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Abstract

This paper applies model-based deep reinforcement learning to solve a simplified storage
assignment problem. First, we train an LSTM network order predictor from a long historical
order sequence and use it for state transformation and reward variance reduction. Second, we
run an approximate value iteration until convergence. Our algorithm is specifically designed to
address the tradeoff between travel-time efficiency and the reposition costs. Our experiments
evaluate this algorithm in a variety of simulated environments with varying number of products
and different stochastic order processes. In all cases, our algorithm significantly reduces overall
storage costs compared to random assignment heuristic. The performance gap between our
algorithm and the oracle tabular value iteration with access to latent order probability is shown
to be small. The running time of the algorithm scales up linearly with respect to the number
of products up to 1000, despite the factorial growth of the size of the state space.

1 Introduction

Storage assignment - the process of putting products into storage locations before they can be picked
to fulfill customer orders - highly affect the speed and cost of order picking and warehouse capacity.
Order picking - the process of retrieving products from storage in response to a specific customer
request - is the most costly and time-consuming activity in a typical warehouse with automated
system (Goetschalckx and Ashayeri, 1989; Drury, 1988; Tompkins et al., 2003; De Koster et al.,
2007; Roodbergen and Vis 2008; Chiang et al., 2010).

Design and control of warehouse order picking involve a large set of decisions, composite ob-
jectives, and constraints. Typical engineering practice divides this large problem into modularized
subproblems including layout design, storage location assignment problem (SLAP), pickup routing,
zoning, and batching, et al.. Our focus here is the storage location assignment problem. It consists
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of determining the most efficient assignment of products to locations in order to minimize the total
handling efforts. (Silvia, et al., 2019)

The storage assignment is proved difficult to solve optimally, because of infeasibly large combina-
torial search space, complex dynamic stochastic bulk arrivals and order requests, and its interaction
with order picking policies. In practice, heuristic control algorithms justified by both extensive sim-
ulation studies and highly specialized analytical examples are solutions currently in use (Hausman
1976, Tappia, et al., 2019).

Deep reinforcement learning has a demonstrated track record in solving control problems with
complex inputs and large search space, as shown in the success of Alpha Go (Silver, et al., 2016),
end-to-end training with video input (Levine, et al., 2016), and vast applications in the past few
years. Within this umbrella of algorithms, using learned models of the environment gives the system
the ability to predict the future and could substantially improve the sample efficiency (Kaiser, et
al., 2019).

Our work trains a LSTM (long short-term memory) network as an order predictor and then
apply value iteration with a FFNN (feedforward network) function approximation to solve a sim-
plified version of the storage assignment problem in a simulated environment. In particular, our
setup highlights the tradeoff between travel-time efficiency and reposition cost and our algorithm
solves this tradeoff almost optimally.

In our empirical evaluation, our approach is indistinguishable to optimal tabular solution in a
simple environment with a small number of products and stationary order process in terms of both
travel time per order request and storage space adjustment cost. Under the environment with a
large number of products and non-stationary order process where an optimal tabular solution is not
available, we demonstrate the success of our algorithm by showing a significant increase of average
reward as the number of iteration increases.

2 Related Work

The storage assignment problem has been widely studied since Hausman et al. 1976. Heuristic
algorithms fall into the following four categories: dedicated, random, closest open location, class-
based (Koster et al. 2007). Dedicated storage assigns each product to a fixed location. A version of
it called full-turnover storage policy assigns products with higher demand to locations closer to the
I/O points. Random storage assigns incoming product to all empty space with equal probability.
Closest open location storage assigns an incoming product to the empty location closest to the
I/O point. Random storage and closest open location storage have high space utilization but are
significantly inefficient in terms of travel time. While, dedicated methods with full-turnover, being
highly travel-time efficient, requires a large amount of reposition because of constant changes in
demand frequencies and product assortments. State of the art heuristic solution is class-based
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storage (Hsieh and Tsai 2001; Jane and Laih 2005; Manzini 2006). It utilizes demand forecasting
to divide products into classes and locations into zones, then assign each class to a zone. Within
a zone, it applies a random assignment. This method is a hybrid of dedicated methods at the
class level and random method within the class. The intuition is it partially retains the travel-time
efficiency of the dedicated method and at the same time reduces the problem of a high frequency
of reposition and low space utilization.

