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Word alignment is a well-established task, which found its use mostly in PBMT. This report presents
SlowAlign, a system combining multiple hard alignment extracting strategies, which are determined by a
small number of parameters. The main functionalities of SlowAlign are (1) heuristic parameter estimation in
a supervised fashion using gridsearch, (2) combination of multiple soft alignments and (3) data-less alignment
based on diagonal alignment, Levenstein distance and blurring.

This report is split into the following sections:

• System Description: introduction to different components of SlowAlign together with the heuristics
• Evaluation: dataset overview and evaluation, especially in comparison to fast_align
• Summary: concludes this report and lists future work
• Appendix: technical details, including building this project

Word Alignment

Traditionally, word alignment consists of two parts: (1) soft alignment, which produces alignment scores
and (2) induction of hard alignment, which produces the discrete alignment itself from the scores. There
are numerous strategies for the second step, argmax and threshold being the most intuitive and common
ones. These extractors can be parametrized by a single number (e.g. cut-off threshold). Usually, it is up to
the user to experiment with different values and choose the best one. This becomes increasingly difficult
as multiple extractors can be combined together (e.g. intersection) to produce better performance. Then,
instead of having just one number to manipulate, it is now a whole vector.

SlowAlign aims to automate this process by performing gridsearch over a subspace of possible values given a
train/dev dataset with gold alignment annotations. To that goal, it defines several other extractors and
combines them together.

Repository

The attached repository (also hosted at github.com/zouharvi/SlowAlign) is structured as follows:

• src: source code in Rust
• meta: source for this report, miscellaneous scripts for evaluation and plotting
• data: directory intended for data storage, contains two scripts to pre-process data cited in this report

System Description
The system is currently composed of two parts: SlowAlign-Dic and SlowAlign.

SlowAlign Dic
A viable way to align one sentence pair (test_s0, test_t0) given that we already have large parallel
corpus {(train_s0, train_t0), (train_s1, train_t1), ..)} is to simply add the test sentence pair to
the training data and run the unsupervised alignment algorithm again:

test_s0 ||| test_t0
train_s0 ||| train_t0
train_s1 ||| train_t1
...
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This, however, does not scale well, especially if the user is interested in online usage of the alignment (data
come in sequentially and not in batches). To alleviate this, it is possible to simply store the word translation
probabilities (output of the Expectation step in IBM1) and load them at inference time. The results will not
be similar as in the first case (the presence of the test sentence can influence the outcome of the training
algorithm), but the changes may be considered negligible, and in general, this makes it possible to deploy
and expect reasonable runtime. The tool fast_align also has this feature, though undocumented.

Another advantage is that one can re-use pretrained word translation probabilities of other systems. Namely,
OPUS provides a great variety of such pre-trained word translation dictionaries (dic). The second column is
the translation probability, the third is the source token, and the last column is the target token. The first
column is the number of occurrences together. An example from Ubuntu v14.10 (de -> en), further columns
omitted:

...
2 0.117647058823529 Abmeldeknopf logout
5 0.192307692307692 Abmelden Log Out
7 0.181818181818182 Abmelden logout
3 0.113207547169811 Abmelden Log out
5 0.0980392156862745 Abmelden logging
2 0.0727272727272727 Abmelden Logout
2 0.114285714285714 Abmeldeoption logout
4 0.363636363636364 Abmessungen Dimensions
5 0.27027027027027 Abmessungen dimensions
...

Storing the whole translation matrix would lead to |V|x|V| number of entries, which is undesirable, especially
for word pairs with translation probability close to 0. We, therefore, need to decide a threshold by which we
determine if a given pair of words is to be stored or not.

SlowAlign-dic simply takes in two files of sentences to be aligned, the mentioned threshold and outputs
the word translation dictionary (the first column contains a dummy value, as it is not used). For word
translation probability estimation, the IBM1 model without NULL tokens is used. See Appendix for further
usage information of SlowAlign-dic (binary slow_align_dic).

