{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 第十八讲:行列式及其性质\n", "\n", "本讲我们讨论出行列式(determinant)的性质:\n", "\n", "1. $\\det{I}=1$,单位矩阵行列式值为一。\n", "2. 交换行行列式变号。\n", "\n", " 在给出第三个性质之前,先由前两个性质可知,对置换矩阵有$\\det P=\\begin{cases}1\\quad &even\\\\-1\\quad &odd\\end{cases}$。\n", "\n", " 举例:$\\begin{vmatrix}1&0\\\\0&1\\end{vmatrix}=1,\\quad\\begin{vmatrix}0&1\\\\1&0\\end{vmatrix}=-1$,于是我们猜想,对于二阶方阵,行列式的计算公式为$\\begin{vmatrix}a&b\\\\c&d\\end{vmatrix}=ad-bc$。\n", "\n", "3. a. $\\begin{vmatrix}ta&tb\\\\tc&td\\end{vmatrix}=t\\begin{vmatrix}a&b\\\\c&d\\end{vmatrix}$。\n", "\n", " b. $\\begin{vmatrix}a+a'&b+b'\\\\c&d\\end{vmatrix}=\\begin{vmatrix}a&b\\\\c&d\\end{vmatrix}+\\begin{vmatrix}a'&b'\\\\c&d\\end{vmatrix}$。\n", " \n", " **注意**:~~这里并不是指$\\det (A+B)=\\det A+\\det B$,方阵相加会使每一行相加,这里仅是针对某一行的线性变换。~~\n", "\n", "4. 如果两行相等,则行列式为零。使用性质2交换两行易证。\n", "5. 从第$k$行中减去第$i$行的$l$倍,行列式不变。这条性质是针对消元的,我们可以先消元,将方阵变为上三角形式后再计算行列式。\n", "\n", " 举例:$\\begin{vmatrix}a&b\\\\c-la&d-lb\\end{vmatrix}\\stackrel{3.b}{=}\\begin{vmatrix}a&b\\\\c&d\\end{vmatrix}+\\begin{vmatrix}a&b\\\\-la&-lb\\end{vmatrix}\\stackrel{3.a}{=}\\begin{vmatrix}a&b\\\\c&d\\end{vmatrix}-l\\begin{vmatrix}a&b\\\\a&b\\end{vmatrix}\\stackrel{4}{=}\\begin{vmatrix}a&b\\\\c&d\\end{vmatrix}$\n", "\n", "6. 如果方阵的某一行为零,则其行列式值为零。使用性质3.a对为零行乘以不为零系数$l$,使$l\\det A=\\det A$即可证明;或使用性质5将某行加到为零行,使存在两行相等后使用性质4即可证明。\n", "\n", "7. 有上三角行列式$U=\\begin{vmatrix}d_{1}&*&\\cdots&*\\\\0&d_{2}&\\cdots&*\\\\\\vdots&\\vdots&\\ddots&\\vdots\\\\0&0&\\cdots&d_{n}\\end{vmatrix}$,则$\\det U=d_1d_2\\cdots d_n$。使用性质5,从最后一行开始,将对角元素上方的$*$元素依次变为零,可以得到型为$D=\\begin{vmatrix}d_{1}&0&\\cdots&0\\\\0&d_{2}&\\cdots&0\\\\\\vdots&\\vdots&\\ddots&\\vdots\\\\0&0&\\cdots&d_{n}\\end{vmatrix}$的对角行列式,再使用性质3将对角元素提出得到$d_nd_{n-1}\\cdots d_1\\begin{vmatrix}1&0&\\cdots&0\\\\0&1&\\cdots&0\\\\\\vdots&\\vdots&\\ddots&\\vdots\\\\0&0&\\cdots&1\\end{vmatrix}$,得证。\n", "\n", "8. 当矩阵$A$为奇异矩阵时,$\\det A=0$;当且仅当$A$可逆时,有$\\det A\\neq0$。如果矩阵可逆,则化简为上三角形式后各行都含有主元,行列式即为主元乘积;如果矩阵奇异,则化简为上三角形式时会出现全零行,行列式为零。\n", "\n", " 再回顾二阶情况:$\\begin{vmatrix}a&b\\\\c&d\\end{vmatrix}\\xrightarrow{消元}\\begin{vmatrix}a&b\\\\0&d-\\frac{c}{a}b\\end{vmatrix}=ad-bc$,前面的猜想得到证实。\n", "\n", "9. $\\det AB=(\\det A)(\\det B)$。使用这一性质,$\\det I=\\det{A^{-1}A}=\\det A^{-1}\\det A$,所以$\\det A^{-1}=\\frac{1}{\\det A}$。\n", "\n", " 同时还可以得到:$\\det A^2=(\\det A)^2$,以及$\\det 2A=2^n\\det A$,这个式子就像是求体积,对三维物体有每边翻倍则体积变为原来的八倍。\n", "\n", "10. $\\det A^T=\\det A$,前面一直在关注行的属性给行列式带来的变化,有了这条性质,行的属性同样适用于列,比如对性质2就有“交换列行列式变号”。\n", " \n", " 证明:$\\left|A^T\\right|=\\left|A\\right|\\rightarrow\\left|U^TL^T\\right|=\\left|LU\\right|\\rightarrow\\left|U^T\\right|\\left|L^T\\right|=\\left|L\\right|\\left|U\\right|$,值得注意的是,$L, U$的行列式并不因为转置而改变,得证。" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }