\relax \@writefile{toc}{\contentsline {section}{\numberline {1}内容与要求}{2}{}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {2}人们对可计算的探索:从希尔伯特之梦到计算的边界}{2}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}数学危机与希尔伯特纲领}{3}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}希尔伯特的判定问题与哥德尔不完备性}{3}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}计算模型的萌芽:多元化的探索}{4}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1}递归函数理论}{4}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.2}$\mitlambda $-演算}{5}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.3}图灵机}{5}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}计算模型的统一:邱奇-图灵论题}{6}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {2.5}从理论到实践:计算机的诞生与新问题的提出}{6}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.5.1}早期计算机的发展}{7}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.5.2}计算复杂性理论的兴起}{7}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {2.6}现代计算理论的主要研究方向}{8}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.6.1}算法设计与分析}{8}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.6.2}计算模型的扩展}{8}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.6.3}新兴研究领域}{8}{}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {3}图灵机的原理:一切计算的理论基石}{8}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}图灵的思考过程}{9}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.1.1}问题的提出}{9}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.1.2}关键洞察}{9}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}图灵机的形式化定义}{9}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}图灵机的基本组成}{10}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.1}无限纸带}{10}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2}读写头}{11}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.3}状态控制器}{11}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}图灵机的工作过程}{12}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.1}初始化阶段}{12}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.2}执行阶段}{12}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.4.3}终止阶段}{13}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}图灵机的变体与扩展}{13}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}多带图灵机}{13}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}非确定性图灵机}{14}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}通用图灵机}{14}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.6}图灵机的应用示例}{14}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}二进制加法器}{14}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.2}回文判断器}{15}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.7}图灵机的理论意义}{16}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}可计算性理论}{16}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}复杂性理论}{16}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.8}图灵机与现代计算机}{16}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.8.1}理论联系}{16}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.8.2}实践影响}{17}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces 图灵机的基本结构示意图。纸带无限长,读写头可在其上移动并读写符号,状态控制器根据当前状态和读取的符号,通过转移函数决定下一步动作。}}{18}{}\protected@file@percent } \newlabel{fig:turing_detailed}{{1}{18}{}{figure.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {4}计算问题的分类:复杂性理论的基石}{18}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}问题的形式化表示}{18}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.1.1}决策问题}{18}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.1.2}函数问题}{19}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.1.3}优化问题}{19}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}时间复杂性分类}{20}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.2.1}P类问题}{20}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.2.2}NP类问题}{20}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.2.3}NP-完全问题}{20}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces 不同时间复杂度的算法性能对比。图中展示了常见算法复杂度($O(1)$、$O(\log n)$、$O(n)$、$O(n \log n)$、$O(n^2)$、$O(2^n)$)的增长趋势,直观显示了P类问题(多项式时间)与NP难问题(通常需要指数时间)之间的效率差异。}}{21}{}\protected@file@percent } \newlabel{fig:complexity_comparison}{{2}{21}{}{figure.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}空间复杂性分类}{21}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}其他重要的复杂性类}{21}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}复杂性类之间的关系}{22}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces P vs NP问题的可视化表示。图中展示了P类问题(绿色区域)、NP完全问题(红色区域)和NP难问题(紫色虚线区域)之间的关系。P=NP问题本质上是在问绿色区域是否与蓝色区域(NP类)完全重合。}}{22}{}\protected@file@percent } \newlabel{fig:pnp_visualization}{{3}{22}{}{figure.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces 复杂性类的包含关系图。每个椭圆代表一个复杂性类,内层的类被外层的类所包含。P=NP问题等价于问第三个和第四个椭圆是否重合。}}{23}{}\protected@file@percent } \newlabel{fig:complexity_classes}{{4}{23}{}{figure.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.6}近似算法与复杂性}{23}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.7}随机化算法与复杂性}{23}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.8}问题的可计算性}{24}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.8.1}可判定性}{24}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.8.2}可枚举性}{24}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces 可计算性类的包含关系图。递归语言是最容易处理的,而有些语言甚至不是递归可枚举的。}}{25}{}\protected@file@percent } \newlabel{fig:computability_classes}{{5}{25}{}{figure.5}{}} \@writefile{toc}{\contentsline {section}{\numberline {5}布尔可满足性问题:NP完全性的基石}{25}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}问题的形式化定义}{25}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}SAT的标准形式}{26}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {5.3}SAT的重要变体}{26}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces NP完全问题之间的归约关系图。图中展示了SAT、3-SAT、图着色、哈密顿回路、TSP等NP完全问题之间的多项式时间归约关系。箭头A→B表示问题A可以归约到问题B,即如果B可以在多项式时间内解决,则A也可以。