
Shrinking Knowledge Base Size:

Dimension Reduction, Splitting & Filtering
by

Vilém Zouhar

Master Thesis

Saarland University, Faculty of Arts, Language Science and Technology

Groningen University, Faculty of Arts, Linguistics Research Master

LCT Double Degree Master

Supervision

Dietrich Klakow (UdS), Gosse Bouma (RUG),

Marius Mosbach (UdS, advisor)

April 19, 2022

Declaration of Authorship

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Ich

versichere, dass die gedruckte und die elektronische Version der Masterarbeit inhaltlich

übereinstimmen.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used

any other media or materials than the ones referred to in this thesis. I assure that the

electronic version is identical in content to the printed version of the Master’s thesis.

Datum/Date:

Unterschrift/Signature:

ii

SAARLAND UNIVERSITY, GRONINGEN UNIVERSITY

Abstract

Shrinking Knowledge Base Size:

Dimension Reduction, Splitting & Filtering

by Vilém Zouhar

Recently neural network based approaches to knowledge-intensive NLP tasks, such as

question answering, started to rely heavily on the combination of neural retrievers and

readers. Retrieval is typically performed over a large textual knowledge base which

requires significant memory and compute resources, especially when scaled up. On

HotpotQA we explore various filtering & splitting criteria. Primarily, we systematically

investigate reducing the size of the KB index by means of dimensionality (sparse random

projections, PCA, autoencoders) and numerical precision reduction.

Our results show that PCA is an easy solution that requires very little data and is only

slightly worse than autoencoders, which are less stable. All methods are sensitive to pre-

and post-processing and data should always be centered and normalized both before and

after dimension reduction. Finally, we show that it is possible to combine PCA with

using 1bit per dimension. Overall we achieve (1) 100× compression with 75%, and (2)

24× compression with 92% original retrieval performance.

Keywords: document retrieval, knowledge base, dimension reduction, dimensionality, efficiency

iii

Acknowledgements

During my studies I was generously supported financially and non-financially by the

Erasmus Mundus European Masters Program in Language and Communication Tech-

nologies. Thank you to the administrators, Bobbye Pernice, Jürgen Trouvain and Ivana

Krujiff-Korbayová.

Thanks to everyone who helped in reviewing this thesis, among others Luuk Suurmeijer

(HHU), Rishu Kumar (CUNI), Mrinmaya Sachan (ETHz), Ryan Cotterell (ETHz) and

Jakub Zavrel.

A part of this work was also funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) - Project-ID 232722074 - SFB 1102.

iv

Content

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Related Work . 2

1.2 Retrieval pipelines . 4

1.3 Setup . 8

1.3.1 Document Retrieval . 8

1.3.2 Evaluation . 9

1.3.3 Similarity Functions . 10

1.3.4 Data . 12

1.3.5 Model Comparison . 12

1.3.6 Embedding Model Overview . 14

2 Splitting & Filtering 18

2.1 Splitting . 18

2.2 Filtering . 20

2.2.1 Heuristics . 20

2.2.2 Automatic filtering . 20

2.2.3 Discussion . 25

3 Dimension Reduction 26

3.1 Problem Statement . 26

3.1.1 Pre-processing Transformations . 27

3.2 Compression Methods . 28

3.2.1 Random Projection . 28

3.2.2 Principal Component Analysis . 29

v

3.2.3 Autoencoder . 31

3.2.4 Precision Reduction . 32

3.2.5 Combination of PCA and Precision Reduction 35

3.3 Analysis . 37

3.3.1 Model Comparison . 37

3.3.2 Speed. 37

3.3.3 Data size . 37

3.3.4 Retrieval errors . 38

4 Discussion 41

4.1 Recommendations . 41

4.1.1 Importance of Pre-/post-processing 41

4.1.2 Method recommendation . 41

4.1.3 Splitting . 42

4.2 Pitfalls of Reconstruction Loss . 42

4.2.1 Distance Learning . 42

4.3 Limitation . 45

4.4 Summary . 46

A Fusion Discussion 47

List of Figures 50

List of Tables 53

Bibliography 55

vi

Chapter 1

Introduction

Recent approaches to knowledge-intensive NLP tasks combine neural network based

models with a retrieval component that leverages dense vector representations [1–3].

The most straightforward example is question answering, where the retriever receives

a question as an input and returns relevant documents to be used by the reader (both

encoder and decoder), which outputs the answer [4, 5]. The same approach can also be

applied for models for other tasks, such as fact-checking [6], retrieval-enhanced language

modelling [7–9], or knowledgable dialogue [10, 11]. Moreover, this paradigm can also

be applied to systems that utilize e.g. caching of contexts from the training corpus to

provide better output, such as the k-nearest neighbours language model proposed by

Khandelwal et al. [12] or the dynamic gating language model mechanism by Yogatama

et al. [13]. All these pipelines are generalized as retrieving an artefact from a knowledge

base [14] on which the reader is conditioned together with the query. Overall, they rep-

resent a trend of combining the advantages of non-parametric (scalability, auditability)

and non-parametric models (performance, automatic optimization).

Crucially, all of the previous examples rely on the quality of the retrieval component and

the knowledge base. The knowledge base is usually indexed by dense vector represen-

tations1 and the retrieval component performs maximum similarity search, commonly

using the inner product or the L2 distance, to retrieve documents2 from the knowl-

edge base. Only the index alone takes up a large amount of size of the knowledge base

(150GB), making deployment and experimentation very difficult.3 The retrieval speed is

also dependent on the dimensionality of the index vector. An example of a large knowl-

edge base is the work of Borgeaud et al. [8] which performs retrieval over a database of

1.8 billion documents.

1Sparse representations via BM25 [15] are also commonly used but not the focus of this work.
2We refer to the retrieved objects as documents though they commonly range from spans of text

(e.g. 100 tokens) to the full documents. This is explained and disambiguated in Chapter 2.
3For experimenting with this index, a memory of up to 1TB is required.

1

Chapter 1. Introduction 2

The possible impacts of reducing the knowledge base size are (1) reduced deployment and

research constraints and (2) improved retrieval efficiency. The constraints are retaining

as much of the original retrieval performance as possible. This thesis focuses on the

issue of compressing the knowledge base size primarily through the dimensionality and

precision reduction of the index and makes the following contributions:

• Analysis of negative results of various splitting and filtering methods.

• Comparison of various unsupervised index compression methods in retrieval ex-

periments, including random projections, PCA, autoencoder, precision reduction

and their combination.

• Examination of effective pre- and post-processing transformations, showing that

centering and normalization are necessary for boosting the performance.

• Analysis on the impact of adding irrelevant documents and retrieval errors. Rec-

ommendations for use by practitioners.

This thesis is split into two main chapters: introduction to the problem and negative

results of Splitting & Filtering (Chapter 2) and Dimension Reduction (Chapter 3, the

primary content of this thesis). We provide further analysis in Section 3.3 and conclude

with usage recommendations in Chapter 4.

The repository for this thesis is available open-source.4

1.1 Related Work

This thesis is largely based on two papers written by the same author: Zouhar et al.

[14, 16] with a more detailed background and Chapter 2 added.

Knowledge-intensive NLP Overview. A comprehensive overview of earlier work

on neural model-based information retrieval systems together with a general introduction

has been done by Mitra and Craswell [17]. More recently models such as BERT have

been utilized successfully for the task of retrieval itself [18, 19].

