 890
35.3. User-defined FUNCHONSccoeiriiiiiiiiiiiiiiiicccccceeeec e 891
35.4. Query Language (SQL) FUNCLIONScooeeriiiiiiiiiinieeieeeeseceeeeeee e 891
35.4.1. Arguments for SQL FUNCHONScccceevieriiiiiiiiieieeeeteeeeeeeeeee e 892
35.4.2. SQL Functions on Base TYPesccccevieriieriiienienienieeniteneeeieeieesee e 893
35.4.3. SQL Functions on Composite TYPESccccevverrereecrenireenineenieneerenneene 894
35.4.4. SQL Functions with Output Parametersccccccceeeevveninienencecencne 897
35.4.5. SQL Functions with Variable Numbers of Arguments.............ccccccuenee 898
35.4.6. SQL Functions with Default Values for Argumentscccccceeeeencnne 899
35.4.7. SQL Functions as Table SOUICESccceeeurerciieeriiieeeie e 900
35.4.8. SQL Functions Returning Setscccccoviiiiiiniiiininicneiecenecieene 900
35.4.9. SQL Functions Returning TABLEc.cccceteverrerueeeenenersenseeeneeensensennenne 903
35.4.10. Polymorphic SQL FUNCHIONSccoeceviruiniinienieieinineneneeeeeeeneseenenne 903
35.4.11. SQL Functions with COllations..........cceeeueerviereerieesiienieeieereesiresseenenes 905
35.5. Function OVerloadingc.cecuereiierieniieienieeteie ettt st 905
35.6. Function Volatility Cate@OIiesc..eeuerterieruerierienieeienieeiteiesteeteseesiee e sieessenieene 906
35.7. Procedural Language FUNCHONScoeeieriiiienininienieeiieeieete et 908
35.8. Internal FUNCHONSccuevveiiiiiiiriitceeeeteteee ettt s s 908
35.9. C-Language FUNCHONS.cceviiriiiiiienieeieeeicee ettt 908
35.9.1. Dynamic Loading.........ceocererierienieniiniiieneeteesieeeeete et 909
35.9.2. Base Types in C-Language FUnctions.........cc.ccoceveevvenerrieneneenenencnenenne 910
35.9.3. Version 0 Calling CONVeNntionsccceveeieniereerieneneeneneeneneesnenenne 912
35.9.4. Version 1 Calling CONVeNtionsceceveeienieneenieneneeneneeneneesnenenne 915
35.9.5. WIItING COAE....ccuviiiieiieeiieieeteete ettt ettt st ettt eaeesaee e 917
35.9.6. Compiling and Linking Dynamically-loaded Functions...........c..ccccu...... 918
35.9.7. CompOSite-type ATZUMENLS ...ccuveruvieiiereierierieeneeeneeeieesieesresreesseesseennnes 920
35.9.8. Returning Rows (Composite TYPES) ..ccovververrirerierieniieniieneeeieenieesieenenes 922
35.9.9. REUINING SELS..cuvtiitiiriieeiiitienie ettt ete ettt e site st e bt e satesnteebeesaeesaeas 923
35.9.10. Polymorphic Arguments and Return TyPesccoceevveenienierciveneeneennn. 928
35.9.11. Transform FUNCHONSc.cecveriirieriinieienecteeneeteteeeesee e 930
35.9.12. Shared Memory and LWLOCKSccoceviiiiiiinieniiiieiieieeeeeeeee, 930
35.9.13. Using C++ for EXtensibility........ccccceevieriiiiniienienieiiieieeieeieeeeeeee 931
35.10. User-defined AZZIEALEScccouereeieriirieriiriereneerenreeieeresteeeesaesaeenesieeenenneene 931
35.11. User-defined TYPEScc.eecueruirieriiiieieniieiecte ettt 933
35.12. User-defined OPErators.........ccceouerieieriieieriieterieneeeesieeeere e eeesaeeeessesieenenneens 937
35.13. Operator Optimization Information............ccceeereeiiininiicininicneeceseeiene 938
35.13.1. COMMUTATOR cutiuieetieteenresieeieeteete et saeesee s et enesieenesneeseesaesaeenesreeanenene 938
35.13.2. NEGATOR ..ottt sttt ettt ettt st ae s e ene 939
35.13.3 . RESTRICT wuieuiiiuiiieiieeie ettt sttt nesae e e s ae s eane e ne 939
35,1314, TOTIN ettt ettt sttt bbbttt sttt 940
35.13.5. HASHES .ottt st s st s s 940
35.13.0. MERGES . c.ceutiutiuirtireteteitettetesiesteseese et eue sttt st ene b s e saesae et saesnenenne 941
35.14. Interfacing Extensions To INdeXes........ccceoereerireriieninieereeese e 942
35.14.1. Index Methods and Operator CIassesccceeeeruereeienenieneneeieniene 942
35.14.2. Index Method Strategiescecvevuerierienerienienieesieetenee e 943
35.14.3. Index Method Support ROUHNESccceverienienieniiniiienceceeneeeiee 944
35.14.4. An EXQAMPIE ..c.ooouiiiiiiiiiiiiiieeeeteeeeee ettt 947
35.14.5. Operator Classes and Operator Families..........cccccccevvevveeninienencnnienenne 949
35.14.6. System Dependencies on Operator Classeseoeeeerereenenencvenenne 952
35.14.7. Ordering OPETratorscecuervereerierieerierenienienieetenieeseeneesseesaesieesensenne 952
35.14.8. Special Features of Operator Classes.........ocverververrieereenieennieenieeneennnes 953

XX

35.15. Packaging Related Objects into an EXtENSionceceeveereirieeneeneenieeieeeeene 954

35.15.1. Defining EXtension ODJECESc.ceveerieriieriiienienienieeniieseeseeenieesiee e 955
35.15.2. EXtension Files.........cccoooiiiiiniiiiiiiiiiiciciccc 955
35.15.3. Extension Relocatabilitycoceevierieniiiiiiienieniecieeitesceeeeeee e 956
35.15.4. Extension Configuration Tables...........ccecervienieniiiniieenienienieeeeseeene 957
35.15.5. EXtension UPdatescooeerieriiiiiienienieeieeiteste ettt 958
35.15.6. Extension EXamplec..cccooieieiiiniiiiniiiiieniceeecceeeeseeene 959
35.16. Extension Building Infrastructurecocooceevinieiieninieiiniecnececeseeieene 960
B0, TIIZEETS ..ottt ettt ettt et st s e e sttt en e st ene s ne it ene 963
36.1. Overview of Trigger BEhavior..........ccccccoeciiiiiiiiiniiiiincccecc e 963
36.2. Visibility of Data Changes............c.ccceviiiiiiiiiiiiiiiiieieeeeeeeese e 965
36.3. Writing Trigger Functions in Cccccoeoeviriniinenenienieieeniseseeeeeeeceie e 966
36.4. A Complete Trigger EXxample...........cccoooiiiiiiiiiiiniiiiiiiiceere e 968
37 EVENE TIIZZEIS ettt ettt et ettt sae s a e nee 972
37.1. Overview of Event Trigger Behaviorc.ccccocvvenevieiieinininincnccencncnceeee 972
37.2. Event Trigger FIring MatriXc.ccoceeiiiiieieniieiene ettt st 972
37.3. Writing Event Trigger Functions in C..........ccocoviiiiiininieiinieieneeeeesceeee 975
37.4. A Complete Event Trigger EXampleccocoooeeviiinieniniiinieienceieenceeene 976
38. The RUIE SYSIEIMeouiiiiiiiiiiiiieieeitetest ettt sttt et se e st s ane e e 978
38.1. The QUETY TIEC.....ccueeiiriieieniieiieeettete ettt ettt st 978
38.2. Views and the Rule SyStemc.ccooeevieririiniiiiiieneiieieeteeeeeseeee e 980
38.2.1. How SELECT Rules Workcccocooviiiiiniiiiii, 980
38.2.2. View Rules in NOn-SELECT Statementscceceeeerereruenueeeeeeruennenenns 985
38.2.3. The Power of Views in PostgreSQLc..cocceverieiiiniinninenicneneeienene 986
38.2.4. UPAAtiNg @ VIBW....ccueevieeiiiiieriieeieeieesiteete st et e sitesteesaaesanesateeaeesanesenas 986

38.3. Materialized VIEWSccccueiiiiiiiiiiicicicicteceee e 987
38.4. Rules on INSERT, UPDATE, aNd DELETEcccoectvuirueieieirieniinieieeeeeeeneene e 989
38.4.1. How Update Rules WOTKccceecuiiriiinieniiiiiieienieceeteseee e 990
38.4.1.1. A First Rule Step by Step.....cocveevieniiriiiiieieeieeeeee e 991

38.4.2. Cooperation With VIEWS........ccccueriiiriienienieiiteniteste ettt 994

38.5. Rules and Privi@ZESsccecuieriiiriieiiiiiieniesiie ettt ettt st 999
38.6. Rules and Command Status...........ccocuevviiiiiiiiniiiiiiiiieeeceece e 1001
38.7. RUIES VErSUS TIIZEETSveerureeiieiieniieiieeitenite ettt ettt ettt et et e st e s sanes 1002
39. Procedural Lan@UAaZESccueeieriiiriienieeie ettt ettt sttt sttt e beeaee e 1005
39.1. Installing Procedural Languagesc.cccceeeeveneriieniiniecienieieneeeeeeeeeeeeeeee 1005
40. PL/pgSQL - SQL Procedural Languagec..ccccccueeeeruirienieninieieeeeieneeeenie e 1008
40. 1. OVEIVIEW ettt ettt ettt sb e sttt e bt st e bt e bt e satesabessbeesatesaseenbeenns 1008
40.1.1. Advantages of Using PL/pgSQLccccociiiiiiiiiiiiiiinieeeeeeeee 1008
40.1.2. Supported Argument and Result Data Types..........ccccccceviiiininicninen. 1008

40.2. Structure of PL/PZSQL.....c.coiriiiieiiiiininieneecetne sttt ettt 1009
40.3. DECLATALIONScueeveeieetieiieteett ettt et e sttt ettt et e ste et esae e st e besbeenteseeeneesaeeneensesreens 1011
40.3.1. Declaring Function Parameters.............ccoccevererieninienenceieneeeneneeane 1011
40.3.2. ALIAS ittt e 1014
40.3.3. COPYING TYPES -enveviemieriieiienieetieieeit ettt sttt ettt sbe s seeene 1014
40.3.4. ROW TYPES.ccuutiiiiiiieeiieiiteiteeite ettt sttt ettt e 1014
40.3.5. RECOTA TYPES .venvetienieiieiieieettetestt ettt sttt st seeeae 1015
40.3.6. Collation of PL/pgSQL Variablescccoocereruenenienineeieneneenenene 1015

40.4. EXPIESSIONSeeueitieuierieniteieettetesteete st sttete st eatesteestesbesbt e besbeeatesbeebeenaesbeensenbeens 1017
40.5. BaSIC SEALEIMENLS.......c.eeueeuiriiriiieieieiteiieteste ettt sttt ettt e s enesae e 1017
40.5.1. ASSIZNIMENL ...coveeuiiiieiiiiiiiteteeieet ettt sttt ettt st e b saee e sbeeas 1017
40.5.2. Executing a Command With No Result........c..cccccoevievinnninnncncnen. 1018
40.5.3. Executing a Query with a Single-row Result.........cccccecevvervinenencnnn. 1018

xxi

40.5.4. Executing Dynamic Commandscccceerierieriieenienienieesnieenieneeennes 1019

40.5.5. Obtaining the Result Status........cccecverieriieniienienieeeeneeeeeeesee e 1022
40.5.6. Doing Nothing At Allcceeviiriiiiiienieeieeiteeeeee et 1023

40.6. CONLIOL SIIUCTUTES......everureriieeiiniietenie ettt ettt ere st enesaeeseesaesaeesnesieas 1024
40.6.1. Returning From a FUNCHONc.ccooviiriiiiiiiiieeeeeeeeeee 1024
40.6.1.1. RETURN ...coctiiiiiiiiiiie e s 1024

40.6.1.2. RETURN NEXT and RETURN QUERY ...cccccccevieruerueeeerueneenennenns 1024

40.6.2. CoNAItIONALSeevvieriiiiieeiierteeie ettt ettt 1026
40.6.2.1. IF=THEN ..ectteterterteererieeteteeeeee st enesae s e e saeeaesaeesnesnesaeenesneens 1026

40.6.2.2. IF-THEN=ELSE .e.eetttruteietieeeienteeeesieeeeresneeeeseeeseesseseenesnens 1027

40.6.2.3. IF—THEN=ELSTIF .c.eectrerterteurererrerrinrensensenteneesessessessensenseneesessenses 1027

40.6.2.4. SIMPLE CASE ..eoiiruieieitieieteeiiete et eee st eteie st ee st eeesseseessesaens 1028

40.6.2.5. Searched CASE......coviiuieieriieieieeeee ettt saens 1029

40.6.3. SIMPIE LOOPS ..ottt 1029
40.6.3.1. LOOP utiuiitieiieie et ettt eete e ettt sttt st et ebe e e bt estesbe st e nnesnens 1029

40.6.3.2. EXTIT cueruirrireienieneeiteieste sttt et sae st s et et ese s sae s e st enesaenen 1030

40.6.3.3. CONTINUE ..eteteuteuintentententeneeneesesressessensesteneesessessesseeenseneesessenes 1030

40.6.3.4. WHILE cvevtireieieeetteiestestetee et et sr st et ese e sae s st enesnenen 1031

40.6.3.5. FOR (Integer Variant)coccevereerenenienienienienieetenieseenienieens 1031

40.6.4. Looping Through Query Resultscccceoenirieninieniincineneniecnene 1032
40.6.5. Looping Through ATITaYsc..ccceveeierereeneninienieeieenieseeee et 1033
40.6.6. Trapping EITOTSc..cocuiriiiiiiiieiiieeientc ettt 1034
40.6.6.1. Obtaining information about an error.........c..ceceveeeerereenuennenne 1036

40.7. CULSOTS ..ttt ettt ete ettt et s e st e e sb et sbe e st esaesbt e besbtentesbeemeesaesbeensenbeens 1037
40.7.1. Declaring Cursor Variables...........ccververeieeniienienieenieenre e eiee e eee e 1037
40.7.2. OPENING CUISOTS ..veeeereriiieriieniieeieenieestesieesitestesseesseessesssessseesssessesnnes 1038
40.7.2.1. OPEN FOR QUL Y eeetererreeeeireeeeeeeirereeeesiiseeeeeesissresessissessesessseeses 1038

40.7.2.2. OPEN FOR EXECUTE ..ooueoiiuiiuiieiriinieieieieeeiese e enenes 1039

40.7.2.3. Opening a Bound CUrsor.........c.ccocvevieevieenieenienieeneesieeieeieens 1039

40.7.3. USING CUISOTS.c...eevieeirerieeiieniteeieenitesiteseieenteestesateenbeesstessesbeesssesssesnses 1040
40.7.3.1. FETCH tuiiviiiieieieiiiiieneeeeeee st 1040

40.7.3.2. MOVE ..ottt 1040

40.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..ccccovivuiviiiiiininnrinennes 1041

40.7.3.4. CLOSE ettt s 1041

40.7.3.5. Returning CUISOTScccceeuireeruinienienenreieneeeesreeresneseenesnens 1041

40.7.4. Looping Through a Cursor’s Result...........cc.cocceceiinienininnininicncnens 1043

40.8. Errors and MESSAZES.........ccuieuieuiruieiieniirieieeiteteste ettt s 1043
40.9. Trig@er ProCEAUIEScccoocuiiiiiiiiiiienieiieieeeteeeete ettt 1045
40.9.1. Triggers on data Changes...........ccccoeevieriiieiiiiiieiiceee e 1045
40.9.2. TTIZEEIS ON BVENLScueuirvirireiereneeteeientesteteteeteaeereesesressesseneeseesessesaens 1052
40.10. PL/pgSQL Under the HOOQc...oovuiiriiiiiiiiiniiiciieeeccceeceee e 1052
40.10.1. Variable SUDStItUONcoouertieiiriieieste et 1053
40.10.2. Plan Cachingcc.cecuevuieiereeiieieeiteie ettt 1055
40.11. Tips for Developing in PL/PESQL......cccocoiiiiiiiiiieieeeeee e 1056
40.11.1. Handling of Quotation Markscccceeeeererernienenienenceieneseneneene 1057
40.12. Porting from Oracle PL/SQL........ccccoceiiiiiiiiiniiieeteeiteene e 1058
40.12.1. Porting EXamPIescc.ceoterieriiiinieieniiceiesieeeeseeeceie et 1059
40.12.2. Other Things to Watch FOr.........cccoooeiiiiiniiiiiececee 1064
40.12.2.1. Implicit Rollback after EXCeptions...........ccccecuereeveererieniennenns 1064

40.12.2.2. EXECUTE tuteteieieieeiesie sttt sttt 1065

40.12.2.3. Optimizing PL/pgSQL Functions..........c.cecceeereeveencreenenens 1065

40.12.3. APPENAIX .eeuvriiiiiriierieeiienienteeieesteste et esieestesaeesteessesssesnbeesssesssesnses 1065

XXii

41. PL/Tcl - Tcl Procedural Language.........c.cevveeierrieeniienieeieeitesteeieeiee st 1068

411 OVEIVIBW ettt ettt ettt ettt et sa ettt et bt saeeaeesae e nesbeeas 1068
41.2. PL/Tcl Functions and ATZUMENTS.......cc.cevterierreeniierieenieenieeseeeieenieeseesseesseenne 1068
41.3. Data Values in PL/TCl.......cc.cocoiiniiiiiiiiiicccccceeesteeese e 1069
41.4. Global Data in PL/TCL ..c...ccooiiiiiiiiiiiieieiceteereeeeeseetesee e 1070
41.5. Database Access from PL/TClcccooiiiiiiiniiiiiiiccceeececece e 1070
41.6. Trigger Procedures in PL/TCL.....c..cocoiiiiiiiiiiiiiieccceeecce e 1072
41.7. Modules and the unknown Command............cccceereerierriernienienienneenreeieesieene 1074
41.8. Tcl Procedure NAMESccceevueeriirieiniieite ittt sttt ettt sae e 1075
42. PL/Perl - Perl Procedural Language............ccccoceecieriieiiiiiniiiiniiiceeieeeseeeesie e 1076
42.1. PL/Perl Functions and ATgUMENLtS............cceeievuinieiierinienienieiesee e 1076
42.2. Data Values in PL/PETL.......cc.cocciiiiiiiiiiiiee et 1080
42.3. BUilt-in FUNCHONS ..ottt ettt s 1080
42.3.1. Database Access from PL/Perl...........coccoooiiiiiiiiiiineiieeeeeeee 1080
42.3.2. Utility Functions in PL/Perl..........ccoccoiiiiiiiiiiiieeceeeeeeee 1083

42.4. Global Values in PL/Per]ccccooiiiiiiiiiiiiiiieeee et 1084
42.5. Trusted and Untrusted PL/Per]cccocooieiiiniiiiniieieeeeeese e 1085
42.6. PL/PEIL TIIZZEIS w..veeueeeiiiieniieieeieeitete sttt ettt ettt sbe ettt esae st naesbens 1086
42.77. PL/Perl Under the HOOdc.coouiiiiiiiiiiiiiiniieceeeteesteee e 1088
42.7.1. CONfIGUIALION «..cvvineiiiiiieiieiesttet ettt sttt ettt st sbe st sbeeae 1088
42.7.2. Limitations and Missing Features..........c..ccocovevveninieniininnencniencnene 1089

43. PL/Python - Python Procedural Language............ccccecuevuereenienenienienieieneeienieseenieniene 1090
43.1. Python 2 vs. Python 3.......cooiiiiiiiiiiiieeteceteeteestetee et 1090
43.2. PL/PYthOn FUNCHONSccuviiiieiieiieeieeitesite ettt esitesteeieeieesereenbeesaeeseneesseenseenes 1091
43.3. DAta VAIUES ...c..eoueiviinieieeiicieeieeteetete ettt ettt st ettt sttt st 1092
43.3.1. Data TYPE MaPPINg.....ccceerierieriiieniienieeieeniiestesieenieesresreeieessessesnnes 1093
4332, NUIL NONC....eiieiiiiieiirteteeeeet ettt s 1093
43.3.3. ATTAYS, LISIS c.tieiiiiieeieiiieniteete ettt ettt ettt et e e e 1094
43.3.4. COMPOSILE TYPES...veerureriieriieriieeiienitente ettt ettt ste st esanesee s 1094
43.3.5. Set-returning FUNCHIONS........cocveviiiiriiinieniieiierieee et 1096

43.4. Sharing Datacc.coevuiiiiiiiiiieeteste ettt sttt sttt 1097
43.5. Anonymous Code BIOCKSc.coruiriiiiriiiniiiiiiiteiie et 1098
43.6. Trig@er FUNCLIONScocueiiiiiiiieiieiiieeieeeerite ettt ettt st ettt e ae e 1098
43.77. DAtaDASE ACCESSeouvenrirurenrinieeirenitetente st sttene st ete e saeesresueesnesseeneesaesaeenenaeens 1099
43.7.1. Database Access FUNCHONS......c.ceeviiriiriiiiienieeieeeeteeeeeeeeee e 1099
43.7.2. Trapping EITOTScociiiiiiiiiieiiiecc e 1101

43.8. EXpLiCit SUDIranSaACIONSc.cccuiruieieriiiieieniieeeete ettt s 1102
43.8.1. Subtransaction Context Managerscccccoeevueruieeerueneeneenenieeneneene 1102
43.8.2. Older Python VEersionsc..cccceeieiiiiiiieiiniiieiieeeieecceese e 1103

43.9. Uity FUNCHONS c..c.eeuiiieiiiiiititeieieieettetenesteeetei ettt ettt naen 1104
43.10. Environment VariabIesccoocieriierieriinieieeie ettt 1105
44. Server Programming INEErfaceccooeiieiiiirieniieeie et 1106
44.1. Interface FUNCHONSc..oouiiiiiiieiiiieeseetee ettt st 1106
SPLLUCONNECT «.ceeeeeeiieeeeeeeeeeeeeeeeee ettt e e e e e e e e e e e s e e s e e eereeeeaeaeeeas 1106
SPILAINISR ..o 1108
SPLPUSH .ttt 1109

S POP ettt et ettt 1110

P EXECULE ...ceeeeieiiee ettt ettt ettt e e e e e e e e e e e e s e e s aasaaeeeeeaeeseeas 1111
P X ittt ettt et e et e e e e e e et ———————tataeaaaaans 1114
SPI_eXecute_With_argsccccecuerierierieniieienieeteneetetesitete ettt 1115
SPI_PIEPATE....c..eetiriiiieiieieeteetert ettt sttt sttt sttt 1117

S P PIEPATE _CUISOTeeetieniieiieeeieeteeniteseteebeesaeesteesebeeseesseessseeseensaesssesnsesnseenes 1119

XXiil

SPI_PIepare_Paramsc.ceeeerieerieenienieeieenieesiesreesieesieeseeeesseesseesssesnsessseenns 1120

SPI_gELATZCOUNL ...cuvtetieiiiieiteite ettt ettt ettt st et e st e ebeebeesibesnbeesee e 1121
SPI_getargtyPeid.....ccceeriiiiiiiiieiiieieeteste ettt sttt st e 1122
SPIL_iS_CUISOT_PLAN .ecuviiiiiiiiiiieeieeieetese ettt sttt st e 1123
SPI_eXECULE_PLaN....eiiiiiiiiiiiiiieiie ettt ettt et 1124
SPI_execute_plan_with_paramliSt..........ccccoceeveeririenininiinieieneneereneeeeeeeee 1126

N o I (1) o OO OO S OO P PRI PTUPRRPRRRRIRt 1127
SPI_CUISOT_OPEIL.c..eiuiiiiiiiiieiteeite ettt ettt sttt st et e st sateebee e 1128
SPI_cursor_open_with_argscooeerieriinieenieenie ettt 1130
SPI_cursor_open_with_paramlist.........cccccoveevieniiiriienieenieiieeeesee e 1132

SPI CUISOT_fIN. it e e e e e e e e e e e s e e e e eeaaeeeens 1133

SPI CUISOT _TEUCR .. e e e e e e e eaeeeeens 1134
SPIL_CUISOT _IMIOVE ..ottt ettt e e e e e e e e e et et eeeeeeeeeeeaeeeeaaaaasaanas 1135
SPI_SCIOIL_CUISOT_TEECH .ot eeaeee e 1136
SPI_SCIOIL_CUISOI_ITIOVE ...ttt e e e e e e e e e e e e e e e eeeeeeeaeeeeens 1137

SPI CUISOT _CLOSE...eeeeeeeee ettt e e e e e e e e e e e e e e s e e eaeeeeeaeeeeens 1138
SPI_KEEPPIAN ...ttt 1139
SPL_SAVEPIAN ..ottt et 1140

44.2. Interface SUPPOrt FUNCHONSceevuirieriiriieiiniieiesicetere ettt 1141
SPIL U NAMIE ..ottt e e e e e e e e e e e e e e e aat et e eaeaeeeas 1141
SPILANUIMDET c.cciiiiiiiiieeeeeeeeeeeeeeeee ettt e e e e e e e e e e e e e aaaeaeeeeeaeeeeeas 1142
SPI_ZEVALUE ...ttt st 1143
SPL_getbinvalco.eeiiiriiiiiiiiieiteeeee et 1144

N o I 0111 oL OO P U STUURRPRRRR 1145
SPI_gELLYPEIA ... vievieiieeiieiieeeee ettt ettt stee sttt et e st ebeenbeesibesnbeebee e 1146
SPI_gEtrEINAIMEveeiieeiiieiieiieeie ettt ettt sttt st e st ebeeaee e 1147
SPI_ZENSPNAIME.eeeieeiieeiieiieeiieeieerte sttt et esitesbeebeesbeesateebeesbeesssesnseeseenes 1148

44.3. Memory ManagZEemMENLtccceveerierrieerieeniiesieerieenieesreesseesseesesesssessseessesssessseenns 1149
SPI_PAIlOC ..ttt ettt sttt sttt et st st ee 1149
SPIL_TEPAIIOC...ccuttettetect ettt sttt 1151
SPI_PITEE ..ottt ettt sttt st 1152
SPI_COPYLUPIE ...ttt sttt st ettt 1153
SPIL_TEIUINTUPIE ...cvveeiieeiiiiiieiteet ettt sttt st ettt e e 1154
SPI_MOAIfYtuplecoviiieiiiieiiieeeceeee e 1155
SPIL_TEEIUPIE. ...ttt ettt st 1157
SPI_freetuptable.cooviiiiiiiiieiieeieeee et 1158
SPILIEePIan....c...ooiuiiiiiiiiee et 1159

44.4. Visibility of Data Changes.............cocceveiieiiiniiiiniiieneeeeeseeeeee e 1160
445, EXAMPIES ...eeeneiiiiiiiieiteeie ettt ettt sttt sttt sttt ae e 1160
45. Background WOrker PrOCESSES.ueeuiriiiriiiieiiieiieeeeeeiteeee et 1164
VI. Reference 1166
L. SQL COMMANGS.......uiiiiiiiiiiieeeiee ettt ettt ettt e e e et e e eateeeeaaeeeeaeeeeeteeeeseeeereeens 1168
ABORT ...ttt e e e ettt e e et e e e etaaeeraeean 1169
ALTER AGGREGATEoo oottt 1171
ALTER COLLATION ...ttt ettt etn e e eaaa e eavaeean 1173
ALTER CONVERSIONooiiiiiieeeeee ettt ettt eaae e eveeean 1175
ALTER DATABASE ...ttt et et et aa e e evaeean 1177
ALTER DEFAULT PRIVILEGESooooiiiieee e 1179
ALTER DOMAIN ...ttt ettt e e v e eave e etaeeetseeeaaeeeavaeens 1182
ALTER EVENT TRIGGERccoooiiiiiiiiiiiieeee ettt e 1186
ALTER EXTENSION ..ottt ettt ettt etre e et eean e aaeeeavaeean 1187

XXV

ALTER FOREIGN DATA WRAPPERccccooiiiiiiiiniiiiiiciccccee 1190

ALTER FOREIGN TABLEcccooiiiiiiiiiiiiicicicicnccceee e 1192
ALTER FUNCTIONociiiiiiiiiiiiiiiiiccieeteec st 1196
ALTER GROUPocoiiiiiiiiiiiiiiiiiiice e 1199
ALTER INDEX ..ottt 1201
ALTER LANGUAGEccocoiiiiiiiiiiiiiiiicc e 1203
ALTER LARGE OBJECTc.ooiiiiiiieieentcteeteeestt ettt 1204
ALTER MATERTALIZED VIEWccoooiiiiiiiiiiiinieiteene ettt 1205
ALTER OPERATORccoooiiiiiiiiiiieteee ettt s 1207
ALTER OPERATOR CLASS ..ottt 1209
ALTER OPERATOR FAMILYccoooiiiiiiiiiiiiiiieeee et 1210
ALTER ROLE ...ttt e 1214
ALTER RULE ..ottt e 1218
ALTER SCHEMA ..o 1219
ALTER SEQUENCEccoiiiiiiiiiiit et e 1220
ALTER SERVERccooiiii e e 1223
ALTER TABLE ... 1225
ALTER TABLESPACEccoooiiiiiiiic e 1236
ALTER TEXT SEARCH CONFIGURATIONc.c.ccectmiminiiiiieiniinienieieeeieeee s 1238
ALTER TEXT SEARCH DICTIONARYccoceriiriiiiinininieicreteeetesieeeeeneeieee s 1240
ALTER TEXT SEARCH PARSERcccciiiiiiiiiiiiiieeceteteeeeeeeeeee e 1242
ALTER TEXT SEARCH TEMPLATEccoccoiiiiiiiiiniiieieieeeeeeeeeeee e 1243
ALTER TRIGGERcocoiiiiiiiiiiiiicicicceeeeeete sttt 1244
ALTER TYPE. ..o 1246
ALTER USERooiiiiiiiiiiiiiiiiecceteeeet sttt 1250
ALTER USER MAPPINGccoociriiiiiiiiiiiiietctcec sttt 1251
ALTER VIEW ..ottt 1253
ANALYZE ..ottt 1255
BEGIN ...t 1258
CHECKPOINTcoooiiiiiiiictcnr ettt 1260
CLOSE .. 1261
CLUSTER ..ot 1263
COMMENT ..ot 1266
COMMIT ...ttt 1270
COMMIT PREPARED......cc.ccciiiiiiiiiiiieicteeeeeeeseetere et 1271
COPY ettt st 1273
CREATE AGGREGATEc.oooiiiiiiiiiieieee e 1283
CREATE CAST ...ttt 1286
CREATE COLLATION.......c..ooiiiiitiieiieieeeee et 1291
CREATE CONVERSIONooiiiiiiiiiiiee e e 1293
CREATE DATABASE ...t 1295
CREATE DOMAIN ..ottt 1298
CREATE EVENT TRIGGER.........ccciiiiiiiiiiiiiiiiceee e 1301
CREATE EXTENSION......coiiiiiiiiiiiie s 1303
CREATE FOREIGN DATA WRAPPER..........cccoooiiiiiiiiccccee 1305
CREATE FOREIGN TABLEcccoooiiiiiiiiiiiic e 1307
CREATE FUNCTIONoooiiiiiiiiiinesteeteetetee ettt ettt s 1310
CREATE GROUP........cooiiiiiiiiieieietesteetetete ettt 1318
CREATE INDEXc.oooiiiiiiiniiiiieietne sttt sttt ettt s 1319
CREATE LANGUAGEccooiiiiiiiiieceetse ettt 1326
CREATE MATERIALIZED VIEWcccooiiiiiiiiiiiiiinieniesicteieeeeeeeeeeeeieee e 1329
CREATE OPERATORooiiiiiiiiiiiiiiieicteeteee ettt 1331

XXV

CREATE OPERATOR CLASS ..ot 1334

CREATE OPERATOR FAMILYcccooiiiiiiiiiiiiiiiiiiciciciceceeieeeeeeeeeee s 1337
CREATE ROLE.......ccocoiiiiiiiiiiiiiiitceee et 1339
CREATE RULE.......ccooiiiiiiiiiiiiiitee e 1344
CREATE SCHEMA ..ottt 1347
CREATE SEQUENCEcccooiiiiiiiiiiiiiicice e 1350
CREATE SERVERc..ooiiiiiiiiieeeeee ettt 1354
CREATE TABLE ..ottt e 1356
CREATE TABLE AS ...ttt s 1371
CREATE TABLESPACEcooiiiiiiiiieieee et 1374
CREATE TEXT SEARCH CONFIGURATION.........cccccceiiiiiiiiniiicniieeeeeeeee 1376
CREATE TEXT SEARCH DICTIONARYcccooiiiiiiiiiiiiecee e 1378
CREATE TEXT SEARCH PARSER ..o 1380
CREATE TEXT SEARCH TEMPLATE..........cccooiiiiiiiiiiccceecee 1382
CREATE TRIGGER.......ccooiiiiiiiie e 1384
CREATE TYPE ... e 1390
CREATE USERo 1399
CREATE USER MAPPING........cccooiiiiiiiiiiiiiiic e 1400
CREATE VIEW ...ttt sttt ettt s 1402
DEALLOCATEoooiiiiiiie ettt sttt s 1406
DECLARE ...ttt sttt s 1407
DELETE ...ttt 1411
DISCARD. ...ttt sttt s 1414
DO et 1415
DROP AGGREGATE.......ccocoiiiiiriiiiicieicieeeeetse sttt 1417
DROP CAST ..ottt s 1419
DROP COLLATTIONciiiiiiiiiniiicieteicteteseeteeee sttt 1421
DROP CONVERSIONc.oooiiiiiiiiiiiiiiiecee et 1422
DROP DATABASE ..ottt 1423
DROP DOMAINocoiiiiiiiiiiiiiiietec ettt 1424
DROP EVENT TRIGGERccocoiiiiiiiiiiiiiiiiiiicicccceeeeec s 1425
DROP EXTENSIONccoiiiiiiiiiiiiieiccieeee st 1426
DROP FOREIGN DATA WRAPPERccccoooiiiiiiiiiiiiiiiiiccccc 1428
DROP FOREIGN TABLE.........ccooiiiiiiiiiiiiiicic e 1429
DROP FUNCTIONoiiiiiiiiiiiieiteieeteeeste ettt sttt sae e sae e sae e snesaeens 1430
DROP GROUP ..ottt sttt 1432
DROP INDEX ...ttt sttt st s 1433
DROP LANGUAGEcooiiiieteeeeeeeee sttt 1435
DROP MATERIALIZED VIEWccciiiiiiiiiiiiinieit et 1437
DROP OPERATOR ..ottt s 1439
DROP OPERATOR CLASS ...t 1441
DROP OPERATOR FAMILYooiiiiiiiiiiiiiiiiice e 1443
DROP OWNEDoiiiiiiiiiie e s s 1445
DROP ROLE ..ot s 1447
DROP RULE ...t e 1449
DROP SCHEMA ... e 1451
DROP SEQUENCE........cociiiiiiiiiiii i 1453
DROP SERVER.......cciiiiiiiiiiiiccetetetesese ettt ettt 1454
DROP TABLE ..ottt sttt ettt s 1455
DROP TABLESPACEoooiiiiiiiiiieieteieeeetee sttt 1457
DROP TEXT SEARCH CONFIGURATIONcccccoviiiiniiiiiiieinineneeeeeeeeee s 1459
DROP TEXT SEARCH DICTIONARYccciiiiiiiiiiiiiniiicicieteieieieeeeeeeeee s 1461

XXVi

DROP TEXT SEARCH PARSERcccciiiiiiiiiiiiiiiiiiccccceeecc e 1462

DROP TEXT SEARCH TEMPLATEcccociiiiniiiiiiiiiiniciceeeeeeeseseeeeieee e 1463
DROP TRIGGERccooiiiiiiieinieineerieeeeeetee ettt 1464
DROP TYPE.....cooiiiieeereeree ettt 1466
DROP USER ...ttt 1467
DROP USER MAPPINGcooiriiriintiieietninenestesteteiesie sttt ettt neen 1468
DROP VIEW ..ottt ettt sttt ettt se et naen 1470
EIND .ttt ettt ettt b e 1471
EXECUTE ...ttt sttt sttt et sttt ettt naen 1472
EXPLAIN ..ottt sttt st st sttt sttt be e 1474
FETCH ...ttt ettt sttt ettt naen 1479
GRANT .ttt ettt ettt st b e 1483
INSERT ..ottt sttt bttt et be sttt ebenaen 1490
LISTEN L.ttt ettt sttt ettt e 1494
LIOAD ..ttt ettt ettt e 1496
LIOCK .ttt sttt sttt ettt s 1497
IMOVE. ..ottt ettt sttt sttt 1500
INOTIFY .ttt sttt sttt ettt s 1502
PREPARE ..ottt 1505
PREPARE TRANSACTIONc.ooeiriiintiieninctnictntetnteeneee sttt 1508
REASSIGN OWNED......ccoiimiiiniiniinieenncteretstet ettt ettt 1510
REFRESH MATERIALIZED VIEWcccciniiiiiiniinieineeneeceeeeeesieesee e 1512
REINDEX ...ttt ettt sttt sttt st 1514
RELEASE SAVEPOINTccortiiiniiniiineennctntctntetnteenee ettt 1517
RESET ..ottt ettt sttt s s 1519
REVOKE ..ottt ettt sttt 1521
ROLLBACK ..ottt ettt sttt sttt s 1525
ROLLBACK PREPAREDccooiiniiiniiininicintctnetnee ettt 1526
ROLLBACK TO SAVEPOINTc.coeiimiiiirieineenetrieeneeeseeieee et 1528
SAVEPOINT ..ottt ettt 1530
SECURITY LABEL.....c.ooiiiiiiiiincieieeteeeeeee ettt 1532
SELECT ...ttt 1535
SELECT INTO ...c.viiiiiiiiiicceeereeee e 1554
SET ettt ettt e h bbbt et eb et naen 1556
SET CONSTRAINTS ..ottt sttt sttt e 1559
SET ROLE ...ttt sttt sttt e 1561
SET SESSION AUTHORIZATION........cccioiriiieinininieneenteteteieeiteresteneeeeeeneene e naens 1563
SET TRANSACTIONooitiiiriiiiieietetettntetetetetete st sttt ettt eae e e 1565
SHOW .ttt sttt ettt et ettt sa et b bt eneebesaenaens 1568
START TRANSACTION ..ottt ettt ettt 1570
TRUNCATE ..ottt sttt 1571
UNLISTEN ...ttt ettt sttt st sttt s 1574
UPDATE ..ottt sttt s 1576
VACUUM ...ttt sttt ettt st sttt sttt st s 1580
VALUES ...ttt ettt sttt sttt st 1583
I1. PostgreSQL Client APPIICALIONScc.eeruiruieieriieiieniiniteiesttete ettt 1586
CIUSERIAD .ttt sttt ettt s 1587
CIEALEAD ...ttt s 1590
CIEALCLANIZ ..ottt ettt ettt b ettt be s bt et sb et e st ebeenaesbeeaenbeens 1594
CTEALEUSET ...ttt ettt ettt sttt e bbb b s ae et ebe b sb et et et e st ebe et e b e s e e eneeneenesaens 1597
AEOPAD ...ttt sttt et sae st ea 1602
ATOPLANEZ ..ottt ettt sttt st sb et sb e ebtenaesbeeaesbeeas 1605

XXVii

Pt euveenreeueesuteettestte st e e bt e h e e s ut e et e bt e bt e et e e bt e bt e s a b e e bt e btesab e et e e beeshbeenbeebeesateenbeebeene 1611
PE_DASEDACKUD ..veeneieiiieieete ettt sttt st ettt 1614
PECONIIG ittt ettt ettt sb e st et et e st e et e e bt e sateeabeebeesabeenbeebee e 1620
PE_QUINIP .ttt ettt b e st et e bt st e bt e bt e s it e enbeebeeshteebeebee e 1623
PEAUMPALL ...t s 1635
PEASTEAAY ...ttt st a et ne e 1641
P TECEIVEXIOZ ..ttt st s 1644
PE_TESTOTE ...ttt ettt s e ae e 1647
PSAL e et st ne e 1655
e 10T (55 Lo TSRS 1686
VACUUINAD......eiiiiiieiie ettt ettt e e et e et e e st e e e steesaseeensaeeensseesnsaeesnseeean 1689
II1. PostgreSQL Server APPLCALIONSccecveerirerierierieietniistesreteeeeeieee et eneenes 1693
INEAD .ottt ettt et e et ta e e e et e e tee et e enbe e baeerbeenbeebeesabeenseebeenes 1694
PE_CONLTOIALA ...ttt sttt ettt saen 1698
PECL ettt sttt et sttt saen 1699
PETESEERIOE ..ttt ettt sttt et b et sae st aesben 1705
POSEZLES .ttt ettt ettt ettt e be e st e bt e bee s bt et e e beesat e et e ebeesbteeabeebeesbeeenbeebeenae 1707
POSTIMASIET ...ttt ettt ettt sttt b e st e bt e bee st e e bt ebeesatesabeebeesunesnneeneenne 1715
VII. Internals 1716
46. Overview of PostgreSQL INternalsccocereeiiniiniiniiniinienerieeneeeneeeenee st 1718
46.1. The Path Of @ QUETYccvuiiiiieiieiie ettt sttt st stesbeebee e 1718
46.2. How Connections are Establishedcccccoovievieniiiiieniiiieiieeicece e 1718
46.3. The Parser STAZEcoeveviiiiiienieiie ettt ettt ettt st st sbeesabesbeenbee e 1719
4.3, 1. PaTSET.c..veeeieeiiieieeiieete ettt ettt ettt et e st esate et e st e st e et e saneeabeeans 1719
46.3.2. Transformation ProCeSS........cocevvvierierierieeniienieeieenieeste et 1720

46.4. The PostgreSQL Rule SYSTEM ...cc.eivviiiriiiriiiiiieiteniie ettt st eie e 1720
46.5. Planner/OpPtmiZeTccovtrrueerienieeieenitesite st esteesieesteeteesteesetesbeesaeesasesseenseenes 1720
46.5.1. Generating Possible Plans............cocceeviiniiinieniieniiiienieeeeceeeeeeee 1721

40.6. EXECULOTeitiiiiieiieitesite ettt ettt ettt sttt et st et e b e st e sabeebeesateenbeebeenes 1722
A7, SYSEM CALALOZS ..ottt ettt et b e sttt et e st e st et esaaesabeeats 1724
AT 1. OVETVIEW .ottt ettt ettt ettt sb e st b e bt e st e bt e bt e satesabeebeesateenseebeenne 1724
/WP oY HE-Ye fo fial=Yo F- X o =S N PR SURI 1725
T T Y =Y | PSSR 1726
T B Yo BN 111 < USSR 1728
VO T o¥e BN (Ve Yot Yo TSRS 1729
VO BT ¥ TN ol vl ot L= PSPPSR 1730
4.7 PG AL ETADULE wtiiiiieeitiee ettt ettt e et e e et e e e e et e e e e e ata e e e e e arraaeaaas 1731
47 8. PG AUE NI it iiiiiiiii ettt e et e e e e e et e e e et a e e e e e eaba e e e e eenrraaaaens 1734
47.9. DG AUL N MEMDET S tetutiieeiieeiiee ettt e eiteestteeeteeesteeesabeeessteesesseessaeeensseeeseeesnseeens 1735
A7 .10, PG_CASE tttteiieiriieeeeeitteeeeeectre e e e eeitreeeeeetteeeeeeatbraeeaeaaatraeeeeaartaaaeeearraeaeeaanrreaaaans 1736
B < Ye H B = F= T OO RO OO USROS UUURRUPPPPPRN 1737
47 .12, PG _COLLAT 10N tiriiiiiitiieeieiireeeeeeetree e e eetteeeeeestreeeeeearreeeeeassseeeeesnsraeseeansreseaans 1741
47.13. PG_CONSETAINT tiitiitiiieeieiitieeeeeiireeeeesttreeeeestreeeeesatreeeeesaraeeeeessraeeeeeensreseenes 1742
47 14, DG CONVETSION titiitiiieetiieeetieeeetteeeetteeeeteeeeteeeeaeeeeaeeeetaeeeeaseeeeteeeetseeeseeeenreeans 1745
4715, PG _AATADASE tietieeeiiieeeeee ettt eett et e e et eae e et e e e et e e et e e eeta e e etteeeaaaeeraeaas 1746
47.16. pg_db_ 101 SEEEING tiriiriieeitiieeitreeeiteeeeiteeeeteeeeteeeetreeeeareeeetaeeeeaseeeesseeearaeaas 1748
Vi B W Yo B e 1% o= LU0 K - Yo AU PPPRN 1748
Vi BT Yo Mo 1Y o 1= st DUUU RPN 1749
Vi B LS B oYe Mo [=Y=Toh ok oY ok e} o WUUNNNNR USSR PPRN 1751
A7 .20, DG ENUM tttieiietrrieeeeeitreeeeeertreeeeeesiareeeeeeetreeeeeestareeeeeessreseeesasrseeeeensareeeeeensrrreeenans 1751

XXVili

47.21.
47.22.
47.23.
47.24.
47.25.
47.26.
47.27.
47.28.
47.29.
47.30.
47.31.
47.32.
47.33.
47.34.
47.35.
47.36.
47.37.
47.38.
47.39.
47.40.
47.41.
47.42.
47.43.
47.44.
47.45.
47.46.
47.47.
47.48.
47.49.
47.50.
47.51.
47.52.
47.53.
47.54.
47.55.
47.56.
47.57.
47.58.
47.59.
47.60.
47.61.
47.62.
47.63.
47.64.
47.65.
47.66.
47.67.
47.68.
47.69.
47.70.
47.71.
47.72.