}}{27}{}\protected@file@percent } \newlabel{fig:np_reductions}{{6}{27}{}{figure.6}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4}SAT的NP完全性证明}{27}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {5.5}SAT求解技术}{28}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {5.6}SAT的实际应用}{28}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {5.7}SAT与其他问题的关系}{29}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.7.1}规约关系}{29}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.7.2}理论意义}{29}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces SAT求解器使用的决策树示例,展示了系统化搜索过程。}}{30}{}\protected@file@percent } \newlabel{fig:sat_solver}{{7}{30}{}{figure.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces SAT问题的示例及其求解过程。图中展示了一个布尔表达式的合取范式表示,以及DPLL算法在搜索空间中进行系统化探索的决策树。}}{30}{}\protected@file@percent } \newlabel{fig:sat_example}{{8}{30}{}{figure.8}{}} \@writefile{toc}{\contentsline {section}{\numberline {6}TSP与SAT问题:NP完全性的桥梁}{30}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}TSP问题的形式化定义}{30}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}TSP的变体与特例}{31}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces 旅行商问题(TSP)的示例。图中展示了一个完全图,其中顶点代表城市,边权表示城市间的距离,红色路径表示一个可能的最优哈密顿回路。}}{31}{}\protected@file@percent } \newlabel{fig:tsp_example}{{9}{31}{}{figure.9}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3}TSP到SAT的多项式时间归约}{31}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {6.4}归约的复杂性分析}{32}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {6.5}求解策略比较}{32}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {6.6}两个问题的共同特点}{32}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces TSP问题归约到SAT问题的示意图,展示了如何将TSP的约束条件转化为布尔表达式。}}{33}{}\protected@file@percent } \newlabel{fig:tsp_sat_relation}{{10}{33}{}{figure.10}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.7}实际应用中的选择}{33}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {6.8}理论意义}{33}{}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {7}P=NP的影响:计算世界的革命性变革}{34}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}如果P=NP成立}{34}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.1}算法设计的革命}{34}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.2}密码学的重构}{34}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.3}人工智能的飞跃}{35}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.4}科学研究的加速}{35}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}如果P\neq NP成立}{36}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.2.1}理论研究的深化}{36}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.2.2}实践方向的调整}{36}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {7.3}对各领域的具体影响}{36}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.3.1}软件工程}{36}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.3.2}数据科学}{37}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces P=NP问题解决后对各领域的潜在影响示意图,展示了在算法设计、密码学、人工智能和科学研究等领域可能带来的革命性变革。}}{38}{}\protected@file@percent } \newlabel{fig:pnp_impact}{{11}{38}{}{figure.11}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.4}社会经济影响}{38}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.4.1}经济结构}{38}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.4.2}社会发展}{39}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {7.5}伦理与安全考虑}{39}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.5.1}隐私保护}{39}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.5.2}权力平衡}{39}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces P=NP问题解决后的发展时间线示意图。}}{40}{}\protected@file@percent } \newlabel{fig:pnp_timeline}{{12}{40}{}{figure.12}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.6}未来展望}{40}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.6.1}技术发展}{40}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.6.2}理论研究}{41}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces P=NP问题两种可能结果的影响对比。}}{41}{}\protected@file@percent } \newlabel{fig:pnp_comparison}{{13}{41}{}{figure.13}{}} \@writefile{toc}{\contentsline {section}{\numberline {8}结论}{41}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {8.1}理论意义}{42}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {8.2}实践价值}{42}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {8.3}研究现状}{42}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {8.4}未来展望}{43}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces P vs NP问题研究的主要方面总结。}}{43}{}\protected@file@percent } \newlabel{fig:conclusion_summary}{{14}{43}{}{figure.14}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.5}个人思考}{44}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces P vs NP问题研究的发展历程与展望。}}{44}{}\protected@file@percent } \newlabel{fig:research_timeline}{{15}{44}{}{figure.15}{}} \@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces P、NP和NP完全问题之间的关系总结图。此图展示了三个复杂性类的包含关系,以及P=NP问题的核心——如果P=NP成立,则三者完全重合;如果P≠NP成立,则P是NP的真子集。}}{45}{}\protected@file@percent } \newlabel{fig:pnp_relation}{{16}{45}{}{figure.16}{}} \bibcite{cook1971complexity}{1} \bibcite{karp1972reducibility}{2} \bibcite{levin1973universal}{3} \@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces 复杂性类的包含关系图。展示了从AC0到EXPSPACE的主要复杂性类之间的包含关系,以及每个类中的典型问题。P=NP问题是计算机科学中最重要的未解决问题之一,它询问P类和NP类是否相等。}}{46}{}\protected@file@percent } \newlabel{fig:complexity_classes}{{17}{46}{}{figure.17}{}} \@writefile{toc}{\contentsline {section}{\numberline {9}参考文献}{46}{}\protected@file@percent } \bibcite{garey1979computers}{4} \bibcite{sipser2006introduction}{5} \bibcite{arora2009computational}{6} \bibcite{goldreich2010p}{7} \bibcite{aaronson2016p}{8} \bibcite{wigderson2019mathematics}{9} \bibcite{fortnow2013golden}{10} \bibcite{papadimitriou1994computational}{11} \bibcite{hopcroft2001introduction}{12} \bibcite{dasgupta2008algorithms}{13} \bibcite{kleinberg2006algorithm}{14} \bibcite{cormen2009introduction}{15} \bibcite{impagliazzo2001complexity}{16} \bibcite{razborov1994natural}{17} \bibcite{williams2014algorithms}{18} \bibcite{babai2016graph}{19} \bibcite{dinur2007pcp}{20} \bibcite{valiant1979complexity}{21} \bibcite{razborov1985lower}{22} \bibcite{mulmuley2001geometric}{23} \bibcite{agrawal2004primes}{24} \bibcite{khot2002power}{25} \gdef \@abspage@last{48}