The aim of KILT [3] is to provide a common knowledge base for a number of different

NLP tasks (ranging from question answering to fact verification) and to stimulate re-

search in task-agnostic memory architectures. Reformulating various NLP tasks to all

4github.com/zouharvi/kb-shrink

https://github.com/zouharvi/kb-shrink

Chapter 1. Introduction 3

use the same knowledge base format provides a stepping stone for the formalisms of

artefact retrieval.

Defining a task-agnostic abstract model is closely related to multi-task learning. The goal

of this approach is to improve the performance by training the model on multiple tasks

rather than on individual ones [20]. The hope is that representations and generalizations

learned for one task will help on another one and vice versa. A strong requirement for

this is that the instantiations for different tasks (in the multi-task setup) share significant

portions of the model.

An edge-case of this is using a pre-trained BERT model and then fine-tuning it for the

new task and/or possibly adding extra layers to match the input and output shapes.

Even for BERT, however, it was shown several times [3, 21–23] that training on multiple

tasks improves the performance [24]. This would not be possible without a common

model shared among the tasks. Further related work is discussed in the respective

sections when presenting individual NLP models and how they fit into this schema.

Reducing index size. A thorough overview of the issue of dimensionality reduction

in information retrieval in the context of dual encoders has been done by Luan et al. [25].

Though in-depth and grounded in formal arguments, their study is focused on the limits

and properties of dimension reduction in general (even with sparse representations) and

the effect of document length on performance. In contrast to their work, this thesis aims

to compare more methods and give practical advice with experimental evidence.

A baseline for dimensionality reduction has been recently proposed by Izacard et al. [26]

in which they perform the reduction while training the document (and query) encoder

by adding a low dimensional linear projection layer as the final output layer. Compared

to our work, their approach is supervised.

In the concurrent work of Ma et al. [27], PCA is also used to reduce the size of the

document index. Compared to our work, they perform PCA using the combination of

all question and document vectors. We show in Figures 3.2 and 3.6 that this is not

needed and the PCA transformation matrix can be estimated much more efficiently.

Moreover, we use different unsupervised compression approaches for comparison and

perform additional analysis of our findings.

An orthogonal approach to the issue of memory cost has been proposed by Yamada

et al. [28]. Instead of moving to another continuous vector representation, their proposed

method maps original vectors to vectors of binary values which are trained using the

signal from the downstream task. The pipeline, however, still relies on re-ranking using

Chapter 1. Introduction 4

the uncompressed vectors. This method is different from ours and in Section 3.2.4 we

show that they can be combined.

Finally, He et al. [9] investigate filtering and k-means pruning for the task of kNN

language modelling. This work also circumvents the issue of having to always perform

an expensive retrieval of a large data store by determining whether the retrieval is

actually needed for a given input.

Effect of normalization. Normalization in information retrieval is historically con-

nected with normalization with respect to the document length or term frequency [29–

31]. In the context of this thesis, we refer to vector normalization and in general post-

processing functions for vectors.

Timkey and van Schijndel [32] examine how dominating embedding dimensions can

worsen retrieval performance. They study the contribution of individual dimensions find

that normalization is key for document retrieval based on dense vector representation

when BERT-based embeddings are used. Compared to our work, they study pre-trained

BERT directly, while we focus on DPR.

1.2 Retrieval pipelines

Historically there has been a large focus on non-parametric models for knowledge-

intensive NLP tasks. Those are not models which don’t have any parameters but rather

they don’t have a fixed amount of parameters. This approach is particularly suited for

tasks such as question answering because the knowledge is retrieved from a database

and can be easily expanded or audited. Opposed to that are models which store the

knowledge in parameters, such as pre-trained language models, which became largely

adopted in the NLP community.

The parametric models suffer from becoming outdated very quickly [33], providing very

little explainability in comparison to non-parametric models and performing poorly on

unseen phenomena [7]. Recently there has been an emergence of the combination of

these approaches, as shown in Table 1.1. They work by retrieving something (artefacts)

from a knowledge base (or any persistent storage) and merging it in the computation of

a parametric model.

An abstract pipeline in Figure 1.1, described in detail by Zouhar et al. [14], shows

how these models operate. The key components are encoder, retriever, aggregator and

Chapter 1. Introduction 5

model (some may be joined together in some works, commonly the retriever and the

aggregator).

Artefact
(inference)

Artefact
(train)

Encoder Key

Query/Input Model Output

Gold Output
 Knowledge Base

Retriever

External Source

Aggregator

Figure 1.1: General scheme of NLP models utilizing artefacts by retrieving them from
a knowledge base and fusing them into the model in order to produce a better output.
Dashed links are utilized only in knowledge base creation and usually not all at once.

The input is specific to the given task. For language modelling, it is the previous

context, for question answering the question, for slot-filling usually the entity and the

relation, and for fact-checking the fact to be verified. In the context of this work, a

knowledge base is a collection of items, usually (but not necessarily) with a pre-built

index that maps keys to values. Prototypically, it is a collection of documents, though it

can also be a collection of gold training data input-output pairs or a knowledge graph.

Candidates are values retrieved from the knowledge base, which may be later post-

processed (e.g. reranking or averaging) by the aggregator to form an artefact. key is

an object through which the retriever finds suitable artefacts. Commonly the key is a

dense vector representation of the input, though it is not necessarily a vector and may be

dependent also on an intermediate model computation. An artefact is an object which is

(1) dependent on elements retrieved from the knowledge base (e.g. the concatenation of

k retrieved documents) and (2) can be used to improve the performance during training

and inference. In the simplest example, it is the retrieved value itself, though it can also

be multiple retrieved values or their combination.

In the context of question answering, we start with the query, then usually compute an

embedding of it or use TF-IDF, then we give this to the retriever, which does maximum

similarity search over a knowledge base, then the aggregator reranks and concatenates

them and we get the artefact. This is then fused into the model, for example, in the

form of priming. The model then produces the answer because it’s conditioned both on

the query and the artefact.

Chapter 1. Introduction 6

This formalism works also for other tasks that rely on retrieval, such as fact checking,

knowledge base-enhanced language modelling or knowledgeable dialogue [14]. Most

systems used in the literature differ in the encoder, retriever, and model design. We

bring attention to four properties that characterize the differences between such systems.

• Fusion (early, late, other)

• Specificity (sample, task, class)

• KB source (train, external, dynamic)

• Key & value type (dense, sparse, other)

We consider the fusion mechanism to be of the highest interest. Priming is very common

with pretrained language modelling and is an example of an early fusion. Formally the

model estimates p(y|x, ξ) where y is the ground-truth output, x is the query/input and

ξ is a retrieved artefact. Fusion Sun et al. [34] concerns with which point is the artefact

made available to the model. It can be presented to the model at the same time as

the query/input, e.g. by concatenating x and ξ (early fusion), just before the output

is created by the model (late fusion), or somewhere in between. We can think of any

model as a composition of functions f1, . . . , fn. In the simplest example of feed-forward

networks, these correspond to single layers and activation functions and on a higher

level, they correspond to whole encoder/decoder blocks. The distinction as to what

counts as early and late is not clear and for presentation purposes, we consider early

fusion at the level of f1 and late fusion at the last stage, fn. These functions themselves

may, however, still be composed of multiple others. In early fusion, the artefact is the

input together with the query to the first function f1, while in late fusion the query is

the single input to f1 and artefact is considered only for fn.