Yo MR N72=3 sRullih o o K o 1= 3 U U USROS 1752
PO EXE NS I ON ttttiiiiiriieeeeeitteeeeeeeiteeeeeeetreeeeeerteeeeeeeeareeeeeetaeeeeeeetbaeeeeeeareeeeeans 1753
PY_foreign_data _WEAPDET cureeeeeeeireeeeeerirreeeeeeiirreeeeeeirrreeeeesseeeesesssreeeeenns 1753
PO _FOTCIGN_SEIVET wiiiieiittieeeeeeteeeeeeeeteeeeeeeteeeeeeeeaeeeeeeetaeeeeeeetaeeeeeeeareeeeeans 1754
Yo MR e =5 Kot oM uf=0 o B I =Y U TS USROS UUURR OO SUUTON 1755
PO ATIAEK ettt ieittiii e ettt ettt eeee e e e e e e et e e e e e e e e e e taaeeeeeetbaaeeeeearaeaeans 1755
Jo1 T I o U Y=k I = PSR RTUPTN 1759
PO_LANGUAGE wutrtteereiriieeeeaiiteeeaaaittteeesasetteeaansateessasssseeesssnssteesssasseeeesssssseeesanen 1759
Jole MR B e 1=Ye) o By 1= wIBU PSPPI 1761
Pg_largeobject _Metadata «vciereiieeieiiieeeeeiitee ettt e e 1761
PO _NAIMESPACE teeeeuurrteeeeauurreeeaaaerteesaaseteessaassteeesaaseteesssassteessanssseeessanseseesesases 1762
PO O C LA Suuttiieiieittieeeeeitteeeeeeeaeeeeeetareeeeeettrteeesetareeeeaartaseeeeatareeeeeanbaeaaeeantes 1762
PO OPET AT OT tereieeitrrieeeeeiitreeeeeiitteeeeeeirareeeeeaarseeeaesssreeeeaassaseeseasasseeseaseseaeeansres 1763
PO OPEAMI LY teteiieiiiieeieeiteeeeeeitte e e e eeitt e e e eeetteeeeeeetaeeeeessraseeeeetaeseeesanbaseaeeanees 1764
PO P LEEMP LA E ciiiiiieiieciieie ettt e e et e e e ete e e e e etar e e e e etbar e e e eebaaeaeeeenbaeeaeeannres 1765
PO DT OC ttttieitteeeeeectreeeeeeteeeeeeiareaeeeeaaseaeeeerasaeeaassasaeaeaastaseeeeanbaaaaeeaanbaeeeeeanres 1765
PO TANGE ttteeieitrireeeeeiirreeeeeettreeeeaatrreeeaasassaesasssaseessassaseesassssssesssassaseessasreseennns 1770
oY M et o I ol =S T U UUURRSUUUPTN 1770
PO_SECLADEL uttiiiiieiiiieeeecitreeeeette e e e e ete e e e e etbae e e e e e traeeeeeabaeeeeeerbareeeenaaraaeeens 1771
PO_SHACPENIA cutiiieiiie ettt ettt e e et et e et e e et e e eetae e e ett e e ete e e eaeeeereaans 1772
PO ShAe S Cr APt OmNaiiiiiiiiiiiiieeiie et eete e eete e et e e e et e e etaeeetreeeteeeeaaaeeeaveeeas 1773
PO_ShSECLADEL tiiiiiiiiiieeciee ettt ete e e ettt e e e te e e etv e e eetr e e etaeeetaeeeteeesaaaeesaraaens 1774
TS Aol N = ik I < BRSO RSTTN 1774
Jote B =Y B N =Y=) oYK 1= ST PP U U UUTUURRURRRURURURPTROt 1777
jote A o o Ko fo =0 NN USSP UU TR URRURRUURURRRPUPOt 1777
joYe MR R =T cle Yo b ik e HUNUUU USROS 1779
jole MR uR-TiNle Yok sk Ko b 1=Y < YOURUUUUUN TS SRRSO 1780
JoYe MR =T e & K o) USROS 1780
PO LS PAT SO tttieieeirrieeeieiereeeeetireeeeeeetareeeeeeitareeeeesaeeeeeeetaseeeeenbereeeensareeeeeans 1781
JoYe MR =T =11} o B = o = SO U U ST 1782
oY MR w74 o 1= TSSO U TR USROS UEURR OSSN 1782
jYe MRDE-T=3 ol =Y o) o 3 B o Yo SUUNUNNUUU OO U TR USROS U USSR 1790
SYSEIM VIEBWS .ttt ettt ettt sttt ettt ettt e st sbeesaeesaee s 1791
PY_available_eXTEeNSIiONS . eiiieeeeeeiieeeeeeeitreeeeeeereeeeeeeiareeeeeeas 1792
pPg_available_exXtensSion_VeTSIiONS .cciiiiiiiiereeereeeeeeeeeseeeennnesnrenees 1792
PO CU T SOT S uuurieeesauereeeeaatreeeesaansrteeesassaeessasnsaeeessasssaeeessanssseesssassaeeessassseeesannn 1793
PO gL OUD ttteeeauurrteeesauereeeesanteteessaanssteessassteessaansaeeessanssteeessanseteesssassaeeessannseeesannn 1794
o1 A oo L5 = TSRO PPPPPRRRRRIRt 1794
o Koo 4= TP PPURUPPPPRRRRRIRt 1795
PO _MAT VI EWS tittiiiiiiieteeiitteeeee ittt e e ettt e e e ettt e e e s ebeteeeesnbaeeeesababeeessanbeeeeeennnes 1798
PY_prepared_STatemMent S e ieiitee e eeiitee ettt e et e e et e e e nieee 1799
PO _PTrePATrEa_XACES tiriiiiieeeeiiiieeeeeeitireeeeeiteeeeeeeitrreeeeeesraseeeeesaeseessasasesesannnes 1800
PO O LS ciiitiiie e ettt e ettt e e eeett e e e e ear e e e e e tr e e e e e ettt e e e e e tbaraeeeettaeaeeeanbaaaaeeanntas 1800
PO UL S ciieiiiieeeeeiteeeeeete e e e ee ettt e e e eettr e e e eettaeeeeseabareee e e sbaseeeeanbaaeeeeaanbareaeaanntes 1802
PO_SECLADELS titiiiiiiiiieeeeciteeeeeeitte e e e eette e e e e eetbae e e e e taae e e e abareaeeeraaeeeeeaaaraaaaens 1802
joYe HE=T= Y ok ol o L 1< RO U U U UUURRSUUUPTN 1803
PO S A AOW cuttiiitiieetie e ettt e ettt eete e et e e et e e eete e eetaeeeettaeeetaeeeetaeeetteeetreeeaaeeareaens 1805
PO ST AT S teiitiieeitiie ettt e eitte e ettt e eeteeeeteeeeteeeeteeeetaeeeatraeeataeeeeaaeeetbeeeteeeeteaearaaans 1806
PO A0 @S tutiiiiitiieeiee e ettt ettt ett et e et e e et et e e et e e e tb e e etaeeetaeeetaeeetaeeareeans 1809
POt imMeZONE_abDI@VS ciiiiiieiiieeiieecieeeeteeeeteeeetreeeetreeeeaaeeeteeeetreesaaaeesaraeeas 1810
PO L iMEZONE_NAMES wiiiiieieeieeieiieeeee ettt e e eeetee e e eeraee e e e eetaeeeeeessbaeeeeenaaeeeeeens 1810
PO USET ttttieeeeiueeeeeeeseeeeeeeeiereeseesitereeseestaseeeeeabarseseesaesseesataseeeeansseseessnsareeeeeins 1811

XXIX

Vi< Ye MRUE-T=3 ol (=1 o) o3 o Lo 1= TRNUURUUN SO PPN 1811

o Yo BV K= = ST RO UU OO 1812
48. Frontend/Backend ProtoCOL...........coeecveriiiiniininiiniinieienceeneeteeeieete e 1813
A8.1. OVEIVIEW ...ceoiiiiiiiiiiiiiiicee et 1813
48.1.1. Messaging OVETIVIEW.......cccuerueeriiieniienienieeniteste st enteestesiteebeesireseesaees 1813
48.1.2. Extended QUETY OVEIVIEWccocuieriierieriieiiienieeieenieestesite et esieeeee e 1814
48.1.3. Formats and Format Codescceevierieeniiinieniieiniienienieeieeseeeee e 1814

48.2. MeSSAZE FLOWo.viiiiiiiiiiiiiieeeee ettt s 1815
48.2. 1. STATT-UP...eeiiiiiieiieiieieee ettt et 1815
48.2.2. SIMPIE QUETY ...ttt 1817
48.2.3. Extended QUETYccccouiriiiiiiiiiiiiiiieie et 1818
48.2.4. FUNCHON Call.....ccuiitiiiiiiiiiiieeiieee ettt 1821
48.2.5. COPY OPECTALIONSeeruemieienrieiietieiiesieeiceie st eeesteeseenee et eeeseesneeneesneens 1822
48.2.6. Asynchronous OPerations............ceeeeerterieriereesiesieeeeneeseeeeesreseeneesneens 1823
48.2.7. Canceling Requests in Progressccocceceeverieieninienenceieneeeeeeneene 1824
48.2.8. TermMINAtiON ..cc.eeuiieieiiriieieieet ettt sbe s saene 1824
48.2.9. SSL Session ENCryption........ccceceeeeienereenienieienieeiieie et 1825

48.3. Streaming Replication Protocol............cocueiiiiiiiiniiiieniiieenieeceeeneseeeee 1825
48.4. MesSSaZe Data TYPES ..c.veeueemiiiieiiniieiesieeiteeet ettt ettt st 1830
48.5. MeSSaZE FOIMALSccueruiiiiiieiiriieteeetee ettt 1830
48.6. Error and Notice Message Fieldsc..cocueveriiiiiniiieninienenieiencceene e 1846
48.7. Summary of Changes since Protocol 2.0........cccccoceevierinienininiineeieneriencnene 1847
49. PostgreSQL Coding CONVENLIONSccouerueerierierieniiniietenieeteniesiteiesieeeesieeseeseesseensenseens 1849
49.1. FOIMATING ...eoveeniiiiiiiieeiteteeteetes ettt ettt sttt et sbe et e sbeebeesaesbeenaesbeens 1849
49.2. Reporting Errors Within the Server..........ccoocievieriiiiiienieeriecieeieeee e 1849
49.3. Error Message Style GUIAE........cccuevvveeriieriiiiieiieniie ettt 1852
49.3.1. What GOes WhETE........ccccevuiiiiiiiiiiiiiciccccceeeeeeeeese s 1852
49.3.2. FOIMANGviiiieiieeiieeieeriteete et et e st e sttt e satesate e beesatesateenbeesanesasesnnes 1853
49.3.3. QUOtation Markscccoviiiiiieiiiieciie ettt e 1853
49.3.4. USE Of QUOLES......uviiiiiieeiiieeiiieeciieeeieeeeteeesiveeeseseeesreeetaeeesseessseessseaans 1853
49.3.5. Grammar and Punctuationcc.cecceeereeneneenieninieenienceeneerenenens 1854
49.3.6. Upper Case VS. LOWET CaSEcccueeruierieriiiiienieeieeieeste ettt 1854
49.3.7. Avoid Passive VOICEcceeeveriieiiriieiiniirceierecreteeeete e 1854
49.3.8. Present vS. Past TENSEccevueeiiniieieniiiieieiccieeeeerenceeese e 1854
49.3.9. Type of the ODJECt.......coirieriiriiiiiieieeeeeeceeeee e 1855
49.3.10. BIaCKELS...ceueiiuiiiiieeiieeieeit ettt ettt ettt ettt 1855
49.3.11. Assembling Error MesSagescccceuereerueririeniinienieneereneeeeenieene 1855
49.3.12. Reasons fOr BITOTS.........coviiriiriiiiiiieniictcteee et 1855
49.3.13. FUNCHON NAMEScueeriiiiiiiiiniieieeriteeteeiteste ettt 1855
49.3.14. Tricky Words to AVOId.......cccccuevveerinininenieieieenieesreseeeeeeee s 1856
49.3.15. Proper SPelling..........cocooiiiiiiiiiiiiiiiieit et 1856
49.3.16. LOCAlIZAtION. c..cuetieiieeeeiieie et ettt ettt et saeene 1857

50. Native Language SUPPOTT.......c.ceouiriiieriieiieieeteeieste ettt ettt ettt sae et be e ee e ens 1858
50.1. For the Translatorccociiiirieiieienie ettt 1858
50.1.1. REQUITEIMENLS ...uveviiiiiiieiieiieteeiente ettt ettt s seeeete st b e e e eae 1858
50.1.2. CONCOPLS...convieieniiiieiieieeitete ettt sttt ettt eat et st e e bt eete st ebe e e saeene 1858
50.1.3. Creating and Maintaining Message Catalogsc..ccocevervvenieneereennennes 1859
50.1.4. Editing the PO Fles.......ccccooiviiiiiiiiiiieicceeeeeeeeeeeeeee 1860

50.2. FOr the PrOramimer.........c.ccoeevieiiirieniinieienieeie ettt sttt 1860
50.2.1. MECRANICS ...ttt e 1861
50.2.2. Message-writing GUIidelinesccceoereevienerienineenenenieneneeeene 1862

51. Writing A Procedural Language Handlercccccoceeviniiiiininiininnnieneiiccneeicneee 1864

XXX

52. Writing A Foreign Datad WIaPPET ...c.covviiiiieniiniieiteiieete ettt sttt st 1867

52.1. Foreign Data Wrapper FUNCHONSccocviiiiirieiiieniieeiecicciteste et 1867
52.2. Foreign Data Wrapper Callback ROUHINES.........ccceeviirieriiiinienieeiccieeeeeeee 1867
52.2.1. FDW Routines For Scanning Foreign Tablesccccevveeniiininneennnen. 1867
52.2.2. FDW Routines For Updating Foreign Tablescccccevveeriiineeneennnen. 1869
52.2.3. FDW Routines for EXPLATIN ...ccccoctrruerierierenrineeteneeenenieenennesneenenneenne 1872
52.2.4. FDW Routines fOr ANALYZE ...cccerrieirienierieenieenieenieenieesieesieeeveesseesaee s 1873
52.3. Foreign Data Wrapper Helper Functions...........c..cccccceeieiinieicniniencnecienne 1874
52.4. Foreign Data Wrapper Query Planning............c..coceoiiiiiiniiiininieniniciene 1875
53. Genetic QUETY OPHIMUZETcc.eeiiruiiieiiiieieteeiete ettt ettt 1877
53.1. Query Handling as a Complex Optimization Problem..............c........cccociie 1877
53.2. Genetic AIZOTItRMScoiuiiiiiiiiieieeee et 1877
53.3. Genetic Query Optimization (GEQO) in PostgreSQLcccoverieienieennnne. 1878
53.3.1. Generating Possible Plans with GEQO.........ccccccccevenininineneeninennenn 1879
53.3.2. Future Implementation Tasks for PostgreSQL GEQOccccceueuuee. 1879
53.4. Further REadingcceeieiuiiiiiiitieieieeee ettt 1880
54. Index Access Method Interface Definitioncccccoceereririieninieninieeeeeeeceeeee 1881
54.1. Catalog Entries for INAEXEScceevueriirieniniiieninieiceeeeete et 1881
54.2. Index Access Method FUNCLIONS........c.cceieiiiiininiiicieicceteeeiceeeeieeeee s 1882
54.3. INAEX SCANNIINEZeevviniiriieiiiiieiert ettt ettt ettt ettt st seeene 1886
54.4. Index Locking Considerations..........c.ceceevuereerienerienieneenieneeeenieseeniesseeneneeenes 1887
54.5. Index Uniqueness ChECKS..........coerieriirieniineiienienteieeitetesieete et 1889
54.6. Index Cost Estimation FUNCHONS.........c..cceciriiininiiniiiiiiinicieceeecece e 1890
55, GIST INAEXES....ccueiuiiiiiiiieicieie ettt s st 1893
551 INrOQUCTION w..viiiiiiiieicicieiet ettt s 1893
55.2. EXtENSIDIIILY ...ouiiiiiiiiiiiicicicie e 1893
55.3. IMPIEMENTALION......eiiiieiieiiieieeite ettt ere ettt sae et et e st e sabeebeesaeesaneenses 1900
55.3.1. GiST buffering build.........cc.coceevimiriininieiicece e 1900
55.4. EXAMPIES ..eeouvieiiiiiiiiiieite sttt ettt ettt et ste ettt e st st e bt e st sate et e satesaneeats
56. SP-GIST INAEXESoeouiiiiiiiiiiiiiiiiiiciecee e s
56.1. INrOAUCTHIONuviiiiiiiiiiciciir e
56.2. EXENSIDIIILY ...eovuiiiiiiiiiiieiieeieetese ettt st ettt
56.3. Implementation
56.3.1. SP-GiST LIMILS...c.eecririirieiinieienieeeenereereteeeete e 1908
56.3.2. SP-GiST Without Node Labels.......ccccceevenenienieiininininceececeenene 1909
56.3.3. “All-the-same” Inner Tuples..........cccccoerieiieniniininieneneceeeeceee 1909
56.4. EXAMPIES ..ottt s 1910
ST GIN IIAEXES ettt ettt ettt ettt st ettt st e sbe e s st e sat e e bt e sbeesateebeenbeenneens 1911
ST.1. INEEOAUCHION ..ttt ettt ettt ettt et esbeesaneeanes 1911
57.2. EXEENSIDIIILY ...eouveiiiiiitiienietcicietrest ettt ettt ettt e 1911
57.3. IMPIeMENtAtiON......c.ooiiiiiiiiiiiiiiiiiiciee et 1913
57.3.1. GIN Fast Update Technique.........ccccceceerirenenieiesinienenienierereeeeeennenne 1914
57.3.2. Partial Match AIZOrithmcccovevieiiiiininininceeeeeeeeeeee 1914
57.4. GIN Tips and TIICKSeeueeruiriieieitieieieee ettt 1914
57.5. LIMIEATIONS ... teutetieiietietteie ettt ettt ettt sttt be et e b et e e sbe et e sbe s et e besbeentenaeene 1915
57.6. EXAMPLES ..ottt sttt ettt st ettt b et 1915
58. Database Physical StOTagecoeeieriiriieiiiniieienie sttt 1917
58.1. Database File LayOut.........cccceveiiriiriinieiiieeieneeteteeecete et 1917
58.2. TOAST .ttt ettt st 1919
58.3. Free SPace MaAPcoveviiriiiiiiiiienieeteeetete ettt 1921
58.4. VISIDILItY MaPcuiiiiiiiiiiiiiiiiicineceeeee ettt 1921
58.5. The Initialization FOrKc.cccoeiiriiininiiiniiniiienntceecctcetee e 1921

XXXI

58.6. Database Page LayOutcccceevieriiiiiiiiiieniieeieeieesite sttt 1922

59. BKI Backend INterface..........coccevueruiiieniinieiiniieieicneecsiccecetete et 1925
59.1. BKI File FOTMALccuieiiiiiiiiiiniiiiciieeetcscet ettt 1925

59.2. BKT COMMANAScoueeviiriieiiriieieniinietieeete ettt sne e 1925

59.3. Structure of the Bootstrap BKI File.........cccccueviiiiiiiniiniiiiiiiineeeceeeeeee 1926

59,4 EXAMPIL ..ottt ettt s 1927

60. How the Planner UsSes StatiStCS.....eerueruerriierierierieeniiente et esieeste st enieesiee st sreeseeesaee s 1928
60.1. Row Estimation EXamples.........c..ccceeieiiriniiiiniiicienceeeee e 1928

60.2. Planner Statistics and SECULILYcccoeceeviirieiieniriieieeieeeeeree e 1933

VIII. Appendixes 1935
A. PostgreSQL Error COdes.........couiiiiiiiiiiiiiiiiiiiicee e s 1936
B. Date/Time SUPPOIT «....eoverviieieiieiiniintiteteteetettete st sttt ettt st ss et ee sttt saesaesens et eaesaeenen 1944
B.1. Date/Time Input INterpretationcceeververeeeeenenienienieieteesesieseeneeeeesenaens 1944

B.2. Date/Time Key WOIdS........ccooieiiiiiieeiieieei ettt 1945

B.3. Date/Time Configuration Filesccccooieiiiiiiiniiiiiiiieeceee e 1946

B.4. HiStOry Of UNIES ...ooueiuiiiiiiieiieiieie sttt st sttt st st sben 1947

C. SQL KEY WOTGS......eeuiiiiriiieieieitiistetetetetett ettt sttt s st sae s 1950
D. SQL CONOIMANCEccuviiiiiiiieiiie ettt ettt ee e e e e e eare e eeateeeetaeeetseeeraeeeareeens 1973
D.1. Supported FEAtUIEScc.eeutiiiriieiiriiiierieeitetesttetest ettt st 1974

D.2. Unsupported FEAtUresc..coceeviireriiereniiiiniieiesiceteresiteiesit ettt 1989

E. REIEASE INOLESooviiiiiiiiieiiciieiieteecet ettt sttt 2005
E .1 REIEASE 9.3.25 ..ottt st 2005
E.1.1. Migration to Version 9.3.25......cccciviiirieriiiniieienee sttt 2005

B 1.2, CRANEES .oouvieiieeiiieieesteete ettt ettt sttt sete et e baesabesbeenaeesaee s 2005
E.2.ReEIEASE 9.3.24 ..ottt 2008
E.2.1. Migration to Version 9.3.24c.ccociiriiniiiniiieieeneesieeieesee et 2008

E.2.2. CRANEES .ouveeiieeiiieitesteett ettt sttt ettt e be e st et naeesaee s 2008
E.3.Release 9.3.23 ..o 2010
E.3.1. Migration to Version 9.3.23ccccoeiiiriiniiiniieieteste et 2010

E.3.2. CRANEES .outeeiieiiteieeeee ettt ettt st ettt st st 2010

E.4. Release 9.3.22 ..ottt 2012
E.4.1. Migration to Version 9.3.22.......c..cccceciririiiininiinineeeneereieseeeeeeeee 2013

E.4.2. ChangEsoouieieiiiieeieieeeeteeeese ettt st 2013
E.5.REIEASE 9.3.21 ..ottt ettt st 2014
E.5.1. Migration to Version 9.3.21.......ccccccooiiiiiiiiiiniiiiieeeeceeeeeeeeee 2014

E.5.2. Changescouioieiiiiiieiceeces e e 2014

E.6. REIEASE 9.3.20 ..cnmiiiiiiiiiiie ettt sttt sttt 2016
E.6.1. Migration to Version 9.3.20........cccccevririninenenieinenenesrcrereeeneeennene 2016

E.0.2. CRANZESeeeiieiieieeieeeteee ettt et sttt et 2016
E.7.REIEASE 9.3.19 ..ottt ettt 2018
E.7.1. Migration to Version 9.3.19........cccccevirinininineneinenesreeeeeeeeeene 2018

E.7.2. CRANEES .uveeeieeiiiieeteet ettt ettt et 2018

E.8. Release 9.3.18 ...ttt sttt 2019
E.8.1. Migration to Version 9.3.18........cccccevirinininenieieiiineecereeeeeeee 2019

E.8.2. CRANZES ..c.eeiiieiieieiieetei ettt et 2020

E.9. ReIEaSE 9.3.17 ..ottt 2023
E.9.1. Migration to Version 9.3.17ccccoceviininiiiininienineeeseeteeeeeeeee 2023

E.9.2. CRANZES ..c.vviiiiiiiniiiieeieteitee ettt ettt 2024

E.10. Release 9.3.16 ...c.couciiiiiiiiiiiieiciccieetceeeee sttt 2026
E.10.1. Migration to Version 9.3.16........cccceevieriiriiienienienieeieeneeeee e 2027

E.10.2. CHANZES ...eevveeiiieiieiieeiie ettt ettt et st e st ebee st esateebeesaaesateenbaenseesnne s 2027

XXXIT

E. 11 ReIEaSE 9.3.15 oottt ettt sttt et s s 2029
E.11.1. Migration to Version 9.3.15....ccccooiiiriiriiiniiiiieiesieeteeeete e 2029

E 11,2, Changes ...ccc.eeeiieiieniieeieeieeitesite ettt sttt ettt e be et be s e saee s 2030
E.12.Release 9.3.14ouioiiiieieeeeteec ettt sttt s 2032
E.12.1. Migration to Version 9.3.14.......ccoceiiiiriiniiiienieeieeieeeeeee e 2032
E.12.2. Changescc.ooceevuiriieieniieieieeeeeeste ettt st 2032
E.13.Release 9.3.13 ..ottt ettt 2035
E.13.1. Migration to Version 9.3.13........cccociiiiiiiiniiiieeeneeeeeeeeeeeeee 2035
E.13.2. Changesc..oocveiiiiiiiiieieieeeeeeseeeee ettt 2035

E.14. Release 9.3.12 ..ottt sttt ettt ettt e 2036
E.14.1. Migration to Version 9.3.12........c.cccceiiiiiiiiiiiiiiceneceeeeeceee 2037
E.14.2. Chan@escc.eeeuieiiinieiiieieeeteete ettt ettt ettt 2037

E.15. Release 9.3.11 ..ottt sttt ettt s 2038
E.15.1. Migration to Version 9.3. 11cccccevrininineneieieinenescrereeeeceenene 2038
E.15.2. Changes ...ccc.eeeuieiieniieniieieetesteee ettt sttt 2038

E.16. Release 9.3.10oouiiiiiiiieiieieeeeecete ettt sttt sttt et s st 2042
E.16.1. Migration to Version 9.3.10......cc.cccecvinimineneiieiiinenesiciereeeeeeiene 2042
E.16.2. ChANEES ..ottt e sttt st 2042
E.17.RelEaSE 9.3.9 ..ottt 2046
E.17.1. Migration to Version 9.3.9......cc.coceviiniiiiiininieniieee et 2046
E.17.2. ChanEES ..coveiieniiiieeieieeeteeeee sttt ettt 2046

E.18. Release 9.3.8 ..o 2047
E.18.1. Migration to Version 9.3.8cccccoceviiririrniininienineeieneeteeseeeeeee 2047
E.18.2. CHANGZES ...eevveeeiieiiieriieeie ettt ete ettt ettt e be et esateebeesaaesateenbaenseesnne s 2047

E.19. Release 9.3.7 ..o 2048
E.19.1. Migration to Version 9.3.7.......cccecierieriiniiienienienieeieesee st 2048
E.19.2. ChanGESs ...coovveeuiiiiieiieeie ettt ettt st ettt sate et et e st sbeenaeesaee s 2048

E.20. Release 9.3.6cooviiiiiiiiiiiicicccecc e 2052
E.20.1. Migration to Version 9.3.6......ccccceceerieriiriiieniienienieeieesee et 2052
E.20.2. ChanGESs ...cccuveviiiiieniieeieeieesiteste ettt sttt st e be et e st sbeesaeesaee s 2052
E.21.Release 9.3.5 .o 2059
E.21.1. Migration to Version 9.3.5......ccccoviiiiiiniiiniiiieeenteeiteee st 2060
E.21.2. Chan@ESs ...cocuveeuiiiiieiieeieeieeiteete ettt sttt st ettt s e i s 2060
E.22.ReleaSE 0.3.4 ..ottt s 2064
E.22.1. Migration to Version 9.3.4..........cccoviiiriiiiinineniieceneceeeeeeeeeeeee 2064
E.22.2. Changesc..coceevuiiieiiiieieieeeetesteeeee ettt 2064

E.23. Release 9.3.3 ..ttt st st 2066
E.23.1. Migration to Version 9.3.3.......ccccociriiiiiiiiii e 2066
E.23.2. Chan@Es ...cccuveeuiieiiiniienieeieeiteste ettt sttt ettt ettt et e e s 2066

E.24. RIS 9.3.2 ..ottt sttt sttt st 2072
E.24.1. Migration to Version 9.3.2........cccccevrinininenenieieeneneseerereeeneenennene 2072
E.24.2. Chanescceeeuieiiinieniieieeiteete ettt ettt st 2072

E.25. RelaSE 9.3.1 ..ottt ettt 2075
E.25.1. Migration to Version 9.3.1.....c..ccccceviririninenieieinenenesieereeeneeenee 2075
E.25.2. CHANEES ..ottt et 2075

E.26. RelCASE 9.3 ..ottt sttt st et st 2075
E.26.1. OVETVIEW ...ttt st 2076
E.26.2. Migration to Version 9.3ccccoviriiniiiiniiniiieniecee et 2076
E.26.2.1. Server SEttNESccocevuerieriinieienieeienieeteesieete sttt 2076

E.26.2.2. Other ...couoviiiiieieiiiiecceeeceeeeeeee e 2076

E.26.3. ChaNEES ..cooverueiiiiieiieieeiteteeieete sttt sttt 2077
E.26.3.1. SEIVET ..ottt 2077

XXXi11

E.27.

E.28.

E.29.

E.30.

E.31.

E.32.

E.33.

E.34.

E.26.3.1.1. LOCKING.....eeotieiiiiiieiteitecieeeeteste et 2077

E.26.3.1.2. INAEXES.....cuvvuiriiiiiiiiiiiiiccccreceee 2078

E.26.3.1.3. OPtimiZeT......coviiriieiieniieiieeieeite et 2078

E.26.3.1.4. General Performance...........c..coceeevieciininiencniicnenene 2078

E.26.3.1.5. MONItOTING....coruttriieiieniierieeieeiee st ereesiee st seee s 2079

E.26.3.1.6. AuthentiCationcccceeeceerenienieniecienieeeneseerenneene 2079

E.26.3.1.7. Server Settings.......ccccecevireerereeienierenieeeene e 2079

E.26.3.2. Replication and ReCOVETrYccoceniriiiiininiiniciccnicieee 2080
E.26.3.3. QUETIES ..eeeeiiieeeiieeiiee et et eite et e et e e e e eeenseesnaeesaseeennne 2080
E.26.3.4. Object Manipulationcccceeeevieninienienieeiieneeieneeeeieeeee 2081
E.26.3.4.1. ALTER ceoitiiieieiecieeeeee e 2081

E.20.3.4.2. VIEWS toteoteieireeietcteeeeetee ettt sttt e 2081

E.26.3.5. Data TYPES ..coveeriiirierieiiieeteeeeiteeteee ettt 2082
E.26.3.5.1. JSON ettt 2082

E.26.3.6. FUNCHONScc.eoiiiiieiiiieieie ettt 2082
E.26.3.7. Server-Side Languagesccccceceevererienenienieneeeneeeeieeee 2083
E.26.3.7.1. PL/pgSQL Server-Side Language............ccccevcereenuennne 2083

E.26.3.7.2. PL/Python Server-Side Languagecccccoceveeruenncne 2083

E.26.3.8. Server Programming Interface (SPI)ccccocooviiiininincncn. 2083
E.26.3.9. Client APPLICALIONScoveriiruieriirieeienieniieienitetenieete e sieenieniens 2083
E.26.3.9.1. PSQL.eiiiiiiiiiieecc e 2084
E.26.3.9.1.1. Backslash Commands............ccccceueeveirinennene. 2084

E.26.3.9.1.2. OUtpUL ...coveiuiiiiiiiicicieieeccceeeeeee 2084

E.26.3.9.2. P dump.....cooeiiiiiniiiiiiieiecsteeseeceeeee e 2085

E.26.3.9.3. I1tdD...c..coiiiiiiiiiiicci 2085

E.26.3.10. Source Code.........ccoeuiiiiiininiiiiieieieeeseeeeee e 2085
E.26.3.11. Additional Modulesc..ccccereevenerieniniieniinceicneneeienieens 2086
E.26.3.11.1. pg_upgrade......ccceevueevieriinieeiienieeieeniee e eieeniee e 2087
E.26.3.11.2. pEbEncChcoouviiiiiiiiiiiiiieieetece et 2087

E.26.3.12. DOCUMENAtION.......eruirireiiniieiineeieneeterenieere et saeens 2088
Release 9.2.24 ..o 2088
E.27.1. Migration to Version 9.2.24...........ccooieriiriiiinienienieeieesee et 2088
E.27.2. ChANZES ...eovveiiiiiieiteeie ettt sttt ettt et et st e i s 2088
Release 9.2.23 ...t 2089
E.28.1. Migration to Version 9.2.23........c.ccccceviriiiinininiiieneneceereeeeeeeeeeee 2089
E.28.2. Changesc..coceevuiiiiiiiieieieeeeeseetee ettt 2090
RIS 9.2.22 ..ottt 2091
E.29.1. Migration to Version 9.2.22........c.cccceoiiiiiiiniiiiniiiceneceeeeeeeeeee 2001
E.20.2. Changesccocouiiiiiiiiiieieeeee e 2091
ReIaSE 9.2.21 .ottt e 2094
E.30.1. Migration to Version 9.2.21ccccceeurimininenienieiinenenesrereeeeeneenennene 2094
E.30.2. Changescccooouiiiiiiiiiiiieiicicere e 2095
REIEASE 9.2.20 ...ttt 2097
E.31.1. Migration to Version 9.2.20.........ccccceiriminienieienineneneneerereeeneenennene 2097
E.31.2. ChanEES «...eoveiiiiiieieieiieiieiestestetet ettt st 2097
REIEASE 9.2.19 ..ttt 2100
E.32.1. Migration to Version 9.2.19.......ccccociiniiiiiiniiieniicee et 2100
E.32.2. Chan@esccueeueeruiiiiiienieeiteieeicee sttt sttt 2100
Release 9.2.18 ..o 2102
E.33.1. Migration to Version 9.2.18........ccccocueviriiniininienineeneneereneseeeseeaee 2102
E.33.2. Changescoueeeeruirieiiiniieiteieeieete ettt sttt 2102
ReElEaSE 9.2.17 ..o 2104

XXXIV

E.35.

E.36.

E.37.

E.38.

E.39.

E.40.

EA41.

E.42.

E.43.

E.44.

E.45.

E.46.

E.47.

E.48.

E.49.

E.50.

E.51.