SlowAlign Main
The output of this component is always an alignment (0-indexed) of the input (either files or sentences
passed through the CLI). Additional tasks may be performed, such as searching for optimal parameters or
evaluating the performance when gold alignments are supplied. The stdout is always reserved for just the
alignment. See Appendix for detailed usage information of SlowAlign (binary slow_align).

Extractors

SlowAlign is especially targeted to improve hard alignment extraction. The soft alignment can be the
intermediate representation in IBM models, but it can also be other metrics: attention energies, the difference
in word position in the sentence, Levenstein distance, etc.

A1: In IBM Model 1, the hard alignment induction is done by an argmax from the target side: align every
target token with the source token of the mutual higher alignment score. This makes a strong assumption
that every target token is aligned to exactly one source token. Because of this, the IBM Model 1 also uses
NULL tokens so that a target word has the possibility to align itself to NULL.

Aα
2 : The even simpler approach is to consider every alignment with the score above some threshold. This

makes this extractor parametrized by one value α. In essence, the expressive power of this is higher than
that of A1 because it does not impose any restrictions on the number of alignments. This is at the cost of
not considering the context of possible values for every target token.
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Aα
3 : The threshold can also be set dynamically. For every source token s, compute the threshold as

α ×maxt{score(s, t)} and then take all alignments with score at least this value. The alpha values are
bounded between 0 - take everything and 1 - take only the argmax (+every alignment with a score equal
to the maximum). Note: this can be further generalized to accommodate also negative scores by dividing
instead of multiplying.

Aα
4 : The last extractor is equivalent to Aα

3 with the only difference of aggregating from the target side.

Combination: Further improvements can be made by the combination of the two via set operations.
Usually, the union improves the recall, while the precision is improved by the intersection. For example, the
semantics of A1 ∩Aα2 would be: align every target token to its maximum source counterpart, but with the
rule of all scores begin above α. Finally, an extra improvement is to consider alignment from both directions.
Note that, for example, the output of IBM Model 1 is not just the transpose of the output on switched
parallel data because the E-M algorithm does asymmetric operations.

The main formula used in SlowAlign is parametrized by 7 real values:

Aα
5 =[[
Aα1

4 (IBMfwd) ∩Aα2
3 (IBMrev) ∩Aα3

2 (diag) ∩Aα4
2 (blurα5(IBMfwd))

]
∪Aα6

2 (levenstein)
]
∩Aα7

4 (IBMfwd)

The soft alignments are the following:

• IBMfwd: IBM Model 1 without the NULL tokens.
• IBMrev: IBM Model 1 without the NULL tokens performed on switched data (target-source) and then

transposed.
• diag: Absolute value of relative positions in the sentence:

∣∣ i
|S| −

j
|T |
∣∣

• levenstein: Levenstein distance of two words. This is useful for non-text tokens, such as interpunction,
but can also be used for, e.g. the alignment of post-edited dialect to the standard language.

• blur: Applies blurring filter [0, α, 0], [α, 1− 4 ∗α, α], [0, α, 0] on inside nodes of the soft alignment. This
is motivated by the fact that if adjacent words have high scores to be aligned to the same target word,
then the source word in the middle is also probably aligned to the same target word.

The parameters are specified in this format (square brackets mandatory): [α1], [α2], [α3], [α4, α5], [α6], [α7].
Default is [0.0],[1.0],[0.8],[0.0,0.1],[0.95],[0.8].

The gridsearch method searches the parameters in the following space. The behaviour of linspace is similar
to the one of NumPy (endpoint included). This space is defined in src/optimizer.rs.

linspace(0.95, 1.0, 4),
linspace(0.90, 1.0, 6),
linspace(0.1, 1.0, 10),
cartesian_product([linspace(0.1, 0.3, 8), linspace(0.0, 0.005, 4)]),
linspace(0.7, 1.0, 4),
linspace(0.0, 0.005, 4),

Methods

The following table lists methods available under the argument --method together with a minimum description.
The methods were chosen to fill a specific requirement niche. Their top-level behaviour is defined in
src/main.rs. Parameters have defaults that can be changed using the --params argument. Currently,
there is no mechanism nor typing system to enforce the shape of the parameters. The structure is, however,
invariant for every method, and it can be observed from the defaults. Extra parameters will be ignored; not
enough parameters will cause a panic.
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Name Comment Extraction Purpose

ibm1 Standard IBM1 model (without
NULL tokens). Default number of
steps is 5.