No fusion: fn ◦ . . . ◦ f2 ◦ f1(q)

Early fusion: fn ◦ . . . ◦ f2 ◦ f1(q, ξ)

Late fusion: fn(fn−1 ◦ . . . ◦ f1(q), ξ)

Intermediate fusion: fn ◦ . . . ◦ fk(fk−1 ◦ . . . ◦ f1(q), ξ)

Improvements for models for one task can also transfer to others. This formalism also

allows us to ask questions such as how do different fusion mechanisms affect the model

computation. The key component in all of these pipelines is retrieval. This thesis focuses

on a specific setup, described in Section 1.3, with the goal of reducing the knowledge

base size.

Chapter 1. Introduction 7

See Appendix A for a discussion on . For a description of specific systems and how they

fit into this typology see the appendix in Zouhar et al. [14].

Model Fusion KB Source Keys Values Aggregation

k-NN LM [12] Very late
Static convex
combination

Train-time Prefix embd.,
L2

Target
word

Softmax

Continuous Cache
LM [35]

Very late
Static convex
combination

Dynamic Prefix embd.,
inner product

Target
word

Softmax

Dynamic Gating
LM [13]

Late
Dyn. convex
combination

Train-time Prefix encoding,
inner product

Target
word

Softmax sum

Knowledge Graph
LM [7]

Intermediate
Constraints

External Entity+relation
Discrete struct.

Matching
entity

None

Dense Passage
Retrieval [36]

Early
Input

External Passage embd.,
inner product

Passages None

Nearest Neighbour
QA [37]

No model Train-time Passage embd.,
inner product

Answers None

CBR-KBQA [38] Query
creation

Train-time
External

Query embd.,
inner product

Logical
forms

New query

PullNet [39] Subgraph
creation

Multiple
External

Entities Docs and
Facts

Iterative
join

Universal Schema
QA [40]

Intermediate
Retrieval

Multiple
External

Query embd.
Attention

Facts Iterative
projection

FAKTA [4] Early
Input

External
Online

Condensed
query

Docs Re-ranking,
Filtering

Wizards of
Wikipedia [10]

Intermediate
Addition

External Context+topic,
inverted index

Passages Attention
(topic)

Table 1.1: Categorization of described NLP systems in terms of the artefact retrieval
typology. Fusion describe both where it occurs and what mechanism it employs, Keys
describes not only the key type but also the retrieval mechanism (e.g. metric).

Chapter 1. Introduction 8

1.3 Setup

This section introduces concepts in document retrieval and describes the evaluation and

data setup for experiments in Chapters 2 and 3. It also shows the base performance of

a selection of pre-trained language models used for building the index for retrieval.

1.3.1 Document Retrieval

Conceptually, dense vector-based retrieval approaches work by first encoding all the

documents and then at test-time, the query is also encoded (not necessarily using the

same model). Given a query q, we retrieve top k relevant documents Z = {d1, d2, . . . , dk}
from a large collection of documents D so that the relevance of d with q is maximized. For

this, the query and the document embedding functions fQ : Q → Rd and fD : D → Rd

are used to map the query and all documents to a shared embedding space and a

similarity function sim : Rd × Rd → R approximates the relevance between query and

documents. Here, we consider either the inner product or the L2 distance as sim.5 This

is conceptualized in Figure 1.2 and the following set of equations. These functions are

commonly finetuned pretrained language models [23, 36, 41, 42] but can also be TF-IDF-

or BM25-based [15].

Z = arg top-k
d∈D

rel.(q, d) ,with

rel.(q, d) ≈ sim(fQ(q), fD(d))

The approximation in (2) was shown to work well in practice for inner product and L2

distance [43]. When dealing with multiple downstream tasks that share a single (large)

knowledge base, typically only fQ is fine-tuned for a specific task while fD remains fixed

[2, 3]. This assumes that the organization of the document vector space is sufficient

across tasks and that only the mapping of the queries to this space needs to be trained.6

Hence, this work is motivated primarily by finding a good rD (because of the dominant

size of the document index), though we note that rQ is equally important and necessary

because even without any vector semantics, the key and the document embeddings must

have the same dimensionality.

The issue with this approach is that the pre-trained language models do not capture the

meaning of the whole document in a 768-dimensional vector well [42, 44]. Although it is

possible to extend the dimensionality to 2048-dimensional vectors to better capture the

5Cosine similarity could also be used but for computation reasons we skip it. Results are the same
as for the inner product and L2 distance when the vectors are normalized.

6Guu et al. [1] provide evidence that this assumption can lead to worse results in some cases.

Chapter 1. Introduction 9

Doc 1

Doc 2

Doc n

Document
encoder

Dense 1

Dense 2

Dense n

Who did Q.. ? Query
encoder

Dense q

.

Maximum
similarity
search

Figure 1.2: Conceptualized overview of retrieval on whole documents. Not actually
used in practice with dense vector representations.

meaning [44, 45], this creates other issues, such as spurious matches. To alleviate this, the

documents are split into spans over which the maximum similarity search is performed,

as shown in Figure 1.3. Note that large vector approaches, i.e. TF-IDF/BM25 are an

exception and can operate also on long documents, usually [46].

Doc 1

Document
encoder

Dense 1,1

Who did Q.. ? Query
encoder

Dense q

. . .

Maximum
similarity
search

S 1,1 S 1,2 S 1,3

S 2,1 S 2,2 S 2,3 S 2,4

Doc2

. . .

Dense 1,2
Dense 1,3
Dense 2,1
Dense 2,2
Dense 2,3
Dense 2,4

Figure 1.3: Conceptualized overview of retrieval on document spans.

The various splitting mechanisms are described in Chapter 2. For this chapter and most

of the experiments in this thesis, we use splitting by non-overlapping spans of length

100 tokens. This is slightly suboptimal, but commonly used [36].

1.3.2 Evaluation

There are a plethora of ways of evaluating document retrieval systems, as surveyed

briefly by Bama et al. [47]. To evaluate retrieval performance we use two metrics.

Chapter 1. Introduction 10

For dimension reduction (Chapter 3) we compute R-Precision averaged over queries qi:

(relevant documents among top k passages in Z)/r, k = number of passages in relevant

documents, in the same way as Petroni et al. [3]. For splitting and filtering (Chapter 2)

we compute top-10 accuracy averaged over queries qi: 1r∩ (arg top−10dj sim(qi,dj)) 6=∅.
7 The

reason for using R-Precision is that it is commonly used [47, 48]. This metric can,

however, not be used for the splitting and filtering experiments because there we modify

the number of relevant passages which makes the comparison even within one experiment

impossible and could lead to false conclusions. Using two metrics in one thesis is further

warranted by the lack of necessity to compare results between the two chapters.

1.3.3 Similarity Functions

There is no unified mathematical definition of what a similarity function is. A working

definition for our context of dense document encoding retrieval is that it is a function

which is high for similar vectors and low for dissimilar ones:

sim : Rd × Rd → R

A common approach is to take the inverse or the negation of the L2 (Euclidean) distance.

Note that in contrast to the L2 distance, which is non-negative, the similarity function

is unbounded. Another mathematical function often used for similarity is the inner

product (vector dot product).