E.34.1. Migration to Version 9.2.17cccocveviiriiiniiinieniesieeieesee st 2104

E.34.2. ChanGEs ...cccueeviiiiieniieeiteieeitesite ettt sttt ettt ettt sat e st esaeesaee s 2104
Release 9.2.16 ..ot 2105
E.35.1. Migration to Version 9.2.16........cccceevieriiriiiinienienieeieenieeeeeeesiee s 2106
E.35.2. Changescc.ceeuiiiieniieiieeieeiteete ettt ettt st ettt ettt e s s 2106
ReIEaSE 9.2.15 ..oueieieeeeee e 2107
E.36.1. Migration to Version 9.2.15........ccccoceiiririininininiecnecreeeeeeeeeeeee 2107
E.36.2. Changescccoeouiiiiiiniieieiieeceeseeeee ettt 2107
ReICASE 9.2.14 ..ottt 2110
E.37.1. Migration to Version 9.2.14.........cccccooiiiiiiiiiiiniceeceeeeeeeee 2110
E.37.2. ChanES ...cooueeeuiieiiiiieeiteeieeeteete ettt sttt st ettt st n 2111
ReIase 9.2.13 ...ttt ettt 2114
E.38.1. Migration to Version 9.2.13......c..cccccvvimiminenenieinineneseereeeeeneeeniene 2114
E.38.2. Changescc.eeeuiiiiiriieniieieeteete ettt ettt 2114
REIEASE 9.2.12 ..t 2114
E.39.1. Migration to Version 9.2.12......cc.cccccviriminenienieiineneneserereeeneenennene 2115
E.39.2. ChanEEScoueruiiiieieieiieiieiestestetetet ettt ettt 2115
REIEASE 9.2. 11 ettt 2115
E.40.1. Migration to Version 9.2.11.....c.ccccoviiriiiiiiniiienineeeneeeeeeeeeee 2115
E.40.2. CHANEES ..ottt st sttt 2116
Release 9.2.10 ...cuoieiiiiiiiiccec e 2119
E.41.1. Migration to Version 9.2.10........ccccevueviririiininienineeieneetenieseee e 2119
E.41.2. ChanEES ...coveeueeiiiiiieieeiteteeteete sttt sttt 2119
ReElease 9.2.9 ..o 2126
E.42.1. Migration to Version 9.2.9........cccoccveviiriiiriiiiniinienieeieesee st 2126
E.42.2. CHANZES ...eevvveeiiiiiieiieeie ettt ettt ettt be et eseteebeesaeesabeenbeenaeesane s 2126
Release 9.2.8 ..o 2129
E.43.1. Migration to Version 9.2.8........cccecveriiriiiriiiinienienieeieesee et 2129
E.43.2. CHANZES ...eovvveeiiiiiieiieeie ettt ettt ettt ettt et e st sbeenaeesaee s 2129
Release 9.2.7 ..o 2130
E.44.1. Migration to Version 9.2.7........cccoceevieriiriiiinienienie ettt 2130
E.44.2. CHANZES ...eovvveeiiieiieiieeie ettt ettt ettt sttt et st st esaeesaee s 2130
Release 9.2.6 ..o 2134
E.45.1. Migration to Version 9.2.6.......ccccoccecuevirieiieninienineeeneeresreseeeeeeeeeee 2134
E.45.2. Changesc..ccceeouiiieieniieieiieeeteseeeee ettt 2134
REICASE 9.2.5 ..ttt 2136
E.46.1. Migration to Version 9.2.5.......ccccocivviiiiiiiiniiini e 2136
E.46.2. Changescccooiiiiiiiiieieiieeeereeeee et 2137
REICASE 9.2.4 ...ttt 2139
E.47.1. Migration to Version 9.2.4........cccccevririninenenieninenenesresreeeeeneenennene 2139
E.47.2. Changescccoooiiiiiiiiiiiieie e e 2139
ReIEasSE 9.2.3 ..ottt 2141
E.48.1. Migration to Version 9.2.3........cccccevrimininenenieinenenesterereeeneeenne e 2142
E.48.2. ChanGEs ...cccvveeuiiiiiiiieeiiieeteete ettt ettt 2142
REIEASE 9.2.2 ..t 2144
E.49.1. Migration to Version 9.2.2........cccccevivimininenieieininenesieeereeeneenesnee 2144
E.49.2. CHANEES ..ottt sttt 2145
ReElEASE 9.2.1 ..o 2149
E.50.1. Migration to Version 9.2.1......ccccocevieririenieninienieneenieneeteieeeeee e 2149
E.50.2. ChanEEScveeueeiiieiieieeiteeeicete sttt sttt 2149
REIEASE 9.2 ... 2150
E.5T.1. OVEIVIBW ..ottt e 2150

XXXV

E.51.2. Migration to Version 9.2........cccccoeviierieniiniiienienienieerieesiee st eveesiee s 2151

E.51.2.1. System Catalogs.......ccceeruierierrieiniieiieeieeiee e eieesiee e eieeniee e 2151
E.51.2.2. FUNCHONScueeiiiiieiiiceiiciceiecieseceeesie ettt 2151
E.51.2.3. Object MOdificationcocueevueerieenieniieeiienieeieesieesee e 2152
E.51.2.4. Command-Line TOOIScccccccereeriiririienininienieieneneerenieens 2152
E.51.2.5. Server Settingsccccoveecieriirieniinieieneeeeieneeresee e seene s 2152
E.51.2.6. MONITOTINGcovviiieiiiiieiieiinieeteniceeese et 2153
E.51.3. Changesc.ooeeiiiiiieiieieieeeeeesteeeeee et 2153
B ST.301. SEIVET .ottt ettt 2153
E.51.3.1.1. Performanceccccceeceerienneenecnieiieeeeniceeecee 2153

E.51.3.1.2. Process Management.............coceeeuevieiiinieieencneennennenne 2154

E.51.3.1.3. OptMUZET.....ccueiuieiieeieieeieeeesee e 2155

E.51.3.1.4. AuthentiCationccceveeeererienienieiese e 2155

E.51.3.1.5. MONItOTING...c.veitiiiiitieiiieeiesieeiteie st 2156

E.51.3.1.6. Statistical VIEWScccceviriierinieienieeieneeee e 2156

E.51.3.1.7. Server Settings.......ccccecuererrierenieieniieiesie e 2156
E.51.3.1.7.1. postgresql . CONf i nieceeeeeeieeeeieeeennen 2157

E.51.3.2. Replication and RECOVEIYccceevererieniinieiinieiencnieieiee 2157
E.51.3.3. QUETICS ..oeiiiiieeiiee ettt ettt eaa e evee e 2158
E.51.3.4. Object Manipulationccccecereerererienienienieneeienieneenienieens 2158
E.51.3.4.1. CONSIAINES....c.ueruieiiniieiinierienienitetesieeee et 2158

E.51.3.4.2. ALTER teciiieietceteeeeeeee ettt e 2159

E.51.3.4.3. CREATE TABLE ..eotecieieierieienieteeeeeee et e 2159

E.51.3.4.4. Object Permissions..........ccccceereenreneenuenenreeneneenieneens 2160

E.51.3.5. Utility OPerationscccueevveerueerieesueenieenieesresssessieesseessuessseenns 2160
E.51.3.6. Data TYPES ..eecveeiieeiieiieiieeieeieeite sttt st ere et e sevesae e e 2160
E.51.3.7. FUNCHONScueeiiiieiiniieiietceectcnecetene ettt 2161
E.51.3.8. Information Schema..........ccccceereenininieniiniinnineicncneeeneee 2161
E.51.3.9. Server-Side Languagesccccceveerieerieeniienieeiieeneenieeieenieenns 2162
E.51.3.9.1. PL/pgSQL Server-Side Languagecc..ccecvevvueenueennnen. 2162

E.51.3.9.2. PL/Python Server-Side Languagec..ccecvevvuvenueennen. 2162

E.51.3.9.3. SQL Server-Side Language...........ccecveeveervernieeneennnen. 2162

E.51.3.10. Client APpIiCAtioNSccocueevueerierrieeieeiienieeieesiee e 2162
E.51.3.10.1. PSQL vttt 2163
E.51.3.10.2. Informational Commands............ccecceeveerverneeneennnenn 2163
E.51.3.10.3. Tab ComPletionccoceeceeruerieienieieniieeeneeeerenneene 2164
E.51.3.10.4. pg_ dump....c..coeeiiiiiiiiiieicceceecee e 2164

E.SL.3.1 1. IDPQ ettt 2164
E.51.3.12. SoUICE COAE....uuiiruiiriiiiiiniienieeieeeieeeee ettt 2165
E.51.3.13. Additional Modulesccccereerenirieiinieceeeee e 2166
E.51.3.13.1. pg_upgradecocueeueeiinieienieeeeeeeee et 2166
E.51.3.13.2. pg_stat_StatemMentscccceeeeruerreenueneeieneseeneenneans 2167
E.51.3.13.3. SEPZSQL. vt uieieiiieieeiieieeeete ettt 2167

E.51.3.14. DOCUMENATION.......eitieiieiieiieienieeie ettt 2167
E.52.Release 9.1.24o.eiiiiiieeeee ettt 2167
E.52.1. Migration to Version 9.1.24.........cccccovinininineiiniiincneserereeeieeeee 2168
E.52.2. ChANEES ..ottt st sttt 2168
E.53.Release 9.1.23 ..ottt 2169
E.53.1. Migration to Version 9.1.23.......ccccoviiriiirniniinienineee et 2169
E.53.2. Changes ...coueeeeriirieiiinieeiteieeieete sttt et 2169
E.54.Release 9.1.22 c...ouiiiiiiiiiiieeeeeeteeettete sttt 2171
E.54.1. Migration to Version 9.1.22........ccccoceriririiininiienineeneneerenieneeeneeenee 2172

XXXVI

E.54.2. CHANZES ...eovuveeiiiiiieiieeie ettt ettt sttt ettt b et st st e saeesaee s 2172

E.55.Release 9.1.21 ..o 2173
E.55.1. Migration to Version 9.1.21....c.cccoceivieriiiniiiiiinienieeieereeeeeeeeee e 2173
E.55.2. Changescc.ceeuieiieniieniieitesiteete ettt sttt ettt et et st e i s 2173

E.56. Release 9.1.20cocoiiiiiiinieiintcieeeeeteeeteeeere ettt et 2174
E.56.1. Migration to Version 9.1.20........ccceevieriiniiinniiniinieeieeeeeee e 2174
E.56.2. Changescccoouiiuiiiiniieieiieecteseeceee ettt 2174

E.57.RelEaSE 9.1.19 ..ottt ettt 2177
E.57.1. Migration to Version 9.1.19........c.cociiiiiiiiiniiiiiceeceeeeeeee 2178
E.57.2. Changesc..cooeiiiiiiiiiieieiiecese e 2178

E.58. Release 9.1.18 ..cuciiiiiiiiiitieictcceetenertete ettt ettt s 2181
E.58.1. Migration to Version 9.1.18......cc.cccecririnineneieininenesrerereeeeeeennene 2181
E.58.2. Changescc.ceeueiiiinieniieieeiteete ettt sttt 2181

E.59. ReleaSE 9.1.17 .ottt et 2181
E.59.1. Migration to Version 9.1.17.....ccccceeirvinininenenieineneneseeereeeeeesene 2182
E.59.2. ChaNEEScoverviiiieieieiieitieseestetetetet ettt st 2182

E.00. Release 9.1.16oueimiiiiiiiiiieeecee ettt st 2182
E.60.1. Migration to Version 9.1.16......cc.cccccuvinininenieiieininenesiceeeeeeeeene 2182
E.00.2. CHANEZESoviiieniiiiieieieei ettt st sttt 2182

E.01. Release 9.1.15 ..ottt 2186
E.61.1. Migration to Version 9.1.15.....ccccociviiniiiiiiniiiinieeieneeteeeeeeeee 2186
E.O1.2. CHANEES ..eonviiieniiieeiieieeeteeetee sttt sttt 2186

E.02. Release 9.1.14 ..ot 2192
E.62.1. Migration to Version 9.1.14cccoviiririniininiinineeenecreeseeeeeeee 2192
E.02.2. CHANZES ...eeovveeiiieiieriieeit ettt sttt et et st tee st e sateebeesaaesasesnbaenseenanen 2192

E.63. Release 9.1.13 ..o 2194
E.63.1. Migration to Version 9.1.13......cccccirriiriiniiiieieeieeeeeee e 2194
E.63.2. CHANZES ...eovuveeiiieiieiieeie ettt ettt sttt sttt ebe e aeesatesbeenseesaee s 2194

E.604. Release 9.1.12 ..o 2195
E.64.1. Migration to Version 9.1.12.......ccccviviiriiiniiiniieieeieeiteeeee e 2195
E.64.2. ChanGESscc.eeviiiiieniieeiiieieeiteete ettt sttt sate ettt e st sbeesaeesaee s 2195

E.65. Release 9. 1.11 ...ccooiiiiiiiiiiiiiiiicicccc e 2199
E.65.1. Migration to Version 9. 1. 11 ...ccccoooiiiiiniiiniiiieienieeicceeeec e 2199
E.05.2. Changesc.coceeriiriieiiiieiieieeteeeseetee ettt 2199

E.00. Release 9.1.10 ...cc.couiieiiiiiriiieicieceieetesesteteit ettt ettt e 2201
E.66.1. Migration to Version 9.1.10........c.ccoceiiiiiiiniiiiniieeeceeeeeeee 2201
E.06.2. Changescceeouiriiiiiiieiieiieeeeesie ettt s 2201

E.67. Release 9.1.9 ..ottt 2203
E.67.1. Migration to Version 9.1.9.......ccocoiiiiiiiiiii e 2203
E.07.2. CHANEZES ..ot ettt sttt ettt et eae s 2203

E.68. Release 9. 1.8uuiiiiiieeeetet ettt s 2205
E.68.1. Migration to Version 9.1.8........ccccevirininineneieieinenesrerereeeeeenene 2205
E.08.2. CHANEES ..ottt sttt 2205

E.09. RelCaSE 9.1.7 ..ottt st 2207
E.69.1. Migration to Version 9.1.7........cccccevrinininenienieininenesierereeeneeenene 2207
E.09.2. ChaNEEScoveruiiiiiieieiieiinesiestetetet ettt st 2207

E.70. RElEASE 9. 1.6 ..ottt s 2210
E.70.1. Migration to Version 9.1.6......ccccocevieniniiiiininienineee et 2210
E.70.2. ChANEES ..ottt st st 2210

E.71.RElEASE 9.1.5 ..ottt 2212
E.71.1. Migration to Version 9.1.5......ccccoviriinininiininienineeneneetesieneeeaeee 2212
E.71.2. CHANZES ...eevveeiiieiieeeiieeie ettt ettt ste e te et eseteebeesaaesabeenbaenseesnne s 2212

XXXVii

E.72.RelEASE 0.1.4 ..ottt ettt ettt s 2214
E.72.1. Migration to Version 9.1.4.......cccooeiriiriiiniiiieniesieeieeee et 2214
E.72.2. CHANZES ...eeeieiiiiiieiieete ettt sttt st ettt st saeesaee s 2214

E.73.Release 9.1.3 ..cc.ooiiiiiiiiieieeeeteeeeeteetet ettt s 2217
E.73.1. Migration to Version 9.1.3......ccccooiiiiiiniiniiiieienieeeeeeeee e 2217
E.73.2. Chan@ES ...cecuveeuiiiiiiiieeite ettt ettt st ettt st e e saee s 2217

E. 74 RElEASE 9. 1.2 ..ottt ettt sttt st et 2221
E.74.1. Migration to Version 9.1.2.......cccoccoviiiiiiiiiininiinineeneceeeeeeeeeeee 2221
E.74.2. Changesc.cocveviiiiiiiiiieieiieeeesee ettt 2222

E.75. Releas 9. 1.1 ..coiiiiieieeeett ettt sttt 2225
E.75.1. Migration to Version 9.1.1.......ccocoiiiiiiiiiiiii e 2226
E.75.2. CRANEZES ..ottt ettt st sttt et 2226

E.76. REICASE 9.1 ..ttt sttt et s e 2226
E.76.1. OVEIVIEW ..uiiiiniiiiieieieei ettt sttt sttt et 2226
E.76.2. Migration to Version 9.1.....c..cccccceevirininineneieinenenesrcrereeeneeneniene 2227

E.76.2.1. SEINES .ottt st 2227
E.76.2.2. CaSHNE ..eoutiiieieeiieiesieeeeeee ettt st 2227
E.76.2.3. AITAYS..ceeiiiiiieieeieeiesieete ettt sttt sttt 2227
E.76.2.4. Object MOdificationcoceevuereenienerienienieiesceeesie e 2228
E.76.2.5. Server SEttNESccoceverieriinieiinieeiesieeiteesicete et 2228
E.76.2.6. PL/pgSQL Server-Side Language.......c...cccceceevveveevieneneenenenns 2228
E.76.2.7. CONLID ..ottt 2228
E.76.2.8. Other Incompatibilitiescccoveevererienienieniineeiencnecieneee 2229
E.76.3. CHANZES ...eoovveeiiieiieriieeie ettt ettt ettt et e seteebeesaaesaseenbeenseesnne s 2229
E.76.3.1. SEIVET ..ttt ettt 2229
E.76.3.1.1. Performancec..cccccoveeuenenieneneecieneeecncneeienene 2229
E.76.3.1.2. OPtMUIZET.....cveoiiiiniieiiniieeeneneeieseeteee et 2230
E.76.3.1.3. AuthentiCationcccceveevuerereenieneecienceeeneneenieniene 2230
E.76.3.1.4. MONItOTING....ccoteriieiieniieniieieeniesteeteenitesiresveesaeesane s 2230
E.76.3.1.5. Statistical VIEWScc.cccevirruenerienienieiineeeenceeeieniens 2231
E.76.3.1.6. Server Settings........cccceveeriierieenienieeieenieenreeieenieenaeenns 2231
E.76.3.2. Replication and ReCOVETYccceevieriiiniiiniinieeseenieeieeieee 2231
E.76.3.2.1. Streaming Replication and Continuous Archiving....... 2231
E.76.3.2.2. Replication MONItOringccceeveveecueneeveeneneennenneens 2232
E.76.3.2.3. HOt Standbyccceeeeiiirieieneeieeeee e 2232
E.76.3.2.4. Recovery Controlccceeerieiiinincieninienceeeieeeee 2232
E.76.3.3. QUETIES ..eeeeeiieeiie et eeiee et stte e e e eae e e esnreesnaeesnsaeennns 2233
E.76.3.3.1. StrNES...eotieieieeeieeeteeieee ettt 2233
E.76.3.4. Object Manipulationccccoeeeviininieiiiniiiinieicnceeeieeeee 2234
E.76.3.4.1. ALTER ODJECLeouiieieiiieeeeiieeeieeiee e 2234
E.76.3.4.2. CREATE/ALTER TABLE .c.eecererteieierienrenrereneeneeneerennenne 2234
E.76.3.4.3. Object Permissions..........ccccceeeeerierienieneeieneseeeeeneene 2235
E.76.3.5. Utility OPerationscccceeeeruereenienerieniesieneeseeeeeseeseesaesneens 2235
E.76.3.5.1. COPY ittt 2235
E.76.3.5.2. EXPLATIN .ccittiimiitiieeeteitne ettt 2235
E.76.3.5.3. VACUUM ..ottt 2235
E.76.3.5.4. CLUSTER .cctttririiteieectettee ettt e 2236
E.76.3.5.5. INAEXES.....couveieriieiiniieienieeteniesieeestee et 2236
E.76.3.6. Data TYPESeoveirieiieiiniienieeiteiesicete sttt 2236
E.76.3.6.1. CaStiNg.....ccceevueriiiiniieiiniieieniesteesieetese et 2236
E.76.3.6.2. XIMLooiiiiiiiiiiiienieeieeeteste sttt 2237
E.76.3.7. FUNCHONSc.eeiiiiiiiiiiciicicetctesiceeseeteesit ettt 2237

XXXVIil

E.77.

E.78.

E.79.

E.80.

E.81.

E.82.

E.83.

E.84.

E.85.

E.86.

E.76.3.7.1. Object Information Functionsc.ccceeceevvervieeneennnen. 2237

E.76.3.7.2. Function and Trigger Creationcoeceevvervveeneennnen. 2238

E.76.3.8. Server-Side Languagescccceeveeriernieeniienienieenee e eieenieene 2238
E.76.3.8.1. PL/pgSQL Server-Side Languagecc..cceceevvveeneeennnen. 2238

E.76.3.8.2. PL/Perl Server-Side Languagecceceevvervieenueennen. 2238

E.76.3.8.3. PL/Python Server-Side Languagec..cceceevueeneenen. 2238

E.76.3.9. Client APPLICALIONSccceecuerueeruirieienieneereneerenreeresreseenesieens 2239
E.76.3.9.1. PSQL et 2239

E.76.3.9.2. P dUMP.....cooiiiiiiiiiiiiieccceece e 2239

E.76.3.9.3. PECtleeiieieeeeeeeeee e 2240

E.76.3.10. Development TOOIScccceirieiiniiiiiiiiieineccceecieee 2240
E.76.3.10.1. TIDPQ . eeiiteeieiieeieieeieeeee et 2240
E.76.3.10.2. ECPGi.....cciiiiiiiieeiieeeeeee et 2240

E.76.3.11. Build OPtOnScccueiueeieiieiieieeieeie sttt 2240
E.76.3.11.1. MaKefilesccceerueruieiinieienieeieeeieeee e 2241
E.76.3.11.2. WINAOWS....ccueiuiiiiniieiinieiesie ettt 2241

E.76.3.12. SoUrce COde.......covuiruiriieiiniieieeieeienieeteeeite et 2241
E.76.3.12.1. Server HOOKScccoecueririeniinieenieeceeee e 2242

E.76.3.13. CONULID ..cueniieniiiieieiceteceeee ettt 2242
E.76.3.13.1. SECUIILY.....coviriiiiniieiinieterieseeesieee et 2242
E.76.3.13.2. Performanceccccceeeeenenieneneenieneeeeneneenieniene 2243
E.76.3.13.3. FSYNC TeStING....ccveveriiniirienieniieienieetenieeeene e 2243

E.76.3.14. DOCUMENATION.......erterireiiniieiinieeienieeteiesieete et 2243
Re1ease 9.0.23 ..ottt 2244
E.77.1. Migration to Version 9.0.23..........ccovieriiriiiinienienieeieeree st 2244
E.77.2. CHANZES ...eevveiiieiieiieeie ettt ettt sttt sete et e e e satesbaenseesane s 2244
Re1ease 9.0.22couviiiiiiiiieieiete ettt 2247
E.78.1. Migration to Version 9.0.22........ccccevieriiriiiinienienieeieeree st 2247
E.78.2. CHANZES ...eovieiiieiiieiieete ettt ettt ettt st ettt st esaeesaee s 2247
Re1EasSe 9.0.21 ..cueiiiiiiiieieieeteee ettt 2248
E.79.1. Migration to Version 9.0.21.......ccccceevieriiniiinniinienieeieereeeeeeee e 2248
E.79.2. ChAN@ES ...coovveeiiiiiieiieeiie ettt ettt sttt ettt ettt st s e e s 2248
Release 9.0.20ccoiiiiiinieieieee e 2248
E.80.1. Migration to Version 9.0.20........c..cccceverieiiininieninieneneerereeeeeeeeeee 2248
E.80.2. Changesccceeruirieiiiieieiieeeiesieeeeee ettt 2249
RIS 9.0.19 ..ottt 2251
E.81.1. Migration to Version 9.0.19........c.cccceiiiiiiiiiiiiniiceeceeeeeeee 2251
E.81.2. Changesc.coceeiiiiiiiiiieieiieeee ettt 2252
Release 9.0.18 ...ttt e 2257
E.82.1. Migration to Version 9.0.18......c..cccecuvirininenenieininenesrerereeeieeeiene 2257
E.82.2. Changescc.eeeuiriiiriieiiieieeeteete ettt ettt ettt e 2257
REIEASE 9.0, 17 ettt 2259
E.83.1. Migration to Version 9.0.17......cc.cccecurimininenenieninenenesiceeeeeeeeniene 2259
E.83.2. Changescccoouiiiiiiiiiiiiiic e 2259
REIEASE 9.0.16 ..t 2260
E.84.1. Migration to Version 9.0.16.........cccccvirininenieiieiinineneniccreeeeeeene 2260
E.84.2. CHANEES ..ottt sttt 2260
Re1EaSE 9.0.15 ..ttt 2263
E.85.1. Migration to Version 9.0.15.......ccccoviiviiiiiininiiniiieieneeeeeeeeeeee 2264
E.85.2. CHANEES ..ottt st 2264
Re1ease 9.0.14 ..ottt 2265
E.86.1. Migration to Version 9.0.14........c.ccoceriririiininiinineeneneeteneeeeeeaee 2265

XXXIX

E.860.2. CHANZES ...coovveeiiieiieiieeit ettt ettt ettt ettt sttt et e st e e beenseesaee s 2265

E.87.Release 9.0.13 ..ottt e 2267
E.87.1. Migration to Version 9.0.13........ccceiviiriiiiiiieienieeeeeeeeee e 2267
E.87.2. CHANZES ...eeoueeruiiiiieiienite ettt ettt ettt ettt st esaae s 2267

E.88. Release 9.0.12c.coiiiiiiiiiieiiteteereeeeteet ettt s 2269
E.88.1. Migration to Version 9.0.12........c..ccccooiririiininieninienenecreeeeeeeeeeee 2269
E.88.2. Changesc..ccceeruiriieieiieieiieectesteetee ettt 2269

E.89. Release 9.0.11 ...coueiiiiiiiiiiiiieicteceitetesetetete ettt ettt et e 2270
E.89.1. Migration to Version 9.0.11........c.ccocoiiiiiiiiniiiiceeeeeeeee 2271
E.89.2. Changesccecoiiiiiiiiiieieiieecere et 2271

E.90. Release 9.0.10 ...cc.coueieiriririiicieieeeieetesenteeetei ettt eve ettt s 2273
E.90.1. Migration to Version 9.0.10......c..cccccviriniinenienienininenesterereeeeeeniene 2273
E.90.2. Changesccccoiiiiiiiiiiieiieicese e e 2273

E.91. Release 9.0.9ouiiiieee ettt st 2274
E.91.1. Migration to Version 9.0.9........cccccevrinininineneinneneeeeeeeeeeee 2274
E.91.2. Changesccooouiiiiiiiiiiiiiiccs e 2274

E.92. Release 9.0.8ooueiiiiiiieiieiee ettt et 2276
E.92.1. Migration to Version 9.0.8........cccccevirinininenieieiiincneserereceeeeee 2276
E.92.2. CHANEES ..ottt sttt 2276

E.93. Release 9.0.7cooieiiiiiiiiiicicectetteeeee sttt 2278
E.93.1. Migration to Version 9.0.7......cccccocerieririniiniinienineeie et 2278
E.93.2. Changescc.eeeeruiriiiienieeiteieeieete sttt sttt 2278

E.94. Release 9.0.0cccociiiiiiiiiiiiiciccteeeeee st 2282
E.94.1. Migration to Version 9.0.6.........ccoccevueririeiieniniienineeneneeieneeeeeeeaenee 2282
E.O4.2. CHANZES ...eovvveeiiieiiieiieeie ettt ete sttt ettt e te et eseteebeesaaessseenbeenseenane s 2282

E.95. Release 9.0.5 ..o 2284
E.95.1. Migration to Version 9.0.5......cccceciirieriiiniiiniieniesieeieeseeeee e 2284
E.05.2. ChANGES ...ceouveeuiiiiieriieeie ettt sttt ettt ettt st ettt sat e st enaeesaee s 2284

E.96. Release 9.0.4ccooiiiiiiiiiiiiiiciccc e 2288
E.96.1. Migration to Version 9.0.4........cccoceeviiriiniiiinienienieeieesee et 2288
E.96.2. ChanGES ...cccueevuiiiiieiieeiiieieeiteste ettt ettt st ettt e st s e saeesaee s 2288

E.97. Release 9.0.3 ..o 2290
E.97.1. Migration to Version 9.0.3......cccccooiiiiiniiniiiieneecieeieeeeeee e 2290
E.97.2. ChanEesc.ooeeiiriieieiieieieeieeeseet ettt st 2290

E.98. Release 9.0.2ooiiiiiiii ittt sttt sttt st 2291
E.98.1. Migration to Version 9.0.2..........ccccoceviriiiininiiniieeeeceeeeeeeeeeee 2291
E.98.2. Changesccceeviiiiiiiiiieieiieeeeese ettt 2292

E.99. Release 9.0.1 ..coueiiiiiiiieeeeet ettt st 2294
E.99.1. Migration to Version 9.0.1..........ccooiiiiiiiiiiiiiiceeeeeeeeee 2294
E.99.2. Changescccoouiiiiiiiiiieiii e 2294

E.100. REIASE 9.0 ...conmiiiiiiiiiii ettt sttt 2295
E.100.1. OVEIVIEW ...ttt ettt sttt st sttt et 2295
E.100.2. Migration to Version 9.0.........ccccceviririninenienieninienenesrerereeenceneniene 2296

E.100.2.1. Server SEttngscccceeeueeeeiririnenienieieeeenesieseeseeeeneeneenenes 2296
E.100.2.2. QUETIES ..ccuveeveeiieeieeieeiiieeteeieesteeeeteeveeseesesesseesseesssesnsaenseenes 2297
E.100.2.3. Data TYPES ..veerveermrerrieiienienieeieeniteeeeetee st esne e e sneenee e 2297
E.100.2.4. Object Renamingcccceceevuereerienenienienieieneeieneseeienieene 2297
E.100.2.5. PL/PESQL ...uoiiiiiiiieieeeietrseeeeeeeese et 2298
E.100.2.6. Other IncOmpatibilitiesccoceevuererierieneenieneeieneneenienieens 2299
E.100.3. ChaNGEScoveevirieeiieieeiteieeieete sttt 2299
E.100.3.1. SEIVET ...ttt 2299
E.100.3.1.1. Continuous Archiving and Streaming Replication..... 2299

xl

E.100.3.1.2. Performanceccccooevveeeeeeireeeee e 2299

E.100.3.1.3. OptiMiZer...c..coveiiriieiiiieeenienierenieeresieeeenee e 2300
E.100.3.1.4. GEQO....cueoiiiiiiiiiieiiieeeneeeeteeieeteee e 2300
E.100.3.1.5. OptimizZer StatiStiCscocveevveereerierrieenieeniesieeneenanenn 2300
E.100.3.1.6. Authenticationcocceceerervenreneecueneeieeneneenennens 2301
E.100.3.1.7. MONItOIING....c..cecteruieririeieieneereneeresre et 2301
E.100.3.1.8. Statistics COUNLETScc.cerverrreerieeriieeieenieenieeeieeneeenaeenn 2301
E.100.3.1.9. Server Settings.........cccceceeceerereenienieieneeeene e 2301
E.100.3.2. QUETIES ..c.eveeeeiieeiieeeiieeeieeeeteesiteeereeeeaeeesereeesreessaeesnsaeennns 2302
E.100.3.2.1. Unicode Stringsccccceeeeeruereenueniecieneeeeneseenenneene 2302
E.100.3.3. Object Manipulationcccccoceeviririeiieniniiinieieneseeieneee 2303
E.100.3.3.1. ALTER TABLE ..ccttiuiiiiiieienie et 2303
E.100.3.3.2. CREATE TABLE ...ecutiiiiieieieseeee st 2303
E.100.3.3.3. CONSLIAINES....ecueeiertieieeeeierieeieeie st sie e see e eaene 2303
E.100.3.3.4. Object PermiSsions..........cccoeeeeriereesienensieneneenienneane 2304
E.100.3.4. Utility OPerationscecceeuereeruerereenieneeniesieeseenseseensesneens 2304
E.100.3.4.1. COPY ottt 2304
E.100.3.4.2. EXPLATIN...coiiiiiiiiiiiiiii et 2305
E.100.3.4.3. VACUUM..cctoiriiniiieiereieieeesesteeeeee st e 2305
E.100.3.4.4. INAEXES...cueerueriieienieeienieetesiesteesiee ettt 2305
E.100.3.5. Data TYPES ..cevverveeierieriienienieeienieetesieeitetesie et see st niesieens 2306
E.100.3.5.1. Full Text Search.........cccccocenerieneniniiininienenieienene 2306
E.100.3.6. FUNCHIONS.....cootiriiiiiiiriieiinieetesiceteneeiteesitete et 2306
E.100.3.6.1. AGEIEgates....cceeverueeiiniirienienieienieeienie et 2307
E.100.3.6.2. Bit StrINES..c..coeevierieeiinirienierieieneeteseeeeenee e 2307
E.100.3.6.3. Object Information Functionsccecceecvervieenueennen. 2307
E.100.3.6.4. Function and Trigger Creationcceceevervueeneeennen. 2308
E.100.3.7. Server-Side Languagescccecveerueerueeneeniennieeneeniessieenieenns 2308
E.100.3.7.1. PL/pgSQL Server-Side Language.........cc.cccevveereeenneen. 2308
E.100.3.7.2. PL/Perl Server-Side Languagecceceevvervveenueennnen. 2309
E.100.3.7.3. PL/Python Server-Side Languagecccecceevueennee. 2309
E.100.3.8. Client APPliCAtiONScceveevueeiiierienieeiienieeieesiee st eieesieene 2310
E.100.3.8.1. PSALcuviiiiieienieieeeeeeeeeeeeeeee e 2310
E.100.3.8.1.1. psql Displayccccoceevuerreeeesiinieiencnieieneene 2310
E.100.3.8.1.2. psql \d Commandsc.ccccereevuerercueruennenns 2310
E.100.3.8.2. pg_dump....c..coceeiiiiiiiiiieieeieeeeecee e 2311
E.100.3.8.3. PE_Cllueieiiiieeieeeeeeee e 2311
E.100.3.9. Development TOOIScoceeirieieniiiieiinieieneeeeieeeeieee 2311
E.100.3.9.1. lIDPQ . uveveenieieeiieieeieeeeee et 2311
E.100.3.9.2. €CPE wuverveeneeieeiieieeteee ettt 2312
E.100.3.9.2.1. ecpg CUursorsccccccueeueeeeeineeceenenieiennenne 2312
E.100.3.10. Build Options..........cecuerieeienenieieneeieieei e 2312
E.100.3.10.1. MaKefllesc.ceoueruieiinieienienieeeieeese e 2313
E.100.3.10.2. WINAOWSeotiiiiriieiinieienienieiesiceie et 2313
E.100.3.11. S0UIce Code......ccueiuiriiriiniieiinieeienieeieeeitee et 2313
E.100.3.11.1. New Build Requirementsc..cccceeceeveenereenienncne 2314
E.100.3.11.2. POrtabilityccueeieienerienienieienieeiescetene e 2314
E.100.3.11.3. Server Programmingc.ccceeeeevuenenieeneneenenene 2315
E.100.3.11.4. Server HOOKSccccocuivirieniniiieniieieseceeeseeeiee 2315
E.100.3.11.5. Binary Upgrade SUppOrt........cccceeeevvenerreeneneenienens 2315
E.100.3.12. CONLLID ..ottt 2316
E.101. Release 8.4.22couuiiiiiiiiiieieeiteteeeiteeee ettt sttt s s 2316

xli

E.101.1. Migration to Version 8.4.22.........cccecuerieriieeneenienieenieeneesreesveesieesanen 2317

E.TOT.2. CRANEES .eouvveeiiiiiieiieete ettt ettt ettt et ettt s esaeesaee s 2317
E.102. Release 8.4.21 ..o 2319
E.102.1. Migration to Version 8.4.21cccccovieriiriiiinienienieeieereeeie e 2319
E.102.2. CRANEES .eouveeeiiieiiieiieeiteeteeiteete ettt ettt st ettt et st e e e i s 2319
E.103. Release 8.4.20cccoiiiiiinieiiieieneeieeieeeteteete ettt et ne s 2320
E.103.1. Migration to Version 8.4.20........cccccocerviriiininieninieneneerereneeeeeeee 2320
E.103.2. Changesc.cooueiuieiiniieieiieeccneeeeeee et 2320
E.104. Release 8.4.19 ..ottt sttt ettt et 2323
E.104.1. Migration to Version 8.4.19......c..cccccoiiiiiiiiiiiiiceeecce 2323
E.104.2. Changesccociiiiiiiiiiiiiiceseeee e 2323
E.105. Release 8.4.18 ..ottt sttt ettt 2324
E.105.1. Migration to Version 8.4.18........cccccoiiiiiiiiieene e 2324
E.105.2. CRanges ..c.ceeuvieiiiiieniieieeteete ettt ettt ettt 2324
E.106. Release 8.4.17 .c..cuciiiiiiiiiiieicieteitetesesteeeteit sttt ettt e 2325
E.106.1. Migration to Version 8.4.17ccoceiiiiiiinieeni e 2325
E.106.2. CRANGESeveenieiieieieeieieeec ettt sttt 2326
E.107. ReIEASE 8.4. 10 ...ttt sttt 2327
E.107.1. Migration to Version 8.4.16.........ccccooerieiininiieniiieneneeieneseeeeee 2327
E.107.2. CRANGES ..ottt st 2327
E.108. Release 8.4.15cvoiiiiiiiiiiicieicteitieeeeete ettt 2328
E.108.1. Migration to Version 8.4.15......ccccociviiiiiiniiniinineeeneeeesceeeeeee 2328
E.108.2. CRANGESveveeniiieeiieieeiteeeeetesteetee sttt sttt 2328
E.100. Release 8.4.14c..oiiiiiiiiiieicicicieceete sttt 2330
E.109.1. Migration to Version 8.4.14........c.ccocueriiriiieneenienieeieeneeseeeieesiee s 2330
E.109.2. CRANEES ..cuvveeiiieiiieiieeie ettt ettt ettt e esaeesetesbeenaeesaee s 2330
E.110. Release 8.4.13 ...t 2331
E.110.1. Migration to Version 8.4.13......ccccoovieriiriiieniienienieeieesee et 2331
E.110.2. CRANEES ..ouvveeiiiiiieiieeie ettt st ettt ettt et s beesaeesaee s 2331
E. 111 Release 8.4.12 ... 2333
E.111.1. Migration to Version 8.4.12......c.cccevieriiriiiinienieniieieeseesee e 2333
E.TT1.2. CRANEES .eouvveiiieiiieiteeieeieet ettt sttt ettt et et s saee s 2333
E.112. Release 8.4. 11 ..o 2335
E.112.1. Migration to Version 8.4.11......c.cccccooiiiiiiininiiniiiecnecreeneeeeeee 2335
E.112.2. Changescccovueiiieiiiieieieeeceesteeeeee ettt e 2335
E. 1130 RelEase 8.4.10 ..ottt sttt ettt et 2337
E.113.1. Migration to Version 8.4.10........cccccociiiiiiiiiiiniiiencecceeeeee 2337
E.113.2. Changesccoouiiuiiiiiieieiieeeeseeee et 2338
E. 114 ReIEASE 8.4.9 ..ottt sttt ettt 2339
E.114.1. Migration to Version 8.4.9........c.ccccccoiiiiiiiiiiiniiiiceceeeeeeee 2340
E.114.2. ChAnEes ..c.coeiiiiiiiieeiteieeteete ettt ettt 2340
E.T15. RelEaSE 8.4.8 ..ottt sttt ettt e 2342
E.115.1. Migration to Version 8.4.8........cccoceiiiieiiinieiene e 2343
E 1152, CRANGES -..veveeneeeieeieieei ettt st 2343
E 116, REICASE 8.4.7 ..ottt sttt et saen 2344
E.116.1. Migration to Version 8.4.7.......ccccceceriiieieninienieneene e 2344
E.116.2. CRANGESeoveeniiiieiieieeiteeecee sttt sttt 2344
E.117. REIEASE 8.4.6 ..ottt s 2345
E.117.1. Migration to Version 8.4.0........ccccocuevirienieninienineeieneetenieeeeeseeeee 2345
E 1172, CRANGES ..ottt st 2345
E.1T18. Release 8.4.5 c..ouoiiiiiiiiieeceeeee ettt 2347
E.118.1. Migration to Version 8.4.5........ccccooueriririieniniienineenenentenieneeeeeaeenee 2347

xlii

E.118.2. CRANEES ..ouveeviiieiiieiieeie ettt ettt sttt st ettt st e s e saee s 2347

E. 119, Release 8.4.4 ..ottt sttt sa et 2350
E.119.1. Migration to Version 8.4.4........cocceevieriiriiiinienienieenieesee st 2350
E.119.2. CRANEES .eouvveeiiieiiieiieeie ettt ettt ettt st st n 2351

E.120. Release 8.4.3 ..ottt sttt et s 2352
E.120.1. Migration to Version 8.4.3........ccccoceriririieniniinineee e 2352
E.120.2. Changesccoouerieieniieieiieecienie ettt 2353

E 121, ReIEASE 8.4.2 ..ttt sttt et 2355
E.121.1. Migration to Version 8.4.2........c.cccceoiririiiiinieniieeeneceeeeeeeeeeeeee 2355
E.121.2. Changesccooviiiiiiiiieieiieceseeee et 2355

E.122. ReIEASE 8.4.1 ettt sttt ettt et s 2358
E.122.1. Migration to Version 8.4.1.......ccoceeviiriiiiiinienicniieieereeneceeeee e 2358
E.122.2. Changescooiiiiiiiiiiiciiiccreeceee e 2359

E.123. REICASE 8.4 ...ttt ettt et st 2360
EL123.1. OVEIVIEW ..ttt sttt sttt et 2360
E.123.2. Migration to Version 8.4ccoceeieriiieiienieienie e 2361