Our observation in the context of current literature is the tradeoff between travel-time efficiency
in the relatively short run and the reposition cost in the relatively long run haven’t yet been solved
optimally by existing methods. The class-based storage is simple and robust but is only suboptimal
in addressing this tradeoff. Our algorithm basing on precise demand forecasting is superior and
close to optimal in this direction. The performance of this algorithm in other dimensions and its
robustness in an adversarial situation is not captured in our study.

Several success of applying DRL in stochastic control already exists in the literature. Srinivasa,
et al. 2018 at Samsung and research group at Deepmind apply DRL to solve the cooling control
problem of data center and achieves significant improvements compared to the traditional method.
Wu, et al. 2016 and Kazmi, et at. 2018 successfully apply DRL in traffic control problems and hot
water system control problems.

3 A Simplified Storage Assignment Problem

We set the problem up as a partially observed Markov decision problem (POMDP) defined as
a tuple (S,A, P, r, γ) of states, actions, transition, rewards, and discount. We then discuss the
discrepancy between this setup to the real world.

POMDP

There are M different kind of products and M grids with a 2D layout M = n1 × n2. At time t,
product i is stored in grid mapt(i) and different products are in different grids. Travel time of a grid
k, travel(k), equals the distance of k to the I/O point. The reposition cost for exchanging product
in grids k and l, e(k, l), equals the distance between these two grids. Notice that the travel time
and reposition cost are assumed to be product independent and are functions of grids only. The
only action is reposition, which together with the current storage map mapt determines the storage
map in the next step mapt+1. This action ait is restricted to exchanging the storage location of at
most two products at each period.

Here is the timeline within period t. The agent (storage system) will

1. Receive new orders of products oit, i = 1, . . . ,M generated from oit ∼ Ber(pit)

2. Deliver products in the new orders and incur total travel time costs ctravel,t =
∑M
i=1 oit ·

travel(mapt(i))
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3. Reposition products by taking action at and incur reposition costs creposition,t = e(at). Gen-
erate new storage map mapt+1 from mapt and at.

In the background, order probability pit follows a (linear combination of) markov process w.r.t. its
own history (pit−1, pit−2, . . . , pit−k) for some fixed k. In the simulation, we experiment with static
order where pit = pi is time invariant and dynamic order where pit has a periodic seasonal pattern.
The order probabilities are unobserved and their stochastic nature is assumed to be unknown to
the agent.

Table 1 summarizes relevant variables in the environment. Figure 1 shows the transition dia-
gram.

Figure 1: Transition Diagram

Class Variable Notation Range

State
Order probability pit [0, 1]

Order oit {0, 1}
Storage map mapt Permutation([M ])

Action Reposition ait {(k, l), 1 ≤ k < l ≤M} ∪ {None}

Reward
Total travel time ctravel,t R+

Reposition cost creposition,t R+

Table 1: Overview of Variables

The optimization problem is

min
π

Eorder

[ ∞∑
t=0

γt (ctravel,t + creposition,t)
∣∣∣∣π
]

Discussion of Assumptions

The biggest assumption in our setup is the product refilling cost is zero. This assumption is
substantive. We decide to work under this assumption because we have no expertise in modeling
the stochastic product arrival and refilling process and we want to see what can be done in this
simpler setting. We also discuss this in the limitation and future work section at the end. The
second assumption is the pickup routing policy is fixed and summarized by the travel time function
travel(·). This assumption is minor. These two assumptions enables us to focus on the travel time
vs reposition tradeoff as clean as possible at the cost of sweeping the refilling and routing problems
under the rug.
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4 Algorithm: Approximate Value Iteration with Order Predictor

4.1 Use Order Predictor for State Transformation and Reward Variance Re-
duction

A crucial component in the design of our storage algorithm is the utilization of demand predictor.
Notice the order process and the whole environment is Markov w.r.t. the long history up to k
previous periods where k is unknown and moreover the conditioning variable p is not observed. To
properly exploit the Markov nature of the order process, we keep a long order history, e.g. 1000
periods, in the states. The states are then (mapt, ot, . . . , ot−1000). However, this state cannot be
directly used for value iteration because of its high dimensionality. In this context, the demand
predictor serves two purposes both as a filter for state transformation and as a tool for reward
variance reduction. To handle the high-dimensionality problem, we use the demand predictor to
generated an estimated order probability sequence (p-sequence) (p̂t, . . . , p̂t−1000) and then truncate
it to a much shorter sequence −→p t ≡ (p̂t, . . . , p̂t−L) where L << 1000. The value iteration acts
only on the transformed states (mapt, p̂t, . . . , p̂t−L) with manageably low dimension. The idea is
estimated probability contains much more information about the historical states than the noisy
order itself; while, the truncation is a simple way to speed up the algorithm at the cost of information
loss. To reduce the noise of the reward, we use the predicted probability to calculate expected travel
time cost ĉtravel,t =

∑M
i=1 p̂it ·travel(mapt(i)) instead of using that based on the noisy realized order

ctravel,t =
∑M
i=1 oit · travel(mapt(i)).