L2(a, b) =
√

(a− b)2 =

√
Σd

1(ai − bi)2

simL2(a, b) = −L2(a, b) = −
√
Σd

1(ai − bi)2

simIP(a, b) = IP(a, b) = Σd
1(ai · bi)

A key property of these two functions is that they are recursively decomposable [49] and

various improvements can be used to speed up the retrieval. There are other metrics,

such as the cosine distance (equivalent to the inner product in normalized space), L1,

L∞, Canberra [50], Bray-Curtis dissimilarity [51], Jensen-Shannon divergence [52], Ma-

halanobis distance [53] and many others [54–56]. We focus only on the inner product

(IP) and the L2 distance as the similarity function because either the other metrics are

71 is the indicator function. Top-k accuracy for a single query is 1 if the top k retrieved documents
contain at least one relevant document, otherwise 0.

Chapter 1. Introduction 11

Test Type Query Similarity

HotpotQA:
The district that the village of Asamang is
located in was split on what date?

Query

Asamang is a village in the Atwima Nwabi-
agya district, a district in the Ashanti Region
of Ghana.

Relevant span IP = 0.476
L2 = −1.023

The Atwima Nwabiagya District formerly the
Atwima District is one of the twenty-seven
(27) districts in the Ashanti Region of Ghana.
Its capital is Nkawie. In 2003, part of the
district was split off by a decree of presi-
dent John Agyekum Kufuor on November 12,
2003, to form the new Atwima Kwanwoma
District and Atwima Mponua District.

Relevant span IP = 0.440
L2 = −1.058

Lowery married filmmaker Augustine Frizzell
in 2010. As of 2013, they live in Dallas. Low-
ery identifies as an atheist, and has been a
vegan since around 1996.

Irrelevant span IP = −0.176
L2 = −1.534

Natural Questions:
minister of energy and power development in
zimbabwe

Query

The Ministry of Energy and Power Devel-
opment is a government ministry, responsi-
ble for energy and electricity in Zimbabwe.
The incumbent minister is Ambassador Jo-
ram Gumbo.

Relevant span IP = 0.758
L2 = −0.696

both in June 2017, in protest at Trump’s de-
cision to withdraw the United States from the
Paris Agreement on climate change.

Irrelevant span IP = −0.023
L2 = −1.430

Table 1.2: Example of questions from HotpotQA and Natural Questions. Similarity
is measured on centered and normalized embeddings from DPR-CLS. Higher always
means more similar (L2 is for this reason negated).

not widely adopted in the community or the FAISS framework does not fully support

them.8 See Table 1.2 for vector similarities between specific textual spans.

8For example, the cosine similarity can be used only for normalized vectors, which would prevent us
from experimenting with the unnormalized vectors.

Chapter 1. Introduction 12

1.3.4 Data

As the knowledge base we use documents from English Wikipedia dump 2019 and follow

the setup described by Petroni et al. [3]. We mark spans (original articles split into

100 token pieces, 50 million in total) as relevant for a query if they come from the

same Wikipedia article as one of the provenances.9 In order to make our experiments

computationally feasible and easy to reproduce we experiment with a modified version of

this knowledge base where we keep only spans of documents that are relevant to at least

one query from the training or validation set of our downstream tasks. As downstream

tasks, we use HotpotQA [57] for all main experiments and Natural Questions [41] to

verify that the results transfer to other datasets as well. They are both widely used

by the research community [58–63] and we chose them because of their popularity and

availability within the KILT framework. HotpotQA has been sourced through careful

crowdsourcing and is aimed at multi-hop reasoning. Natural Questions were created

by aggregating and anonymizing queries issued to the Google search engine. We show

examples from the two datasets in Table 1.2 together with the vector similarity between

the query and selected spans. Note that the vector similarity is higher for the relevant

spans than for the irrelevant ones.

This datset preprocessing to over 2 million encoded spans for HotpotQA (see Table 1.3

for dataset sizes). The 768-dimensional embeddings (32-bit floats) of this dataset (both

queries and documents) add up to 7GB (146GB for the whole unpruned dataset).

Dataset Train queries Dev queries Documents

HotpotQA 69k 6k 49.7 Mio.*

HotpotQA (pruned) 69k 6k 2.1 Mio.

Natural Questions (pruned) 78k 2k 1.6 Mio.

Table 1.3: Number of training and dev queries and documents for the different
datasets used. *Whole Wikipedia dump.

1.3.5 Model Comparison

To establish baselines for uncompressed performance we use models based on BERT

[64]. We consider (1) vanilla BERT, (2) SentenceBERT [42] and (3) DPR [36], which

was specifically trained for document retrieval. See Section 1.3.6 for a brief overview of

9Spans of the original text which help in answering the query.

Chapter 1. Introduction 13

how these models were trained and their differences. To obtain document embeddings,

we use either the last hidden state representation at [CLS] or the average across tokens

of the last layer (both are commonly used to get the vector representation of the input).

Our first experiment compares the retrieval performance of the different models on

HotpotQA. The result is shown in Figure 1.4. In alignment with previous works [42]

an immediately noticeable conclusion is that vanilla BERT has a poor performance,10

especially when taking the hidden state representation for the [CLS] token. Next, to

make the computation of experiments tractable on available hardware, we repeat the

experiment using FAISS [49],11 which is a framework for fast approximate similarity

search. We find that the performance loss across models is systematic, which warrants

the use of this approximation for comparisons and all our following experiments will use

FAISS on the DPR-CLS model.12

DPR
(Avg)

Sentence
BERT
(Avg)

BERT
(Avg)

DPR
[CLS]

Sentence
BERT
[CLS]

BERT
[CLS]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
-P

re
ci

si
on

IP IP fast L2 L2 fast

Figure 1.4: Comparison of different BERT-based embedding models and versions
when using faster but slightly inaccurate nearest neighbour search. [CLS] is the specific
token embedding from the last layer while (Avg) is all token average.

To provide further intuition to why normalization may help we show specific query and

document vectors in Figure 1.6. Note that while the centering of one dimension is

independent of centering of the other dimensions, the normalization of one dimension

is dependen on other dimensions. For this reason, we consider only the first two di-

mensions of the 768-dimensional vectors. Also note that the preprocessing of queries is

10See Section 1.3.6 for explanation.
11Parameters: IndexIVFFlat, nlist=200, nprobe=100.
12The authors of DPR also used FAISS in their paper when presenting results.

Chapter 1. Introduction 14

DPR
(Avg)

Sentence
BERT
(Avg)

BERT
(Avg)

DPR
[CLS]

Sentence
BERT
[CLS]

BERT
[CLS]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
R

-P
re

ci
si

on

IP

IP (center)

IP, L2 (norm)

L2

L2 (center)

IP, L2 (center, norm)

Figure 1.5: Effect of data centering and normalization on performance (evaluated
with FAISS).

independent on the preprocessing of documents. For this reason we can see that while

centering preserves the shape, it moves the queries down-left, while the documents are

shifted up-left. The normalization sets the vectors along a hypersphere (a circle in 2D

case). Formally, this slightly reduces the information content of one vectors by almost

one dimension.13 With this, the vectors are differentiated only by the angles and not

their absolute magnitude. This further allows us to unify the ordering given by L2, the

inner product and the cosine similarity.

1.3.6 Embedding Model Overview

In this subsection, we provide a brief background of the design and training of the

pre-trained models used for embedding spans: BERT, SentenceBERT and DPR. While

many more models exist, we chose these three because they are commonly used and the

later two are based on the first one and vastly improve on it.