E.123.2.1. GeNETal.....oouiiiiiiiiiiieieieeee e 2361
E.123.2.2. Server SEttiNgscccceeeveruerienienieieneniieiesiteie et see e 2361
E.123.2.3. QUETIES ..ottt 2362
E.123.2.4. Functions and OPeratorsceccevereerieneeneeneereeneneeneneens 2362
E.123.2.4.1. Temporal Functions and Operatorscc.cccccevueneee 2363
E.123.3. Changescoccevuereeienieniieiieicete ettt sttt 2363
E.123.3.1. Performancecoccouevueieinininiinicicieiceccsieeceeeeeeie e 2363
Ei123.3.2. SEIVET ..ottt 2364
E.123.3.2.1. SENES c.veeveeeieiieeieeniteeieeieeniee et esiee e sbeenaee e s 2364
E.123.3.2.2. Authentication and SECUTILY.........ceevveerrerrerrreereennnenn 2365
E.123.3.2.3. pg_hba.CONT ciiriiiiieeeeeiiee ettt 2365
E.123.3.2.4. Continuous Archivingcceceeveveevieeneeniennieeneennenn 2366
E.123.3.2.5. MONItOTING...c.cervieiieniieriieieeniiesteeieeiee s sveeniee e 2366
E.123.3.3. QUETIES ..ecuevieeiiieeiiee ettt ettt e e eiree e e e seveeeereesaaaeesaraeenns 2367
E.123.3.3.1. TRUNCATE ..ccivuiiiiiieiieiieenieeeeeee st 2367
E.123.3.3.2. EXPLAIN cooiiiiiiiiicicicceeeeeec st 2368
E.123.3.3.3. LIMIT/OFESET .ecvioieuiiiiiiiiniiieieieiee s 2368
E.123.3.4. Object Manipulationcccceeveeveererienienienienceeenieneenenneens 2368
E.123.3.4.1. ALTER ceoitiiiiiiiieieeeeecete ettt 2368
E.123.3.4.2. Database Manipulation.............cccceceeeuerieveencneenennenne 2369
E.123.3.5. Utility Operationsc..cccceeereeruerereenieneeeeneerenreseenenneens 2369
E.123.3.5.1. INAEXES...cueeueruiriiriieieieiineneeteeeeee et 2369
E.123.3.5.2. Full Text IndeXesccocuervueereenierniieenieeeeeeaenn 2370
E.123.3.5.3. VACUUM...cutiiiiiiiiiiitieicee et 2370
E.123.3.6. Data TYPES ..eeevveeeuierieeiieniieeieeieesteeee ettt ettt 2370
E.123.3.6.1. Temporal Data TYpes........cccceeeeruereenieneeieneeeeienneane 2371
E.123.3.6.2. ALTAYS coveiiieieieieieeieeee et 2371
E.123.3.6.3. Wide-Value Storage (TOAST)ccoeeviviniieniniiieeee 2372
E.123.3.7. FUNCHONScotiiiieieitieiieieeitee sttt 2372
E.123.3.7.1. Object Information Functionsccccceeeevereerenncne 2372
E.123.3.7.2. Function Creation...........ccccoceevecveererenienneneeeeneenennenne 2373
E.123.3.7.3. PL/pgSQL Server-Side Languagecccccocevceeruennene 2373
E.123.3.8. Client Applicationscecceeereerienerienienienieneeeeneneenienieens 2374
E.123.3.8.1. PSAL v 2374
E.123.3.8.2. psql \d* commands........c..ccoceeeeruereerienenieeneneenenens 2375
E.123.3.8.3. pg_dump...ccoeoieiiniieiinirieieneeeeeee e 2375

xliii

E.123.3.9. Programming TOOIS.........c.ceevueerierieniiiniienieeieesiee e eieeniee s 2376

E.123.3.9.1. ibPQ..ecciiiiiiiiiiiiiciiicicccce 2376

E.123.3.9.2. libpq SSL (Secure Sockets Layer) support 2376

E.123.3.9.3. €CPE cveerteeiieiieiieeitestte sttt ettt 2377

E.123.3.9.4. Server Programming Interface (SPI)..........ccccceceenne. 2377

E.123.3.10. Build Options.....c..ccerverieieirininienieieteceenesieseeeetee e 2377
E.123.3.11. SoUIce COde.....ccueerviiiiirienieeiieiteeeeiee sttt 2378
E.123.3.12. CONLIID .oniiiiiieiericececeeeeeeeeee et 2379

E.124. Release 8.3.23 ...ttt sttt ettt ettt e 2380
E.124.1. Migration to Version 8.3.23.........cccccoiiiiiiniiiiniiiceneceeeeeeeeee 2380
E.124.2. Changesc.cooiiiiiiiiiiieiiceseeece e 2380
E.125. Release 8.3.22 ..ottt sttt ettt 2381
E.125.1. Migration to Version 8.3.22.......ccceceiiiieiiinieiene et 2381

E 1252, Changescooueeiiinieniieieeeeete ettt ettt 2381
E.126. Release 8.3.21 ..ottt sttt ettt 2383
E.126.1. Migration to Version 8.3.21cccceceiiiieiiiniiieneeeee e 2383
E.126.2. CRANGESeevienieieeieieei ettt sttt 2383
E.127. Release 8.3.20cuciiiiiiiiiiiieieieteiieteesteeeeeeee ettt ettt s 2384
E.127.1. Migration to Version 8.3.20......c..ccceviriiiininienineenie et 2384
E.127.2. CRANZES ..ottt et 2384
E.128. Release 8.3.19 ..ottt 2385
E.128.1. Migration to Version 8.3.19......c.cccceviiiiiiininiinininicnceecneecee 2385
E.128.2. CRANGESveveeniiieeiieieeiteeecete ettt st 2386
E.129. Release 8.3.18 ..ottt ettt ettt s st 2387
E.129.1. Migration to Version 8.3.18......ccccevieriiriiiiieniesieeieeree et 2387
E.129.2. CRANEES ..ouvveeeiieiiieiieeie ettt sttt ettt e s st s beenaeesaee s 2387
E.130. ReIEaSE 8.3.17 ..oueeoiieiiiiiiiieieeieeteeteseete ettt ettt ettt s s 2389
E.130.1. Migration to Version 8.3.17......ccccuevieriiiriiienienienieeieesee st 2389
E.130.2. CRANEES ..cuvveeiiiiiieiieeie ettt ettt ettt e be et st st esaeesaee s 2389
E.131. Release 8.3.10 ..c..coiiiiiiiiiniieiiniceieneetcteeetete sttt s 2391
E.131.1. Migration to Version 8.3.16......cccccevieriiriiiinienienieeieereesee e 2391
E.131.2. CRANEES .eevveiiieiieiieete ettt sttt st ettt st e i s 2391
E.132.Release 8.3.15 ...ttt sttt 2393
E.132.1. Migration to Version 8.3.15......c.cccceiiiiiiiniiiinecccreeeeeeeee 2393
E.132.2. Changescccooueiiiiiiiieieiieeceseceeeee et 2393
E.133. Release 8.3.14 ...ttt sttt ettt ettt e 2394
E.133.1. Migration to Version 8.3.14........cccccoiiiiiiiiiiiiniicceceeeceeeee 2394
E.133.2. Changesccoouiiiiiiiiieieiieeceseeeeee et 2394
E.134. Release 8.3.13 ...ttt ettt ettt et e 2395
E.134.1. Migration to Version 8.3.13 ... 2395
E.134.2. Changescooiiiiiiiiiiiiiiccr e 2395
E.135. Release 8.3.12 ..ottt sttt ettt 2397
E.135.1. Migration to Version 8.3.12.......ccccceviriminenerieinineneniereeeeeneerennene 2397
E.135.2. Chan@escoveevivieieieieiinieriestctetetet ettt sttt 2397
E.136. Release 8.3. 11 ..ouioiiiiieiieeee ettt st 2399
E.136.1. Migration to Version 8.3.11......ccceceiiiiiiininieniieeeneeeeeeeeeee 2400
E.136.2. ChanGESooveeiiiieieieeiteeeieee sttt sttt 2400
E.137. Release 8.3.10 ..ottt 2401
E.137.1. Migration to Version 8.3.10......c.cceceviririininiiininieieneeiencneeeeee 2401
E.137.2. ChANGES ..cuveveeniiieeiieieeeteecee sttt st 2401
E.138. Release 8.3.9 ..ot 2403
E.138.1. Migration to Version 8.3.9........cccceceviririiininiienineeneneereneeeeeeenee 2403

xliv

E.138.2. CRANEES ..cuvveeiiieiieiieeteeieeteete ettt sttt st ettt st st esaeesaee s 2403

E.139. Release 8.3.8 ..o 2405
E.139.1. Migration to Version 8.3.8......ccccceirieriiriiieiieieesieeieesee st 2405
E.139.2. CRANEES ..euveeuiiiiieiieeie ettt sttt st ettt s saee s 2405

E.140. Release 8.3.7 ..ot 2407
E.140.1. Migration to Version 8.3.7........cccceceririieiieninieninieenecresreneeeeeneenee 2407
E.140.2. Changesccccoeiieieniieieiieeeeeneceeeeeetet et 2407

E. 141, ReEIEASE 8.3.60 ettt sttt ettt ettt e 2409
E.141.1. Migration to Version 8.3.0........c.cccceviiiriiininieninienieneeeereeeeeeeeeee 2409
E.141.2. Changescccooviiiiiiiiiieieiieceeeeee et 2409

E.142. RelEaSe 8.3.5 ..ottt sttt ettt e 2410
E.142.1. Migration to Version 8.3.5....cccccoviiiiiiiiiieieeeneeieeeeeee e 2411
E.142.2. Changes ..c.cooueiiiiiieiiieieeiteete ettt ettt st 2411

E.143. ReleaSe 8.3.4 ..ottt sttt ettt e 2412
E.143.1. Migration to Version 8.3.4........cccociiiiieiinieiene et 2412
E.143.2. CRANGES -...veoveeneeieeieieee ettt sttt 2412

E. 144, Release 8.3.3 ... ettt 2414
E.144.1. Migration to Version 8.3.3.......ccccvriiriiiiiiniiieneeee e 2414
E.144.2. CRANGESveoveenieieeiieieeeteeee ettt sttt 2415

E.145. Release 8.3.2 ...cuoiiiiiiiiiiiiictecteeteete ettt 2415
E.145.1. Migration to Version 8.3.2.......cccccevieririeienenienineenie et 2415
E.145.2. ChangEscoeeuiriiiieiieiteeeiteteseetee sttt 2415

E.146. Release 8.3.1 ...ouoiiiiiiiiiiiieiciccteteeeete ettt 2417
E.146.1. Migration to Version 8.3.1....cc.ccoccvverininiiininiiniincenicneeteiceeecee 2417
E.146.2. CRANEES ..c.vveeiiieniieiieeie ettt ettt et e st et e saaesatesbeenseesnee s 2417

E.147. Release 8.3 ..ot 2419
E.147.1. OVEIVIEW ...ttt e 2419
E.147.2. Migration to Version 8.3ccccevviiriiniiniieiieniesie ettt siee s 2420

E.147.2.1. General........cccccoiviiiiiiiiiiiiiiiiccceececee e 2420
E.147.2.2. Configuration Parameters............ccocueevveerieenienneeneeniessieeneenns 2422
E.147.2.3. Character ENCOdiNgscccueevueeriiirieriiiiiienieeieesieesieeieeieene 2422
EL147.3. CRANEES .oouveeiiieiieieeeie ettt sttt sttt ettt et st e i s 2423
E.147.3.1. Performance.cccoccoueiiiiinininiiiiiiiiiicscicece 2423
B 147.3.2. SEIVET ..ottt 2425
E.147.3.3. MONILOTING ...ovovieniiiieiieiinieteniceieneeeeresieene e eeene s 2425
E.147.3.4. AUthentiCation........ccc.eeiuiirieriieeniieiieeieeiee et 2426
E.147.3.5. Write-Ahead Log (WAL) and Continuous Archiving 2427
E.147.3.6. QUETIES ..cc.eveeeiiieeiiieeiiee ettt stee et e e teeeeveeeereessaeesnseeennee 2427
E.147.3.7. Object Manipulationcccccoceevieririeiiininiienieicnceeeieneee 2428
E.147.3.8. Utility COMMANGScceervienieiieeieieieeieieeiceie e 2428
E.147.3.9. Data TYPES ...ccveiuiiiiiiiieiieeeieee et 2429
E.147.3.10. FUNCHONS.....c.eiittiiiiiieiieieetee sttt 2430
E.147.3.11. PL/pgSQL Server-Side Language..........ccccecceveerienuereenienncnne 2430
E.147.3.12. Other Server-Side Languagescccccceeeevueneerieneneenennenns 2431
E.147.3.13. PSALuiiiiiiieieieieesescccet sttt 2431
E.147.3.14. PE_dUMP c.eooiiiiiiiiieieeetee ettt 2432
E.147.3.15. Other Client Applicationsccoeeeerierierieneerieneneenieneans 2432
E.147.3.16. 1IDPQ wvenvenieieiieiieieiecccee et 2432
B 147317, @CPZ ettt ettt 2433
E.147.3.18. WIndows POTt.........ccccouiiiiriniiiieicicieieseeceeeeee e 2433
E.147.3.19. Server Programming Interface (SPI)cccccoceeviincnicncnnnns 2433
E.147.3.20. Build Options.......ccccocvveieiniriniiieieieieesesieeeeeeeeeie e 2433

xly

E.147.3.21. SoUICE COAC....ccoiiriiieeiieiieeeeeeeee et 2434

E.147.3.22. Contrib ...c..ccoeiiiiiiiiiiiiiiiiccceccc e 2434

E.148. Release 8.2.23 ... 2435
E.148.1. Migration to Version 8.2.23........cccovieriiriiienieneenieeieesee st 2435
E.148.2. CRANEES ..ouveeiiiiiieiieeieeieeteete ettt sttt ettt n 2435
E.149. Release 8.2.22 ..ottt ettt et 2437
E.149.1. Migration to Version 8.2.22.........cccccoceviriieniinvieninieneneerereneeeeeneeeee 2437
E.149.2. Changescccoeiiiiiiiieieiieecereeeeeeeetet et 2437
E.150. Release 8.2.21 ..ottt sttt ettt et e 2438
E.150.1. Migration to Version 8.2.21........cccccoiiiiiiiniiiiniiicneneceeeeeeeeee 2439
E.150.2. Changesc.coouiiuiiiiiiiiieiieeceeceee e 2439
E.151. Release 8.2.20 ...cucieuiriiiriiieieieieeitetenteseeeeteie ettt ettt e 2439
E.151.1. Migration to Version 8.2.20........cccceriririiinieiene e 2440
E.15T1.2. CRAnEes .cceeeeuiiiiiiiieiieieeteeee ettt ettt 2440
E.152. Release 8.2.19 ..ottt sttt ettt s 2440
E.152.1. Migration to Version 8.2.19.......cc.ccceviriminenienieiininenenicrereeeieeenene 2441
E.152.2. ChANGESeoouieieiieeiieieee ettt sttt 2441
E.153. Release 8.2.18 ...ttt sttt 2442
E.153.1. Migration to Version 8.2.18......c..cccceviriiiininieninieneneeeeneeeee e 2442
E.153.2. ChANGES ..c.veoveeniiiieiieieeieeeee ettt sttt 2442
E.154. Release 8.2.17 ..ottt 2444
E.154.1. Migration to Version 8.2.17ccccoceviririiiniiniienineeneneetenieneeeeeee 2444
E.154.2. ChanGESooueeiiiieieieeiteieeieete sttt et 2444
E.155. ReleaSE 8.2.10 ...ttt 2445
E.155.1. Migration to Version 8.2.16........cccoeveeriiriiirnienieniieieenee e eieesiee s 2446
E.155.2. CRANEES .oouvveeiiieiieiieeie ettt ettt sttt ettt e beenaeesaee s 2446
E.156. Release 8.2.15 ..o 2447
E.156.1. Migration to Version 8.2.15......ccccievieriiriiiiniienienieeieeneesie e 2447
E.156.2. CRANEES ..cuvveviiiiiieiieeie ettt sttt sttt st e s e saee s 2447
E.157. Release 8.2.14 ... 2449
E.157.1. Migration to Version 8.2.14cccccovieriiriiiiniiienieeitereesee e 2449
E.157.2. CRANEES .eouvveiiiiiieiteete ettt ettt ettt st n 2449
E.158. Release 8.2.13 ...t 2450
E.158.1. Migration to Version 8.2.13......c..cccccoiiiiiiininiininienenecreeeeeeeeeee 2450
E.158.2. Changesccoouiiuiiiiniiiieiieceseeeeee et 2451
E.159. RelEase 8.2.12 ..ottt sttt ettt et s 2451
E.159.1. Migration to Version 8.2.12........ccccccciviiiiiiiiiniiiencneceeeeeeeee 2452
E.159.2. Changesc.coouiiiiiiiiiiiieiieeceseeeee e 2452
E.160. Release 8.2.11 .euciiieiiiiiriiieicieiceieetentereeteteie ettt ettt et 2453
E.160.1. Migration to Version 8.2.11......ccceceiiiiiiiiniiiee e 2453
E.160.2. CRANGESeeoveenieieeieieeeee ettt st sttt et 2453
E.161. Release 8.2.10 ..ottt sttt ettt s 2454
E.161.1. Migration to Version 8.2.10........ccocceiiiiiiiininiene e 2454
E.161.2. CRANGESeeveeneeieeiieieee ettt sttt 2454
E.162. Release 8.2.9 ...ttt ettt 2455
E.162.1. Migration to Version 8.2.9.........cccccevirininenienieininenesiereeeeeeenennene 2456
E.162.2. ChANGESeoveeniiiieiieieeiteeeeee sttt sttt 2456
E.163. Release 8.2.8 ...coovciiiiiiiiiiiieicceitteeceet sttt 2456
E.163.1. Migration to Version 8.2.8........ccccocueririeiieninienineeie et 2456
E.163.2. Chan@EScoueeiirieiiiiieiteieetcete sttt st 2456
E.164. Release 8.2.7 ...cuoiiuiiiiiiiiiiiiieicceieteeeet sttt 2457
E.164.1. Migration to Version 8.2.7........ccccecererievieneniieneneenenenrenienieeeeneeenee 2457

xlvi

E.164.2. CRANEES ..ouvveviiiiiieiieeie ettt sttt sttt et st s esaeesaee s 2458

E.165. ReIEase 8.2.6cueouiiiiiiiiiiiieiieiceieecteteetete ettt ettt 2459
E.165.1. Migration to Version 8.2.6.......cccceevuieriiriieniienieniieieesee st ereesiee s 2459
E.165.2. CRANEES .couveeeiiiiiieiieett ettt sttt st ettt et saee s 2459

E.166. Release 8.2.5c.coiiiiiiiiiieieceeecteteet ettt 2461
E.166.1. Migration to Version 8.2.5........cccceceviriieiiininieninienenecrereseeeeeeeeee 2461
E.166.2. Changesccoerieiiniieieiiieienieeeeeee ettt 2461

E.167. REIEASE 8.2.4 ..ottt ettt ettt 2462
E.167.1. Migration to Version 8.2.4........c..cccccoiiiriiriniininieeneerereeeeeeeeeeee 2462
E.167.2. Changesc.coouiiiiiiiiieieiieeceseeeee e e 2462

E.168. ReIEaSE 8.2.3 ..ottt sttt ettt 2463
E.168.1. Migration to Version 8.2.3........cceoiiiiieiiniieiene e 2463
E.168.2. CRANGESeoveeeeiieieieeeeeee ettt sttt 2463

E.169. Release 8.2.2 ..ottt ettt et st 2463
E.169.1. Migration to Version 8.2.2.........cccccevirineneniereerineneneneereneeeneenennene 2463
E.169.2. ChaNGEScoveeviieieieiieiiniereestcetet ettt st 2463

E.170. ReIEaSE 8.2.1 ..ottt sttt sben 2464
E.170.1. Migration to Version 8.2.1.......ccocovieniiiiiininienineee et 2464
E.170.2. CRANGESveveeniiieeiieieeiteeeee sttt sttt 2464

E. 171, REIEASE 8.2 ...ttt ettt et 2465
E 1711, OVEIVIEW ..ottt st 2465
E.171.2. Migration to Version 8.2.......cc.ccocevvieririenienienienineenieneereniesieeee e 2466
E.171.3. Changes ..c..coueeieiiiieiieiieieeicetesteetee sttt st 2468

E.171.3.1. Performance IMProvementsccceceerveervernieeseenvessueenieenns 2468
E.171.3.2. Server CRangesccceevervieerieeniienieeieenieesieesieesieesaeeaeenieenes 2469
E. 171.3.3. QUery CRAngeS.......ccceerueerieeriieiienieeieeieeseeesieesieeseesneenieenes 2470
E.171.3.4. Object Manipulation Changescccoevevveevieeseeneensieeneenns 2472
E.171.3.5. Utility Command Changes...........cccceevueerueerieenerneeniessieeneenns 2473
E.171.3.6. Date/Time Changes...........cceeeueerieeriersieenieenieeiieenieesieeieenieenns 2473
E.171.3.7. Other Data Type and Function Changesc.ccceeveevueenueene 2474
E.171.3.8. PL/pgSQL Server-Side Language Changes..........cc.cceevueeuenne 2474
E.171.3.9. PL/Perl Server-Side Language Changes...........cccccevvvervueenueenne 2475
E.171.3.10. PL/Python Server-Side Language Changes........c..ccccceevueenne 2475
E.171.3.11. psql Changesc.ccocuevuevieniinienienenieieneeeeseeeene e 2475
E.171.3.12. pg_dump Changes..........cccccccereevererieenieneecienieeeneneenenneens 2476
E.171.3.13. 1libpq Changescccccceeeeeiimieneninieieneeeeneeeesie e 2476
E.171.3.14. ecpg Changesccccoeeieeiinienenieicieeeeeeeeeeeie e 2476
E.171.3.15. WINdOws POrt.......cocuiiiiiiiiiiiiiiiinieecceteeeeeeeee e 2476
E.171.3.16. Source Code Changesc.cccceverieciiniecienieiicncneeneneene 2477
E.171.3.17. Contrib Changescccceceerereeneneeieneeieieeie e seeeeesee e 2478

E.172. Release 8.1.23 ...ttt sttt ettt 2479
E.172.1. Migration to Version 8.1.23.......ccccccooirimineneneiinincnenrerereeeeereniene 2479
E.172.2. CRANEZES ..cveviteieieicieeiteesesteetetee ettt et 2479

E.173. Release 8.1.22 ...ttt sttt ettt s 2480
E.173.1. Migration to Version 8.1.22......c.cccceiiiiiiininieniieee e 2481
E.173.2. ChANGES ..ottt sttt 2481

E.174. Release 8.1.21 ..ottt 2482
E.174.1. Migration to Version 8.1.21ccccoceviiiiiiininieninieneneeeeeeeeeeee 2482
E.174.2. CRANGESveveeniiiieiieieeeteeeeee ettt sttt 2482

E.175. Release 8.1.20 ..c..couiiiiiiiiniieiirieetentesite ettt ettt s 2483
E.175.1. Migration to Version 8.1.20......c..cccceveririininiienineenenenieneneeeeeeae 2483
E.175.2. ChANGES ..cuveveeniiiieiieieeiteeeceesteetee ettt st 2484

xlvii

E.176. REIEASE B.1.19 ..ottt etreee e e 2485

E.176.1. Migration to Version 8.1.19......cccceviiriiriiiiniiiinieeiteeeeec e 2485
E.176.2. CRANEES ..cuveeiiieiieiieeteeeete ettt sttt et ettt e e s 2485
E.177. Release 8.1.18 ... 2486
E.177.1. Migration to Version 8.1.18......cccccoviiriiriiiiinieriteiteeeeeceeeee e 2486
E.177.2. CRANGES ...ttt 2486
E.178. ReEIEASE 8.1.17 .ottt ettt ettt 2487
E.178.1. Migration to Version 8.1.17......c.ccccccoiiiiiiiiiniiniieccceeeeeeee 2487
E.178.2. ChaNESooveeiiiiiiiieeeeeeeee e 2487
E.179. RelEaSE 8.1.160 .cuuciiuiiiiiiiiiiiiieicicceitetesestetetet sttt ettt et 2488
E.179.1. Migration to Version 8.1.16........cccccccoiiiiiiiiiiniiiiiniicceceee 2488
E.179.2. Changesc.coouiiiiiiiiiiieiiecereeeeee e 2488
E.180. Release 8.1.15 ..ottt sttt ettt e 2489
E.180.1. Migration to Version 8.1.15.......ccccceirininenenniincninrcrceeeeceenene 2489
E.180.2. CRANGESeoviveieienieiieiiniertestctetet ettt st e 2489
E.181. Release 8.1.14 ..ottt sttt 2490
E.181.1. Migration to Version 8.1.14.......ccccccociviminenienieiinincnescrcreeeeeenenee 2490
E.181.2. CRANGES «...veviiiieieiciieiieesestcetetee ettt sttt e 2490
E.182. Release 8.1.13 ..ottt sttt ettt s 2491
E.182.1. Migration to Version 8.1.13......c.ccociiiiiiiiniiiiniiceeneeeeeeeeee 2491
E.182.2. CRANGES ..ottt sttt 2491
E.183. Release 8.1.12 ..ottt 2492
E.183.1. Migration to Version 8.1.12......c.cceceviririiininiiininiineneeieneeeeeee 2492
E.183.2. CRaNES ..c.veoveeieieeiieieeiteeetcetesteeteest ettt st 2492
E.184. Release 8.1 11 ..ottt 2493
E.184.1. Migration to Version 8.1.11....ccccccovriiriiiiiiiiiienieeieeseeeie e 2494
E.184.2. CRANEES ..cuvveeiiieiieiieeie ettt sttt ettt ettt e naeesaee s 2494
E.185. Release 8.1.10 ..ot 2495
E.185.1. Migration to Version 8.1.10......c.cccovieriiriiiinienienieeieereesee e 2495
E.185.2. CRANEES ..cuveeiiieiiieiieett ettt sttt ettt st st saee s 2495
E.186. Release 8.1.9 ..o 2496
E.186.1. Migration to Version 8.1.9.......ccccoiviiiiiiiiiinieieniieieeeeie e 2496
E.186.2. CRANEES ..uvveuiiiiieiieeit ettt ettt ettt s 2496
E.187. Release 8.1.8 ..ottt sttt et 2497
E.187.1. Migration to Version 8.1.8........c.ccccceriiiriiininiiniiieneeceeeeeeeeee 2497
E.187.2. ChANGESooveeniiieeieieeeceecereee et 2497
E.188. REIEASE 8.1.7 ettt sttt ettt ettt s 2497
E.188.1. Migration to Version 8.1.7........cccccceiiiiiiiiiiiiniiiceneceeeeeeeeee 2497
E.188.2. Changesccouiiiiiiiiiiieiiiceseeee e 2497
E.189. REIEASE 8.1.60 c..cuveniniiiiiiiiiiitcteeceeietesesteteteie ettt ettt 2498
E.189.1. Migration to Version 8.1.0......cc.cccecuririninenienieiininenenicrereeeneerennene 2498
E.189.2. Changesccooiuiiiiiiiiiiiiicice e 2498
E.190. Release 8.1.5 ...ttt ettt ettt saen 2499
E.190.1. Migration to Version 8.1.5......cccccevrimininenenieininenesicreeeeeceennee 2499
E.190.2. ChaNEEScoveeveienienieiieiinieriestctetet ettt sttt 2499
E. 191, Release 8.1.4 ..ottt sttt s 2500
E.191.1. Migration to Version 8.1.4........cccooiriiiiiininienieeee e 2500
E.191.2. ChanESooveenieieeieieeiteeece ettt st 2500
E.192. Release 8.1.3 ..ottt 2502
E.192.1. Migration to Version 8.1.3....cc.ccocvvieriiiriininienineeeneeteeeeeeeee 2502
E.192.2. ChanNESeoveeniiiieiieieeiteieeieeteste ettt sttt 2502
E.193. Release 8.1.2 ..ottt 2503

xIviii

E.193.1. Migration to Version 8.1.2.......ccccceeviiriiriiinienienieeieenee st 2503

E.193.2. CRANEES ..ouvteeiiiiiieiieeie ettt sttt ettt ettt et st esaee s 2503
E.194. Release 8. 1.1 ..o 2504
E.194.1. Migration to Version 8.1.1......cccociiviiriiiniiiiniiienieeieeeeeee e 2504
E.194.2. CRANEES .eouvveiiiiiieiieett ettt st ettt ettt n 2504
E.195. ReIEaSE 8.1 ...cueiniiiiiieiieiieeeeteee ettt 2505
E.195. 1. OVETVIEW ..ottt ettt ettt s 2505
E.195.2. Migration to Version 8.1cccocceceriiiiiiiininiininieeneeeeeeeeeeeneeee 2506
E.195.3. Additional Changesccccceririeniiieiiininiee e 2509
E.195.3.1. Performance Improvementsc..cccccueveecienieiicncneennennens 2509

E.195.3.2. Server Changescccccoeievinieiiniiieienieeeeeeeeie e 2510

E.195.3.3. Query Changes...........cccccieieviiniiiiniiiciiniceee e 2511

E.195.3.4. Object Manipulation Changesc..ccceceeererererveceeenennennen 2511

E.195.3.5. Utility Command Changes............cccceeeeeverenienenuenveeeenennenen 2512

E.195.3.6. Data Type and Function Changesc.cccceceververveveenennennen 2512

E.195.3.7. Encoding and Locale Changes...........ccccceeererencveneenennennen 2514

E.195.3.8. General Server-Side Language Changes.........c.cccccevereenuennnne 2515

E.195.3.9. PL/pgSQL Server-Side Language Changes...........c.ccccceruennene. 2515
E.195.3.10. PL/Perl Server-Side Language Changes..........cccccocevceenuennnn. 2516
E.195.3.11. pSQl Changescccecverierienieneeienienieiesiteesieetenee e 2516
E.195.3.12. pg_dump Changes..........cccceeereeriererienienieieneeeenieneenieniens 2517

E.195.3.13. libpq Changescccccoveeeeviereenienenieienieieneeeenie e 2517
E.195.3.14. Source Code Changescocceveerereenieneenieneeeenieneenieniens 2517
E.195.3.15. Contrib Changescccceceevereerienerienienieieneeeeneseenieniens 2518

E.196. Release 8.0.20c..ccooiiiiiiiiiiiiiiiiiiiiieecceese sttt 2519
E.196.1. Migration to Version 8.0.26..........cceceeriiriiieniienieniieiieneesieesreeniee s 2519
E.196.2. CRANEES ..cuvveviieiieiieete ettt sttt ettt e st e beesaeesaee s 2519
E.197. Release 8.0.25 ...t 2520
E.197.1. Migration to Version 8.0.25........cccovvieriiriiiinienienieeieenee et 2520
E.197.2. CRANEES ..ouveeiiieiieiieeteeteet ettt ettt st ettt s e s s 2521
E.198. Release 8.0.24 ..o 2522
E.198.1. Migration to Version 8.0.24..........ccoceeriiriiiiniinieniieieereeeie e 2522
E.198.2. CRANEES ..cuveeuiiiiieiieeie ettt ettt sttt ettt n 2522
E.199. Release 8.0.23 ...ttt s 2523
E.199.1. Migration to Version 8.0.23.........cccccoiiiiiiininieninieneneceeeneeeeeeee 2523
E.199.2. Changesccoeoiiieniiiieiieeeienieeeeee et 2523
E.200. Release 8.0.22c..coueiiiiiriieieieieeiieiententeteiteie ettt ettt ettt naen 2524
E.200.1. Migration to Version 8.0.22.........ccccccceiiiiiiniiiininieeneeeeeeeeeeeeee 2524
E.200.2. Changesccooiiiiiiiiiiiiicciene e 2524
E.201. Release 8.0.21 .c.cucieiiiiiriiieieieiteitetesteteteeeie sttt ettt et e 2525
E.201.1. Migration to Version 8.0.21ccceceiiiieiiinieiene e 2525
E.201.2. CRANGES -...veveenieeieeieiee ettt 2525
E.202. Release 8.0.20couoiuiiiiiieieieeeeee ettt sttt ettt 2526
E.202.1. Migration to Version 8.0.20.........cccereriiiiininienineee e 2526
E.202.2. CRANGESveveenieieeiieieee ettt sttt e 2526
E.203. Release 8.0.19 ..ottt ettt 2526
E.203.1. Migration to Version 8.0.19........cccooiiiiiininiiniiecneeceeeee 2526
E.203.2. CRANGESveoveenieiieiiesieeiteece ettt e et 2526
E.204. Release 8.0.18 ..ottt 2527
E.204.1. Migration to Version 8.0.18......c..ccceoiiiriininiiininiinenenericneeeee 2527
E.204.2. CRANGESeoveiiiiieieieeiteteeieetesteetee ettt st 2527
E.205. Release 8.0.17 ..ottt 2528

xlix

E.205.1. Migration to Version 8.0.17......ccccevieriiriiiiniienienieeieesee et 2528

E.205.2. CRANEES ..ouvveeiiieiieiieeie ettt sttt st ettt s esaee s 2528
E.206. Release 8.0.16ccociiiiiiiiiiiiiiiiiiiccec s 2528
E.206.1. Migration to Version 8.0.16..........coeeeriiriiiinienieniieiieeesieeieeee e 2529
E.206.2. CRANEES ...vveviiiiiieiieeie ettt sttt st ettt s e i s 2529
E.207. Release 8.0.15 ..ottt et 2530
E.207.1. Migration to Version 8.0.15......c.ccccooiiiiiiininiiiceeceeeecee 2530
E.207.2. ChanESccueooiiiiiiieiieiieteeeceereeeeee e 2530
E.208. Release 8.0.14c.ciiiiiiiriiieteeeceitetentertetee ettt ettt et e 2532
E.208.1. Migration to Version 8.0.14.........cccccccoiiiiiiiiiiniiceecceeeeeeee 2532
E.208.2. Changescocoiiiiiiiiieiieiceseeeee e 2532
E.200. Release 8.0.13 ..ottt sttt eve ettt naen 2532
E.209.1. Migration to Version 8.0.13.......ccccceviriminenenieiininenenrereeeeeieeennene 2532
E.209.2. Changescccooiiiiiiiiiiiiiiccecece e 2533
E.210. Release 8.0.12 ..ottt sttt ettt et e 2533
E.210.1. Migration to Version 8.0.12........ccccoiiiiiiiniiiiniiiee e 2533
E.210.2. CRANGESveveeneeieeieieee ettt sttt 2533
E.211. Release 8.0.11 .ottt sttt ettt 2533
E.211.1. Migration to Version 8.0.11......ccceceriiiiiininiiniiieeneceeeeeeeee 2533
E.211.2. CRANGES ..cuveveenieieeiieieeiteeeee sttt sttt 2534
E.212. Release 8.0.10 ..ottt 2534
E.212.1. Migration to Version 8.0.10......c..cccceviiiriiininiieniiniinienenienceeeeee 2534
E.212.2. CRANZES ..uveveeniiieeiieieeiteeeteete ettt sttt 2534
E.213. Release 8.0.9 ..ot 2535
E.213.1. Migration to Version 8.0.9.......cccccuvviiriiriiiinienienieeeeseeeee e 2535
E.213.2. CRANEES .oouvteeiiieiieiieeie ettt sttt ettt e st s beenaeesaee s 2535
E.214. Release 8.0.8 ...c.oiiiiiiiiiiiieicicceicce e 2535
E.214.1. Migration to Version 8.0.8........cccceerieriiriiiinienienieeieeseeete e 2536
E.214.2. CRANEES ..ouvvevieieiieiieeie ettt sttt st ettt st saeesaee s 2536
E.215. Release 8.0.7 ...couoiiiiiiiiiiiicicicciiee e 2537
E.215.1. Migration to Version 8.0.7......cccecceerieriiriiiinienienieeieesee st 2537
E.215.2. CRANEES .eouvveiiiiiieiieeteeteet ettt ettt st ettt st saee s 2537
E.216. Release 8.0.6ccccueuiiiiiiiiiiiiiiiiiie e 2538
E.216.1. Migration to Version 8.0.0........c.ccocceverieiieniniieninieieneerereseeeeeeeee 2538
E.216.2. ChanEsccoouiriiiiiiieieiieeceeseeeeeeeetete et 2538
E.217. Release 8.0.5 ..ottt sttt ettt et 2539
E.217.1. Migration to Version 8.0.5........ccccoceiiiiiiiininiiiicceceeeeeeeeee 2539
E.217.2. ChANGES ... e 2539
E.218. Release 8.0.4 ...cucieuieiiiiiiiiiicicec ettt sttt ettt et s 2540
E.218.1. Migration to Version 8.0.4........cccoeviiriiriiiniiniiniieeereeeee e 2540
E.218.2. CRANEES .euveeiiiiiieiteet ettt ettt 2540
E.219. Release 8.0.3 ...cuoiiiiiiiieniiteieectetetesetcteee ettt ettt e 2541
E.219.1. Migration to Version 8.0.3.......c.ccccceviriminenerieiininenesrerereeeneerennene 2541
E.219.2. CRANEESveoviveienieieiieitniereestctetetet ettt st e 2542
E.220. Release 8.0.2o.oouiiiiiieieeieeee ettt et st 2542
E.220.1. Migration to Version 8.0.2........ccceceririiiiininienineenie et 2543
E.220.2. CRANGESveveeniiieeieieeiteieeee sttt sttt 2543
E.221. Release 8.0.1 ..ottt s 2544
E.221.1. Migration to Version 8.0.1.......ccocovieviiiiiiiniiniininieeneneeeeeeee 2544
E.221.2. CRANZES ..cuveveenieieeiieieeeteeetcee sttt et 2545
E.222. Release 8.0c.ooueiiiiiiiiiiiiciceceteeeee s 2545
E.222.1. OVEIVIEW ...viiiiiiiiiiiiiciiicitceetet et 2545

E.222.2. Migration to Version 8.0.......ccccoevuiirieriiriiiiniienienie ettt 2546

E.222.3. Deprecated FEaturesccouevierieenienieniieieenieesie et 2548
E.222.4. CRANEES .eouvveeiiiiiieiteeiteteeteete ettt sttt st ettt et st e i s 2548
E.222.4.1. Performance IMprovementscceceevueerienieerseeneensieeneenne 2548

E.222.4.2. Server Changescccceuerierrieenieenieeieeniee st eieesiee st eieeneee e 2550

E.222.4.3. Query Changes.cccceeueeeeviinienenenieieneereneeresneseenenaeens 2551

E.222.4.4. Object Manipulation Changescc.cccceeceeevenieciencnieennennens 2552

E.222.4.5. Utility Command Changes.............cocceceeeueriecienierencnieennennens 2553

E.222.4.6. Data Type and Function Changesccccccceeeecencnvienennens 2554

E.222.4.7. Server-Side Language Changescccceceeevieviencneennenens 2556

E.222.4.8. psSql Changesccccccueiiriiiiinieiiniieccccceeec e 2557

E.222.4.9. pg_dump Changes............ccceeiriiiiniiiiciiiiicceecicie e 2557
E.222.4.10. libpq Changesccceeeeeerierienenieeieiesiceie e see e 2558
E.222.4.11. Source Code Changescccceeruerruerneeniensenseenieeieenieenne 2558
E.222.4.12. Contrib Changescccccecererinenienieieeneneneneeeeneeeneevenes 2559

E.223. ReIEaSE 7.4.30 ...ttt ettt s st 2560
E.223.1. Migration to Version 7.4.30......cccceceriiieiininieneicee e 2560
E.223.2. ChANGESveveeneiiieieieei ettt e ettt 2560
E.224. ReleaSe 7.4.29ooiuiiiiiiiiieeieeeteetes ettt sttt 2561
E.224.1. Migration to Version 7.4.29ccccoceririiiininiienineene et 2561
E.224.2. CRANGESveoveeniiieeiieieeeteeet ettt sttt 2561
E.225. Release 7.4.28cocuiiiiiiiiieieeceeteeee sttt 2562
E.225.1. Migration to Version 7.4.28......c.ccccceverienieninienineeneneeieneneeeeseeenee 2562
E.225.2. ChANGESveoveeniirieeiieieeiteeeicete ettt sttt 2562
E.226. RelEaSE 7.4.27 ..ottt 2563
E.226.1. Migration to Version 7.4.27ccceveereieciienienienieenieeseeseeesseenaeesenes 2563
E.226.2. CRANEES ..ouvveeeiieiieiieeie ettt st ettt e sttt et e st sbeenaeesaee s 2563
E.227. ReleaSE 7.4.20 ..ot 2564
E.227.1. Migration to Version 7.4.26........ccceeveerieriiienienienieenieeneeseeesveesiee s 2564
E.227.2. CRANEES ..ouvteeiiieiieiieeteeeeteste ettt ettt ettt st b e e s 2564
E.228. Release 7.4.25ccociiiiiiiiiiiicicicic e 2564
E.228.1. Migration to Version 7.4.25......ccccovieriiriiinienienieeieesee et 2564
E.228.2. CRANEES ..ouvveeiiiiiieiieeie ettt ettt st ettt e 2565
E.229. Release T.4.24cooioiiiieeeeeene ettt ettt et 2565
E.229.1. Migration to Version 7.4.24.........cccccccevvievininienineenenecreieeeeeeeeeeee 2565
E.229.2. Changesc.coouiiiieiiiieieieeeceseeee ettt 2565
E.230. Release 7.4.23cucieiiiieriieeeeeeitetente ettt et ettt ettt e 2566
E.230.1. Migration to Version 7.4.23........cccccoiiiiiiniiieniiienenececeeeeeeeeeee 2566
E.230.2. Changesc.ccoiiiiiiiiiiieiiecereeeeee e 2566
E.231. ReIEASE T.4.22 ..ottt ettt ettt et st saen 2566
E.231.1. Migration to Version 7.4.22........ccocceiirieiinieene e 2566
E.231.2. CRANGES -...veeveenieeieeeieee ettt sttt 2567
E.232. RelEaSE 7.4.21 .oeeniiiiiiiiiiiieteeeetetetesesteeetee sttt ettt 2567
E.232.1. Migration to Version 7.4.21ccceceiiiiiiininiene e 2567
E.232.2. ChANGESveoveeieiiieiieiee ettt 2567
E.233. Release 7.4.20cvcieiiiiiiiiiicicieteiteteseeeeeeet sttt ettt 2567
E.233.1. Migration to Version 7.4.20........ccccceveiiriininieninieneneeeneeeee e 2568
E.233.2. ChanEScoueeieiiiienieeiteieeteee sttt 2568
E.234. Release 7.4.19 ..ottt 2569
E.234.1. Migration to Version 7.4.19......ccccoceriiiiiiniiniininecneeecrceeeeeee 2569
E.234.2. ChANGESveoveeniiieeiieieeiteeeeee ettt st 2569
E.235. Release 7.4.18ovoiiiiiiiiieieceieeee et 2570

li

E.235.1. Migration to Version 7.4.18......cccccovieriiriiiinienienieeieeseeete e 2570

E.235.2. CRANEES .couvteviiieiieiieeie ettt sttt et ettt st e i s 2570
E.236. Release 7.4.17 ...cccoiiiiiiiiiiiiiciciciiecc et 2570
E.236.1. Migration to Version 7.4.17cccceevieriiriiiinienienieeieeeee et 2570
E.236.2. CRANEES ..cuvveeiiieiieiieeite ettt ettt st ettt et s e i s 2570
E.237. ReIEASE T.4. 16 ..ottt ettt et 2571
E.237.1. Migration to Version 7.4.16......c..cccccoceevieiininiininnenineeeeneceeeee 2571
E.237.2. ChANGESooveiiiiiiiieieeeeeereee e 2571
E.238. ReIEASE 7.4.15 .ottt sttt ettt 2571
E.238.1. Migration to Version 7.4.15......c.ccoccoiiiiiiiiiiiiiicecceeeeee 2572
E.238.2. Changesccooiiiiiiiiiiieiiecesece e 2572
E.230. ReIEaSE 7.4. 14 ..ottt ettt ettt e 2572
E.239.1. Migration to Version 7.4.14.......cccccceverimineneneenininenenrerereeeneeeniene 2572
E.239.2. Changesccccoiiiiiiiiiiiiicecee e 2572
E.240. Release 7.4.13 ..ottt sttt ettt s 2573
E.240.1. Migration to Version 7.4.13......cccooiiiiiiiiiiene e 2573
E.240.2. CRANGESveoveenieiieeieieeieeee ettt sttt 2573
E.241. RelEASE 7.4 12 .ottt sttt ettt s 2574
E.241.1. Migration to Version 7.4.12......ccccoceririiiininiieniieee e 2574
E.241.2. CRANGESveoveenieieeieieeitee ettt e et 2574
E.242. Release 7.4. 11 .ottt 2574
E.242.1. Migration to Version 7.4.11.....cccccoveviiiiiininiiininencneeecceeeeee 2575
E.242.2. CRANZES ..c.veoveiniiieeiieieeiteeecee ettt sttt 2575
E.243. Release 7.4.10cocoiiiiiiiiiiieicicciteeeee st 2575
E.243.1. Migration to Version 7.4.10........ccceevueriiriiienienienieeieenee e esieesiee s 2575
E.243.2. CRANEES ..c.vveeiiiiiieiieeie ettt ettt sttt ettt et e e e st sbeenaeesaee s 2575
E.244. Release 7.4.9 ...coooviiiiiiiiiiieicccee e 2576
E.244.1. Migration to Version 7.4.9.......cccceeviiriiniiienienienieeieeneeste e 2576
E.244.2. CRANEES ..cvveeiiieiieiieeie ettt sttt ettt b ettt enaeesaee s 2576
E.245. Release 7.4.8 ...c.oiiiiiiiiiiiiciccct e 2577
E.245.1. Migration to Version 7.4.8......ccceceerieriiriiieniienie sttt 2577
E.245.2. CRANEES .eouvveeiiieiieiteee ettt ettt st ettt st s n 2578
E.246. Release 7.4.7 ...cccociiiiiiiiiiiiiiiciciiicc e 2579
E.246.1. Migration to Version 7.4.7........cccocceviriieiieninienineeneneeresieseeeesneenee 2579
E.246.2. Changescccoouiiieieiieiieieeeceereeeee ettt 2579
E.247. REICASE 7.4.60 ettt sttt ettt 2580
E.247.1. Migration to Version 7.4.0........c.cccceeiririiininieniiieneneeeeieeeeeeeeeeeee 2580
E.247.2. ChANGES ... 2580
E.248. REICASE 7.4.5 .ottt sttt ettt e 2581
E.248.1. Migration to VErsion 7.4.5....ccccooiiiiiriiniienieneenieeieeeeeeee e 2581
E.248.2. CRANEES ..cuveeeuiiiiieiieeteeeeteee ettt ettt 2581
E.240. REICASE 744 ..ottt sttt ettt 2581
E.249.1. Migration to Version 7.4.4.......cccccocevirimineneneerieene st 2581
E.249.2. CRANGESeoviveienieieiieiiniesestcetetet ettt st 2581
E.250. ReICASE T.4.3 ..ottt ettt et 2582
E.250.1. Migration to Version 7.4.3ccocviiriiiiiininiene et 2582
E.250.2. CRANGESveveenieiieeiieieeiteeeeee ettt sttt 2582
E.251. REICASE 7.4.2 .ottt s 2583
E.251.1. Migration to Version 7.4.2.......ccocevueririeienienienineene et 2583
E.251.2. CRANGES ..cuveveeniiiieiieieeeteeecee sttt st 2584
E.252. REIEASE 74,1 .ottt 2585
E.252.1. Migration to Version 7.4.1....cc.ccocvvininieneninninineeneneetenieseeeeenee 2585

lii

E.252.2. CRANEES ..cuvveviiiiiieiieett ettt ettt sttt ettt ettt st saeesaee s 2585

E.253. REleASE 7.4 ..ot 2586
E.253.1. OVEIVIEW ...oviiiiiiiiiiiiiiiiiiccc e 2586
E.253.2. Migration to VETSION 7.4cccueviiiiniinieniieieenieesie ettt 2588
E.253.3. CRANEES .eouveeeuiieiieiieeie ettt ettt st ettt et 2589

E.253.3.1. Server Operation Changescc.ccocceevevveniecieneenencnneenenneens 2589
E.253.3.2. Performance Improvementsc..ccceeveeeecueneeceencneennennens 2590
E.253.3.3. Server Configuration Changes..........c.cccccceceecinievencnienennns 2591
E.253.3.4. Query Changes..........cccccoieeevuinienieninieieneeeesie e 2592
E.253.3.5. Object Manipulation Changesc.cccccceceecinieiencnieenenens 2593
E.253.3.6. Utility Command Changes.............c.cceceeeiiiecienieicncneennenenns 2594
E.253.3.7. Data Type and Function Changesc..cccccoveeiininicncnnenn. 2595
E.253.3.8. Server-Side Language Changesccccceeveverenueveneenennennen 2597
E.253.3.9. psql Changes..........ccccocueiiiiiiiiiiiiiiiicecceeccc e 2597
E.253.3.10. pg_dump Changes............cccccooviiiininiiiiiniiiiiiieicenecieeeae 2598
E.253.3.11. libpg Changesc..ccceueeeuiriminienienieieieenesieseeeenee e 2598
E.253.3.12. JDBC Changesccccoueeueeririnienienieeeieienesieseeeeneeene e 2599
E.253.3.13. Miscellaneous Interface Changesccccocevevevveveencnnennee 2599
E.253.3.14. Source Code Changesccoccevuererienienienieneeienieneenienieens 2599
E.253.3.15. Contrib Changescccceceevereerenerienienieienieeienie e 2600

E.254. Release 7.3.21 ..ottt 2601
E.254.1. Migration to Version 7.3.21ccccoveviiieniinienienineeicneetesieseeeenee 2601
E.254.2. CRANGESveoveenieieeiieieeteeeteete ettt 2601

E.255. Release 7.3.20cocoiiiiiiiiiiieicicciieteteeeee ettt 2602
E.255.1. Migration to Version 7.3.20......cccccevuerieriiieneenienieeieeneesieeieesieesenenn 2602
E.255.2. CRANEES .oouvteeeiiiiieiieeie ettt ettt sttt sttt ettt e sete e enaeesaee s 2602

E.256. Release 7.3.19 ..o 2602
E.256.1. Migration to Version 7.3.19......cccceviiriiiriiiiniiienieeieereesie e 2602
E.256.2. CRANEES ..c.vvevviiiiieiieeie ettt sttt ettt e be et st st enaeesaee s 2602

E.257. Release 7.3.18 ..o 2603
E.257.1. Migration to Version 7.3.18......ccccooviiriiniiiinienienieeieereeeee e 2603
E.257.2. CRANEES .couvveviiieiieiteee ettt ettt ettt st st n 2603

E.258. Release 7.3.17 ...ccciiiiiiiiiiiiiicii e 2603
E.258.1. Migration to Version 7.3.17ccccccevirieiininieninienenecreieeeeeeeeee 2603
E.258.2. Changescccooueiieiiniieieiieeceeseceeee et 2603

E.259. ReIEASE 7.3.10 .cueiiiuiiiiiiiiiiiieictccetet ettt sttt ettt et 2604
E.259.1. Migration to Version 7.3.16......c..cccccoeiiiiiiiniiniiienceceeceeeeeee 2604
E.259.2. Changesccoouiiuiiiiiiieieiieeceseeee e 2604

E.260. Release 7.3.15 ..ottt ettt ettt e 2604
E.260.1. Migration to Version 7.3.15.....cccooiiiiiiiiieee e 2604
E.260.2. CRANGESeoveeieiieieieei ettt st sttt et 2605

E.261. ReIEASE 7.3. 14 ..ottt ettt et 2605
E.261.1. Migration to Version 7.3.14......cccooiiiiiiiiniiene e 2605
E.261.2. CRANGESveveeneeiieieieeieee ettt sttt 2605

E.262. ReIEaSE 7.3.13 ..ottt ettt sttt et st 2606
E.262.1. Migration to Version 7.3.13......cccooiiiiiiiiniiieneee e 2606
E.262.2. CRANGESeveeniiieeieieeiteeeee sttt sttt 2606

E.263. Release 7.3.12cuciiiiiiiiieiceeeteeeceeee sttt 2607
E.263.1. Migration to Version 7.3.12......ccccoceniiiiiiininienineeneneeeeieseeeeenee 2607
E.263.2. ChANGESeoveeiirieeiieieeiteeeicete ettt st 2607

E.264. Release 7.3.11 .ottt 2607
E.264.1. Migration to Version 7.3.11...c.ccocoveniiiniininiinineencneeicceeecene 2607

liii

E.2604.2. CRANEES ..cuvveviiieiieiieeie ettt ettt sttt et ettt st e saeesaee s 2607

E.265. Release 7.3.10 ..o 2608
E.265.1. Migration to Version 7.3.10......ccccevieriiniiiinienienieeieeseesee e 2608
E.265.2. CRANEES .couvveeiiieiieiieeieeieete ettt st ettt et st saee s 2609

E.266. Release 7.3.9 ..o 2609
E.266.1. Migration to Version 7.3.9.....c..ccccoceriiiriiininieninienic e 2609
E.266.2. ChanEsccccouiiiiiiiiiieiieectenieeeeeeeetee et 2610

E.2607. REIEASE 7.3.8 ..ottt sttt et 2610
E.267.1. Migration to Version 7.3.8........ccccoceiiiieieniiiii e 2610
E.267.2. ChANGESooveeniiiiiieiieieeeere e e 2610

E.208. REICASE 7.3.7 ..ottt sttt ettt e 2611
E.268.1. Migration to Version 7.3.7ccoceereiirieienieeiene e 2611
E.268.2. CRANGESeoveeneeieeieieei ettt sttt 2611

E.269. REICASE 7.3.0 ..ottt ettt sttt et st 2611
E.269.1. Migration to Version 7.3.0......ccccccecueiriminenienieninenenienrereneeeneenennene 2611
E.269.2. CRANEESooviveieieieiieiiniesestetet ettt ettt 2611

E.270. ReIEASE 7.3.5 .ottt ettt sttt sttt 2612
E.270.1. Migration to Version 7.3.5.....ccccoiriiriiiiiininiene e 2612
E.270.2. CRANGESveveenieieeiieieeiteeeeee ettt sttt 2612

E.271. REIEASE 7.3.4 .ottt s 2613
E.271.1. Migration to Version 7.3.4.......ccccevieririniininienineenie et 2613
E.271.2. CRANZES ..ottt ettt 2613

E.272. ReleaSE 7.3.3 ..ottt 2613
E.272.1. Migration to Version 7.3.3ccccocvriiririrneninienineeneneetenieseeee e 2613
E.272.2. CRANEES ..cvveeeiieiiieiieeie ettt ettt ettt ettt et e saaesabesbeenseesnee s 2614

E.273. ReleaSE 7.3.2 ..ot 2616
E.273.1. Migration to Version 7.3.2....ccccceceerierieriiieiienienieeieeneeseeereesiee s 2616
E.273.2. CRANEES .eouvteeiiieiiieiieeie ettt st ettt ettt st e naeesaee s 2616

E.274. Release 7.3.1 ..o 2617
E.274.1. Migration to Version 7.3.1....cccceviiriiniiniiieiieie sttt 2617
E.274.2. CRANEES .couvveiiieiieiieetteieete sttt sttt ettt et st e i s 2617

E.275.ReleaSE 7.3 ...oviiiiiiiiiiicc e 2617
E.275.1. OVEIVIEW ...ttt e 2618
E.275.2. Migration to VEersion 7.3cccccocervieririenieninienieneeenie e 2618
E.275.3. Chanescccoouiiieiiiieieieeecereeeeee et 2619

E.275.3.1. Server Operationccccecveeuerienienenienieneeeenceeesre e 2619
E.275.3.2. PerfOrmancecocueerueerierieenieinieeieeieesteeie et 2619
E.275.3.3. PrivIIE@eS.....coouiiuiiiiiiiiiiieieceeeceeeeeeeeee e 2620
E.275.3.4. Server Configuration...........ccccceeeviereriecienincienieieneseeieeneene 2620
E.275.3.5. QUETIES ..eeeieeeiiiee ettt ettt e 2621
E.275.3.6. Object Manipulationcecceeeeriererienienieieseeiesee e 2621
E.275.3.7. Utility COMMANGScceeriireieiiniieieneeieieeiceie e 2622
E.275.3.8. Data Types and Functions..........c..ccoceeeeevenieneneesienenceenees 2623
E.275.3.9. InternationaliZationcccceeereerienerienienceiesceienie e 2624
E.275.3.10. Server-side Languagesc.ccecererienienienieneeieneneeienneene 2625
E.275.3. 11, PSALuiiiiiiieieieieeeseceee et 2625
E.275.3. 12, 1IDPQ cviveieieieiieieiercceee sttt 2625
E.275.3.13. JDBC ...ttt 2626
E.275.3.14. Miscellaneous Interfaces..........c.ccoceeveveeivinencncniecinncncnnenne. 2626
E.275.3.15. SoUrce Code.......cccoeruiieiiiniriiniiieieieeeesesieseeeeeee e 2626
E.275.3.16. CONLIID ...ceeviiiiiiieicciccceeee e 2628
E.276. Release 7.2.8 ...cc.coveiiiiiiiiiiiiciciceeteeee ettt 2629

liv

E.276.1. Migration to Version 7.2.8......cccecverieriiniieniienienieeieeseeseeeveesiee s 2629

E.276.2. CRANEES ..cuvveiiiiiieiieeie ettt sttt ettt e b et esaee s 2629
E.277. REICASE T.2.7 .ottt ettt sttt et 2629
E.277.1. Migration to VErsion 7.2.7ccccoeveerieriiiniienieeniesie ettt 2629
E.277.2. CRANEES .ecuvveiiiiiieiteee ettt ettt bttt st s 2629
E.278. REIEASE T.2.6 ...ttt st et 2630
E.278.1. Migration to Version 7.2.0........cccceceverieieninienineeneneeresreseeeeseeenee 2630
E.278.2. ChANGESooeeeniiiieieeeeeeereeee e 2630
E.279. REILASE 7.2.5 ..ottt et sttt ettt sae e nnesnens 2630
E.279.1. Migration to Version 7.2.5......ccccccoceiiiiiiiiniiiiniiicieneceeeeeeeeeeee 2631
E.279.2. Chan@esc.coouiiiiiiiiiiieiieee e 2631
E.280. REICASE 7.2.4 ..ttt ettt ettt st ereen 2631
E.280.1. Migration to Version 7.2.4ccceceiirierenieienie e 2631
E.280.2. CRANGESeoueenieieeieieei ettt sttt 2631
E.281. ReIEASE 7.2.3 ..ottt sttt ettt et s st 2632
E.281.1. Migration to Version 7.2.3.......ccccerieiiiieniinieiene e 2632
E.281.2. CRANGESveveeneeiieieieeeeee ettt sttt 2632
E.282. REICASE 7.2.2 ..ottt ettt ettt et st 2632
E.282.1. Migration to Version 7.2.2.......cccceeuererienieninieneneenie e 2632
E.282.2. CRANGESeoveenieiieiieieeieeecee sttt st 2632
E.283. REICASE 7.2.1 .ottt ettt st 2633
E.283.1. Migration to Version 7.2.1....cc.ccocevierininnininienineenicneeeesieseeeeenee 2633
E.283.2. CRANGESveoveeniiiieiieieeiteeeieete sttt et 2633
E.284. REICASE 7.2 ..ottt sttt ettt et s ae s 2634
E.284.1. OVEIVIEW ...oeiiniiiiiiiiiieitcieeicete sttt sttt 2634
E.284.2. Migration to VErSIOn 7.2.......cccceeviierierieniieniieniesieerieeseesseesieenieesanes 2634
E.284.3. CRANEES ..c.vveeiiieiieiieete ettt sttt ettt st st naeesane s 2635
E.284.3.1. Server OPerationcccueecveevueerieerieenieenieesieenieesieeseessueenseenns 2635

E.284.3.2. Performancec..coccecverieeeenieneenienenienieneeeenieeeeniesieennenieens 2635

E.284.3.3. PriVIlEZeS...cccueeriieriiriieiieeieeie ettt sttt 2636

E.284.3.4. Client AuthentiCationcccceceevuereeeenreneeneeneeeeneneenneneens 2636

E.284.3.5. Server Configuration...........cecueerveerieerieenieenieesieeseeseeesieenieenns 2636

E.284.3.6. QUETIESuveeeeiieeiiieeiieeeeeeeiteeerteesiveeesireeeeveeeereesssaeesareeennns 2636

E.284.3.7. Schema Manipulationcocceccenerivenienienienceneneneeneneens 2637

E.284.3.8. Utility Commands.........c..cecceeuerierenerieenienieeeneereneneenenneens 2637

E.284.3.9. Data Types and Functions..............c.cceceeeevieviniencncnseennenenns 2638
E.284.3.10. InternationaliZationccccceveerieerieeneenienieeseenieeieenieene 2639
E.284.3.11. PL/PZSQL ..ottt 2639

E.284.3.12. PL/PEIT ...ttt 2640
E.284.3.13. PL/TCL ettt 2640
E.284.3.14. PL/PYHON ..ottt 2640
E.284.3.15. PSQLatuiiiieiee et e 2640
E.284.3.16. 1IDPQ c.eventeeeieieeiieeseeee ettt 2640
E.284.3.17. JDBC ...ttt 2640
E.284.3.18. ODBC ...ttt 2641
E.284.3.19. ECPG ..ottt 2641
E.284.3.20. MisC. INterfaces.......ccccevuereeriireenieniiieieniteieseeeenie e 2642
E.284.3.21. Build and Install..........ccccoceeviniininiiniiiinieienceieieneeieeee 2642
E.284.3.22. S0UIce Code......ccueiuiruiiniiniiiiiniieienieeiteiesitee et 2642
E.284.3.23. CONLLID «..oeeeniiiiiiiiieeiieeteesceteseeteestee et 2643

E.285. ReIEASE T.1.3 .ottt et st 2643
E.285.1. Migration to Version 7.1.3 . ..cccccocvviiririnniininienineeneneeteneneeeeenee 2643

lv

E.285.2. CRANEES ..cuvveeiiieiieiieete ettt ettt ettt st st esaee s 2643

E.286. Release 7.1.2 ..ot 2644
E.286.1. Migration to Version 7.1.2.......ccccceeviiriiiniiiinienienieeieesee et 2644
E.286.2. CRANEES ..cuvveeiiiiiieiieeiteeieetese ettt sttt st st n 2644

E.287. Release 7. 1.1 ..o 2644
E.287.1. Migration to Version 7.1.1.....ccccoccoviiiiiiiiniiiiineecceeeeceeee 2644
E.287.2. ChANGESooveeniiiiiieieeeeeeereeee ettt 2644

E.288. REIEASE 7.1 ..ottt ettt st 2645
E.288.1. Migration to Version 7.1ccccoccovieriiiiniininiiniiecenecreeeeeeeeeee 2646
E.288.2. Changesc.ccoiiuiiiiiieieiiecereeeee e 2646

E.289. Release 7.0.3 ...cuoieieiiiiiitiietceeteteetesteseeeet ettt ettt e 2649
E.289.1. Migration to Version 7.0.3........c.ccoceiiiiiiiiiiiiiiiccncccceeeeeee 2649
E.289.2. Changescccoiiiiiiiiiiiiiicicre e 2649

E.290. ReIEASE 7.0.2 ..ottt 2650
E.290.1. Migration to Version 7.0.2.........ccccceviriminenienieiinrenenenienreeeeeneenennene 2650
E.290.2. CRANGEScoveeveieienieiieiieieriestetetet ettt sttt 2650

E.201. ReIEaSE 7.0.1 ..ottt sttt s st sbea 2650
E.291.1. Migration to Version 7.0.1......cccccceceinininenenieiininenesierereeeeevesnee 2651
E.201.2. CRANGESveveenieieeiieieeiee ettt et 2651

E.292. ReIEASE 7.0 c..oviiiniiiiiiiiiienieeteet ettt s 2651
E.292.1. Migration to Version 7.0.......cccccocervieririeiieninienineeie et 2652
E.202.2. CRANGESveoveeniiieeieieeeteeeiceeseetee ettt 2652

E.293. RelEaSE 6.5.3 ..coiiiiiiiiiiiiiececceteee ettt 2658
E.293.1. Migration to Version 6.5.3........ccccocererirriininiienineeneneerenieneeeeseenee 2658
E.293.2. CRANEES ..cvveeeiieiieiieeie ettt ettt sttt et et esaae st e ebaenaeesnee s 2658

E.294. ReleaSe 6.5.2 ...cooiiuiiiiiiiiiiiiiieicicceecteee et 2658
E.294.1. Migration to Version 6.5.2.......ccccceevieriiriiieniienienieeieeneesteeveesaee s 2659
E.294.2. CRANEES ..ouvveeeiieiieiieeie ettt sttt sttt e b ettt naeesaee s 2659

E.205. Release 6.5.1 ...cc.cviiiiiiiiiiiiciciciciicce e 2659
E.295.1. Migration to Version 6.5.1.....ccccecvevieniiiniiiinienienieeieeee et 2659
E.295.2. CRANEES .eouvveeiiiiiieiteeiteieeteete ettt ettt ettt st saee s 2659

E.296. Release 6.5cccooviiiiiiiiiiiiiiiciciciice e 2660
E.296.1. Migration to VErSion 6.5.......ccceeviiinieniiniiieiieiesieeieeee et 2661

E.296.1.1. Multiversion Concurrency Controlc..cccceeeecvencrieennennnens 2661
E.206.2. Changescccoeiieiiniieieiieeeiesieeeceeeetete et 2662

E.297. ReEIEASE 60.4.2 ..ottt sttt et 2665
E.297.1. Migration to Version 6.4.2........c..ccccceiviriiiniiiinineeneneceeeeeeeeeeeeee 2665
E.207.2. ChanEsccoouiiiiiiiiieicieeeeee et 2665

E.298. REIEASE 60.4.1 ..ottt ettt ettt e 2665
E.298.1. Migration to Version 6.4.1 ... 2665
E.208.2. Changescccoiiiiiiiiiiiiiiccreeee e 2665

E.209. REICASE 0.4 ...ttt ettt ettt et st saen 2666
E.299.1. Migration to Version 0.4.........ccccceeueiruimenenienieieeneneestesreneeeneenennenne 2667
E.299.2. CRANEESeoviveienieiieiieiieesestcetet ettt st 2667

E.300. ReIEASE 0.3.2 ...coneiiiiiiiieieee ettt et st 2670
E.300.1. CRANGESeoveeeiiieiieieeiteecee ettt ettt 2671

E.301. ReIEASE 6.3.1 ..ottt sttt s 2671
E.301.1. ChanGEScoueeiiriiiieieeiteieecee sttt st 2671

E.302. REIEASE 6.3 ...ttt sttt s 2672
E.302.1. Migration to Version 6.3.......cc.ccoceeveererienienenienineenieneerenieseeee e 2673
E.302.2. ChANGESooveeneiieeiieieeiteteeteete sttt sttt 2673

E.303. ReleaSE 6.2.1 ..ottt 2676

i

E.303.1. Migration from version 6.2 to version 6.2.1........cc.ccoccrercveneneeucnncne. 2677

E.303.2. CRANEES ..ovveeiiieiiieiieeieeeete ettt sttt st ettt s e e e s 2677
E.304. REleaSE 6.2ovimiiiiiiiiiiiiiicicicciece e 2677
E.304.1. Migration from version 6.1 to version 6.2..........c.ccceeeeveeriernieeneennnenn 2678
E.304.2. Migration from version 1.x to version 6.2c..c.ccceceveecveneneenennennes 2678
E.304.3. Changescccoerieieniieieiinecieneceeeetetete et 2678
E.305. ReIEASE 6. 1.1 ..ottt sttt ettt et e 2680
E.305.1. Migration from version 6.1 to version 6.1.1...........cccccocceviininnnnnnne 2680
E.305.2. Changesccoeiieiiiiiiieiieiecerececee et 2680
E.306. REIEASE 6.1 ...coneiiiiiiiiiiii ettt ettt st 2680
E.306.1. Migration to Version 6.1cc.ccoceeviiriiniiinniinienieeieeeeeec e 2681
E.306.2. CRANEES ...veevuiiiiieiieiie ettt ettt ettt 2681
E.307. RelEase 0.0cceoouieiiiieiieiieiee ettt sttt et s 2683
E.307.1. Migration from version 1.09 to version 6.0.........c.ccccocevvevvevreenenennenne 2683
E.307.2. Migration from pre-1.09 to version 6.0cccccceceverinenrenveeeenennenn 2683
E.307.3. CRANGESveoveenieieeiieieeeeee ettt e sttt 2683
E.308. Release 1.09c.ooiiiiiiiiiieeetete ettt sttt sttt sben 2685
E.300. Release 1.02cccoucieiiiiiriiieieieteiteteneseeeeeeit sttt ettt s 2685
E.309.1. Migration from version 1.02 to version 1.02.1.......cccccocevvvenininnnnenne. 2685
E.309.2. Dump/Reload Procedurec.cocueverienieniinieninieneneneenieseeeeseenee 2686
E.309.3. Chan@EScoveeieriiiieiieiieieetcete ettt sttt 2686
E.310. Release 1.071 ..ottt 2687
E.310.1. Migration from version 1.0 to version 1.01......c..cccceoeneriinininnencne. 2687
E.310.2. ChaNGES ..coveoveeniiieeiieieeiteieeicete sttt st 2689
E.311.Release 1.0 ..ot 2689
E. 3111 CRANEES .ooueveiiieiieiieeie ettt ettt sttt ettt et e st sbeenaeesaee s 2689
E.312. Postgres95 Release 0.03......c.oiiiiiiiiiieieeieeieeie ettt sttt 2690
E.312.1. CRANEES .eouvveiiieiiieiieeie ettt st ettt ettt st b saeesaee s 2690
E.313. Postgres95 Release 0.02......cc.coviiiiiiiiiniiiieeieeiie ettt 2692
E.313.1. CRANEES .ooueveiiieiieiieee ettt sttt st ettt st e s s 2693
E.314. Postgres95 Release 0.01.....coc.ooiiiiiiiiiiiiiieeceie ettt 2693
F. Additional Supplied MOAUIEScccceevuirriieriinieeieeiteeieee ettt 2694
Fol. adminpack.....coo.eoiiiiiiiiieieee ettt st 2695
F2. Quth_delay......ccccooiiiiiiiiiici ettt 2696
F.2.1. Configuration Parameters...........c.ccocceceeverieiieniinieninceneneereieeeeeeeeeeee 2696
F2.20 AUNOT .ttt e 2696

F.3. QUt0_@XPlaiN..ceeeiiiiieieiiieiieeeeeet ettt st 2696
F.3.1. Configuration Parameters..............cocceceevirieiiininiieniiiceneceeeeeeeeeeeee 2697
F3.2.EXAMPIE ..o e 2698
F3.30 AUNOT .ttt 2698

Fld. DIICE_@IMN ..ttt sttt sttt et sae et enen 2698
F4.1. Example USagecccooiiiiiiiiiiiiiiiiiiiccce e 2699
Fid.2. AUNOTS .ottt 2699

LS. DEIEE_@IST .ttt ettt ettt st b et a et sae st aesben 2699
F5.1. EXample USAZEccvevveiiiriiiiriiicieieieeetesesteeeeeeee st 2699
FL5.20 AUNOTS ..ottt 2700

LB, ChKPASS..c ettt sttt ettt et st 2700
FiO.1. AUNOT ...t e 2701

FU7. CIEXL ottt sttt et s 2701
F7.1. RAtIONAIE «....oviiiiiiiiciciiciic et e 2701
F7.2.HOW to USE Tt ..o 2702
F.7.3. String Comparison Behavior...........coccverieviininieninencnenieneneeeccne 2702

vii

F.7.4. LIMITAtIONS ...coovvveeeieiiireeeeeeeeireeeeeeeieeeeeeetreeeeeeetreeeeesesreeeeeesareseesensseeeeenns 2703

FL7.5. AULNOT .ottt et e e e b e e et e e et eeebaeesssaeenns 2703
FLBL CUDC......eeiiee ettt ettt e e e e et e e e b e e e tbeeetb e e eaaeesaraeaas 2703
Fi8. 1. SYNEAX .etiiitieiieeit ettt sttt st e 2703
FLB.2. PreCiSION.ccciiiiiiiieiiieeite ettt ettt e e eeereeesebeeeebeesnsaeeenseaennes 2704
Fl8.3. USAZE....evieuiitieeeeieeetee ettt s 2704
F.8.4. DEfaUlLSoeiieiiiiieieecieee ettt e et etre e e e 2706
FLB.5. INOES ..ottt e e e e e e e e e eeaaeeeeaneeeenneeeaeeeenns 2707
FLB.6. CIEAilS ..ot ee e ete e ereeeeeaeeeenns 2707
FLO. ADIINK ...t eeaae e eree s 2707
ADINK COMMECT ...t e e e e e e e e e e e et seeeeeaaaes 2707
ADIINK COMMECE Ueieiiiiieeeeeeeeeeeeeeeeeeeeee e e e e et eeeeeeeeeeseseeeeaeereeeeeeee 2711
ADINK_ AISCOMMECT .eeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeereseeeeeeerneeeeees 2712
ADINK Lottt et e etae e eaeaeeans 2713
ADIIIIK EXEC ettt ettt e e e e e e e e e e e e et e eeeeeeeeeseseesessesanaaneees 2716
ADIINK_OPEN...eutieiieii ettt st 2718
ADINK _TEUCH 1.ttt e e e e e e e e e e eseeees s ssaaeeees 2720
ADIINIK _CLOSE ettt ettt e e e ettt eeeeeeeeereseesessesasaaeeees 2722
dblink_ZEt_CONNECTIONS ...veeuteniiiieiiieeie ettt ettt ettt 2724
dblINK_eITOr_MESSAZEveuveevreniiiieitinieeie sttt ettt 2725
AbIINK_SENA_QUETY ...eveeniiiieiiiiieiteieeeee sttt et 2726
ADINK_IS_DUSY ..ttt 2727
AbINK_GEt MO ..ouviiiiiiiiiiiieete et 2728
ABINK_GEt_TESUIL...c.eiiuiiiiiiiiiiieiteerceter ettt 2729
AbIINK_CANCEI_QUETY ...evieutieiieeiiieieeite ettt ettt ettt et esereebeenaeesane s 2732
ADINK_ GO _PKEY .veeeieeiiieiierieeie ettt ettt ettt ettt st esaee s 2733
dblink_build_SQl_NSeTt......ccveriiriieiierieeieeiteete ettt ettt st e 2735
dblink_build_Sql_delete.........cocueriierieriiiiieiieeie ettt 2737
dblink_build_sql_update........cccueeviierieriiiiiieieeie et 2739
FL1O. AICE_INT . eiiiiiiiiii ettt ettt ettt e e et e e st e e e abeeetbeeeaseeestaaeensseesssseesssaeans 2741
Fo10. 1. CONAGUIATION «..eiiiiiiiieiiiiieeiieste ettt ettt et n 2741
FL10.2. USAZE...etitieiieeiit ettt sttt ettt et st st e b e saee s 2741
Fol L ROt X SYMiiiiiiiiiiieteeeee ettt ettt sttt ettt e st e beebee e 2741
FIT.1. CONAGUIATION «..eeiitiiiieiiiiieeiteeie ettt ettt e n 2741
FiIT.2. USAZE..uuioiiiiieieeieeecteeeetete ettt s e e 2742
F12. dummy_Seclabelcc.cooiiiiiiiiiiiiiiieici ettt 2743
F12.1. RAONALE ...ttt ettt eearaaee e 2743
FlI12.2. USAZE .ottt s 2743
F12.3. AULNOT ..ot eaee e 2743
F.13. @arthdiStanceocoeeuiiiei ettt et e e e eare e e e e eerreaaeeaa 2744
F.13.1. Cube-based Earth DiStancesccc.coeueeeiuireeiieeieeieeeeeeeeee e 2744
F.13.2. Point-based Earth DiStancescc.coooueieiuieeeiieieiieeeee e 2745
Fold, fIle_ fAW oo et 2745
Fo15. fuZzyStrmatCh.........cooviiiiiiiiiiee ettt 2747
Fo15.1. SOUNAEX...iiiiiiiieiiie ettt ettt et e et e e eaeeeeaeeeeaes 2747
F.15.2. LeVeNSNEEINcccuviiiiiiieiiec ettt et e e v e e 2748
FoI15.3. MEtaphoNe.coouiiiiiiiiieiteieeicete sttt st 2749
F.15.4. Double Metaphone............ccooeeiineriininieieienene et 2749
FLLO. NSTOTE ..ottt e et e et e e et e e eetaeeetaeeetseeeaaeeenraeens 2750
F.16.1. hstore External Representationc.ccecveveeienineencnenieneneeienene 2750
F.16.2. hstore Operators and FUNCHONSc..cooeeverierienineenenenienieneeieene 2750
Fo16.3. INACXES ..vveeeiiieiiie ettt ettt e v e e et e e eeabeeeataeeenvaeenens 2754

viii

F.17.

F.18.

F.19.

F.20.

F21.

F.22.

F.23.
F.24.

F.25.

Fi16.4. EXAMPIES ..ccuiiriiiiieiieiiieieeiteete ettt sttt st ettt esaee s 2754

FL10.5. StAtISTICS c.vveuvieieeierieeienieeiieieetcet sttt ettt st 2755
F.16.6. ComMPAtiDIlityoccveeviieniiiiieiiesieeieetete ettt st 2755
FoL1O.7. AUTNOTS......ooiiiiiiiiieieeeeeceet ettt 2756
IIEAZE veenvteeiieeteeeiee ettt ettt ettt e b e st et e bt e s atesab e s a bt e bt e s at e sa b e e be e bt e shbeebeebeene 2756
FoI7.1. FUNCHONS ..ottt st 2756
Fo17.2. Sample USES.....c.coieieriieieiiiieienieeeciese ettt 2756
IIEATTAY .. vttt sttt ettt et et s e ae s esneeeneneeee 2757
F.18.1. intarray Functions and Operators............c.ccccceeuereencnerceenieneeceennenne 2758
F.I18.2. INAEX SUPPOIT...c.eiiiiiiiiiiieiieiieiereeeee e 2759
FI8.3. EXAMPIE ..ooviiiiiiiiiiiiciece et 2760
Fo18.4. Benchmarkcccocoeiiiiieiieiieiieeeeeee et 2760
FoI8.5. AUNOLS ..ottt e 2760
] | FO OO OSSPSR 2760
Fi19.1. Data TYPES.....c.cooiiiiiiiiieics e 2761
FiT1O.2. CaSES ottt sttt 2761
F.19.3. Functions and OPEratorsc.ceeeeeerieriienienienienieseenie e seeniesieeeeseeenee 2762
Fi19.4. EXAMPIES ...ttt sttt 2763
F.19.5. Bibliography.....c..coeeiiiiiiiieiiniieiesieeteeci ettt 2763
FiI19.6. AUNOT ...ttt et 2764
L0 et ettt ettt b et na e 2764
F.20.1. RAtIONALE ..ottt 2764
F20.2. HOW t0 USE It ..couiiiiiiiiiieiieiieiceencteeeeeeete et 2765
F.20.3. LIMItatiONS ..coveeuerieeiiniiniieienicetenieeiteniesie ettt st 2765
F20.4. AUTNOT ...ttt et 2765
JEEEE -ttt ettt ettt ettt eaees 2765
F21.1. DefinitiONSeoueeiiriieieieeiieicnicetenteeeeesie ettt 2765
F.21.2. Operators and FUNCHONScoccueriiinieniiniieeeniesieeiceee st 2767
F21.3 TNACXES ..ottt s 2769
F21.4. EXAMPIE ...ooiiiiiiiiieiieet ettt sttt sttt st n 2770
F21.5. AUTNOTS....c..oiiiiiiiiicieecceeee et 2772
PAZEINSPECT ..ttt st ettt e st e et et e s bt e st e e bt esbtesabesate e beesatesaseenbeesaeenanenn 2772
F22.1. FUNCHONS ..ottt 2772
PASSWOTACHECK ...ttt 2774
PE_BUITEICACHE. ...t 2774
F.24.1. The pg_buffercache VIBW......ccccieeciieriieeeiie e esieeesevee e e svee e 2775
F24.2. Sample OULPULc..cocviiiiiiiiiiciereeeeeeeete e 2775
FL24.3. AUTNOTS ..ottt ettt e 2776
PECTYPLO ettt ettt ettt et ettt e st e b e et e e s et entesaeesee b e ebeenteeteentenbeeneeteereens 2776
F.25.1. General Hashing FUnCtions.........c...cocceevviiriiinieniiiniieicecniceeeeeee 2776

F25.1.1. AigeSt () ceveereereeeeiesieeieste ettt sttt 2776

F.25.1.2. MAC () teteiieierie ettt sttt s 2777
F.25.2. Password Hashing FUnCtionscccceeieieninieninieneeeeeeeeeee 27717

Fo25. 2.1, Gyt () ettt e 2777

F.25.2.2. gen_Sa11 () tooviieeeeeieee ettt e 2778
F.25.3. PGP Encryption FUNCHONS........ccccvevirinininienieieieencecereeeieeeee 2779

F.25.3.1. pOp_SYM_ENCTYPE () trrreeerieeirieeeieeeeieeeeteeeeveeeeireeeeaeeeeveeeeans 2780

F.25.3.2. pgp_SYM_dECTYPE () crereeereeeiiieeeieeeeieeeereeeeveeeeireeeeaeeeereeeeans 2780

F.25.3.3. pOp_puUb_eNCTYPE () orreerrieeiiieeeieeeeieeeeteeeeireeeeireeeeveeeeveeeeans 2780

F.25.3.4. pgp_pub_deCTYPE () cveeeeeieeeiieeeieeeeieeeereeesireeeeireeeaeeesreeeeans 2780

Fo25.3.5. DOP_KeY_ TG () ettt eee et 2781

F.25.3.6. armor (), ACATMOT () teveeeeeeeieeeerieeeeeeeeeeeeeeeessesensaeseereeeeseeeesns 2781

lix

F.25.3.7. Options for PGP Functions............cceceevueeniiniennennieenieeieeeene 2781

F.25.3.7.1. CIPher-al@occccevueeiieniiniiiieeieeeeeeee e 2781

F.25.3.7.2. cOMPIess-alZ0eeevueeriieriinieeiienieeieeniee e 2782

F.25.3.7.3. compress-1eVelcccooceriiiniiniiniiiiieienceeeeeen 2782

F.25.3.7.4. convert-Crlf........cccooiiiininiiniiicencccceee e 2782

F.25.3.7.5. disable-mdC.........ccccoveriirirciininieienieececeee e 2782

F.25.3.7.6. SESS-KEYeoueeniiiieiiiiececeeeeecece e 2782

F.25.3.7.7. S2K-MOME.....c.eririiriiiiiinininientetetee et e 2783

F.25.3.7.8. s2k-digest-algo.......cccecuevirieninieiiiieiceccccecee 2783

F.25.3.7.9. s2k-cipher-algoccccovievieiiiiiiiiiiiiicecceceee 2783

F.25.3.7.10. unicode-mode...........cccceeruermeeneenieniiieenieeeeeeeaenn 2783

F.25.3.8. Generating PGP Keys with GnuPG............ccocccoiiiiiiniinncnnene 2783

F.25.3.9. Limitations of PGP Codeccceiiiirieiinieieneeereeeeee 2784

F.25.4. Raw Encryption FUNCtIONS........coociriiiiiieiiiieiee e 2784
F.25.5. Random-Data FUNCHONScceeriiririiniiiieieieeee e 2785
FL25.0. INOLES ..ottt ettt st sttt et sae e 2785
F.25.6.1. Configuration............cceeverierienienienieneeieieeicee et 2785

F.25.6.2. NULL Handlingc.ccccceueeeeininininieieieieenenieneeeeeeeeae e 2786

F.25.6.3. Security Limitationscccceceevuereerienenienienieienieetenieseeienieens 2786

F.25.6.4. Useful Reading.........c.ccecueviirieniiniinieninieienieieneeeenee e 2786

F.25.6.5. Technical References..........ccccoceviviniecieieininincncicicceccen 2787

F25.7. AUNOT ..o e 2787

F.26. pg_freespacemapcocceeeriirieeiiniiiienieniteiesitete sttt sttt s 2788
F.26.1. FUNCHONS ...ttt e 2788
F.26.2. Sample OULPULeevuieeiiiiieiieeie ettt ettt et see e ebeenaeesaee s 2788
F26.3. AUNOT ...t 2789

FL27. PEIOWIOCKS. ...ttt ettt st ettt st beesatesbeebee e 2789
F27. 1 OVEIVIEW .ttt e 2789
F.27.2. Sample OULPULeovuieiiiiiieiienieeieeteete ettt ettt s saee s 2790
F27.30 AUNOT ..o 2790

F.28. PE_stat SAEIMENTS ...ccoueeriiiiriieriieriteeieeieerite et et estee st e eteesbeesiteebeenbeesitesbeenseenes 2790
F.28.1. The pg_stat_statements VIEW ...cccocveeeeeirieieeeiirieeeeecireeeeeeeireeeeens 2791
F28.2. FUNCHONS ...cuiiiiiiiiiiiiciicccc e 2793
F.28.3. Configuration Parameters............cocceceevuerieiieniinieninienieneereeeeeeeeeeee 2793
F.28.4. Sample OULPULc..cocveiiiriieiiiieieniceeeeeeetete e 2793
FL28.5. AUTNOTSeiiiiiiiitiete ettt sttt e 2794

F29. PEStALIUPLL........eoeiiiieiieiicecee et e s 2794
FL20. 1. FUNCHONS ..ttt ettt et 2794
FL20.2. AUTNOTSeiiiiiiiiieetee ettt ettt 2797

F30. PG s 2797
F.30.1. Trigram (or Trigraph) CONCEPLS......cccecervererueruereeeeererienrereeeeeneerennene 2797
F.30.2. Functions and OPEratorscccceeteerrineruenuereeeerenenuessenseseeeneeenenne 2797
F.30.3. INdeX SUPPOIT...c.coiiiiiiiiiiiiiiiciee e 2798
F.30.4. Text Search INteZrationccccevecveviririinenenieieieene e 2799
F.30.5. REfEIONCEScuieniiiieiieieeiee et 2800
F.30.6. AUTNOTS.....coiiiieiiiieee et 2800

FL3 1. POSEEIES_fAW ..ottt ettt st 2800
F.31.1. FDW Options of postgres_fdwccoceeeeverinieninienenenienieneeenene 2801
F31.1.1. Connection OPHONScc..coueeeeriereerienenienienieeteneeeeeniesieenienieens 2801

F.31.1.2. Object Name OPtionscccceevereeriererienienienieneeeenieneenieneens 2801

F.31.1.3. Cost Estimation Options...........cceccevererienienienieneeieneneenenens 2802

F.31.1.4. Updatability OPtionsc.cecveevueerieerieeiieenieesieesieesieeseeesieenseenns 2802

Ix

F.31.2. Connection Managementc.cecueerueereeriieenieeneesiieenieeseesneesseesseesnnens 2803

F.31.3. Transaction Managementcecueerueerierieenieeneenieenieeneeseeesveeseeenaeeas 2803
F.31.4. Remote Query OptimiZationcoeeereerieenieeneenieenieeneesreesreenieesneens 2803
F.31.5. Remote Query Execution Environmentcccccovcveeveeneeniennieeneennnen. 2803
F.31.6. Cross-Version Compatibility.........ccceveerieriiienienieniieieeneenieeieesee s 2804
FL31.7. AUTNOT .ottt sttt et 2804

L3 8B ettt et s 2804
F.32.1. RAONALEevvieeiie ettt e e e e e e e e e e e e e snnaeeenes 2804
F32.20 SYNEAX oo 2805
FL32.3. PrECISION...ccctiiieiieeiieeeiteetee ettt ite e st e et eeeaeeesebeeenabaesnseeesnseeennes 2806
F32.4, USAZE.....iiiiiiieieee et e e 2806
FL32.5. NOLES -ttt ettt sttt ettt ettt ettt e st e ae e e eneens 2807
F32.0. Creits c..cuveiieiieieeieeet ettt st sttt 2807

FL33L SEPESAL ettt 2808
FL33. 1. OVEIVIEW ..ottt ettt eite ettt e et e ete e taesaeesebeebeessaesssesnsaenseessnean 2808
F.33.2. INStallation.....cccueecuieeieeiieieeeie et e et ereeseesaeesveeteesseessbeensaenseessne s 2808
F.33.3. Regression TeStS....c..ccueiriiirinieieieieietieenteseeeeeee ettt 2809
F.33.4. GUC Parametersccccueeeeieeiiiieeeiieeeiteesiteesieeeitee et e et esveeesvee e 2810
F33.5. FEALUIES ..ottt st sttt 2811
F.33.5.1. Controlled Object Classescoccevererierienienieneeienieneenienieens 2811

F.33.5.2. DML PermiSSiOns........cecuevteeeeriereenienenienienieeeenieeeeniesseensenieens 2811

F.33.5.3. DDL PErmiSSionsccccocceeertereenienenienienienienieeeenieseenienieens 2812

F.33.5.4. Trusted Proceduresc..cocevereenenenienenienienceicneneeieneene 2813

F.33.5.5. Dynamic Domain TranSitions...........cceeeveereerveesieeseenvessieeneenns 2813

F.33.5.6. MASCEIlAN@OUSvveveieevieiienieeieeiee st eie et seve e esieesireeveeiee e 2814

F.33.6. Sepgsql FUNCHIONSeovuviiiieiiecieeieeiteeite ettt sttt e n 2814
F.33.7. LIMITAtIONS «..eveeniiiieiieniieiieieeicete ettt ettt s 2815
F.33.8. EXternal RESOUICES.c...cocuieriieriiiiieiteste ettt 2815
F.33.9. AUTNOT ...ttt 2815

B34 SPHuciieieete ettt sttt st 2816
F.34.1. refint — Functions for Implementing Referential Integrity................... 2816
F.34.2. timetravel — Functions for Implementing Time Travelc........... 2816
F.34.3. autoinc — Functions for Autoincrementing Fieldscccccceveeneenen. 2817
F.34.4. insert_username — Functions for Tracking Who Changed a Table...... 2817
F.34.5. moddatetime — Functions for Tracking Last Modification Time.......... 2818

LR T] 11 1 | o T USSR 2818
F.35.1. Functions Providedcccceeeiiieiiiicciieieeees et 2818
F35.2. AUNOT ...t 2819

LR Lo 21 0] 1S5 1113 T USRS 2820
F.36.1. Functions Providedccooveeiiiiiiieiiecic ettt 2820
Fo36.1.1. NOTMAL TANA wttttiiiieeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e eeeeeeaeeens 2821

FL360.1. 2. CroSStabl (LX) tetteeeeeeeee e eeee e et e e e e e e e e eeeaeesaenanns 2821

FL36.1.3. CrOSSTADN (EEXE) eteeeeeeee ettt eeeeeaeeeaaaaes 2823

F.36.1.4. crosstab (LeXt, TEXE) ttrtorroeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeens 2824

F36.1.5. CONNECEDY ottt ettt etee e 2827

F30.2. AUTNOT ...t 2829

37 E0I ettt ettt et sae st be e 2829
38t _PAISET ..ttt ettt ettt ettt et sttt st naesbeeas 2830
FL38. 1. USAZE .ttt st e st 2830

FL39. tSCAICRZ ...ttt 2831
F.39.1. Portability ISSUEScccuevueruieiirieiieniiiieieritetcicetee et 2831
F.39.2. Converting a pre-8.3 Installation........c..ccceeevererienineencnennicncneeicnene 2832

Ixi

F.30.3. RETEIENCESuvveieeeiireee ettt eeee e e e et e e e eetaeeeeeens 2833

FLA0. UNACCENTioiiiiiriieiciect ettt ettt sttt sa et saeas 2833
F.40.1. CONAGUIATION ...eeiitiiiieiiiiieeitesie ettt ettt ettt st st saee s 2833
Fld0.2. USAZE....iiiieiieeiieiteteete ettt sttt sttt ettt e e e saae s 2834
Fi40.3. FUNCHONS ...c.eviiiiiieieieeiieteecctesteet ettt 2834

FiAT. UUIA-08SP vttt sttt et s 2835
F41.1. uuid—055p FUNCHONSooeiiiiiiiieeiiieciee et 2835
S N 11 4 o) PR 2836

FlA2. XIMI2 oottt ettt ettt ettt et esae et neeneens 2836
F.42.1. Deprecation NOLICEccoocuieiieiiniiieienicieeeeee e 2837
F.42.2. Description of FUNCHONScccooviiiiiiiiiiiiiceccneeeeeeeee e 2837
Fid2. 3. At LAl it cectee ettt e eete e e e et e et e e e e arraee e 2838

F.42.3.1. Multivalued Results.........cccoeoieiirieiinieieieeeeeee e 2840

F42.4. XSLT FUNCHONSeiuiiitiiieiieieeie sttt 2841

FA2.4. 1. X8 1t _PrOCESS ittt ettt 2841

FiA2.5. AUNOT ... e 2841

G. Additional Supplied Programscccceeeeiieririieniiieneneeseeee e 2842

G.1. Client APPLICALIONSc.evuieiiriieieitieiieieettete sttt ettt sttt b et see e 2842
OLA2NAME ...ttt sttt ettt st bt et e b bt ae e 2842
PEDENCH ...ttt 2847
VACUUIMIO ...ttt ettt st et e b s bt e e sbeeaie 2856

G.2. Server APPLCATIONS ...c..eoeeruirierieniirieieeitete ettt ettt ettt sae e 2858
PE_archiveClEanuDc.ccoeeiiiiiriiiiiniiit e 2858
PE_StANADY ..eeiiiiiiieiiecit ettt st e st beenaeesaee s 2861
PE_LESE_TSYIIC cutientieiieeiiieieeete ettt ettt ettt e st e beeaeesaae s 2865
PE_LESE_LIMINE 1evvieiieeiiieieenie ettt erte et et e st e st e sbe e beesaeesateebeesseesasesnsaenseenanens 2867
PE_UPEIAUC....cevieiieeiiieieeteete ettt ettt ettt sttt e st e sate e bee st e sabeenbeesabesanesanes 2871
PE_XIOZAUIMP ..ttt ettt ettt ettt e st e et e s e saaeenes 2878

H. EXtEINal PrOJECES .vveeuiiiiieiieiiecieet ettt ettt st ettt et e s s e sbeeaaenane s 2880

H.1. Clent INterfaces........cc.everieriinieiinieieniecicieetete ettt sttt s 2880

H.2. Administration TOOIScc..ccuerieriiniiiienerieienieesceeere ettt 2880

H.3. Procedural Languages............cceceeriirrieeniienieiieeieeniee sttt e st 2881

H.4. EXEENSIONS.....iuiiiiriieieiiiietieeet ettt ettt ettt e saeenesae et saesaeenenaeeas 2881

L. The Source Code REPOSIIOTYcc.couiiieriiriieiiniieieienteteneeeere et 2882

I.1. Getting The SouUrce via Gitcccooeeveeririeiiiniiiinieeeeeeeese et 2882

J. DOCUMENTALION ...ttt ettt e sb e st e e e b e sat e s abe e bt e sabesate e beessaesaneeates 2883

J1. DOCBOOK ..ottt ettt st e 2883

J.2. TOOL SEES...eneeeiteeee ettt ettt st ettt st et e bt e st et e b e 2883
J.2.1. Linux RPM Installationccceeveeniinienieenienienieeieeneeeeeeieeseeeee e 2884
J.2.2. FreeBSD Installationcoceeeieriieeniiinieniieieeeee et 2884
J.2.3. Debian Packages.ccccevieiereriieieiieese e 2885
J.2.4. MAC OF Xttt ettt ettt st 2885
J.2.5. Manual Installation from SOUICEccccerieriirieiienieieeecee e 2885

J.2.5.1. Installing OpenJadeccceeeerereenieninieeneeeeeee e 2886
J.2.5.2. Installing the DocBook DTD Kit.......cccceeoierienieninieiininieeen, 2886
J.2.5.3. Installing the DocBook DSSSL Style Sheetscccccocevceenennnne 2887
J.2.5.4. Installing JadeTeXccocvevirieniniineneeteeeeeetee e 2887
J.2.6. Detection DY CONEIGUIE .iiiiriiiiiiieeiente ettt 2888

J.3. Building The DocUmMENtation...........cocueruerierienieiienenienientenesieete sttt 2888
J3 1 HTML ettt st 2888
J.3.2. MIANPAZES ..ottt ettt ettt sttt sttt 2888
J.3.3. Print Output via JAdeTeXcoceevierierieeiieiienieceeeesee e 2889

Ixii

J.3.4, OVEITIOW TEXE ..ccouvviee ettt et e et e eearaee s 2889

J.3.5. Print Output via RTFcociiiiiiiiiieet e 2890

J.3.6. Plain Text FIlescc.ooiiiiniiieiinieiiiieetc et 2891

J.3.7. SyNtax CheCK....oouiiiieiiiiiieiteeteee ettt 2891

J.4. Documentation AUNOTINGc.ceeeeriiriiiiriieniieeieeieerite ettt et 2891

JAA 1. EMACS/PSGML.....ooiiiiiiiiiiiieeeeeeteteee ettt 2892

J.4.2. Other EMacs MOAESccccvieeiiiieiiiieeiieeeiteesieeeeteeevee e ane e eas 2893

J.5. StY1E GUIAE. ..ottt ettt st ettt et sae e nneenens 2893

J.5.1. Reference Pagescocooiiiiiiiiiiiiiec e 2893

KL ACTONYMIS .. ettt s 2895
Bibliography 2901
Index 2903

Ixiii

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

« updatable views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. http://db.cs.berkeley.edu/postgres.html

Ixiv

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

Ixv

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)

Ixvi

Preface

Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki
The PostgreSQL wiki’ contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before

PN

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently _Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Ixvii

Preface

some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

« A program produces the wrong output for any given input.
« A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

Ixviii

Preface

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version
of the server you are connected to. Most executable programs also support a -—version option; at
least postgres —--versionandpsgl --version should work. If the function or the options do
not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.3.25 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered

Ixix

Preface

in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end process, mention that, do not just say ‘“PostgreSQL crashes”. A crash of a single backend process
is quite different from crash of the parent “postgres” process; please don’t say “the server crashed”
when you mean a single backend process went down, nor vice versa. Also, client programs such as the
interactive frontend “psql” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a
bug report this way causes it to be mailed to the <pgsgl-bugs@postgresqgl.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsgql-sqgl@postgresgl.org>
or <pgsgl-general@postgresqgl.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@postgresql.org>. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report on pgsgl-hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl . org>. Please be specific about what part of the documentation you
are unhappy with.

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. https://www.postgresql.org/

Ixx

Preface

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail. For more information send mail 1o <majordomo@postgresql.org> with the single word
help in the body of the message.

Ixxi

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started

psgl (9.3.25)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.3.25 on i586-pc-linux—-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psgl prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.
Please enter all the commands shown above so you have some data to work with in the following

sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date

1.

While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a

column to the table would change the results.

Chapter 2. The SQL Language

——————————————— t———— - —————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
,,,,,,,,,,,,,,, T
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT x FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B e e R T
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17

Chapter 3. Advanced Features

A window function call always contains an OVER clause directly following the window function’s
name and argument(s). This is what syntactically distinguishes it from a regular function or aggregate
function. The OVER clause determines exactly how the rows of the query are split up for processing by
the window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY
within ovER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Here is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) F

depname | empno | salary | rank
——————————— e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
________ b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for
details.

18

47100
47100
47100
47100
47100
47100

Chapter 3. Advanced Features

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT sa

lary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname,

FROM
(SELECT

FROM
) AS ss
WHERE pos

empno,

salary, enroll_date

depname, empno, salary, enroll_date,

rank () OVER
empsalary
< 3;

(PARTITION BY depname ORDER BY salary DESC,

The above query only shows the rows from the inner query having rank less than 3.

empno)

AS pos

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

SELECT sum(salary)

FROM empsalary

OVER w, avg(salary) OVER w

19

Chapter 3. Advanced Features

WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.4, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -— (in ft)
state char (2)
)

CREATE TABLE non_capitals (
name text,
population real,
altitude int -— (in ft)
)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int —— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

20

Chapter 3. Advanced Features

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. https://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25

Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this un-
necessary. (Surrogate pairs are not stored directly, but combined into a single code point that is then
encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

26

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0c=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hex-
adecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_strings is off, then Post-
greSQL recognizes backslash escapes in both regular and escape string con-
stants. However, as of PostgreSQL 9.1, the default is on, meaning that back-
slash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to of £, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to rep-
resent a special character, write the string constant with an k.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

27

Chapter 4. SQL Syntax

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string " data’ could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D’

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF 8, they are first combined into
a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$$Dianne’s horses

28

Chapter 4. SQL Syntax
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ g[\t\r\n\v\\1q);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\1s$gs represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, S0 Stag$String contentS$tag$ is correct,
but $TAGSString content$tags$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ LFF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

29

Chapter 4. SQL Syntax

where digits is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

30

Chapter 4. SQL Syntax

" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The cAST () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D &I ?

There are a few restrictions on operator names, however:

« —-and /=« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~l@#DP N&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write X«@Y; you must write X~ @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

31

Chapter 4. SQL Syntax
« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (x) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

where the comment begins with /» and extends to the matching occurrence of » /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators
< and > have a different precedence than the Boolean operators <= and >=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

32

Table 4-2. Operator Precedence (decreasing)

Chapter 4. SQL Syntax

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

+ - right unary plus, unary minus

~ left exponentiation

x /% left multiplication, division,
modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
NULL, etc

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other”
operator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

33

Chapter 4. SQL Syntax

A value expression is one of the following:

A constant or literal value

+ A column reference

« A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

» A field selection expression
+ An operator invocation
A function call

+ An aggregate expression

« A window function call

« A type cast

+ A collation expression

» A scalar subquery

« An array constructor

« A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

34

Chapter 4. SQL Syntax

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|[lower_subscript:upper._subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

35

Chapter 4. SQL Syntax

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . »:
(compositecol) . *

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precau-
tions from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note: A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields”.
For more information see Section 8.16.5.

36

Chapter 4. SQL Syntax

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by clause])

aggregate_name (ALL expression [, ... 1 [order_by _clause])

aggregate_name (DISTINCT expression [, ...] [order_by clause])
(

aggregate_name *)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name),
expressionis any value expression that does not itself contain an aggregate expression or a window
function call, and order_by_clause is a optional ORDER BY clause as described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The last form invokes the aggregate once for each input row; since no particular input
value is specified, it is generally only useful for the count () aggregate function.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in
aggregates.

For example, count () yields the total number of input rows; count (£1) yields the number of
input rows in which £1 is non-null, since count ignores nulls; and count (distinct f£1) yields
the number of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, min produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and string_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order_by_clause can be used to specify the desired ordering. The order_ by clause has the
same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its expres-
sions are always just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; —— 1ilncorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DISTINCT list.

37

Chapter 4. SQL Syntax

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a Post-
greSQL extension.

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments contain only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect
to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name ([expression [, expression ...]]) OVER window_name
function_name (|[expression [, expression ...]]) OVER (window_definition)
function _name (*) OVER window_name

(

function_name *) OVER (window_definition)

where window_definition has the syntax

[existing_window_name]

[PARTITION BY expression [, ...] 1]
[

[frame_clause]

and the optional frame_clause can be one of

{ RANGE | ROWS } frame_ start
{ RANGE | ROWS } BETWEEN frame_start AND frame_ end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls.

38

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }

]

[I

Chapter 4. SQL Syntax

window_name is a reference to a named window specification defined in the query’s WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax
as for defining a named window in the winDow clause; see the SELECT reference page for details.
It’s worth pointing out that OVER wname is not exactly equivalent to OVER (wname) ; the latter im-
plies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTITION BY option groups the rows of the query into partitions, which are processed sepa-
rately by the window function. PARTITION BY works similarly to a query-level GROUP BY clause,
except that its expressions are always just expressions and cannot be output-column names or num-
bers. Without PARTITION BY, all rows produced by the query are treated as a single partition. The
ORDER BY option determines the order in which the rows of a partition are processed by the window
function. It works similarly to a query-level ORDER BY clause, but likewise cannot use output-column
names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROWS mode; in either case, it runs from the frame start
to the frame_end. If frame_end is omitted, it defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the
partition, and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with
the last row of the partition.

In RANGE mode, a frame start of CURRENT ROW means the frame starts with the current row’s
first peer row (a row that ORDER BY considers equivalent to the current row), while a frame end
of CURRENT ROW means the frame ends with the last equivalent peer. In ROWS mode, CURRENT ROW
simply means the current row.

The value PRECEDING and value FOLLOWING cases are currently only allowed in ROWS mode. They
indicate that the frame starts or ends the specified number of rows before or after the current row.
value must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which just selects the current
row.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be
all rows from the partition start up through the current row’s last peer. Without ORDER BY, all rows
of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame start cannot be UNBOUNDED FOLLOWING, frame_ end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is
not allowed.

The built-in window functions are described in Table 9-49. Other window functions can be added by
the user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using » are used for calling parameter-less aggregate functions as window functions,
for example count () OVER (PARTITION BY x ORDER BY y). The asterisk (x) is customarily
not used for non-aggregate window functions. Aggregate window functions, unlike normal aggregate
functions, do not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, Section 7.2.4.

39

Chapter 4. SQL Syntax

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The caAsT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
applies to:

expr COLLATE collation
where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is
involved in the expression.

40

Chapter 4. SQL Syntax

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROM tbl WHERE a > ’foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > ’foo’;
But this is an error:
SELECT % FROM tbl WHERE (a > ’'foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

{1,2,7}
(1 row)

41

Chapter 4. SQL Syntax

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],1[3,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int([], £f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]11]);

SELECT ARRAY[f1l, f2, "{{9,10},{11,12}}’::int[]] FROM arr;
array

{{{1,2},{(3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];

42

Chapter 4. SQL Syntax

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word Row, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.«, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . « syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns £1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the . « syntax was not expanded in row constructors, so that writing
ROW (t .+, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . «, for instance row (£, 42).

By default, the value created by a ROW expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, £f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

43

Chapter 4. SQL Syntax

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, £f2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,"this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,’this is a test’)::mytable);
getfl

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions

44

Chapter 4. SQL Syntax

(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A casE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing v
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 35.6,
functions and operators marked IMMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at
run time.

While that particular example might seem silly, related cases that don’t obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an IF-THEN-ELSE statement to protect a risky computation is much safer than just
nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate ex-
pression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVING clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row
has employees equal to zero, the division-by-zero error will occur before there is any opportunity to
test the result of min () . Instead, use a WHERE clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they

45

Chapter 4. SQL Syntax

are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to
left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this
case, positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function

definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$$

SELECT CASE
WHEN $3 THEN UPPER(S1 || 7 7 || $2)
ELSE LOWER($1 || 7 " || $2)
END;

$$

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is
one optional parameter uppercase which defaults to false. The a and b inputs will be concatenated,
and forced to either upper or lower case depending on the uppercase parameter. The remaining
details of this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
An example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as t rue.
Another example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

46

Chapter 4. SQL Syntax

4.3.2. Using Named Notation

In named notation, each argument’s name is specified using := to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper(a := 'Hello’, b := 'World’);
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a := ’"Hello’, b := ’"World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a "Hello’, uppercase := true, b := "World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’'World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of
writing and reduce chances for error.

Note: Named and mixed call notations currently cannot be used when calling an aggregate func-
tion (but they do work when an aggregate function is used as a window function).

47

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in an unspecified
order, unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not
assign unique identifiers to rows, so it is possible to have several completely identical rows in a table.
This is a consequence of the mathematical model that underlies SQL but is usually not desirable.
Later in this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

48

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

49

Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

50

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

51

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

52

Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
as a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of
all of the columns included in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rows that contain a null value in at least one of the constrained columns. This behavior

53

Chapter 5. Data Definition

conforms to the SQL standard, but we have heard that other SQL databases might not follow this rule.
So be careful when developing applications that are intended to be portable.

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally almost the same thing, but only one can be identified as the primary
key.) Relational database theory dictates that every table must have a primary key. This rule is not
enforced by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of a table
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of a primary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

54

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

55

Chapter 5. Data Definition

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

+ Disallow deleting a referenced product
 Delete the orders as well
+ Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be

56

Chapter 5. Data Definition

set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifies SET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columns are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
values is guaranteed to fail a MATCH FULL constraint). If you don’t want referencing rows to be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint.
This means that the referenced columns always have an index (the one underlying the primary key
or unique constraint); so checks on whether a referencing row has a match will be efficient. Since
a DELETE of a row from the referenced table or an UPDATE of a referenced column will require a
scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns too. Because this is not always needed, and there are many choices available on
how to index, declaration of a foreign key constraint does not automatically create an index on the
referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expres-
sions using the specified operators, at least one of these operator comparisons will return false or null.
The syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the con-
straint declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

57

Chapter 5. Data Definition

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH 0OIDS, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.18 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ctid will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2** (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

58

Chapter 5. Data Definition

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only
commands that actually modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

+ Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the AbD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with

59

Chapter 5. Data Definition

no default, insert the correct values using uppATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;
(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

60

Chapter 5. Data Definition

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

61

Chapter 5. Data Definition

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object’s type (table, function, etc). For
complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapters will also show you how those
privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-

62

Chapter 5. Data Definition

nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

« To allow many users to use one database without interfering with each other.
+ To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

63

Chapter 5. Data Definition

To drop a schema if it’s empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:
DROP SCHEMA myschema CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that refer-
ences precisely the same objects every time. It also opens up the potential for users to change the
behavior of other users’ queries, maliciously or accidentally. Due to the prevalence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to search_path effec-
tively trusts all users having CREATE privilege on that schema. When you run an ordinary query, a
malicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

64

Chapter 5. Data Definition

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

65

Chapter 5. Data Definition

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer
true: you can create such a table name if you wish, in any non-system schema. However, it’s best
to continue to avoid such names, to ensure that you won’t suffer a conflict if some future version
defines a system table named the same as your table. (With the default search path, an unqualified
reference to your table name would then be resolved as the system table instead.) System tables will
continue to follow the convention of having names beginning with pg_, so that they will not conflict
with unqualified user-table names so long as users avoid the pg_ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns easily
supported by the default configuration, only one of which suffices when database users mistrust other
database users:

« Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that
user. If affected users had logged in before this, consider auditing the public schema for objects
named like objects in schema pg_catalog. Recall that the default search path starts with suser,
which resolves to the user name. Therefore, if each user has a separate schema, they access their
own schemas by default.

« Remove the public schema from each user’s default search path using ALTER ROLE user SET
search_path = "$user". Everyone retains the ability to create objects in the public schema,
but only qualified names will choose those objects. While qualified table references are fine, calls
to functions in the public schema will be unsafe or unreliable. Also, a user holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of users relying on the

66

Chapter 5. Data Definition

setting. If you create functions or extensions in the public schema or grant CREATEROLE to users
not warranting this almost-superuser ability, use the first pattern instead.

« Remove the public schema from search_path in postgresgl.conf. The ensuing user expe-
rience matches the previous pattern. In addition to that pattern’s implications for functions and
CREATEROLE, this trusts database owners like CREATEROLE. If you create functions or extensions in
the public schema or assign the CREATEROLE privilege, CREATEDB privilege or individual database
ownership to users not warranting almost-superuser access, use the first pattern instead.

« Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, any user can issue arbitrary queries under the identity of any user not electing to protect
itself individually. This pattern is acceptable only when the database has a single user or a few
mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of username.tablename. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

67

Chapter 5. Data Definition

name text,
population float,
altitude int -— in feet

)

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174

Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing to explicitly specify that descendant tables are
included:

SELECT name, altitude
FROM citiesx
WHERE altitude > 500;

Writing = is not necessary, since this behavior is the default (unless you have changed the setting
of the sql_inheritance configuration option). However writing = might be useful to emphasize that
additional tables will be searched.

68

Chapter 5. Data Definition

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
,,,,,,,,,, e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 38). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren. Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. The merged column
will have copies of all the check constraints coming from any one of the column definitions it came
from, and will be marked not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do

69

Chapter 5. Data Definition

this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

Note how table access permissions are handled. Querying a parent table can automatically access data
in child tables without further access privilege checking. This preserves the appearance that the data
is (also) in the parent table. Accessing the child tables directly is, however, not automatically allowed
and would require further privileges to be granted.

5.8.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are
used for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE,
most variants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (Reference I, SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

+ If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

« Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

70

Chapter 5. Data Definition

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far
faster than a bulk operation. These commands also entirely avoid the vAcUUM overhead caused by
a bulk DELETE.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

71

Chapter 5. Data Definition

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will

not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables.

3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might

want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in
postgresql.conf. If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company

measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we
want a table like:

CREATE TABLE measurement (

)i

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main

us

e of this table will be to prepare online reports for management. To reduce the amount of old data

that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

72

Chapter 5. Data Definition

In this situation we can use partitioning to help us meet all of our different requirements for the

measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.

2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform
a DROP TABLE on the oldest child table and create a new child table for the new month’s data.

. We must provide non-overlapping table constraints. Rather than just creating the partition tables
as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE '2006-02-01"

) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
CHECK (logdate >= DATE ’2006-03-01"

) INHERITS (measurement);

AND logdate DATE "2006-03-01"

AND logdate DATE '2006-04-01"

CREATE TABLE measurement_y2007mll (
CHECK (logdate >= DATE ’'2007-11-01"

) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2 (
CHECK (logdate >= DATE ’2007-12-01"

) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
CHECK (logdate >= DATE ’2008-01-01"

) INHERITS (measurement);

. We probably need indexes on the key columns too:

AND logdate DATE "2007-12-01"

AND logdate DATE "2008-01-01"

AND logdate DATE "2008-02-01"

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);

We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement . and have the data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES
RETURN NULL;

END;

$S

LANGUAGE plpgsgl;

(NEW. *) ;

73

Chapter 5. Data Definition

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’'2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE '2006-03-01’ AND
NEW.logdate < DATE ’'2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’2008-02-01") THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.x);

ELSE
RAISE EXCEPTION ’'Date out of range. Fix the measurement_insert_trigger ()
END IF;
RETURN NULL;
END;
$$

LANGUAGE plpgsql;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other
parts of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

74

fur

Chapter 5. Data Definition

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copY, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’;

75

Chapter 5. Data Definition

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= "2008-01-01'::date)
-> Seq Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’";
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2006-02-01" AND logdate < DATE '2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

76

Chapter 5. Data Definition

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’'2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. cCopy does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT * FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

« There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

» The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

 If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

« Constraint exclusion only works when the query’s WHERE clause contains constants (or exter-
nally supplied parameters). For example, a comparison against a non-immutable function such

77

Chapter 5. Data Definition

as CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.10. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as cont rib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 52.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch
data from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CRE-
ATE USER MAPPING, and CREATE FOREIGN TABLE.

5.11. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

« Views

78

Chapter 5. Data Definition

« Functions and operators
« Data types and domains
» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.12. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: ©Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what bDrROP ... CASCADE will do, run
DROP without CASCADE and read the DETATL output.)

All DrROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADE is required in a
prop command. No database system actually enforces that rule, but whether the default behavior
iS RESTRICT Of CASCADE varies across systems.

For user-defined functions, PostgreSQL tracks dependencies associated with a function’s externally-
visible properties, such as its argument and result types, but not dependencies that could only be
known by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM (’red’, ’'orange’, ’'yellow’,
"green’, ’'blue’, ’'purple’);

CREATE TABLE my_colors (color rainbow, note text);
CREATE FUNCTION get_color_note (rainbow) RETURNS text AS

"SELECT note FROM my_colors WHERE color = $1’/
LANGUAGE SQL;

79

Chapter 5. Data Definition

(See Section 35.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

80

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES

81

Chapter 6. Data Manipulation

(1, ’"Cheese’, 9.99),
(2, '"Bread’, 1.99),
(3, 'Milk’, 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today’;

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip: When inserting a lot of data at the same time, consider using the COPY command. ltis not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price » 1.10;

82

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.

For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this.
Use of RETURNING avoids performing an extra database query to collect the data, and is especially
valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command’s output list (see
Section 7.3). It can contain column names of the command’s target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table
in order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in
trivial inserts, since it would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using a serial column to provide unique
identifiers, RETURNING can return the ID assigned to a new row:

83

Chapter 6. Data Manipulation
CREATE TABLE users (firstname text, lastname text, id serial primary key);
INSERT INTO users (firstname, lastname) VALUES (’Joe’, ’'Cool’) RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = ’'today’
RETURNING *;

If there are triggers (Chapter 36) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

84

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all user-
defined columns from tablel. (The method of retrieval depends on the client application. For exam-
ple, the psql program will display an ASCII-art table on the screen, while client libraries will offer
functions to extract individual values from the query result.) The select list specification » means all
columns that the table expression happens to provide. A select list can also select a subset of the avail-
able columns or make calculations using the columns. For example, if tablel has columns named a,
b, and c (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

85

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a JOIN construct, or complex combinations of these. If more than one table reference is listed
in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed;
see below). The result of the FrROM list is an intermediate virtual table that can then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall
table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write x after the table name to explicitly
specify that descendant tables are included. Writing » is not necessary since that behavior is the
default (unless you have changed the setting of the sql_inheritance configuration option). However
writing » might be useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join type T2 [join condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
Tl CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columns in 71 followed by all columns in T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 isequivalent to FROM T1 INNER JOIN T2 ON TRUE (see below).
It is also equivalent to FROM T1, T2.

Note: This latter equivalence does not hold exactly when more than two tables appear, be-
cause JoIN binds more tightly than comma. For example FrRoM 71 CROSS JOIN T2 INNER
JOIN T3 ON condition iS NOtthe same as FROM 71, T2 INNER JOIN T3 ON condition be-
cause the condition can reference 11 in the first case but not the second.

86

Chapter 7. Queries

Qualified joins

71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
Tl { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms a join condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USING (a, b) produces the join condition
ON Tl.a = T2.a AND Tl1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print
both of the matched columns, since they must have equal values. While JOIN ON produces all
columns from 71 followed by all columns from 72, JOIN USING produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
71, followed by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the

87

Chapter 7. Queries

output table. If there are no common column names, NATURAL JOIN behaves like JOIN
ON TRUE, producing a cross-product join.

Note: usING is reasonably safe from column changes in the joined relations since only the
listed columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause the join
to combine that new column as well.

To put this together, assume we have tables t 1:

num | name
_____ b
11 a
2 | b
3] ¢
and t2
num | value
_____ +_______
1 | xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT x FROM tl CROSS JOIN t2;

num | name | num | value
————— Bt ettt
1] a | 1 | xxx
1] a \ 31 yyy
11 a | 5 | zzz
2 1 Db \ 1 | xxx
21D \ 3 1 yyy
2 | b | 5| zzz
3 1 c \ 1 | xxx
3| c \ 3 1 yyy
3 1 c \ 5 | zzz
(9 rows)

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a | 1 | xxx
31 c | 31 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ o
1] a | xxx
31 c | yyy
(2 rows)

88

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1] a | XXX
3 1 c | yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
11 a \ 1 | xxx
2 1 Db \ |
3| c \ 3 1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num name value
,,,,, e

1] a | xxxX

2 | b \

31 c | yyy
(3 rows)

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o —
1] a \ 1 | xxx
31 c | 3 1 yyy
| | 5 | zzz
(3 rows)

=> SELECT » FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 e S Rttt
1] a \ 1 | xxx
2 |1 Db \ |
3 1 ¢ \ 31 yyy
\ \ 5 | zzz
(4 rows)

Chapter 7. Queries

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value

num | name | num | value
————— o
1] a | 1 | xxx
2 1 Db \ |
3 1 c \ |
(3 rows)

= "xxx';

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;

num | name | num | value

89

Chapter 7. Queries

11 a 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
matters a lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias
or

FROM table_reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT x FROM my_table AS m WHERE my_table.a > 5; —— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT x FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

90

Chapter 7. Queries

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JO1IN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’'smith’), (’bob’, ’Jjones’), (’joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name.
If the function returns a composite type, the result columns get the same names as the individual
attributes of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is
used in the FrROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;

S LANGUAGE SQL;

SELECT » FROM getfoo(l) AS tl;

SELECT = FROM foo
WHERE foosubid IN (

91

Chapter 7. Queries

SELECT foosubid

FROM getfoo (foo.fooid) z

WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT » FROM getfoo(l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT «
FROM dblink (' dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’bytea%’;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what « should expand to.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to ref-
erence columns provided by preceding FrROM items. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions
the key word is optional; the function’s arguments can contain references to columns provided by
preceding FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it
can also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row
of the FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items pro-
viding the columns, the LATERAL item is evaluated using that row or row set’s values of the columns.
The resulting row(s) are joined as usual with the rows they were computed from. This is repeated for
each row or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT » FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional

SELECT » FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in a table with:

92

Chapter 7. Queries

SELECT pl.id, p2.id, v1, v2
FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vl,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, v1, v2

FROM polygons pl CROSS JOIN LATERAL vertices(pl.poly) vl,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id !'= p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnec-
essary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example, if
get_product_names () returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wHERE clause or in the Jo1n
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

93

Chapter 7. Queries

Which one of these you use is mainly a matter of style. The JoIn syntax in the From clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The on
or UsING clause of an outer join is not equivalent to a weerE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

FROM fdt WHERE

FROM

FROM

FROM

FROM

FROM

fdt

fdt

fdt

fdt

fdt

WHERE

WHERE

WHERE

WHERE

WHERE

cl > 5

cl IN (1, 2, 3)

cl IN (SELECT cl FROM t2)

cl IN (SELECT c3 FROM t2 WHERE c2

= fdt.cl + 10)

cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +

EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

£dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f£dt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner

queries.

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_1list

FROM
[WHERE

-]

GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.

For instance:

=> SELECT x FROM testl;

94

10)

AND 100

Chapter 7. Queries

=> SELECT x FROM testl GROUP BY x;

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.20.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the p1sTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) =* p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list (but see below). The column s.units does not
have to be in the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which
represents the sales of a product. For each product, the query returns a summary row about all sales
of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

95

Chapter 7. Queries

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price x s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The
same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is,
if the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions
are the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not

96

Chapter 7. Queries

recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is »+ which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

See Section 8.16.5 for more about the table name.« notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using As, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

97

Chapter 7. Queries

The As keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:

SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list
(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all
TOWS.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2

98

Chapter 7. Queries
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3

which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query?2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }1]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DEsC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering
for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

99

Chapter 7. Queries

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM tablel ORDER BY sum + cCj; —-— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROM table expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both
OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not

100

Chapter 7. Queries
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “‘constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, ’'three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’'one’ AS column2
UNION ALL

SELECT 2, ’"two’

UNION ALL

SELECT 3, ’three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list, like this:

=> SELECT = FROM (VALUES (1, 'one’), (2, "two’), (3, ’"three’)) AS t (num,letter);
num | letter

3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

101

Chapter 7. Queries

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT,
INSERT, UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can
also be a SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An
example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines
two auxiliary statements named regional_sales and top_regions, where the output of
regional_sales is used in top_regions and the output of top_regions is used in the primary
SELECT query. This example could have been written without WITH, but we’d have needed two
levels of nested sub-SELECTs. It’s a bit easier to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

102

Chapter 7. Queries
Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’'our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link

103

Chapter 7. Queries

)
SELECT x FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,

g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)1,

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the LIMIT:

104

Chapter 7. Queries

WITH RECURSIVE t(n) AS (
SELECT 1
UNION ALL
SELECT n+l1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a WITH query than an ordinary sub-query. The WITH
query will generally be evaluated as written, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
query demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way
to INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be
referred to in the main command.