argmax (A1) Baseline comparison to
other methods.

levenstein Alignment score of two words is based
on their Levenstein distance:
1.0− lev(s,t)

|s|+|t|

threshold (A2)
default [0.75]

Lexical based
approximation of
alignment.

static Combination of diagonal alignment
and Levenstein. Soft alignment is the
arithmetic average of Levenstein
distance and

∣∣ i
|S| −

j
|T |
∣∣. Default

method of slow_align.

threshold (A2)
default [0.4]

Alignment between two
dialects for which little
data is available.1 This
does not require any
training.

search Performs gridsearch over a hardcoded
subset of the possible values of α.
The (first) set of parameters with the
lowest AER is then outputted.
Parameters --dev-count controls
how many sentences (from the top)
are used for parametric estimation.
For the final evaluation,
--test-offset determines from
which sentence (until the end of
supplied aligned sentences) to
compute the final AER.

Searched space
above. Defined in
src/optimizer.rs.

Using a small number of
supervised examples to
achieve better
performance.

a5_fixed The same as search, only the params
have to be provided.

A5 (above)
default above

Transfer testing.

dic2 A combination of multiple soft
alignments. Requires OPUS-like
translation probability table passed
by --dic. This table can be either
downloaded from OPUS or trained
using slow_align_dic.

A5 (above)
default above

Fast inference given the
parameters of search.

Speed

The following table lists runtimes measured once on Ryzen 7 3800x. It is debatable whether the parameter
search in search is part of the training or whether it can be viewed as simply hyperparameters and a5_fixed
should be measured. Despite its name, SlowAlign is currently slower by a tolerable margin, with bottlenecks
(unparalleled Levenstein) clearly visible and improvable in future work.

Method Czech German French
levenstein 1.2s <0.1s 18.7s
static 1.2s <0.1s 19.5s
ibm1 1.2s <0.1s 8.9s
search 8 hours 6 min 6.5 min
dic 3.3s 0.2s 1 min
fast_align 1s 0.3s 8.6s

1Added per request by a classmate, but still serves a great purpose as a training-less baseline.
2A similar feature is offered by fast_align, though it is hidden in the code and is undocumented.
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Evaluation
Datasets
There are three datasets used:

• English-Czech [1] with 5003 aligned sentences. The last 2503 is used for test evaluation. (shuffled, see
data/process_encs.sh) The alignment is indexed by one, therefore use --gold-index-one.

• German-English [2] with 100 aligned sentences. The last 50 is used for test evaluation. (shuffled, see
data/process_deen.sh)

• French-English [3] with 37 aligned sentences. Used solely for test evaluation.

Since English is one side of each of them, this report refers to the datasets as Czech, German and French. In
all cases, the whole data is visible to the system, but only the first {2500,50,0} alignments.

Furthermore, we use translation dictionaries made available by OPUS [5], namely Europarl v8, TildeMODEL
v2018, DGT v2019 and EUBookshop v2.

Performance
For measuring word alignment performance, Alignment Error Rate is used. Given hypothesis alignment A,
sure gold alignments S and possible gold alignments P , then AER = |A∩S|+|A∩P |

|A|+|S| . The following table lists
AER (percentage) of three Slow Align baselines (levenstein, static, ibm1), best Slow Align (search + OPUS
dic) all run with --lowercase and fast_align [4] (default parameters -dov). Configurations can be run by
manipulating meta/evaluate{,dic}.sh.

Method Czech German French
levenstein 63.4 62.4 50.7
static 51.4 46.9 43.1
ibm1 48.9T 62.2 31.1
search 41.6 (41.5) 48.5 (48.0) (16.8)
dic 36.0 24.3 (19.2)
fast_align 38.9 46.3 18.5

Values in brackets mark AER on training data. Parameters for dic were chosen manually by performance on
the training set (this could be done automatically, though the intended usage for dic is only fast inference).
Even though this comparison looks promisingly good to Slow Align, it is unfair since Slow Align can make
use of gold alignments and also translation probabilities from much larger corpora, while fast_align is limited
to only unsupervised parallel data in the given corpus.