Since the order predictor plays multiple important roles in our architecture, the success of our
approach will crucially depend on its performance. The prediction model we use a LSTM network
with 1000 lookback.1 Its performance under various specification of order processes are evaluated
in the next section.

1Architectures like attention and transformer could potentially have better performance.
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4.2 Algorithm

Algorithm: Approximate Value Iteration with Order Predictor

0. Initialize model environment

Train Order
Predictor

1. Sample a long order sequence H = (o1, o2, . . . , oH)
2. Train_supervised(H, LSTM_order_predictor)
3. Generate a long p-sequence P = (p̂1001, p̂H) where

p̂t = LSTM_order_predictor(ot−1, . . . , ot−1000)

Approximate
Value Iteration

4. Initialize value function approximator with parameter θ0

5. for iteration i = 1, 2, . . . , I do
6. Sample storage maps (map1, . . . ,mapn) from Permutation([M ])
7. Sample (−→p 1, . . . ,

−→p n) by random slicing subsequences of P with length L+ 1
8. for each j = 1, 2, . . . , n do
9. Bellman backup for acting state sj = (mapj ,−→p j[:-1])

by V̄ (sj)← mina E[creposition(a) + ĉtravel(mapj , a) + γV̂θ(s′j)]
where s′j = (map′j ,

−→p j[1:]), map′j is a function of mapj and a
10. Update θ using (sj , V̄ (sj)) by minimizing (Vθ(sj)− V̄ (sj))2

The simple max policy is directly based on the trained value function with

πθ(sj) = arg min
a∈A

E[creposition(a) + ĉtravel(mapj , a) + γVθ(s′j)].

5 Evaluation and Results

We aim to answer the following questions in our experiments:

1. Under environments with static order processes, is our algorithm able to find an efficient
sequence of actions leading to the optimal placement that saves travel time in the long term?

2. How does our algorithm perform under environments with a dynamic order process?

3. Can this algorithm scale up to handle a large number of products?
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Enviroment Variables Setting 1 Setting 2
Number of Products 10 10

Layout 2× 5 2× 5
γ 0.99 0.99

Order Process Static Semiannual

True Order Probability
[0.1, 0.19, 0.28, 0.37, 0.46,
0.54, 0.63, 0.72, 0.81, 0.9 ]

Season 1: [0.1, 0.19, 0.28, 0.37, 0.46,
0.54, 0.63, 0.72, 0.81, 0.9]
Season 2: [0.9, 0.81, 0.72, 0.63, 0.54,
0.46, 0.37, 0.28, 0.19, 0.1]
Season length: 500 periods

Table 2: Evaluation Settings

To answer 1, we compare our algorithm against the optimal tabular solution in a simple envi-
ronment with 10 products and a static order process, referred as setting 1 in Table 2. The size of 10
is chosen because the tabular solution does not scale well and can not handle more than 10 products
on our laptops. To answer 2, we first train our algorithms under a similar 10-product environment
but with a dynamic order process, the setting 2 in Table 2, and then evaluate them under the
setting 1 to make comparison. To answer 3, we evaluate our algorithm in various environments
with a larger number of products and document the time spent on training and policy execution.
All our code is available on Github 2.

5.1 Results under a Static Order Process

Figure 2: Total Return

Figure 2 shows the learning curve of our algorithm against the tabular iteration algorithm. The
FFNN algorithm with access to the true static order probability (blue line) achieves high returns

2https://github.com/znwang25/SmartStorage
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quickly and its returns seem to converge to the optimal value produced by the tabular solution.
Revoking the access to true order probability does not change the result. The orange line shows
that our proposed FFNN+LSTM algorithm can also successfully achieve a near-optimal return
value.