7.8.2. Data-Modifying Statements in wiTH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to
perform several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= ’2010-10-01" AND
"date" < "2010-11-01"
RETURNING =*

)
INSERT INTO products_log
SELECT x= FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes
the specified rows from products, returning their contents by means of its RETURNING clause; and
then the primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-
SELECT within the INSERT. This is necessary because data-modifying statements are only allowed
in WITH clauses that are attached to the top-level statement. However, normal wITH visibility rules
apply, so it is possible to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNING clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If a data-modifying statement in WITH lacks a RETURNING clause, then it forms no temporary table

105

Chapter 7. Queries

and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported
to the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, indepen-
dently of whether the primary query reads all (or indeed any) of their output. Notice that this is
different from the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT
is carried only as far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in WITH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see Chapter
13), so they cannot “see” one another’s effects on the target tables. This alleviates the effects of the
unpredictability of the actual order of row updates, and means that RETURNING data is the only way
to communicate changes between different WITH sub-statements and the main query. An example of
this is that in

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =*

)
SELECT = FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =

)
SELECT = FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modi-
fications takes place, but it is not easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update

106

Chapter 7. Queries

is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing WITH sub-statements that could affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a condi-
tional rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

107

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) |varchar [(n)] variable-length character string

]

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [time span

(p)]

json JSON data

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

polygon closed geometric path on a
plane

108

Chapter 8. Data Types

time zone]

Name Aliases Description

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial?2 autoincrementing two-byte
integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p) 1 [without time of day (no time zone)

without time zone]

time [(p)] with time |timetz time of day, including time
zone zone
timestamp [(p) 1 I date and time (no time zone)

timestamp [(p)] with timestamptz

time zone

date and time, including time
zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),

timestamp (With or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-

greSQL, such as geometric paths, or have several possible formats, such as the date and time types.

Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size

Description

Range

smallint 2 bytes

small-range integer -32768 to +32767

109

Chapter 8. Data Types

f

Name Storage Size Description Range
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -
9223372036854775808
to
+9223372036854775801
decimal variable user-specified up to 131072 digits
precision, exact before the decimal
point; up to 16383
digits after the decimal
point
numeric variable user-specified up to 131072 digits
precision, exact before the decimal
point; up to 16383
digits after the decimal
point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision |8 bytes variable-precision, 15 decimal digits
inexact precision
smallserial 2 bytes small autoincrementing | 1 to 32767
integer
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.

The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an

€ITor.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

110

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic on numeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

We use the following terms below: the precision of a numeric is the total count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
numeric is the count of decimal digits in the fractional part, to the right of the decimal point. So the
number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of
Zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)
The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”’. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.
On input, the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

111

Chapter 8. Data Types

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

Note: The extra_float_digits setting controls the number of extra significant digits included when
a floating point value is converted to text for output. With the default value of o, the output is the
same on every platform supported by PostgreSQL. Increasing it will produce output that more
accurately represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

CEINNT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = ’Infinity’. On input,
these strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-nan values.

112

Chapter 8. Data Types

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
accepts float (1) to float (24) as selecting the real type, while f1oat (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

8.1.4. Serial Types

The data types smallserial, serial and bigserial are not true types, but merely a notational

convenience for creating unique identifier columns (similar to the AUTO_INCREMENT property sup-
ported by some other databases). In the current implementation, specifying:

CREATE TABLE tablename (

)i

colname SERIAL

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (

)

colname integer NOT NULL DEFAULT nextval ('’ tablename_colname_seq’)

ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a se-
quence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In
most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Because smallserial, serial and bigserial are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up" even if a row containing
that value is never successfully inserted into the table column. This may happen, for example, if
the inserting transaction rolls back. See nextval () in Section 9.16 for details.

Note: Prior to PostgreSQL 7.3, serial implied un1Que. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like
any other data type.

113

Chapter 8. Data Types

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names

bigserial and serial8 work the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table. The
type names smallserial and serial2 also work the same way, except that they create a smallint

column.

The sequence created for a serial column is automatically dropped when the owning column is
dropped. You can drop the sequence without dropping the column, but this will force removal of the

column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The frac-

tional precision is determined by the database’s lc_monetary setting. The range shown in the table

assumes there are two fractional digits. Input is accepted in a variety of formats, including integer

and floating-point literals, as well as typical currency formatting, such as ’ $1, 000.00’. Output is
generally in the latter form but depends on the locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.

Since the output of this data type is locale-sensitive, it might not work to load money data into a
database that has a different setting of 1c_monetary. To avoid problems, before restoring a dump
into a new database make sure 1c_monetary has the same or equivalent value as in the database that

was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real

and double precision data types can be done by casting to numeric first, for example:

SELECT "12.34’ ::float8::numeric: :money;

However, this is not recommended. Floating point numbers should not be used to handle money due

to the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT "52093.89' ::money::numeric::float8§;

Division of a money value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the money value

114

Chapter 8. Data Types

to numeric before dividing and back to money afterwards. (The latter is preferable to avoid risk-
ing precision loss.) When a money value is divided by another money value, the result is double
precision (i.e., a pure number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n
is a positive integer. Both of these types can store strings up to n characters (not bytes) in length.
An attempt to store a longer string into a column of these types will result in an error, unless the
excess characters are all spaces, in which case the string will be truncated to the maximum length.
(This somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter
than the declared length, values of type character will be space-padded; values of type character
varying will simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar (n) and char (n) are aliases for character varying (n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as
well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed
when converting a character value to one of the other string types. Note that trailing spaces are
semantically significant in character varyingand text values, and when using pattern matching,
e.g. LIKE, regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration
is less than that. It wouldn’t be useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different. If you desire to store long strings with no
specific upper limit, use text or character varying without a length specifier, rather than making
up an arbitrary length limit.)

115

Chapter 8. Data Types

Tip: There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length when
storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, there is no such advantage in PostgreSQL; in fact character (n)
is usually the slowest of the three because of its additional storage costs. In most situations text

Or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 22.3.

Example 8-1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’ok’);

SELECT a, char_length(a) FROM testl; -- ©
a | char_length

,,,,,, e

ok | 2

CREATE TABLE test2 (b wvarchar(5));
INSERT INTO test2 VALUES (’ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES ('too long’);

ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES (’too long’::varchar(5));

SELECT b, char_length(b) FROM test2;
char_length

©® The char_length function is discussed in Section 9.4.

—-— explicit truncation

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a
future release. The type "char" (note the quotes) is different from char (1) in that it only uses one
byte of storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

116

Chapter 8. Data Types

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings in two ways. First, binary strings specifically allow storing octets of value zero and other
“non-printable” octets (usually, octets outside the decimal range 32 to 126). Character strings disallow
zero octets, and also disallow any other octet values and sequences of octet values that are invalid
according to the database’s selected character set encoding. Second, operations on binary strings
process the actual bytes, whereas the processing of character strings depends on locale settings. In
short, binary strings are appropriate for storing data that the programmer thinks of as “raw bytes”,
whereas character strings are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL’s historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the
same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it, in the same cases in which
backslashes have to be doubled in escape format; details appear below. The hexadecimal digits can
be either upper or lower case, and whitespace is permitted between digit pairs (but not within a digit
pair nor in the starting \x sequence). The hex format is compatible with a wide range of external
applications and protocols, and it tends to be faster to convert than the escape format, so its use is
preferred.

Example:

SELECT ’ \xDEADBEEF’;

8.4.2. bytea Escape Format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach
of representing a binary string as a sequence of ASCII characters, while converting those bytes that
cannot be represented as an ASCII character into special escape sequences. If, from the point of
view of the application, representing bytes as characters makes sense, then this representation can be
convenient. But in practice it is usually confusing because it fuzzes up the distinction between binary

117

Chapter 8. Data Types

strings and character strings, and also the particular escape mechanism that was chosen is somewhat
unwieldy. Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and pre-
cede it by a backslash (or two backslashes, if writing the value as a literal using escape string syntax).
Backslash itself (octet decimal value 92) can alternatively be represented by double backslashes. Ta-
ble 8-7 shows the characters that must be escaped, and gives the alternative escape sequences where
applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet |Description Escaped Input | Example Output
Value Representation Representation
0 zero octet "\000" SELECT \x00
"\000’ : :bytea;
39 single quote 7 or '\047’ SELECT \x27
" tbytea;
92 backslash '\’ or “\\134’ |SELECT \x5¢c
"\\’ ::bytea;
0to 31 and 127 to | “non-printable” "\ xxx’ (octal SELECT \x01
255 octets value) ’\001’ : :bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped. Note that the result in each of the examples in Table
8-7 was exactly one octet in length, even though the output representation is sometimes more than
one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written
as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash
of each pair is interpreted as an escape character by the string-literal parser (assuming escape string
syntax is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted
strings can be used to avoid this level of escaping.) The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash.
For example, a string literal passed to the server as * \001’ becomes \001 after passing through the
escape string parser. The \001 is then sent to the bytea input function, where it is converted to a
single octet with a decimal value of 1. Note that the single-quote character is not treated specially by
bytea, so it follows the normal rules for string literals. (See also Section 4.1.2.1.)

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-
printable” octet are converted to equivalent three-digit octal value and preceded by one backslash.

Most “printable” octets are output by their standard representation in the client character set, e.g.:
SET bytea_output = ’'escape’;

SELECT "abc \153\154\155 \052\251\124’ : :bytea;
bytea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8-8.

118

Table 8-8. bytea Output Escaped Octets

Chapter 8. Data Types

Decimal Octet | Description Escaped Example Output Result
Value Output

Representation
92 backslash AR SELECT AR

"\134’ ::bytea;

0to 31 and 127 to | “non-printable” \xxx (octal value) | SELECT \001
255 octets ’\001’ ::bytea;
32t0 126 “printable” octets | client character SELECT ~

set representation "\176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations avail-
able on these data types are described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.4 for more information).

Table 8-9. Date/Time Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 I time (no time / 14 digits
without zZone)
time zone]
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 with time, with time / 14 digits
time zone zone
date 4 bytes date (no time |4713 BC 5874897 AD |1 day

of day)
time [(p) |8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond
] [without date) / 14 digits
time zone]
time [(p) |12 bytes times of day 00:00:00+1459 | 24:00:00-1459 | 1 microsecond
] with time only, with time / 14 digits
zone zone

119

Chapter 8. Data Types

Name Storage Size | Description |Low Value High Value |Resolution
interval [|16 bytes time interval | -178000000 178000000 1 microsecond
fields] | years years / 14 digits

(p)]

Note: The SQL standard requires that writing just timestamp be equivalent to timestamp
without time zone, and PostgreSQL honors that behavior. (Releases prior to 7.3 treated it as
timestamp with time zone.) timestamptz iS accepted as an abbreviation for timestamp
with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.

The allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When t imestamp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When timestamp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the effective
limit of precision might be less than 6. timestamp values are stored as seconds before or after
midnight 2000-01-01. When timestamp values are implemented using floating-point numbers,
microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision
degrades for dates further away. Note that using floating-point datetimes allows a larger range of
timestamp values to be represented than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the time types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR
MONTH

DAY

HOUR
MINUTE
SECOND

YEAR TO MONTH
DAY TO HOUR

DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND

MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision

applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,

120

Chapter 8. Data Types

timestamp without time zone, and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in applications; these internal types might disappear in a future
release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value’

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for t ime, t imestamp, and interval types. The allowed values are
mentioned above. If no precision is specified in a constant specification, it defaults to the precision of
the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode
(recommended format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

121

Chapter 8. Data Types

Example Description

990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zoneandtime [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

122

Chapter 8. Data Types

Example Description

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54'
isatimestamp without time zone, while

TIMESTAMP "2004-10-19 10:23:54+02’

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as t imestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time
fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
TimeZone parameter, and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME
ZONE.

123

Chapter 8. Data Types

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and -infinity are specially represented inside the system and will be dis-
played unchanged; but the others are simply notational shorthands that will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—-infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical
accident.) Table 8-14 shows examples of each output style. The output of the date and t ime types is
generally only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only values in ISO format.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

IS0 ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00
PST

Postgres original style Wed Dec 17 07:37:16
1997 PST

German regional style 17.12.1997 07:37:16.00
PST

124

Chapter 8. Data Types

Note: ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above. This is
for readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows examples.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00
CET

SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00
PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16
1997 PST

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the date type cannot have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using the type time with time zone (though it
is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the TimeZone configuration parameter before being displayed to the client.

125

Chapter 8. Data Types

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 47.71). PostgreSQL uses the widely-used
TANA time zone data for this purpose, so the same time zone names are also recognized by much
other software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view
(see Section 47.70). You cannot set the configuration parameters TimeZone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TIME ZONE operator.

« In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation,
offset is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone
abbreviation, assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT
were not already a recognized zone name, it would be accepted and would be functionally equiva-
lent to United States East Coast time. When a daylight-savings zone name is present, it is assumed
to be used according to the same daylight-savings transition rules used in the IANA time zone
database’s posixrules entry. In a standard PostgreSQL installation, posixrules is the same as
Us/Eastern, so that POSIX-style time zone specifications follow USA daylight-savings rules. If
needed, you can adjust this behavior by replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents
noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So
2014-06-04 12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies
noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect
on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and
UTC+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, as with the EST example above, this is not necessarily
the same as local civil time on that date.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive
timezone offsets are east of Greenwich.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . ../share/timezone/ and .../share/timezonesets/ of the
installation directory (see Section B.3).

The TimeZone configuration parameter can be set in the file postgresgl.conf, or in any of the
other standard ways described in Chapter 18. There are also some special ways to set it:

126

Chapter 8. Data Types

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The pPGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to
the server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-
rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of the different units are implicitly added with appropriate sign accounting. ago negates all the fields.
This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10" is read the same as 1 day 12 hours 59 min 10 sec’. Also, a com-
bination of years and months can be specified with a dash; for example ' 200-10" is read the same
as 200 years 10 months’. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8-16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)

AREICIEIEE

Seconds

In the alternative format:
P [years—months—days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

127

Chapter 8. Data Types

When writing an interval constant with a fields specification, or when assigning a string to an in-
terval column that was defined with a £ields specification, the interpretation of unmarked quantities
depends on the fields. For example INTERVAL ’1’ YEAR is read as 1 year, whereas INTERVAL
71" means 1 second. Also, field values “to the right” of the least significant field allowed by the
fields specification are silently discarded. For example, writing INTERVAL ’1 day 2:03:04'
HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have differ-
ent signs, and traditionally treats each field in the textual representation as independently signed, so
that the hour/minute/second part is considered positive in this example. If IntervalStyle is set
to sql_standard then a leading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it’s
recommended to attach an explicit sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example ' 1.5 week’ or 01:02:03.45’. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days.
Only seconds will ever be shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes
6 seconds

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators™: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or timestamp subtraction, this storage method
works well in most cases, but can cause unexpected results:

SELECT EXTRACT (hours from ’80 minutes’::interval);
date_part

SELECT EXTRACT (days from ’80 hours’::interval);
date_part

128

Chapter 8. Data Types

Functions justify_days and justify_hours are available for adjusting days and hours that over-
flow their normal ranges.

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for
interval literal strings, if the interval value meets the standard’s restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output looks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 +3 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3
days -04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5

@ 1 year 2 mons -3

mins 6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-

6S

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have
several states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null
value.

Table 8-19. Boolean Data Type

Name Storage Size Description

1 byte state of true or false

boolean

Valid literal values for the “true” state are:

129

Chapter 8. Data Types

TRUE
14 t 14
"true’
14 y’
’ yes ’
14 OI'I’
14 l r
For the “false” state, the following values can be used:

FALSE
Ifl
"false’
Inl
Inol
roff’
IOI

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE
are the preferred (SQL-compliant) usage.

Example 8-2 shows that boolean values are output using the letters t and £.
Example 8-2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);

INSERT INTO testl VALUES (TRUE, ’sic est’);

INSERT INTO testl VALUES (FALSE, 'non est’);
SELECT » FROM testl;

a | b

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

130

Chapter 8. Data Types

CREATE TYPE mood AS ENUM (’sad’, ’‘ok’, ’happy’);
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’Moe’, ’happy’);

SELECT x FROM person WHERE current_mood = ’"happy’;
name | current_mood
,,,,,, e
Moe | happy
(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

INSERT INTO person VALUES (’Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT % FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ T,
Moe | happy

Curly | ok

(2 rows)

SELECT % FROM person WHERE current_mood > ’sad’ ORDER BY current_mood;

name current_mood

|
_______ o
Curly | ok
Moe | happy
(2 rows)

SELECT name
FROM person

WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM ('happy’, ’'very happy’, ’ecstatic’);

CREATE TABLE holidays (
num_weeks integer,

131

Chapter 8. Data Types

happiness happiness

)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, "happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’'ecstatic’);
INSERT INTO holidays (num_weeks,happiness) VALUES (2, ’'sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;

name | num_weeks
______ b
Moe | 4
(1 row)

8.7.4. Implementation Details

Enum labels are case sensitive, so ' happy’ is not the same as ' HAPPY’ . White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-20. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on a plane (x,y)

132

Chapter 8. Data Types

Name Storage Size Representation Description

line 32 bytes Infinite line (not fully | ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)

path 16+16n bytes Open path [(xLyD),...]

polygon 40+16n bytes Polygon (similar to (x1,yD),...)
closed path)

circle 24 bytes Circle <(X,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, v)
X 5 Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seqg are specified using any
of the following syntaxes:

[(x1, yI) , (x2, y2)]
((x1, y1), (x2, y2))
(x1 , y1) , (x2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1), (x2, y2))

(leyl),(X2,y2)
x1 , yl , x2 , y2

133

Chapter 8. Data Types

where (x1, y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are considered not connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , ... , (xn , yn)]
((x1, y1) , «.. , (xn , yn))
(x1, vi) , «.. , (xn , yn)

(x1 , yl ;e xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1)
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, y1) , «.. , (xn , yn))
(x1 , y1) , .. , (xn , yn)
(x1 , vyl PR xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

>
)

< (x , vy r
((x, vy r
(x, v),r
X 4, YV r

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

134

Chapter 8. Data Types

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8-21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, in-
cluding IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The sub-
net is represented by the number of network address bits present in the host address (the “netmask”).
If the netmask is 32 and the address is [Pv4, then the value does not indicate a subnet, only a single
host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you
want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for [Pv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-
less Internet Domain Routing conventions. The format for specifying networks is address/y where
address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

135

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:4£8:3:ba::/64

2001:4£8:3:ba::/64

2001:418:3:ba:2e0:81ff:fe22:d1f]

| AXB1 :418:3:ba:2e0:81ff:fe22:d1f

DIONB] :4£8:3:ba:2e0:81ff:fe22:d1f

|

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

=ffff:1.2.3/120

:offff:1.2.3.0/128

=ffff:1.2.3.0/128

ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero

bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following

formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
08002b:010203"
"08002b-010203"
70800.2b01.0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a

through f£. Output is always in the

first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-
02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for
obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal,
and all accepted formats use the canonical LSB order.

The remaining four input formats

are not part of any standard.

136

Chapter 8. Data Types

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), Where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalenttobit (1), whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8-3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101’");
SELECT x FROM test;

a | b
,,,,, I
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the t squery
type similarly represents a text query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT ’"a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

137

Chapter 8. Data Types
"a’ "and’ ’'ate’ ’cat’ ’"fat’ ’'mat’ ’'on’ ’'rat’ ’sat’

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT Sthe lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ ’"a’ ’'contains’ ’lexeme’ ’'quote’ ’‘the’

Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 'cat’:3 'fat’:2,11 'mat’:7 ’'on’:5 'rat’:12 ’"sat’:

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT "a:1A fat:2B,4C cat:5D’ ::tsvector;
tsvector

"a’” ;1A ’'cat’:5 ’"fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It is important to understand that the tsvector type itself does not perform any normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’ ::tsvector;
tsvector

"Fat’” ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized,
but tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

"fat’:2 ’'rat’:3

Again, see Chapter 12 for more detail.

138

::tsvector;

Chapter 8. Data Types

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the Boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the opera-
tors:

SELECT ’"fat & rat’::tsquery;
tsquery

SELECT "fat & (rat | cat)’::tsquery;
tsquery

SELECT ’'fat & rat & ! cat’::tsquery;
tsquery

"fat’ & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than |
(OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only t svector lexemes with matching weights:

SELECT ’"fat:ab & cat’::tsquery;
tsquery

Also, lexemes in a t squery can be labeled with to specify prefix matching:

SELECT ’super:«’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”. Note that prefixes are first
processed by text search configurations, which means this comparison returns true:

SELECT to_tsvector(’'postgraduate’) @@ to_tsquery(’'postgres:x’);
?column?

because postgres gets stemmed to postgr:

SELECT to_tsquery (’'postgres:*’);
to_tsquery

"postgr’ :x
(1 row)

which then matches postgraduate

139

Chapter 8. Data Types

Quoting rules for lexemes are the same as described previously for lexemes in t svector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery ('Fat:ab & Cats’);
to_tsquery

"fat’ :AB & ’'cat’

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identi-
fier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen
to make it very unlikely that the same identifier will be generated by anyone else in the known uni-
verse using the same algorithm. Therefore, for distributed systems, these identifiers provide a better
uniqueness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8§ digits followed by three groups of 4 digits followed by a group of
12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bbo9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AQOEEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}
al0eebc999c0b4ef8bb6d6bb9bd380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{aleebc99-9c0bdef8-bbodobb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The uuid-ossp module provides functions that implement several standard algorithms.
Alternatively, UUIDs could be generated by client applications or other libraries invoked through a
server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure —-with-libxml.

140

Chapter 8. Data Types

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by the production xMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character
node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml
value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>’)

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
' <foo>bar</foo>’ ::xml

can also be used.

The xm1 type does not validate input values against a document type declaration (DTD), even when
the input value specifies a DTD. There is also currently no built-in support for validating against other
XML schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note: With the default XML option setting, you cannot directly cast character strings to type xm1 if
they contain a document type declaration, because the definition of XML content fragment does
not accept them. If you need to do that, either use xmMLPARSE or change the XML option.

141

...</chapte

Chapter 8. Data Types

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
query results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 22.3. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data can become invalid as
the character data is converted to other encodings while traveling between client and server, because
the embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm1 type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm1 will not have an encoding
declaration, and clients should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the
server encoding is not UTF-8. This is known to be an issue for xpath () in
particular.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches
of XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

142

Chapter 8. Data Types

8.14. JSON Type

The json data type can be used to store JSON (JavaScript Object Notation) data, as specified in RFC
4627'. Such data can also be stored as text, but the json data type has the advantage of checking
that each stored value is a valid JSON value. There are also related support functions available; see
Section 9.15.

PostgreSQL allows only one server encoding per database. It is therefore not possible for JSON to
conform rigidly to the specification unless the server encoding is UTF-8. Attempts to directly include
characters which cannot be represented in the server encoding will fail; conversely, characters which
can be represented in the server encoding but not in UTF-8 will be allowed. \uxxxx escapes are
allowed regardless of the server encoding, and are checked only for syntactic correctness.

8.15. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

8.15.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_quarter integer|[],
schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type
text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer([3] [3]

)i

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],

1.

http://www.ietf.org/rfc/rfc4627.txt

143

Chapter 8. Data Types

Or, if no array size is to be specified:
pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }’

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, all use a comma (,), except for type box
which uses a semicolon (;). Each va1 is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT x FROM sal_emp;

name | pay_by_qguarter | schedule

_______ T
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

144

Chapter 8. Data Types

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES (’Bill’,
/{10000, 10000, 10000, 10000}7",
"{{"meeting", "lunch"}, {"meeting"}}’');
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’'Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’'lunch’], [’training’, ’presentation’]]);

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY [20000, 25000, 25000, 250007,
ARRAY [["breakfast’, ’consulting’], ['meeting’, ’'lunch’]]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:
SELECT pay_by_gquarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

145

Chapter 8. Data Types

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound: upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[(1:2][1:1],not [2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3]1[1:2] then referencing
schedule[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current
array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does
not match non-slice behavior and is done for historical reasons.) If the requested slice partially over-
laps the array bounds, then it is silently reduced to just the overlapping region instead of returning
null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_upper

146

Chapter 8. Data Types

array_length will return the length of a specified array dimension:

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_length

8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For example,
if array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5, 6]

?column?

| ARRAY[[1,2],[3,4]];

{{5,6},{1,2},{3,4}}
(1 row)

147

Chapter 8. Data Types

The concatenation operator allows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1l || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]1);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,4]1] || ARRAY[[5,6],17,8]1,19,011);
array_dims

[1:5][1:2]
(1 row)

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,611);
array_dims

[1:3]1[1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

148

Chapter 8. Data Types

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,4]1]1, ARRAY[5,61]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],13,411);
array_cat

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these
functions. However, because the concatenation operator is overloaded to serve all three cases, there
are situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 21 || {3, 4}'; —-— the untyped literal is taken as an array
?column?
{1,2,3,4}

SELECT ARRAY[1, 2] || "7"; —— so 1s this one

ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; —— so 1s an undecorated NULL
?column?
{1,2}

(1 row)

SELECT array_append (ARRAY[1, 2], NULL); —-— this might have been meant

array_append

{1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant’s type
is to assume it’s of the same type as the operator’s other input — in this case, integer array. So the
concatenation operator is presumed to represent array_cat, not array_append. When that’s the

149

Chapter 8. Data Types

wrong choice, it could be fixed by casting the constant to the array’s element type; but explicit use of
array_append might be a preferable solution.

8.15.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT x= FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT % FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT x FROM
(SELECT pay_by_dquarter,
generate_subscripts (pay_by_quarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9-51.

You can also search an array using the && operator, which checks whether the left operand overlaps
with the right operand. For instance:

SELECT x= FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an
appropriate index, as described in Section 11.2.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else:
it is determined by the typdelim setting for the array’s element type. Among the standard data

150

Chapter 8. Data Types

types provided in the PostgreSQL distribution, all use a comma, except for type box, which uses a
semicolon (;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same
level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1]1[-2]1[3] AS el, f1[1]1[-1]1[5] AS e2
FROM (SELECT ‘" [1:1]([-2:-1]1[3:51={{{1,2,3},{4,5,6}}}"::int[] AS f1) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individ-
ual array element. You must do so if the element value would otherwise confuse the array-value
parser. For example, elements containing curly braces, commas (or the data type’s delimiter char-
acter), double quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty
strings and strings matching the word NULL must be quoted, too. To put a double quote or backslash
in a quoted array element value, precede it with a backslash. Alternatively, you can avoid quotes and
use backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Tip: The arRrAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values
are written the same way they would be written when not members of an array.

151

Chapter 8. Data Types

8.16. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the As keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)
INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS "SELECT $l.price % $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition

152

Chapter 8. Data Types

do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.16.2. Constructing Composite Values

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite con-
stant is the following:

"(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 (nmn , 4 2 ,) 4

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary to tell which type to convert the constant
to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:

(" fuzzy dice’, 42, 1.99)
(", 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use

153

Chapter 8. Data Types

parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item).price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will generate a syntax error.

The special field name + means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:
UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specity subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

154

Chapter 8. Data Types

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don’t know the logic behind them.

In PostgreSQL, a reference to a table name (or alias) in a query is effectively a reference to the
composite value of the table’s current row. For example, if we had a table inventory_item as
shown above, we could write:

SELECT c¢ FROM inventory_item c;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query’s tables.

The ordinary qualified-column-name syntax table_name.column_name can be understood as ap-
plying field selection to the composite value of the table’s current row. (For efficiency reasons, it’s not
actually implemented that way.)

When we write
SELECT c.x FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

name | supplier_id | price
____________ 4
fuzzy dice | 42 | 1.99
(1 row)

as if the query were

SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as
shown above, you need to write parentheses around the value that .« is applied to whenever it’s
not a simple table name. For example, if myfunc () is a function returning a composite type with
columns a, b, and c, then these two queries have the same result:

SELECT (myfunc(x)) . FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip: PostgreSQL handles column expansion by actually transforming the first form into the sec-
ond. So, in this example, myfunc () would get invoked three times per row with either syntax. If
it's an expensive function you may wish to avoid that, which you can do with a query like:

SELECT (m).* FROM (SELECT myfunc(x) AS m FROM some_table OFFSET 0) ss;

The orrseT 0 clause keeps the optimizer from “flattening” the sub-select to arrive at the form with
multiple calls of myfunc ().

155

Chapter 8. Data Types

The composite_value.x syntax results in column expansion of this kind when it appears at the
top level of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause,
or a row constructor. In all other contexts (including when nested inside one of those constructs),
attaching . » to a composite value does not change the value, since it means “all columns” and so the
same composite value is produced again. For example, if somefunc () accepts a composite-valued
argument, these queries are the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

In both cases, the current row of inventory_item is passed to the function as a single composite-
valued argument. Even though . x does nothing in such cases, using it is good style, since it makes
clear that a composite value is intended. In particular, the parser will consider c in c. » to refer to a
table name or alias, not to a column name, so that there is no ambiguity; whereas without . «, it is not
clear whether ¢ means a table name or a column name, and in fact the column-name interpretation
will be preferred if there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT %= FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item ¢ ORDER BY c.x;
SELECT = FROM inventory_item c ORDER BY ROW(c.x);

All of these ORDER BY clauses specify the row’s composite value. However, if inventory_item
contained a column named c, the first case would be different from the others, as it would mean to
sort by that column only. Given the column names previously shown, these queries are also equivalent
to those above:

SELECT % FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT = FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word ROw omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table. field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c WHERE c.price > 1000;
SELECT name (c) FROM inventory_item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it
with either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.x) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn’t
need to be directly aware that somefunc isn’t a real column of the table.

Tip: Because of this behavior, it's unwise to give a function that takes a single composite-type
argument the same name as any of the fields of that composite type. If there is ambiguity, the

156

Chapter 8. Data Types

field-name interpretation will be preferred, so that such a function could not be called without
tricks. One way to force the function interpretation is to schema-qualify the function name, that is,

write schema. func (compositevalue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

r 42y’

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (’/ ("\"\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.4) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

157

Chapter 8. Data Types

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range’s
subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a
meeting room is reserved. In this case the data type is tsrange (short for “timestamp range”), and
timestamp is the subtype. The subtype must have a total order so that it is well-defined whether
element values are within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and
because concepts such as overlapping ranges can be expressed clearly. The use of time and date
ranges for scheduling purposes is the clearest example; but price ranges, measurement ranges from
an instrument, and so forth can also be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

+ int4range — Range of integer

+ int8range — Range of bigint

» numrange — Range of numeric

+ tsrange — Range of timestamp without time zone
+ tstzrange — Range of timestamp with time zone
+ daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
(1108, "[2010-01-01 14:30, 2010-01-01 15:30)");

—-— Containment
SELECT int4range (10, 20) @> 3;

—-— Overlaps
SELECT numrange (11.1, 22.2) && numrange (20.0, 30.0);

—-— Extract the upper bound
SELECT upper (int8range (15, 25));

—— Compute the intersection
SELECT int4range (10, 20) = int4range(l5, 25);

—— Is the range empty?

158

Chapter 8. Data Types

SELECT isempty (numrange (1, 5));

See Table 9-45 and Table 9-46 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between
these values are included in the range. An inclusive bound means that the boundary point itself is
included in the range as well, while an exclusive bound means that the boundary point is not included
in the range.

[T3%1]
[

while an exclusive lower
, while an

In the text form of a range, an inclusive lower bound is represented by
bound is represented by
exclusive upper bound is represented by)

[T3EL] q
(]

. Likewise, an inclusive upper bound is represented by
. (See Section 8.17.5 for more details.)

Lt}

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a
range value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all points less than the upper bound are
included in the range. Likewise, if the upper bound of the range is omitted, then all points greater than
the lower bound are included in the range. If both lower and upper bounds are omitted, all values of
the element type are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus
infinity”, respectively. But note that these infinite values are never values of the range’s element type,
and can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you
try to write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, in timestamp ranges, [today,] means the same thing
as [today,). But [today,infinity] means something different from [today, infinity) —
the latter excludes the special t imestamp value infinity.

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, re-
spectively.

8.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

(Iower-bound, upper—bound)
(Iower-bound, upper-bound]
[Iower-bound, upper—bound)
[Iower-bound, upper—-bound]

empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive,
as described previously. Notice that the final pattern is empty, which represents an empty range (a
range that contains no points).

159

Chapter 8. Data Types

The 1ower-bound may be either a string that is valid input for the subtype, or empty to indicate no
lower bound. Likewise, upper—-bound may be either a string that is valid input for the subtype, or
empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound
value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters
would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted
bound value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound
value is taken to represent a double quote character, analogously to the rules for single quotes in SQL
literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data
characters that would otherwise be taken as range syntax. Also, to write a bound value that is an
empty string, write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses
or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it
might or might not be significant.)

Note: These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

—-— includes 3, does not include 7, and does include all points in between
SELECT ' [3,7)' ::int4range;

—— does not include either 3 or 7, but includes all points in between
SELECT '’ (3,7)’ ::int4range;

—— includes only the single point 4
SELECT ' [4,4]’ ::int4range;

—— includes no points (and will be normalized to ’'empty’)
SELECT ' [4,4)' ::int4range;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the construc-
tor function is frequently more convenient than writing a range literal constant, since it avoids the
need for extra quoting of the bound values. The constructor function accepts two or three arguments.
The two-argument form constructs a range in standard form (lower bound inclusive, upper bound
exclusive), while the three-argument form constructs a range with bounds of the form specified by
the third argument. The third argument must be one of the strings “()”, “ (17, “[)”, or “[1”. For
example:

—— The full form is: lower bound, upper bound, and text argument indicating
—-— inclusivity/exclusivity of bounds.

SELECT numrange (1.0, 14.0, " (1");

—— If the third argument is omitted, ’'[)’ is assumed.
SELECT numrange (1.0, 14.0);

160

Chapter 8. Data Types

—— Although ' (]’ is specified here, on display the value will be converted to
—— canonical form, since int8range is a discrete range type (see below).
SELECT int8range (1, 14, ' (1');

—— Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange (NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as integer or date. In
these types two elements can be said to be adjacent, when there are no valid values between them.
This contrasts with continuous ranges, where it’s always (or almost always) possible to identify other
element values between two given values. For example, a range over the numeric type is continuous,
as is a range over t imestamp. (Even though t imestamp has limited precision, and so could theoret-
ically be treated as discrete, it’s better to consider it continuous since the step size is normally not of
interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range’s bounds, by choosing the next or previous element value instead of the
one originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of
values; but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for
the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds.
If a canonicalization function is not specified, then ranges with different formatting will always be
treated as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that
includes the lower bound and excludes the upper bound; that is, [). User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of
subtype float8:

CREATE TYPE floatrange AS RANGE (
subtype = floats,
subtype_diff = float8mi

)
SELECT " [1.234, 5.678]’::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this ex-
ample.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE com-
mand should specify a canonical function. The canonicalization function takes an input range value,

161

Chapter 8. Data Types

and must return an equivalent range value that may have different bounds and formatting. The canoni-
cal output for two ranges that represent the same set of values, for example the integer ranges [1, 7]
and [1, 8), mustbe identical. It doesn’t matter which representation you choose to be the canonical
one, so long as two equivalent values with different formattings are always mapped to the same value
with the same formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonical-
ization function might round off boundary values, in case the desired step size is larger than what the
subtype is capable of storing. For instance, a range type over t imestamp could be defined to have a
step size of an hour, in which case the canonicalization function would need to round off bounds that
weren’t a multiple of an hour, or perhaps throw an error instead.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a
subtype difference, or subtype_diff, function. (the index will still work without subtype_diff,
but it is likely to be considerably less efficient than if a difference function is provided.) The subtype
difference function takes two input values of the subtype, and returns their difference (i.e., X minus v)
represented as a f1oat 8 value. In our example above, the function that underlies the regular f1oat8
minus operator can be used; but for any other subtype, some type conversion would be necessary.
Some creative thought about how to represent differences as numbers might be needed, too. To the
greatest extent possible, the subtype_diff function should agree with the sort ordering implied
by the selected operator class and collation; that is, its result should be positive whenever its first
argument is greater than its second according to the sort ordering.

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a
GiST index:

CREATE INDEX reservation_idx ON reservation USING gist (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, & &, <@, @>, <<,
>>, - |-, &<, and &> (see Table 9-45 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined
for range values, with corresponding < and > operators, but the ordering is rather arbitrary and not
usually useful in the real world. Range types’ B-tree and hash support is primarily meant to allow
sorting and hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. In-
stead, an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ...
EXCLUDE). Exclusion constraints allow the specification of constraints such as “non-overlapping”
on a range type. For example:

CREATE TABLE reservation (

during tsrange,

EXCLUDE USING gist (during WITH &&)
)i

162

Chapter 8. Data Types

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
(" [2010-01-01 11:30, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO reservation VALUES
(" [2010-01-01 14:45, 2010-01-01 15:45)");

ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")) .

You can use the btree_gist extension to define exclusion constraints on plain scalar data types,
which can then be combined with range exclusions for maximum flexibility. For example, after
btree_gist is installed, the following constraint will reject overlapping ranges only if the meet-
ing room numbers are equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (

room text,

during tsrange,

EXCLUDE USING gist (room WITH =, during WITH &&)
)i

INSERT INTO room_reservation VALUES
(7123A", "[2010-01-01 14:00, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO room_reservation VALUES

("123A’, 7 [2010-01-01 14:30, 2010-01-01 15:30)");
ERROR: conflicting key value violates exclusion constraint "room_reservation_room_durin
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) confli
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
(7123B", "[2010-01-01 14:30, 2010-01-01 15:30)");
INSERT 0 1

8.18. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 0IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regconfig, and regdictionary. Table 8-23 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

163

Chapter 8. Data Types

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable’::regclass;
rather than:

SELECT = FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-23. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc Pg_proc function name sum
regprocedure pPg_proc function with argument | sum (int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | » (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name Pg_type
regtype Pg_type data type name integer
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary |simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded), so
they are of limited use; for most uses regprocedure or regoperator are more appropriate. For
regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of one
of these types appears in a stored expression (such as a column default expression or view), it
creates a dependency on the referenced object. For example, if a column has a default expression
nextval ('my_seq’ : :regclass), PostgreSQL understands that the default expression depends on
the sequence my_seq; the system will not let the sequence be dropped without first removing the
default expression.

164

Chapter 8. Data Types

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.19. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8-24 lists the existing pseudo-types.

Table 8-24. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyelement Indicates that a function accepts any data type
(see Section 35.2.5).

anyarray Indicates that a function accepts any array data

type (see Section 35.2.5).

anynonarray Indicates that a function accepts any non-array
data type (see Section 35.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 35.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data
type (see Section 35.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler

fdw_handler A foreign-data wrapper handler is declared to
return fdw_handler

record Identifies a function taking or returning an
unspecified row type.

trigger A trigger function is declared to return
trigger.

event_trigger An event trigger function is declared to return

event_trigger.

165

Chapter 8. Data Types

Name Description

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implemen-
tation languages. At present most procedural languages forbid use of a pseudo-type as an argument
type, and allow only void and record as a result type (plus trigger or event_trigger when
the function is used as a trigger or event trigger). Some also support polymorphic functions using the

types anyelement, anyarray, anynonarray, anyenum, and anyrange.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

166

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and
\do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul1, which represents “unknown”. Ob-
serve the following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

167

Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!l= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement =
and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:

a BETWEEN x AND y

is equivalent to
a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a >y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to
the left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable,
use the IS [NOT] DISTINCT FROM constructs:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM
is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only
one input is null. Thus, these constructs effectively act as though null were a normal data value, rather
than “unknown”.

To check whether a value is or is not null, use the constructs:

expression 1S NULL

168

Chapter 9. Functions and Operators

expression IS NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Tip: Some applications might expect that expression = NULL returns true if expression evalu-
ates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

If the expressionisrow-valued, then IS NULL is true when the row expression itself is null or when
all the row’s fields are null, while IS NOT NULL is true when the row expression itself is non-null and
all the row’s fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not always
return inverse results for row-valued expressions; in particular, a row-valued expression that contains
both null and non-null fields will return false for both tests. In some cases, it may be preferable to
write row IS DISTINCT FROM NULL or row IS NOT DISTINCT FROM NULL, which will simply
check whether the overall row value is null without any additional tests on the row fields.