13If we know 767 dimensions d1, . . . d767, we can deduce that the last element is going to be

d768 = �
√

1�
∑767

1 d2i . If we used polar coordinates, we would need exactly 767 numbers because

the magnitude is always 1.

Chapter 1. Introduction 15

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 Queries

Original

Center

Center+Norm

Docs

Original

Center

Center+Norm

Figure 1.6: First two dimensions of 15 random queries and 15 random documents
and their positions after preprocessing.

1.3.6.1 BERT

Bidirectional Encoder Representations from Transformers (BERT [65]) is based on the

encoder part of the transformers [66] architecture (multiple blocks of embedding, mul-

tihead self-attention, feed forward and layer normalization). The goal is to obtain some

representation of the input such that it can be finetuned and used for various other

tasks either directly or with a small degree of finetuning.14 The way this is done is by

pretraining the model on large amounts of data on two tasks: language modelling and

next-sentence prediction. Consider the following two inputs (each on separate line):

[CLS] [MASK] hedgehog fell [MASK] . [SEP] Gabriel Garc��a M�arquez was born in 1927 . [SEP]

[CLS] He grew up with [MASK] grandparent . [SEP] His grandfather used to be a colonel . [SEP]

The goal of masked language modelling is to predict the masked tokens from context

(variable number of tokens were masked, 15%). For the two examples the gold answers

are The, asleep and his, respectively. The goal of next sentence prediction is to determine

whether the second sentence follows the first. In the first example the sentences are not

probable to be consecutive while in the second example they are. For the pretraining the

last block in the model is followed up with classification layers. Notice the special tokens

14The original paper used natural language understanding but it has been applied for a plethora other
NLP tasks [67–76]. Because of its popularity, it has also been adopted into other languages [77–84] and
exists in a multilingual version as mBERT.

Chapter 1. Introduction 16

[CLS], [MASK] and [SEP] which provide some structure to the input. Furthermore,

BERT does not use whole tokens as the input units but subword made by WordPiece

[85] and therefore the vocabulary consists of parts of words (this is not depicted in the

example).

1.3.6.2 SentenceBERT

While both BERT and Roberta [86] improved the state of the art for tasks relying

sentence pair similarity, the main issue is that the two sentences need to be put into the

model. To find the most semantically similar sentence (to a specific one in a dataset of

50 Mio. sentences would require 50 Mio. inferences of the large model, which is highly

impractical from compute resources point of view.

The authors of SentenceBERT try to alleviate this by trying to find a function f for which

the following holds (sim is a vector similarity function, in their case cosine similarity):

arg max
i

sim(f(si), f(sj)) ⇔ si is semantically similar for sj

That is, they build a model which computes the embedding of the sentence such that in

the new vector space, similar sentences are close together (based on cosine similarity).

We can precompute f(si) for every sentence and during inference, we only need to

compute f(sj) and run a maximum similarit search over the precomputed dataset. The

model is based on BERT but with a modified objective function, which (among others

experimented with) is the following (given random positive and negative sentences sp

and sn):

max(||f(si)− f(sp)|| − ||f(si)− f(sn)||+ ε, 0)

In practice, this minimizes ||f(si)− f(sp)|| while maximizing ||f(si)− f(sn)||. The ε is

just a stabilization constant that ensures that the difference between the two distances

is at least ε. The model is trained on the SNLI and Multi-Genre SNLI dataset which

classifies pairs of sentences with contradiction, entailnment and neutral.

Dense Passage Retrieval

Because the DPR model is the one used for most experiments in this thesis, it is the

most important. The goal for document retrieval is to have functions fd and fq for which

Chapter 1. Introduction 17

the following holds:

arg max
i

sim(fd(di), fq(qj)) ⇔ di is relevant for qj

Note that for BERT and SentenceBert we use fd = fq despite text spans di ∈ D and

qj ∈ Q coming from different distribution. One of the advantages of DPR is that it

distinguishes these two functions. They start with two pretrained BERT base uncased

models and optimize them in the following loss using contrastive learning (given batch

i, query qi, a relevant span pi and set of negative samples Ni):

L(qi, pi, Ni) = − log
esim(qi,pi)

esim(qi,pi) +
∑

j e
sim(qi,Ni,j)

Note that qi, pi and Ni are all the results of computations via fq and fd to which loss

can be backpropagated. This essentially computes a softmax of the following vector at

the first position:

[sim(qi, pi), sim(qi, Ni,1), sim(qi, Ni,2), . . . , sim(qi, Ni,|Ni|)]

The whole fraction is in the interval (0, 1). We want the nominator to be large (high

similarity with the relevant span) while the denominator to be small (low similarity with

irrelevant spans). Minimizing the negative log of this fraction pushes the fraction to be

close to 1.

The positive span is easily available from the dataset while the negative spans need to be

sampled carefully. The authors discuss multiple strategies for this selection, including (1)

random sampling, (2) top false output of BM25, (3) positive spans for other questions in

the batch, also called in-batch negatives, and (4) the combination of them, which results

in their best model.

Chapter 2

Splitting & Filtering

This chapter describes the results of two methods aimed at improving retrieval per-

formance while decreasing knowledge base size. Although the results are negative (no

reasonable applicable improvement or insights have been achieved), they explore several

baseline ideas and empirically answer the questions that many researchers interested in

dense retrieval could ask.

In this section, we consider the pruned Wikidata with DPR-CLS encoding and centering

and normalization. The effect of post-processing is detailed in Chapter 3.

2.1 Splitting

As introduced in Chapter 1, the documents are rarely used whole for retrieval. Instead,

we split them into smaller chunks using a function s(d) ∈ 2d and create a new set

of documents S =
⋃
d∈D s(d).1Recomputing span relevancy is not an issue because we

consider any span that leads to the correct article to be a hit (given set of provenances

for a query Pq): hit(q, d)
def⇔ (∃D ∈ D, p ∈ Pq : d ⊆ D ∧ p ⊆ D). It is common to

use non-overlapping spans of 100 tokens [36] but this can create several issues which are

demonstrated using the following two crafted examples:

0 can refer to either the most or least signi�cant bit depending on | the context.

The �rst programmable computer, built by K. Zuse, | used binary notation for numbers.

In the first one, we split at the end and create a three token span that does not hold any

relevant information and only takes up space. In the second example, we split in the

1Note that this notation allows for the spans to also be of various lengths, non-continuous
and overlapping .

18

Chapter 2. Splitting & Filtering 19

middle of the sentence and the compositional meaning required to answer the following

question is lost:

Who built the �rst programmable computer that used binary notation for number?

This issue arises because the splitting is not done on syntactic nor semantic boundaries.

We examine it empirically by using different splitting schemas, either splitting on tokens

with different span sizes (including using overlap with previous and following tokens) or

splitting at sentence boundaries. Figure 2.1 shows the results of these methods with the

aforementioned setting (DPR-CLS, HotpotQA pruned). Note that we are not interested

in just improving the retrieval performance but also in reducing the knowledge base size.

Naturally, smaller spans lead to a higher index size because each has to be represented

with a 768-dimensional vector. The reason why the difference in passage counts between

e.g. Sent 1 and Sent 2 is larger than the difference between Sent 5 and Sent 6 is that

not many paragraphs are longer than 5 sentences.