Interestingly, despite the similar values in total returns to the optimal returns by, the FFNN+LSTM
algorithm uses a strategy that is less aggressive in reposition than that of the tabular solution. It
incurs less reposition costs but more travel-time costs as shown in Figure 3. One possible explana-
tion is the value function approximation is a regularized version of and is smoother than the true
value function. Contrast of states whose true value are very close to each other are shrunk toward
zero under the function approximation. The corresponding policy is therefore less active.

(a) Total Reposition Costs (b) Total Travel-time Costs

Figure 3: Costs Breakdown

5.2 Results under a Dynamic Order Process

In the dynamic order process setup, the order probabilities change with a semiannual pattern as
specified in setting 2 in Table 2. The solid lines in Figure 4 shows how order probabilities change
over time.

The red and green lines in Figure 2 show the total returns of the FFNN+LSTM algorithms
trained in a dynamic order environment. The FFNN with access to the true order probability (red
line) again performs very well and achieves a return close to optimal. It converges slightly slower
than its counterpart trained under the static order process environment.

The FFNN+LSTM algorithm trained under dynamic order process has a suboptimal perfor-
mance, as indicated by the green line in Figure 2. The performance gap is unavoidable in principle,
because it doesn’t have access to the true order probability. Even though the LSTM network per-
forms reasonably well in predicting underlying order probabilities as shown in Figure 4, it needs
to take several time steps to collect orders generated from probabilities under the new season right
after the season change point in order to recognize the sharp change in order probability. During
these several time steps, the predicted probabilities, the transformed states, and value at these
states are all very imprecise, which generate several periods of wasteful repositions, which don’t
reduce travel-time costs. This is shown by the two green lines in Figure 3. This performance gap
would be much smaller if the probability dynamic were more continuous.
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Figure 4: LSTM performance

Number of
Products

Number of
Permutations

Training Time
(sec/iteration)

Rollout Time
(sec/10step)

4 24 0.07 0.45
10 3.6× 106 0.20 0.53
25 1.5× 1025 1.12 0.90
50 3.0× 1064 1.10 0.83
100 9.3× 10157 1.54 1.12
200 7.8× 10374 2.35 1.38
1000 4.0× 102567 11.9 4.24

Table 3: Scalability of FFNN + LSTM

5.3 Scalability

The FFNN+LSTM algorithm scales well with respect to increase in the number of products up
to 1000. Figure 5 demonstrates a rollout of policy out of this algorithm in a 100-product 10×10
environment with a static order process. (5b) and (5c) shows the storage maps at the beginning
and at the end of 100 periods. In this simple static setting, a good policy should move products
with higher order probability, indicated by warmer color, to locations with lower travel time or
equivalently locations closer to the I/O points highlighted by the yellow boundaries. The policy
out of the algorithm acts highly in line with this intuition.

Table 3 presents the training and policy execution time for our algorithm under environments
with a static order process and various number of products. It shows that both training time and
policy execution time scale almost linearly with the number of products 3. Those numbers are very
encouraging especially considering how fast the number of permutations explodes.

(a) Learning Curve (b) Before (c) After 100 timesteps

Figure 5: Performance in a 100-Product 10×10 Environment with Static Order Processes

3These number could be overly optimistic. We keep the number of sampled actions and states fixed and in
particular independent of the number of products.
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6 Conclusion and Future Work

In this work, we apply model-based deep reinforcement learning to solve a simplified storage assign-
ment problem. Our proposed algorithm is able to learn the latent state behind the order process
and find actions to minimize both total time-travel costs and total reposition costs. We show that
our algorithm performs well in a variety of simulated environments with varying number of prod-
ucts (≤ 1000) and different stochastic order processes. In cases where optimal tabular iteration
solution is available, the performance gap between our algorithm and the optimal solution is small.
In cases where a tabular iteration solution is infeasible, our algorithm can still reach convergence
within a short amount of time despite the huge state space and produce an impressive policy. In all
cases, our algorithm significantly reduces overall storage costs compared to random assignments.

Our work demonstrates deep reinforcement learning as a promising tool to solve storage assign-
ment problem. However, our algorithm is not directly applicable to any real storage system, where
travel time efficiency and reposition costs are only two out of many objectives to be optimized.
In particular, future work should take refilling process, the costs therein, and the pick-up routing
problem into account and potentially solve a joint optimization problem. We strongly believe that
deep reinforcement learning with stochastic predictors could still be a powerful tool in solving these
larger scale problems.
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