Boolean values can also be tested using the constructs

expression 1S TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are
effectively the same as IS NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6

169

Chapter 9. Functions and Operators

Operator Description Example Result
/ division (integer 4 / 2 2
division truncates the
result)
% modulo (remainder) 5% 4 1
~ exponentiation 2.0 ~ 3.0 8
(associates left to right)
I/ square root |/ 25.0 5
1/ cube root [1/ 27.0 3
! factorial 5 | 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-11.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or (same as input) nearest integer ceil (-42.8) -42

numeric) greater than or

equal to argument
ceiling(dp or |(same as input) nearest integer ceiling(-95.3)|-95

numeric)

greater than or
equal to argument
(same as ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.64788975654

|2

div (y numeric,

X numeric)

numeric

integer quotient of

y/x

div (9, 4)

170

Chapter 9. Functions and Operators

Function Return Type Description Example Result

exp (dp or (same as input) exponential exp(1.0) 2.71828182845905
numeric)

floor (dp or (same as input) nearest integer floor (-42.8) -43
numeric) less than or equal

to argument

1n(dp or (same as input) natural logarithm | 1n(2.0) 0.693147180559945
numeric)

log(dp or (same as input) base 10 logarithm | 1og (100.0) 2
numeric)
log (b numeric, x |numeric logarithm to base |log (2.0, 6.0000000000
numeric) b 64.0)

mod (y, x) (same as argument | remainder of y/x |mod (9, 4) 1

types)

pi() dp “m” constant pi() 3.14159265358979

power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric, |numeric a raised to the power (9.0, 729
b numeric) power of b 3.0)

radians (dp) dp degrees to radians | radians(45.0) |0.785398163397448

round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric, |[numeric round to s round (42.4382,|42.44
s int) decimal places 2)

sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,

+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.414213562373

numeric)

|

trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) Zero
trunc (v numeric, |numeric truncate to s trunc(42.4382,(42.43
s int) decimal places 2)
int return the bucket |width_bucket (5} 35,

width_bucket (op
numeric, bl
numeric, b2
numeric, count

int)

to which operand
would be assigned
in an equidepth
histogram with
count buckets, in
the range b1l to b2

0.024,
S5)

10.06,

171

Chapter 9. Functions and Operators

Function Return Type Description Example Result
width_bucket (op | int return the bucket |width_bucket (5}35,
dp, bl dp, b2 to which operand | 0.024, 10.06,

dp, count int) would be assigned | 5)

in an equidepth
histogram with
count buckets, in
the range b1 to b2

Table 9-4 shows functions for generating random numbers.

Table 9-4. Random Functions

Function Return Type Description
random () dp random value in the range 0.0
<=x<1.0
setseed (dp) void set seed for subsequent
random () calls (value between
-1.0 and 1.0, inclusive)

The characteristics of the values returned by random () depend on the system implementation. It is
not suitable for cryptographic applications; see pgcrypto module for an alternative.

Finally, Table 9-5 shows the available trigonometric functions. All trigonometric functions take ar-
guments and return values of type double precision. Trigonometric functions arguments are ex-
pressed in radians. Inverse functions return values are expressed in radians. See unit transformation
functions radians () and degrees () above.

Table 9-5. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent
atan2 (y, x) inverse tangent of y/x
cos (x) cosine
cot (x) cotangent
sin(x) sine
tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of poten-
tial effects of automatic space-padding when using the character type. Some functions also exist
natively for the bit-string types.

172

Chapter 9. Functions and Operators

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-6. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-7).

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However,
the string concatenation operator (| |) still accepts non-string input, so long as at least one input
is of a string type, as shown in Table 9-6. For other cases, insert an explicit coercion to text if
you need to duplicate the previous behavior.

Table 9-6. SQL String Functions and Operators

substring (string
[from int] [for

int])

from 2 for 3)

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation " greSQL’
string || text String "Value: ' || Value: 42
non-string Or concatenation 42
non-string || with one
string non-string input

int Number of bits in |bit_length (' jo$82)
bit_length (string) string

int Number of char_length (’ jode’)
char_length (string) characters in
or string
character_length|(string)

lower (string) text Convert string to | Lower (" TOM’) tom
lower case

int Number of bytes |octet_length(’ [jdse’)

octet_length (string) in string
overlay (string |text Replace substring | overlay (' TxxxxaEhomas

placing string placing "hom’
from int [for from 2 for 4)
int])

int Location of position(’om’ |3
position (substrirg specified substring | in ’ Thomas”’)
in string)

text Extract substring | substring (’ Thomhemh

173

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

substring (string

from pattern)

text

Extract substring
matching POSIX
regular
expression. See
Section 9.7 for
more information
on pattern
matching.

substring (’ Thor
.87

from " ..

nmas

substring (string
from pattern for

escape)

text

Extract substring
matching SQL
regular
expression. See
Section 9.7 for
more information
on pattern
matching.

substring (’ Thor
from
I%#"O a#" 4

I#I)

for

amé

trim([leading
| trailing |
both]
[characters]

from string)

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start,
end, or both ends
(both is the
default) of

string

trim(both
"xyz’ from

"yxTomxx')

Tom

upper (string)

text

Convert string to
upper case

upper (" tom’)

TOM

Additional string manipulation functions are available and are listed in Table 9-7. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9-6.

Table 9-7. Other String Functions

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of
the first character
of the argument.
For UTFS returns
the Unicode code
point of the
character. For
other multibyte
encodings, the
argument must be
an ASCII
character.

ascii(’'x")

120

174

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

btrim(string
text [,
characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(/xyxtrimygxim

’XyZ’)

chr (int)

text

Character with
the given code.
For UTFS the
argument is
treated as a
Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

concat (str
"any" [, str
"any" [, ...]

1)

text

Concatenate the
text
representations of
all the arguments.
NULL arguments
are ignored.

concat (" abcde’
2, NULL, 22)

abcde222

concat_ws (sep

" n

text, str "any

text

Concatenate all
but the first
argument with
separators. The
first argument is
used as the
separator string.
NULL arguments
are ignored.

concat_ws(’,’,
"abcde’, 2,
NULL, 22)

abcde, 2,22

175

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding
The string must
be valid in this
encoding.
Conversions can
be defined by
CREATE
CONVERSION.
Also there are
some predefined
conversions. See
Table 9-8 for
available
conversions.

convert (' text_
"UTF8’,
"LATINL')

ihextf8h,utf8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from(str
bytea,
src_encoding

name)

text

ing

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from (’f{
"UTF8’)

rexktinnubf g8,
represented in the
current database
encoding

convert_to (string
text,
dest_encoding

name)

bytea

Convert string to

dest_encoding.

convert_to (’soj
text’,
"UTF8")

nsome text
represented in the
UTF8 encoding

decode (string
text, format

text)

bytea

Decode binary
data from textual
representation in
string. Options
for format are
same as in

encode.

decode (' MTIzAAKX%3132330001

"baseb6d’)

176

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

encode (data
bytea, format

text)

text

Encode binary
data into a textual
representation.
Supported formats
are: base64, hex,
escape. escape
converts zero
bytes and
high-bit-set bytes
to octal sequences
(\nnn) and
doubles
backslashes.

encode (7 123\00
"base6d’)

NOOZAAE=

format (formatstr
text [,

formatarg "

L, ...1 1

"any

text

Format
arguments
according to a
format string. This
function is similar
to the C function
sprintf. See
Section 9.4.1.

format ("Hello
1s’,
"World’)

o
%$s,

Hello World,

World

initcap (string)

text

Convert the first
letter of each word
to upper case and
the rest to lower
case. Words are
sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS')

Hi Thomas

left (str text,

n int)

text

Return first n
characters in the
string. When n is
negative, return all
but last Inl
characters.

left (" abcde’,
2)

ab

length (string)

int

Number of
characters in

string

length (’ jose’)

length (string
bytea, encoding

name)

int

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8')

177

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

lpad(string
text, length int

[, fill text])

text

Fill up the
string to length
length by
prepending the
characters fil1 (a
space by default).
If the stringis
already longer
than 1length then
it is truncated (on
the right).

lpad("hi’,
"xy'")

5,

xyxhi

ltrim(string
text [,
characters

text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim(’zzzytesttest

Ixyzl)

md5 (string)

text

Calculates the
MD)5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24f
d6963£7d28el7f

b0
V2

pg_client_encodi]

name

ng ()

Current client
encoding name

pg_client_enco

H$0% (ASCIT

quote_ident (stri

text)

text

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 40-1.

quote_ident ('F

bar’)

p&Foo bar"

178

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (st

text)

text

ring

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string.
Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on
null input; if the
argument might
be null,
quote_nullable
is often more
suitable. See also
Example 40-1.

quote_literal (}

7 OXRBE11YY’)

quote_literal (va

anyelement)

Ltext

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (

1243) 5"

quote_nullable (s

text)

text

tring

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string;
or, if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
40-1.

quote_nullable

(NULL)

179

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_nullable (v

anyelement)

plext

Coerce the given
value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable

(4225p'

regexp_matches (s
text, pattern
text [, flags

text])

setof text[]

tring

Return all
captured
substrings
resulting from
matching a
POSIX regular
expression against
the string. See
Section 9.7.3 for
more information.

regexp_matches

" (bar) (beque)’

({Peohbebagleba

text Replace regexp_replace|(THHMomas’,
regexp_replace (string substring(s) " [mN]a.’,
text, pattern matching a "M")
text, POSIX regular
replacement text expression. See
[, flags text]) Section 9.7.3 for

more information.

text[] Split string regexp_split_to{hetay(Wheldd
regexp_split_to_larray (string using a POSIX world’,
text, pattern regular GXpI'GSSiOH "\s+'")
text [, flags as the delimiter.
text 1) See Section 9.7.3

for more
information.

setof text Split string regexp_split_toheabdeerhdl(@®

regexp_split_to_ftable (string using a POSIX world’, rows)
text, pattern regular expression |’ \s+’)
text [, flags as the delimiter.
text]) See Section 9.7.3

for more

information.

repeat (string |text Repeat string repeat (' Pg’, PgPgPgPg

text, number

int)

the specified
number of times

4)

180

~

Chapter 9. Functions and Operators

Function Return Type Description Example Result
replace (string |text Replace all replace (' abcdefabgdefapXXef
text, from text, occurrences in rcd’, TXX')
to text) string of
substring from
with substring to
reverse (str) text Return reversed reverse (' abcdef ¢dcba
string.
right (str text, |text Return last n right (' abcde’, | de
n int) characters in the | 2)
string. When n is
negative, return all
but first Inl
characters.
rpad (string text Fill up the rpad(‘hi’, 5, |hixyx
text, length int stringtolength |’xy’)
[, fill text]) length by
appending the
characters fil1 (a
space by default).
If the stringis
already longer
than 1length then
it is truncated.
rtrim(string text Remove the rtrim(’testxxzxtest
text [, longest string "xyz')
characters containing only
text]) characters from
characters (a
space by default)
from the end of
string
text Split stringon |split_part (' ab¢d@fdef~@~ghi’,
split_part (strin delimiter and r~@~", 2)
text, delimiter return the given
text, field int) field (counting
from one)
strpos (string, |int Location of strpos ("high’, |2
substring) specified substring | 7 ig”)
(same as
position (substrling
in string), but
note the reversed
argument order)
substr (string, |text Extract substring | substr (’ alphabeph,

from [, count])

(same as
substring (strin
from from for

count))

3,
g

2)

181

Chapter 9. Functions and Operators

Function Return Type Description Example Result
to_ascii (string | text Convert string |to_ascii (’KarelKarel
text [, encoding to ASCII from
text]) another encoding
(only supports
conversion from
LATINI, LATIN2,
LATINO, and
WIN1250
encodings)
to_hex (number text Convert number to_hex (214748363Fffffff

to its equivalent
hexadecimal
representation

int or bigint)

text Any character in | translate (' 1234525
string that 71437, rax’)
text, from text, matches a

to text) character in the
from set is
replaced by the
corresponding
character in the to
set. If fromis
longer than to,
occurrences of the
extra characters in
from are
removed.

translate (string

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to
be concatenated or formatted as an array marked with the VARTIADIC keyword (see Section 35.4.5).
The array’s elements are treated as if they were separate ordinary arguments to the function. If the
variadic array argument is NULL, concat and concat_ws return NULL, but format treats a NULL
as a zero-element array.

See also the aggregate function st ring_agg in Section 9.20.

Table 9-8. Built-in Conversions

Conversion Name Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTF8

bigb_to_euc_tw BIGS EUC_TW

big5_to_mic BIG5 MULE_INTERNAL
big5_to_utf8 BIG5 UTF8

euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTFEF8

euc_Jjp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sijis EUC_JP SJIS

182

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
euc_Jjp_to_utfs8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigh EUC_TW BIG5
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TwW UTF8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utfs8 GBK UTFEF8
iso_8859_10_to_utf8 LATING UTF8
is0_8859_13_to_utf8 LATIN7 UTF8

iso_8859 14 to_utf8 LATINS UTF8
iso_8859_15_to_utf8 LATINO UTF8
iso_8859_16_to_utf8 LATINI1O UTF8
is0_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859_1 to_utfs8 LATIN1 UTFE8
1is0_8859_2_to_mic LATIN2 MULE_INTERNAL
iso_8859 2 to_utfs8 LATINZ2 UTF8

iso_8859 2 to_windows_12H0ATIN2 WIN1250
150_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3 to_utfs8 LATIN3 UTFE8
1is0_8859_4_to_mic LATIN4 MULE_INTERNAL
iso_8859_4_to_utfs LATIN4 UTF8
iso_8859_5_to_koi8_r IS0_8859_5 KOI8R
is0_8859_5_to_mic IS0_8859_5 MULE_INTERNAL
is0_8859_5_to_utf8 ISO_8859_5 UTF8
iso_8859_ 5 to_windows_125IS0_8859_5 WIN1251
iso_8859_5_to_windows_866I50_8859_5 WINB66
1is0_8859_6_to_utfs ISO_8859_6 UTF38
iso_8859_7_to_utfs8 IS0O_8859_7 UTF8
iso_8859_8_to_utfs8 IS0_8859_8 UTF8
iso_8859_9 to_utfs8 LATINS UTF8
johab_to_utfs8 JOHAB UTFE8
koi8_r_to_iso_8859_5 KOI8R IS0O_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8 r_ to_utf8 KOI8R UTF8

koi8_ r_ to_windows_1251 KOI8R WIN1251
koi8_r_to_windows_866 KOI8R WIN866
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII

183

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

mic_to_big5 MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_1iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4A
mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8R
mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WINB66
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTF8
uhc_to_utf8 UHC UTFE8
utf8_to_ascii UTFES8 SQL_ASCII
utf8_to_bigh UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_jp UTF8 EUC_JP
utf8_to_euc_kr UTFE8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030

ut £8_to_gbk UTFE8 GBK
utf8_to_iso_8859_1 UTF8 LATINL
utf8_ _to_iso_8859 10 UTF8 LATING
utf8_to_iso_8859_13 UTF8 LATIN7
utf8_to_iso_8859_ 14 UTFS8 LATINS
utf8_to_iso_8859_ 15 UTF8 LATINO
utf8_to_iso_8859_16 UTFE8 LATIN1O
utf8_to_iso_8859_2 UTF8 LATIN2
utf8 _to_iso_8859_3 UTF8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 ISO_8859_5
utf8_to_iso_8859_6 UTF8 ISO_8859_6
utf8_to_iso_8859_7 UTF8 IS0_8859_7
utf8_to_iso_8859_8 UTF8 IS0_8859_8
utf8 _to_iso_8859_ 9 UTFS8 LATINS

184

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

ut£8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTFES8 KOI8R
utf8_to_koi8_u UTFE8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTFS8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTFE8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTF8 WIN1257
utf8_to_windows_866 UTFES8 WINB66
utf8_to_windows_874 UTF8 WIN874
windows_1250_to_iso_8859|WIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859]WIN1251 IS0O_8859_5
windows_1251_to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251 to_utf8 WIN1251 UTF8
windows_1251 to_windows_8WEN1251 WIN866
windows_1252_to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859_ bHWIN866 I5S0_8859_5
windows_866_to_koi8_r WIN866 KOI8R
windows_866_to_mic WIN866 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_1R2WIN8G66 WIN
windows_874_to_utf8 WIN874 UTFE8
euc_jis_2004_to_utfs EUC_JIS_2004 UTF8

utf8_to_euc_jis_2004

UTF8

EUC_JIs_2004

shift_3jis_2004_to_utf8

SHIFT_JIS_2004

UTF8

utf8_to_shift_jis_2004

UTF8

SHIFT_JIS_2004

euc_jis_2004_to_shift_3ji

sED004TIS_2004

SHIFT_JIS_2004

185

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
shift_jis_2004_to_euc_jisSHADPE_JIS_2004 EUC_JIS_2004
Notes:

a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores, followed by _to_,
followed by the similarly processed destination encoding name. Therefore, the names might
deviate from the customary encoding names.

9.4.1. format

The function format produces output formatted according to a format string, in a style similar to the
C function sprintf.

format (formatstr text [, formatarg "any" [, ...] 1)

formatstr is a format string that specifies how the result should be formatted. Text in the format
string is copied directly to the result, except where format specifiers are used. Format specifiers act
as placeholders in the string, defining how subsequent function arguments should be formatted and
inserted into the result. Each formatarg argument is converted to text according to the usual output
rules for its data type, and then formatted and inserted into the result string according to the format
specifier(s).

Format specifiers are introduced by a % character and have the form
% [position] [flags] [width] type

where the component fields are:

position (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first
argument after formatstr. If the position is omitted, the default is to use the next argument
in sequence.

flags (optional)

Additional options controlling how the format specifier’s output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier’s output to be left-
justified. This has no effect unless the width field is also specified.

width (optional)

Specifies the minimum number of characters to use to display the format specifier’s output. The
output is padded on the left or right (depending on the — flag) with spaces as needed to fill the
width. A too-small width does not cause truncation of the output, but is simply ignored. The
width may be specified using any of the following: a positive integer; an asterisk () to use the
next function argument as the width; or a string of the form »n$ to use the nth function argument
as the width.

If the width comes from a function argument, that argument is consumed before the argument
that is used for the format specifier’s value. If the width argument is negative, the result is left
aligned (as if the — flag had been specified) within a field of length abs(width).

186

Chapter 9. Functions and Operators

type (required)

The type of format conversion to use to produce the format specifier’s output. The following
types are supported:

+ s formats the argument value as a simple string. A null value is treated as an empty string.

I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null.

+ L quotes the argument value as an SQL literal. A null value is displayed as the string NULL,
without quotes.

In addition to the format specifiers described above, the special sequence $% may be used to output a
literal % character.

Here are some examples of the basic format conversions:

SELECT format ('Hello %s’, ’'World’);
Result: Hello World

SELECT format (' Testing %s, %s, %s, %%’, ’'one’, ’'two’, ’'three’);
Result: Testing one, two, three, %

SELECT format (/ INSERT INTO %I VALUES(%L)’, ’'Foo bar’, E’O\'Reilly’);
Result: INSERT INTO "Foo bar" VALUES (’0”Reilly’)

SELECT format (/ INSERT INTO %I VALUES (%L)’, ’locations’, ’C:\Program Files’);
Result: INSERT INTO locations VALUES ('C:\Program Files’

Here are examples using width fields and the - flag:

SELECT format (’|%10s|’, "foo’);
Result: | foo

SELECT format (' |%-10s|’, ’'foo’);
Result: |foo |

SELECT format (' |%$*s]|’, 10, ’"foo’);
Result: | foo |

SELECT format ('’ |%*s]|’, -10, ’'foo’);
Result: |foo |

SELECT format ('’ |%—-*s|’, 10, ’'foo’);
Result: |foo |

SELECT format ('’ |%-*s]|’, -10, ’"foo’);
Result: |foo I

These examples show use of position fields:

SELECT format (' Testing %3$s, %2S$s, %1$s’, 'one’, ’'two’, ’'three’);

Result: Testing three, two, one

187

SELECT format ('
Result:

SELECT format ('
Result:

|%$%28s|’, "foo’, 10, ’'bar’);
bar |
|%1x2$s|’, "foo’, 10, ’'bar’);

foo]|

Chapter 9. Functions and Operators

Unlike the standard C function sprintf, PostgreSQL’s format function allows format specifiers
with and without position fields to be mixed in the same format string. A format specifier without
a position field always uses the next argument after the last argument consumed. In addition, the
format function does not require all function arguments to be used in the format string. For example:

SELECT format ('

Result: Testing

Testing %3$s,

three, two, three

%$2S8s,

%$s’, 'one’

"two’,

"three’);

The %1 and %L format specifiers are particularly useful for safely constructing dynamic SQL state-
ments. See Example 40-1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-9. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-10).

Note: The sample results shown on this page assume that the server parameter bytea_output
is set to escape (the traditional PostgreSQL format).

Table 9-9. SQL Binary String Functions and Operators

)

Function Return Type Description Example Result
string || bytea String "\\Post’ : :bytea\\Post’gres\00
string concatenation |
"\047gres\000’ | :bytea

int Number of bytes |octet_length(’ j6\000se’ ::byte
octet_length (string) in binary string
overlay (string |bytea Replace substring | overlay (' Th\000&n&802 \hg08mas
placing string placing
from int [for "\002\003’ : :bytea
int]) from 2 for 3)

188

Chapter 9. Functions and Operators

bytes appearing in
bytes from the
start and end of

string

Function Return Type Description Example Result
int Location of position (" \000¢R’ : :bytea

position (substrirg specified substring | in

in string) "Th\000omas’ : :Ibytea)
bytea Extract substring | substring (' Th\QBR6MEs’ : :bytea

substring (string from 2 for 3)

[from int] [for

int])

trim([both] bytea Remove the trim(’\000\001{ Tohytea

bytes from longest string from

string) containing only "\000Tom\ 001’ : tbytea)

Additional binary string manipulation functions are available and are listed in Table 9-10. Some of
them are used internally to implement the SQL-standard string functions listed in Table 9-9.

Table 9-10. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim(’\000trimk@0h’ : :bytea,
bytea, bytes longest string \000\001’ : :bytea)
bytea) containing only
bytes appearing in
bytes from the
start and end of
string
decode (string |bytea Decode binary decode (7 123\000288Xp00456
text, format data from textual |’escape’)
text) representation in
string. Options
for format are
same as in
encode.
encode (data text Encode binary encode (Y 123\000238X00B¢E6a,
bytea, format data into a textual |’ escape’)
text) representation.

Supported formats
are: base64, hex,
escape. escape
converts zero
bytes and
high-bit-set bytes
to octal sequences
(\nnn) and
doubles
backslashes.

189

Chapter 9. Functions and Operators

Function Return Type Description Example Result
get_bit (string, |int Extract bit from |get_bit (Th\00(Qdmas’ : :bytea,
offset) string 45)
int Extract byte from | get_byte (' Th\0006Ras’ : :bytea,
get_byte (string, sujng 4)
offset)
length (string) |int Length of binary | length (’ jo\000$5&’ : :bytea)
string
md5 (string) text Calculates the md5 (Th\00Oomas8abbygBeap89aafls
MDS5 hash of b4958c334c82d8h1
string, returning
the result in
hexadecimal
set_bit (string, |bytea Set bit in string set_bit (' Th\000BhaB800ohixsea,
offset, 45, 0)
newvalue)
bytea Set byte in string | set_byte (' Th\00Thk@80o@bgtea,
set_byte (string, 4, 64)
offset,
newvalue)

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit
number bits from the right within each byte; for example bit O is the least significant bit of the first

byte, and bit 15 is the most significant bit of the second byte.

See also the aggregate function st ring_agg in Section 9.20.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of the types bit and bit varying. Aside from the usual comparison operators, the operators
shown in Table 9-11 can be used. Bit string operands of &, |, and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9-11. Bit String Operators

Operator Description Example Result

| concatenation B’10001" || 10001011
B’ 011’

& bitwise AND B’ 10001’ & 00001
B’01101’

bitwise OR B’10001" | 11101

B’ 01101

bitwise XOR B’10001" # 11100
B/ 01101

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001’" << 3 01000

>> bitwise shift right B’10001" >> 2 00100

190

Chapter 9. Functions and Operators
The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When work-
ing with a bit string, these functions number the first (Ieftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pbit (10) 0000101100
44::pbit (3) 100

cast (44 as bit (12)) 111111010100
71110’ ::bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant
bit of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?” operators, functions
are available to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular
expressions can be contrived that take arbitrary amounts of time and memory to
process. Be wary of accepting regular-expression search patterns from hostile
sources. If you must do so, it is advisable to impose a statement timeout.

Searches using sIMILAR TO patterns have the same security hazards, since
SIMILAR TO provides many of the same capabilities as POSIX-style regular
expressions.

LIKE searches, being much simpler than the other two options, are safer to use
with possibly-hostile pattern sources.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

191

Chapter 9. Functions and Operators

The LIKE expression returns true if the st ring matches the supplied pattern. (As expected, the
NOT LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is
NOT (string LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’"abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_ ' true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, if it’s desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter in pattern must be preceded by the escape character. The default escape character is the back-
slash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal
string constants will need to be doubled. See Section 4.1.2.1 for more information.

It’s also possible to select no escape character by writing ESCAPE . This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~ corresponds to ILIKE. There are also !~~ and
! ~~x operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are
PostgreSQL-specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a
regular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also
like LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any
string, respectively (these are comparable to . and . » in POSIX regular expressions).

192

Chapter 9. Functions and Operators

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« denotes repetition of the previous item zero or more times.

+ + denotes repetition of the previous item one or more times.

« 2 denotes repetition of the previous item zero or one time.

« {m} denotes repetition of the previous item exactly m times.

+ {m, } denotes repetition of the previous item m or more times.

« {m, n} denotes repetition of the previous item at least m and not more than n times.

+ Parentheses () can be used to group items into a single logical item.

« A bracket expression [.. .] specifies a character class, just as in POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc’ SIMILAR TO ’"abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO '$(bld) %’ true
"abc’ SIMILAR TO ' (blc)%’ false

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As with SIMILAR TO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote ("). The
text matching the portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from ’"#"o_b#"%’ for "#') NULL

9.7.3. POSIX Regular Expressions

Table 9-12 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-12. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, "thomas’ ~ ’.xthomas.x’
case sensitive

193

Chapter 9. Functions and Operators

Operator Description Example
~x Matches regular expression, ’thomas’ ~*
case insensitive " .xThomas. '
I~ Does not match regular ’thomas’ !~
expression, case sensitive ! .xThomas. '
D~k Does not match regular "thomas’ !~«
expression, case insensitive ! «vadim. %’

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As with LIKE, pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different
special characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc’ ~ "abc’ true
"abc’ ~ '7a’ true
rabc” ~ " (b|d)’ true
"abc’ ~ "~ (b|c)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides ex-
traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (' foobar’ from ’'o0.b’) oob
substring (’ foobar’ from ’‘o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement
[, f1ags]). The source string is returned unchanged if there is no match to the pattern. If there
is a match, the source string is returned with the replacement string substituted for the matching
substring. The replacement string can contain \ n, where n is 1 through 9, to indicate that the source
substring matching the n’th parenthesized subexpression of the pattern should be inserted, and it can
contain \¢& to indicate that the substring matching the entire pattern should be inserted. Write \\ if
you need to put a literal backslash in the replacement text. The rf1ags parameter is an optional text
string containing zero or more single-letter flags that change the function’s behavior. Flag i specifies

194

Chapter 9. Functions and Operators

case-insensitive matching, while flag g specifies replacement of each matching substring rather than
only the first one. Other supported flags are described in Table 9-20.

Some examples:

regexp_replace (' foobarbaz’, 'b..’, 'X’)

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, 'X’', 'g’)

fooXX
regexp_replace (' foobarbaz’, ’'b(..)’, 'X\1Yy’, 'g’)

fooXarYXazY

The regexp_matches function returns a text array of all of the captured substrings resulting from
matching a POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern
[, f1ags]). The function can return no rows, one row, or multiple rows (see the g flag below). If the
pattern does not match, the function returns no rows. If the pattern contains no parenthesized subex-
pressions, then each row returned is a single-element text array containing the substring matching the
whole pattern. If the pattern contains parenthesized subexpressions, the function returns a text array
whose n’th element is the substring matching the n’th parenthesized subexpression of the pattern (not
counting “non-capturing” parentheses; see below for details). The £1ags parameter is an optional text
string containing zero or more single-letter flags that change the function’s behavior. Flag g causes
the function to find each match in the string, not only the first one, and return a row for each such
match. Other supported flags are described in Table 9-20.

Some examples:

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}
(1 row)

SELECT regexp_matches (' foobarbequebazilbarfbonk’, ' (b["bl+) (b["b]+)", "g’);
regexp_matches

{bar, beque}
{bazil, barf}
(2 rows)

SELECT regexp_matches (' foobarbequebaz’, ’'barbeque’);
regexp_matches

{barbeque}
(1 row)

It is possible to force regexp_matches () to always return one row by using a sub-select; this is
particularly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT coll, (SELECT regexp_matches(col2, ' (bar) (beque)’)) FROM tab;

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as
a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is
no match to the pattern, the function returns the string. If there is at least one match, for each

195

Chapter 9. Functions and Operators

match it returns the text from the end of the last match (or the beginning of the string) to the beginning
of the match. When there are no more matches, it returns the text from the end of the last match to the
end of the string. The flags parameter is an optional text string containing zero or more single-letter
flags that change the function’s behavior. regexp_split_to_table supports the flags described in
Table 9-20.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumps over the lazy dog’, ’\s
foo

lazy
dog
(9 rows)

SELECT regexp_split_to_array(’the quick brown fox jumps over the lazy dog’, ’'\s+’);
regexp_split_to_array
{the, quick, brown, fox, jumps, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table (’the quick brown fox’, ’'\s*’) AS foo;
foo

= X O DB =& 0RO ®~OQUF QO D

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict

196

Chapter 9. Functions and Operators

definition of regexp matching that is implemented by regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to AREs,
and then describe how BREs differ.

Note: PostgreSQL always initially presumes that a regular expression follows the ARE rules. How-
ever, the more limited ERE or BRE rules can be chosen by prepending an embedded option to the
RE pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications
that expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches
a match for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9-13. The possible quantifiers and their meanings are
shown in Table 9-14.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9-15; some more constraints are described later.

Table 9-13. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for
reporting (a “non-capturing” set of parentheses)
(AREs only)

matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

197

Chapter 9. Functions and Operators

Atom

Description

\k

(where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

where c is alphanumeric (possibly followed by
other characters) is an escape, see Section
9.7.3.3 (AREs only; in EREs and BREs, this
matches c)

when followed by a character other than a digit,
matches the left-brace character {; when
followed by a digit, it is the beginning of a
bound (see below)

where x is a single character with no other

significance, matches that character

An RE cannot end with a backslash (\).

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal
string constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9-14. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom

{m,} a sequence of m or more matches of the atom

{m, n} a sequence of m through n (inclusive) matches
of the atom; m cannot exceed n

*? non-greedy version of x

+? non-greedy version of +

27 non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m,n}? non-greedy version of {m, n}

The forms using { ...} are known as bounds. The numbers m and n within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their correspond-
ing normal (greedy) counterparts, but prefer the smallest number rather than the largest number of

matches. See Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., =« is invalid. A quantifier
cannot begin an expression or subexpression or follow ~ or |.

198

Chapter 9. Functions and Operators

Table 9-15. Regular Expression Constraints

Constraint Description
8 matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where

a substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where
no substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character
from the list (but see below). If the list begins with ~, it matches any single character not from the
rest of the list. If two characters in the list are separated by —, this is shorthand for the full range
of characters between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches
any decimal digit. It is illegal for two ranges to share an endpoint, e.g., a—c—e. Ranges are very
collating-sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a
literal —, make it the first or last character, or the second endpoint of a range. To use a literal — as
the first endpoint of a range, enclose it in [. and .] to make it a collating element (see below).
With the exception of these characters, some combinations using [(see next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular, \ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclosed in [. and .]
stands for the sequence of characters of that collating element. The sequence is treated as a single ele-
ment of the bracket expression’s list. This allows a bracket expression containing a multiple-character
collating element to match more than one character, e.g., if the collating sequence includes a ch
collating element, then the RE [[.ch.]]*c matches the first five characters of chchcec.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [.
and .].) For example, if o and ~ are the members of an equivalence class, then [[=0=]1, [[="=]]1,
and [o~] are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list
of all characters belonging to that class. Standard character class names are: alnum, alpha, blank,
cntrl,digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character

199

Chapter 9. Functions and Operators

classes defined in ctype. A locale can provide others. A character class cannot be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:1] and [[:>:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is an alnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software in-
tended to be portable to other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A \ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In
EREs, there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character
merely stands for that character as an ordinary character, and inside a bracket expression, \ is an
ordinary character. (The latter is the one actual incompatibility between EREs and ARE:s.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient char-
acters in REs. They are shown in Table 9-16.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-17.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9-18.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-19). For example, ([bc])\1 matches bb or cc but not be
or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant. For example:

123" ~ E'M\\d{3}’ true

Table 9-16. Regular Expression Character-entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the

need for backslash doubling

\cX (where x is any character) the character whose
low-order 5 bits are the same as those of x, and
whose other bits are all zero

200

Chapter 9. Functions and Operators

Escape Description

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal
value 033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)
the character whose hexadecimal value is
0xwxyz

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) the character whose hexadecimal value is
Oxstuvwxyz

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

¢ the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not
a back reference) the character whose octal value
is Oxy

\xyz (where xyz is exactly three octal digits, and is
not a back reference) the character whose octal
value is Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivalent to
Unicode code points, for example \ul234 means the character U+1234. For other multibyte encod-
ings, character-entry escapes usually just specify the concatenation of the byte values for the character.
If the escape value does not correspond to any legal character in the database encoding, no error will

be raised, but it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,

but \135 does not terminate a bracket expression.

Table 9-17. Regular Expression Class-shorthand Escapes

Escape Description

A [[:digit:]]

\'s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
AD [~ [:digit:]]

\S [*[:space:]]

\W [~[:alnum:]_] (note underscore is included)

201

Chapter 9. Functions and Operators
Within bracket expressions, \d, \'s, and \w lose their outer brackets, and \D, \s, and \w are illegal.
(So, for example, [a—c\d] is equivalent to [a-c[:digit:]]. Also, [a—c\D], which is equivalent

to [a—c”[:digit:]11],isillegal.)

Table 9-18. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning

or end of a word

\Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9-19. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some
more digits, and the decimal value mnn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mnn’th subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e., the number is in the legal range for a back reference), and
otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with xx :, the rest of
the RE is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be
AREs; but it does have an effect if ERE or BRE mode had been specified by the £1ags parameter to
aregex function.) If an RE begins with ««+=, the rest of the RE is taken to be a literal string, with all
characters considered ordinary characters.

202

Chapter 9. Functions and Operators

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously de-
termined options — in particular, they can override the case-sensitivity behavior implied by a regex
operator, or the f1ags parameter to a regex function. The available option letters are shown in Table
9-20. Note that these same option letters are used in the f1ags parameters of regex functions.

Table 9-20. ARE Embedded-option Letters

Option Description
b rest of RE is a BRE
c case-sensitive matching (overrides operator
type)
e rest of RE is an ERE
i case-insensitive matching (see Section 9.7.3.5)

(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

P expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the ««« : director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

+ a white-space character or # preceded by \ is retained
- white space or # within a bracket expression is retained
+ white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like (?:. Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial « x »= director has specified that the user’s
input be treated as a literal string rather than as an RE.

203

Chapter 9. Functions and Operators

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

« Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

» A quantified atom with a fixed-repetition quantifier ({m} or {m} ?) has the same greediness (possi-
bly none) as the atom itself.

+ A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy
(prefers longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n} ? with m equal to n) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as
a whole. Once the length of the entire match is determined, the part of it that matches any particu-
lar subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’XY12347’, 'Yx([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’XY12347’, 'Yx2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v~ is greedy. It can match beginning at the v,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as a whole is non-greedy because v« 2 is non-greedy.
It can match beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The
subexpression [0-9] {1, 3} is greedy but it cannot change the decision as to the overall match length;
so it is forced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1,1} and {1, 1}? can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE. This is useful when you need the whole RE to have a greediness
attribute different from what’s deduced from its elements. As an example, suppose that we are trying

204

Chapter 9. Functions and Operators

to separate a string containing some digits into the digits and the parts before and after them. We
might try to do that like this:

SELECT regexp_matches ("abc01234xyz’, ' (.*) (\d+) (.*)");
Result: {abc0123,4,xyz}

That didn’t work: the first . « is greedy so it “eats” as much as it can, leaving the \d+ to match at the
last possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_matches (/abc01234xyz’, ' (.*?) (\d+) (.*)");
Result: {abc,0,""}

That didn’t work either, because now the RE as a whole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_matches ("abc01234xyz’, " (2: (.x?) (\d+) (.x)){1,1}");
Result: {abc,01234,xyz}

Controlling the RE’s overall greediness separately from its components’ greediness allows great flex-
ibility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not col-
lating elements. An empty string is considered longer than no match at all. For example: bb» matches
the three middle characters of abbbc; (week|wee) (night |knights) matches all ten characters
of weeknights; when (.x) . is matched against abc the parenthesized subexpression matches all
three characters; and when (ax) » is matched against bc both the whole RE and the parenthesized
subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., x becomes [xx]. When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [x] becomes [xx] and [~x] becomes [*xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~ and s will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes \a and \ z continue to match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with
newline-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the «x+ syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

205

Chapter 9. Functions and Operators

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of
special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [, so a literal \ within a bracket expression must
be written \\.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are \ { and \}, with { and } by
themselves ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and
) by themselves ordinary characters. ~ is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and « is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading *).
Finally, single-digit back references are available, and \< and \> are synonyms for [[:<:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9-21 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

A single-argument to_t imestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to t imestamp with
time zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-21. Formatting Functions

Function Return Type Description Example
to_char (timestamp, text convert time stamp to to_char (current_timestamp,
text) string "HH12:MI:SS’)

206

Chapter 9. Functions and Operators

Function Return Type Description Example
to_char (interval, text convert interval to to_char (interval
text) string ’15h 2m 12s’,
"HH24:MI:SS’)
to_char (int, text) text convert integer to string | to_char (125,
79997)
to_char (double text convert real/double to_char(125.8::real,
precision, text) precision to string 1999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string " 999D995")
to_date (text, text) |date convert string to date to_date (05 Dec 20007,
DD Mon YYYY')
to_number (text, numeric convert string to to_number (' 12,454.8-",
text) numeric " 99G999D9S”)
to_timestamp (text, |timestamp with convert string to time to_timestamp (/05 Dec 20007,
text) time zone stamp "DD Mon YYYY')
to_timestamp (double |timestamp with convert Unix epochto |to_timestamp (1284352323)
precision) time zone time stamp

In a to_char output template string, there are certain patterns that are recognized and replaced with

appropriately-formatted data based on the given value. Any text that is not a template pattern is simply

copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the values to be supplied by the input data string.

Table 9-22 shows the template patterns available for formatting date and time values.

Table 9-22. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSss seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Orp.m.

meridiem indicator (with periods)

Y, YYyYy year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

Yy last 2 digits of year

Y last digit of year

IYYY ISO 8601 week-numbering year (4 or more
digits)

IYY last 3 digits of ISO 8601 week-numbering year

207

Chapter 9. Functions and Operators

Pattern Description
1Y last 2 digits of ISO 8601 week-numbering year
I last digit of ISO 8601 week-numbering year

BC, bc, AD or ad

era indicator (without periods)

B.C.,b.c.,A.D.Ora.d.

era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lower case month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD day of ISO 8601 week-numbering year
(001-371; day 1 of the year is Monday of the
first ISO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

1D ISO 8601 day of the week, Monday (1) to
Sunday (7)

W week of month (1-5) (the first week starts on the
first day of the month)

WW week number of year (1-53) (the first week starts
on the first day of the year)

W week number of ISO 8601 week-numbering year

(01-53; the first Thursday of the year is in week
D)

208

Chapter 9. Functions and Operators

Pattern Description

cc century (2 digits) (the twenty-first century starts
on 2001-01-01)

J Julian Day (integer days since November 24,
4714 BC at midnight UTC)

0 quarter (ignored by to_date and
to_timestamp)

RM month in upper case Roman numerals (I-X1I;
I=January)

rm month in lower case Roman numerals (i-xii;
i=January)

TZ upper case time-zone abbreviation (only

supported in to_char)

tz lower case time-zone abbreviation (only
supported in to_char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the
Month pattern with the FM modifier. Table 9-23 shows the modifier patterns for date/time formatting.

Table 9-23. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FM prefix fill mode (suppress leading FMMonth
zeroes and padding blanks)

TH suffix upper case ordinal number DDTH, e.g., 12TH
suffix

th suffix lower case ordinal number DDth, e.g., 12th
suffix

FX prefix fixed format global option (see |FX Month DD Day

usage notes)

TM prefix translation mode (print TMMonth
localized day and month names
based on Ic_time)

SP suffix spell mode (not implemented) |DDSP

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width. In PostgreSQL, M modifies only the next specification, while in Oracle
FM affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

TM does not include trailing blanks.

to_timestamp and to_date skip multiple blank spaces in the input string unless the Fx
option is used. For example, to_timestamp (2000 JUN’, 'YYYY MON’) works, but
to_timestamp (2000 JUN’, 'FXYYYY MON’) returns an error because to_timestamp
expects one space only. Fx must be specified as the first item in the template.

Ordinary te