2m 3m 4m 5m
Passage count

0.685

0.690

0.695

0.700

0.705

0.710

Ac
c-

10

Fixed 40
Fixed 60
Fixed 80
Fixed 80, over. 20
Fixed 100
Fixed 120

Sent 1
Sent 2
Sent 3
Sent 4
Sent 5
Sent 6

Figure 2.1: Retrieval performance and knowledge base size after being split using
different methods. Note the cut-off y-axis.

Surprisingly, the various splitting strategies are not vastly better than the default one

(Fixed 100). This can be attributed to using the DPR model, which is fine-tuned for

retrieval and anything other than 100-token spans is outside of its finetuned input dis-

tribution. An exception is that splitting on sentence boundaries (specifically Sent 5 and

Chapter 2. Splitting & Filtering 20

Sent 6) seems to be slightly systematically better than splitting at token count bound-

aries, even with the same number of passage counts. This can be possibly explained via

the examples introduced previously in this section.

2.2 Filtering

This section is concerned with reducing the knowledge-base size by simply filtering some

of the spans which are deemed to not hold any interesting information and do not help

with matching to the relevant document. Either handcrafted or automatically derived,

we are trying to find a function h(d) ∈ {0, 1} that classifies whether a given span

should be retained and we construct a new set of spans as S ′ = {d|d ∈ S ∧ h(d)}. For

the following experiments, we use the splitting by 100 tokens so that the results are

comparable across the thesis. Again, we are interested in reducing the passage count

while retaining the retrieval performance.

2.2.1 Heuristics

The most straightforward option is to remove spans that are too short, as shown in the

introductory example. Figure 2.2 shows the results with various filters based on either

token or character count, i.e. hx(d)⇔ countword/char(d) ≥ x. Unfortunately, any filtering

measures show a strong regression against not using any filtering and thus this trade-off

is not worth it. Counterintuitively, this is true for also seemingly noninvasive heuristics,

such as the number of words or characters being larger than 2 or 10, respectively. The

reason for this may be that these filtered short spans are not actual outliers, as shown

by the distribution in Figure 2.3.

2.2.2 Automatic filtering

The issue with filtering using handcrafted heuristics is that it requires arbitrary human

decision making and can not be automated. Simple evaluation metrics, such as accuracy,

consider top k most similar spans to a query (k is fixed). The idea for automatic filtering

is to simply remove span s which satisfies the following two conditions given the training

queries QT :

• At least one negative: There exists at least one query for which this span is not

relevant but for which it has been retrieved.

• Never positive: No query for which this span is relevant retrieves it.

Chapter 2. Splitting & Filtering 21

0.4m 0.9m 1.4m 1.9m 2.4m
Passage count

0.3

0.4

0.5

0.6

0.7

Ac
c-

10

Word >2
Word >10
Word >20
Word >50
Word >100
No filter

Char >10
Char >50
Char >200
Char >400
Char >500

Figure 2.2: Retrieval performance and knowledge base size after being filtered using
length-based heuristics. Note the cut-off y-axis.

0 10 20 30 40 50 60 70 80 90 100

Words

0

100000

200000

300000

400000

500000

C
ou

n
t

0 100 200 300 400 500 600 700 800 900

Chars

Figure 2.3: Distribution of span length either with word or characte count.

This filtering can be applied iteratively and two steps are visualized in Figure 2.4. This

algorithm is also described in pseudocode in Listing 2.1.

Chapter 2. Splitting & Filtering 22

d1d2 d4 d5d9 d10d3 d6 d7 d8

d2 d4 d5d9 d10d3d6 d6d8 d1

d3 d7

d2 d6 d8d1

d8d6 d2d1

d4 d5d9 d10d3 d6 d7 d8

d4 d5d9 d10d3d6 d6d8

d11

d15

d1

d2

q1

q2

q2

q1

Positive

Negative

Pruned

Retrieved (top-5)

First step

Retrieved (top-5)

Second step

Low similarityHigh similarity

Figure 2.4: Example of two retrieval and one pruning steps on two queries. For both
queries, the spans are sorted from left to right by decreasing similarity. Spans with
bold borders are those considered as retrieved. Spans in green are relevant for the
given query and spans in red are not relevant.

FilterStep(D,Q, k) : spans and queries

Negative← {}
Positive← {}
For (qi, ri) ∈ Q : query and relevant spans

d← Retrievek(qi)

Negative← Negative ∪ (d \ ri)
Positive← Positive ∪ (d ∩ ri)

Negative← Negative \ Positive

D′ ← D \Negative prune spans

out← (D′,Positive,Negative)

Listing 2.1: Definition of a single filtering step that prunes the spans and provides
negative and positive samples

Chapter 2. Splitting & Filtering 23

It is clear that by repeated application of this filtering step, the training retrieval perfor-

mance is monotonous non-decreasing because we are never filtering spans that contribute

positively to the metric. Training accuracy is shown in the left of Figure 2.5. The kf by

which the top-kf spans in the filtering are considered can be the same as the ka in the

accuracy evaluation metric. If it is smaller than ka, then the monotonicity property on

the training data may not hold. If it is larger, then we may get faster convergence, as

shown on the right of Figure 2.5. This is because we consider more negative and positive

spans overall.

0 1 2 3 4 5 6 7 8 9 10

Step (top-10)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

-1
0

(c
u

to
ff

ax
is

)

0 1 2 3 4 5 6 7 8 9 10

Step (top-20)

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
u

m
b

er
o
f

d
o
cs

Accuracy Positive docs Negative docs Pruned docs

Figure 2.5: Autofiltering performance of dev queries on spans filtered using the same
dev queries. Filtering is done using either top-10 or top-20 spans.

We are however interested in the performance on queries not seen during training. There

are two approaches that we consider: (1) using pruning based on training queries and

(2) training a classifier to predict whether span is positive or only negative. The results

for the first one are shown in Figure 2.6 and unfortunately, the performance only dete-

riorates. This is because even though the training and dev queries are drawn from the

same distribution, this method has no way of generalizing and filtering only spans that

are never relevant to any query (i.e. spans without any factual knowledge).

The other approach, which uses logistic regression to determine whether a span should be

pruned, does not work either and by removing ∼5% of spans regresses to 56% retrieval

accuracy in the first step. Its performance is only marginally better than the most

common class classifier, as shown in Figure 2.7.

Chapter 2. Splitting & Filtering 24

0 1 2 3 4 5 6 7 8 9 10

Step (top-10)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

-1
0

(c
u

to
ff

ax
is

)

50000

100000

150000

200000

250000

300000

350000

N
u

m
b

er
of

d
o
cs

Accuracy Positive docs Negative docs Pruned docs

Figure 2.6: Autofiltering performance of dev queries on spans filtered using train
queries. Filtering is done using top-10 spans.

1 2 3 4 5 6 7 8 9 10
Step (top-10)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Cl
as

sif
ie

r a
cc

 (c
ut

of
f a

xi
s)

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f d
oc

s
MCCC
MCCC (total)

LR
LR (total)

Positive docs
Pruned docs

Figure 2.7: Training classifier accuracy for most common class classifier and logistic
regression based on data from individual filtering steps or cummulative data up to a
certain step (total).

Chapter 2. Splitting & Filtering 25

2.2.3 Discussion

Neither manual based on span length nor automatic filtering showed any applicable

results. Manual filtering could be further enhanced with named entity recognition and

allow only spans with e.g. at least one entity.