These were the following parameters for search and dic:

search:
Czech: [0.95], [0.90], [0.7], [0.21, 0.0000], [0.70], [0.0050]
German: [1.00], [1.00], [0.5], [0.21, 0.0000], [0.70], [0.0033]
French: [1.00], [0.96], [0.7], [0.17, 0.0050], [0.80], [0.0033]

dic:
Czech: [0.7], [0.20], [0.7], [0.10, 0.0001], [0.80], [0.0]
German: [0.5], [0.20], [0.7], [0.10, 0.0001], [0.98], [0.0]
French: [0.1], [0.29], [0.7], [0.08, 0.0001], [0.76], [0.0]

The dic configuration is heavily dependent (up to +10 AER) on the data used. The performance is affected
by the dictionary size and mostly by the domain. This is demonstrated by Europarl dictionary vastly
outperforming TildeMODEL for Czech (0.6M vs 3.1k sentences). For German, the smaller in-domain
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dictionary of Europarl outperformed TildeMODEL (2M vs. 4.3M sentences). DGT and EUBookshop had
lower performance in comparison to Europarl possibly due to either smaller size or unfitting domains.

Parameter Transfer
The previous results showed that different parameters are suited for each of the datasets. The following
table simply runs the inference with parameters estimated from another language pair.

Transfer AER
German→Czech 42.6
French→Czech 42.0
Czech→German 47.0
French→German 48.4
Czech→French 24.7
German→French 25.1

We can observe an expected drop in performance, though not unreasonably large (excluding German). The
parameters, in this case, are not only language-specific but also dataset-specific. Annotation guidelines for
word alignment are not unified and may lead to a different number of aligned tokens even if applied to the
same parallel corpus.

For German, the transfer had better results than training on the language data. One possible explanation is
higher variance in the German corpus itself (together with its small size).

Train Data Size
The last two sections suggest that despite the very limited search space, the search method is dependent on
training data properties. Due to available data limitations, we examine only German and Czech. The latter
should have a higher weight since it contains 50x more data. In this specific setup, top-N training sentences
are considered.

The following two figures show the results. Only specific values are tested for Czech (given the computational
cost of exhaustive search). Horizontal lines depict the performance by transfer. Black dots mark the lowest
points separately for test and train AER. Note the non-linear scaling of the x-axis for Czech.
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An immediately observable result is the high variability in the training performance. This may be the
result of the dataset being small, and for a full study, cross-validation should be used to determine the
performance with better confidence (and also provide statistical significances). The expected behaviour
would be (1) decreasing test AER (more training data provides a better estimate for the test distribution)
and (2) increasing train AER (model “capacity” is being used up to fit more and more sentences). A trend
for (1) can be observed in Czech (especially for higher values) and (2) in German. A possible explanation is
that the Czech dataset is more homogenous and more consistent in the alignments than German. Because of
this, “new’ ’ sentences to the training dataset will have a similar optimal solution and, therefore, can even
decrease the training data size.

A conclusion from this evaluation is, that especially given the computational cost of gridsearch with larger
training data, it is viable to use only small subset of them to get reasonable results.

Summary
This report introduced a new tool for word alignment, Slow Align. Despite being (tolerably) slower and
having worse vanilla performance, it is still a versatile tool with the advantage of (1) clearly manipulatable
parameters that affect the output alignment and (2) being able to use existing translation tables, which yield
vastly better performance. Compared to fast_align, it provides competitive results and allows for higher
degree of explainability and extensibility.