For automatic filtering, we would like to point out that we manipulated only positive

and negative sets of spans and disregarded spans that were never retrieved. Focusing

on those is a venue for future work and could reduce the knowledge base size without

affecting the retrieval performance neither positively nor negatively. A possible solution

to filter irretrievable spans is to consider spans that are least similar to the training

queries, possibly via outlier detection methods. Finally, we considered this filtering

mechanism only on the level of vectors but it would be possible to also use the textual

form of the span as well.

Chapter 3

Dimension Reduction

In Section 3.1, we describe the problem setup of dimensionality reduction for document

retrieval. We discuss the results of different compression methods (random projections,

PCA, autoencoder, precision reduction and their combination) in Section 3.2 and provide

further analysis in Section 3.3.

3.1 Problem Statement

To speed up the similarity computation over a large set of documents and to decrease

memory usage (fD is usually precomputed), we apply dimension reduction functions

rQ : Rd → Rd′ and rD : Rd → Rd′ for the query and document embeddings respectively.

Formally, we are solving the following problem (extended from Section 1.3):

Z = arg top-k
d∈D

rel.(q, d) ,with (3.1)

rel.(q, d) ≈ sim(fQ(q), fD(d)) (3.2)

≈ sim(rQ(fQ(q)), rD(fD(d))) (3.3)

Since fQ is commonly fine-tuned for a specific downstream task, it is desirable in (3)

for the functions rQ and rD to be differentiable so that they can propagate the signal.

These dimension-reducing functions need not be the same because even though they

project to a shared vector space, the input distribution may still be different. Similarly

to the query and document embedding functions, they can be fine-tuned.

26

Chapter 3. Dimension Reduction 27

3.1.1 Pre-processing Transformations

Figure 1.4 also shows that model performance, especially for DPR, depends heavily on

what similarity metric is used for retrieval. This is because none of the models produces

normalized vectors by default.

Figure 1.5 shows that performing only normalization
(

x
||x||
)

sometimes hurts the per-

formance but when joined with centering beforehand
(

x−x̄
||x−x̄||

)
, it improves the results

(compared to no pre-processing) in all cases. The normalization and centering is done

for queries and documents separatedly. Moreover, if the vectors are normalized, then

the retrieved documents are the same for L2 and inner product. 1

Nevertheless, we argue it still makes sense to study the compression capabilities of L2

and the inner product separately, since the output of the compression of normalized

vectors need not be normalized.

Another common approach before any feature selection is to use z-scores (x−x̄σ) instead of

the original values. Its boost in performance is however similar to that of centering and

normalization. The effects of each pre-processing step are in Table 3.1. The significant

differences in performance show the importance of data pre-processing (agnostic to model

selection).

IP L2

DPR-CLS 0.609 0.240

Center 0.630 0.353

Z-Score 0.632 0.525

Norm. 0.463

Center + norm. 0.618

Z-Score + norm. 0.621

Table 3.1: Effect of pre-processing transformations on embeddings produced by DPR-
CLS. Means and standard deviations are computed separately for documents and
queries. Transformation into z-scores includes centering.

1arg maxk �jja�bjj2 = arg maxk �ha,ai2�hb, bi2+2�ha, bi = arg maxk 2�ha, bi�2 = arg maxk ha, bi

Chapter 3. Dimension Reduction 28

3.2 Compression Methods

Having established the retrieval performance of the uncompressed baseline, we now turn

to methods for compressing the dense document index and the queries.

3.2.1 Random Projection

The simplest way to perform dimension reduction for a given index x ∈ Rd is to randomly

preserve only certain d′ dimensions and drop all other dimensions:

fdrop.(x) = (xm1 , xm2 , . . . , xmd′)

Another approach is to greedily search which dimensions to drop (those that, when

omitted, either improve the performance or lessen it the least):

pi(x) = (x0, x1, . . ., xi−1, xi+1, . . ., x768)

Li = R-Prec(pi(Q), pi(D))

m = sortdesc.
L ([1 . . . 768])

fgreedy drop.(x) = (xm1 , xm2 , . . . , xmd′)

The advantage of these two approaches is that they can be represented easily by a single

R768×d matrix. We consider two other standard random projection methods: Gaussian

random projection and Sparse random projection [87]. Such random projections are

suitable mostly for inner product [88] though the differences are removed by normalizing

the vectors (which also improves the performance).

Results. The results of all random projection methods are shown in Figure 3.1. Gaus-

sian random projection seems to perform equally to sparse random projection. The

performance is not fully recovered for the two methods. Interestingly, simply dropping

random dimensions led to better performance than that of sparse or Gaussian random

projection. The greedy dimension dropping even improves the performance slightly over

random dimension dropping in some cases before saturating and is deterministic. As

shown in Table 3.4, the greedy dimension dropping with post-processing achieves the

best performance among all random projection methods. Without post-processing, L2

distance works better compared to the inner product.

Chapter 3. Dimension Reduction 29

32 256 512 768

Dimensions

0.2

0.3

0.4

0.5

0.6

R
-P

re
ci

si
on

Dim. Dropping

Greedy Dim. Dropping

Sparse

Gaussian

Figure 3.1: Dimension reduction using different random projections methods. Pre-
sented values are the max of 3 runs (except for greedy dimension dropping, which is
deterministic), semi-transparent lines correspond to the minimum. Embeddings are
provided by centered and normalized DPR-CLS. Final vectors are also post-processed
by centering and normalization.

3.2.2 Principal Component Analysis

Another natural candidate for dimensionality reduction is principal component anal-

ysis (PCA) [89]. PCA considers the dimensions with the highest variance and omits

the rest. This leads to a projection matrix that projects the original data onto the

principal components using an orthonormal basis T . The following loss is minimized

L = MSE(T′Tx,x). Note that we fit PCA on the covariance matrix of either the doc-

ument index, query embeddings or both and the trained dimension-reducing projection

is then applied to both the document and query embeddings.

Results. The results of performing PCA are shown in Figure 3.2. First, we find that

the uncompressed performance, as well as the effect of compression, is highly depen-

dent on the data pre-processing. This should not be surprising as the PCA algorithm

assumes centered and pre-processed data. Nevertheless, we stress and demonstrate the

importance of this step. This is given by the normalization of the input vectors and also

that the column vectors of PCA are orthonormal.

Second, when the data is not centered, the PCA is sensitive to what it is trained on. Fig-

ure 3.2 show systematically that training on the set of available queries provides better

performance than training on the documents or a combination of both. Subsequently,

after centering the data, it does not matter anymore what is used for fitting: both the

queries and the documents provide good estimates of the data variance and

Chapter 3. Dimension Reduction 30

0.1

0.2

0.3

0.4

0.5

0.6

R
-P

re
ci

si
on

(P
C

A
)

No pre-processing Normalized Centered Centered, Normalized

0.00

0.02

0.04

0.06

0.08

0.10

R
ec

on
st

ru
ct

io
n

lo
ss

32 256 512 768

0.1

0.2

0.3

0.4

0.5

0.6

R
-P

re
ci

si
on

(A
u

to
en

co
d

er
)

32 256 512 768 32 256 512 768 32 256 512 768

0.00

0.02

0.04

0.06

0.08

0.10

R
ec

on
st

ru
ct

io
n

lo
ss

Figure 3.2: Dimension reduction using PCA (top) and Autoencoder (bottom) trained
either on document index, query embeddings or both. Each figure corresponds to one
of the four possible combinations of centering and normalizing the input data. The
output vectors are not post-processed. Reconstruction loss (MSE, average for both
documents and queries) is shown in transparent colour and computed in original data
space. Horizontal lines show uncompressed performance. Embeddings are provided by
DPR-CLS.

the dependency on training data size for PCA is explored explicitly in Section 3.3.1.