Future Work
Built-in HTTP server: Word alignment can be used in multiple scenarios. It can be useful for research
purposes as a binary installed on a computer, but it is also necessary in some deployment scenarios.
Furthermore, sharing an alignment service in collaboration is easier than to manually send around parallel
data to align or to learn to use a specific word alignment tool. The simplest solution would just accept
the request and call the appropriate method from the main binary. This would be resource wasteful since,
e.g. the word translation dictionary would have to be loaded from the filesystem (or cached in the memory
by the OS) and parsed for every request (usually a pair of sentences). A solution to this would be to specify
a list of dictionaries to load when starting the server (more secure but also more restrictive) or keep an
explicit cache of one most recently used dictionary.
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Gridsearch multithreading: Currently, only the IBM soft alignment implementation is multithreaded
(fixed to 4 threads), even though it is problematic and bottlenecked between the Expectation and Maximization
steps. Inducing hard alignment using the recipes is, however, a pure function which only needs read access
to the soft alignment package. In the end, only the argmax needs to be extracted (parameters) together
with the AER. Even though this does not influence all the use-cases and especially the inference scenario, it
is possible to gain a multiplicative speedup determined solely by the number of cores (e.g. 8x). This is also
true for Levenstein computation.

Custom alignment score input: It has been shown that attention scores can be used for word alignment,
especially if one of the attention heads is trained for this explicitly. Further improvements can be made
if these scores are joined with other soft alignments. The main advantage is also the more complex hard
alignment induction scheme. An MT practitioner who wishes to, e.g. also present the word alignments next
to the MT output, may choose to send a request to SlowAlign together with their attention scores (and
possibly other parameters) to get a better hard alignment.
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Appendix
SlowAlign is written in Rust (1.50 in this report). It is somewhat thinner (1378 LOC) compared to fast_align
(1726 LOC).

For installation, please refer to the official resources. Assuming that cargo is in the path, the main binary can
be run as: cargo run --release --bin slow_align -- <arguments>. The target binary is going to be
stored in target/release/slow_align (and can be run as ./target/release/slow_align <arguments>).
To just build the binary and not run it, replace run with build. The rest of this appendix simply lists
abbreviated help pages of slow_align and slow_align_dic binaries.

Output of slow_align -h:
USAGE:

slow_align [FLAGS] [OPTIONS]

FLAGS:
--gold-index-one Treat gold alignments as if they are 1-indexed

(default is 0-indexed)
-h, --help Prints help information

--lowercase Treat everything case-insensitive (default is case-sensitive,
even though that provides slightly worse performance).

--switch-dic Switch the columns for dictionaries, default (src, tgt).
-V, --version Prints version information

OPTIONS:
--dev-count <dev-count> Number of sentences (from the top) to use for

parameter estimation. [default: 0]
-d, --dic <dic> OPUS-like dictionary of word translation

probabilities
-f, --file1 <file1> Path to the source file to align. (If both files

and sentences are provided, only files are used).
-f, --file2 <file2> Path to the target file to align. (If both files

and sentences are provided, only files are used).
-g, --gold <gold> Path to the file with alignments (single space

separated, x-y for sure alignments, x?y for
possible). `x` and `y` are (by default) 0-indexed
token indicies.

--ibm-steps <ibm-steps> Number of steps to use for IBM1 computation.
[default: 5]

-m, --method <method> Which alignment method pipeline to use (static,
dic, levenstein, ibm1, search, a5_fixed)
[default: static]

-p, --params <params> Comma-separated arrays of parameters to the
estimator recipe

-s, --sent1 <sent1> List of source sentences (separated by \n)
to align.

-s, --sent2 <sent2> List of target sentences (separated by \n)
to align.

--test-offset <test-offset> Offset from which to evaluate data. If not
supplied, use --dev-count value (so that dev and
test do not overlap).
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Output of slow_align_dic -h:
USAGE:

slow_align_dic [FLAGS] [OPTIONS] <file1> <file2> <out>

ARGS:
<file1> Path to the source file to train word translation probabilities on.
<file2> Path to the target file to train word translation probabilities on.
<out> Path to the output word translation probabilities dictionary.

FLAGS:
-h, --help Prints help information

--lowercase Treat everything case-insensitive (default is case-sensitive,
even though that provides slightly worse performance).

-V, --version Prints version information

OPTIONS:
-t, --threshold <threshold> Threshold under which translation probabilities

will be omitted. Lower values lead to better
approximation, but also larger file size.
[default: 0.2]
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