The reason why queries provide better results without centering is that they are more

centered in the first place, as shown in Table 3.2.

Avg. L1 (std) Avg. L2 (std)

Documents 243.0 (20.1) 12.3 (0.6)

Queries 137.0 (7.5) 9.3 (0.2)

Table 3.2: Average L1 and L2 norms of document and query embeddings from DPR-
CLS without pre-processing.

In all cases, the PCA performance starts to plateau around 128 dimensions and is within

95% of the uncompressed performance. Finally, we note that while PCA is concerned

Chapter 3. Dimension Reduction 31

with minimizing reconstruction loss, Figure 3.2 shows that even after vastly decreas-

ing the reconstruction loss, no significant improvements in retrieval performance are

achieved. We further discuss this finding in Section 4.2.

Component Scaling. One potential issue of PCA is that there may be dimensions

that dominate the vector space. Mu et al. [90] suggest to simply remove the dimension

corresponding to the highest eigenvalue though we find that simply scaling down the

top k eigenvectors systematically outperforms standard PCA. For simplicity, we focused

on the top 5 eigenvectors and performed a small-scale grid-search of the scaling factors.

The best performing one was (0.5, 0.8, 0.8, 0.9, 0.8) and Table 3.4 shows that it provides

a small additional boost in retrieval performance.

3.2.3 Autoencoder

A straightforward extension of PCA for dimensionality reducing is to use autoencoders,

which has been widely explored [91, 92]. Usually, the model is described by an encoder

e : Rd → Rb, a function from a higher dimension to the target (bottleneck) dimension and

a decoder r : Rb → Rd, which maps back from the target dimension to the original vector

space. The final (reconstruction) loss is then commonly computed as L = MSE((r ◦
e)(x),x). To reduce the dimensionality of a dataset, only the function e is applied

to both the query and the document embedding. We consider three models with the

bottleneck: 2

1. A linear projection similar to PCA but without the restriction of orthonormal

columns:

e1(x) = L768
128

r1(x) = L128
768

2. A multi-layer feed forward neural network with tanh activation:

e2(x) = L768
512 ◦ tanh ◦L512

256 ◦ tanh ◦L256
128

r2(x) = L128
256 ◦ tanh ◦L256

512 ◦ tanh ◦L512
768

2La
b symbolizes a fully connected linear layer from a dimensions to b dimensions. Layer composition

is done with �.

Chapter 3. Dimension Reduction 32

3. The same encoder as in the previous model but with a shallow decoder:

e3(x) = L768
512 ◦ tanh ◦L512

256 ◦ tanh ◦L256
128

r3(x) = L128
768

Compared to PCA, it is able to model non-pairwise interaction between dimensions (in

the case of models 2 and 3 also non-linear interaction). Hyperparameters are listed in

Table 3.3.

Hyperparameters

Batch size 128

Optimizer Adam

Learning rate 10−3

L1 regularization 10−5.9

Table 3.3: Hyperparameters of autoencoder architectures. L1 regularization is used
only when explicitly mentioned.

Results. We explore the effects of training data and pre-processing with results for the

first model shown in Figure 3.2. Surprisingly, the Autoencoder is even more sensitive to

proper pre-processing than PCA, most importantly centering which makes the results

much more stable.

The rationale for the third model is that we would like the hidden representation to

require as little post-processing as possible to become the original vector again. The

higher performance of the model with shallow decoder, shown in Table 3.4 supports

this reasoning. An alternative way to reduce the computation (modelling dimension

relationships) in the decoder is to regularize the weights in the decoder. We make use

of L1 regularization explicitly because L2 regularization is conceptually already present

in Adam’s weight decay. This improves each of the three models.

Similarly to the other reconstruction loss-based method (PCA), without post-processing,

the inner product works yields better results.

3.2.4 Precision Reduction

Lastly, we also experiment with reducing index size by lowering the float precision from

32 bits to 16 and 8 bits. Note that despite their quite high retrieval performance, they

Chapter 3. Dimension Reduction 33

Method Compression
Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.609 0.240 0.618 (100%)

Gaussian Projection (128) 6× 0.413 0.453 0.468 (76%)

Sparse Projection (128) 6× 0.398 0.448 0.457 (74%)

Dimension Dropping (128) 6× 0.426 0.466 0.478 (77%)

Greedy Dimension Dropping (128) 6× 0.447 0.478 0.504 (82%)

PCA (128) 6× 0.577 0.562 0.579 (94%)

PCA (128, scaled top 5) 6× 0.586 0.572 0.592 (96%)

Autoencoder (128, single layer) 6× 0.585 0.569 0.588 (95%)

Autoencoder (128, full) 6× 0.564 0.560 0.588 (95%)

Autoencoder (128, shallow decoder) 6× 0.599 0.582 0.599 (97%)

Autoencoder (128, single layer) + L1 6× 0.600 0.587 0.601 (97%)

Autoencoder (128, full) + L1 6× 0.573 0.569 0.589 (95%)

Autoencoder (128, shallow decoder) + L1 6× 0.601 0.591 0.601 (97%)

Precision 16-bit 2× 0.612 0.610 0.615 (100%)

Precision 8-bit 4× 0.613 0.610 0.614 (99%)

Precision 1-bit (offset 0.5) 32× 0.559 0.556 0.561 (91%)

Precision 1-bit (offset 0) 32× 0.530 0.556 0.561 (91%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.459 0.458 0.461 (75%)

PCA (128) + Precision 8-bit 24× 0.558 0.553 0.567 (92%)

Table 3.4: Overview of compression method performance (from 768) using either L2

or inner product for retrieval. Inputs are based on centered and normalized output of
DPR-CLS and the outputs optionally post-processed again. Performance is measured
by R-Precision on the pruned HotpotQA dataset.

only reduce the size by 2 and 4 respectively (as opposed to 6 by dimension reduction via

PCA to 128 dimensions). Another drawback is that retrieval time is not affected because

the dimensionality remains the same. For more intuition, Figure 3.3 and table 3.5

illustrate the effect of floating point precision reduction.

Using only one bit per dimension is a special case of precision reduction suggested by

Yamada et al. [28]. Because we use centered data, we can define the element-wise

transformation function as:

fα(xi) =

1− α xi ≥ 0

0− α xi < 0

Bit 1 would then correspond to 1 − α and 0 to 0 − α. While Yamada et al. [28] use

values 1 and 0, we work with 0.5 and −0.5 in order to be able to distinguish between

Chapter 3. Dimension Reduction 34

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 32-bit

16-bit

8-bit

1-bit (0.5)

1-bit (0)

Figure 3.3: 100 randomly generated points with 5 precision reductions methods. 32-
bit and 16-bit overlap, 1-bit has only 4 options.

32-bit 16-bit 8-bit 1-bit (0.5) 1-bit (0)

0.10159580514915101 0.10162353515625 0.09375 0.5 1.0

0.41629564523620965 0.416259765625 0.375 0.5 1.0

-0.41819052217411135 -0.418212890625 -0.375 -0.5 0.0

0.02165521039532603 0.0216522216796875 0.01953125 0.5 1.0

0.7858939086953094 0.7861328125 0.75 0.5 1.0

0.7925861778668761 0.79248046875 0.75 0.5 1.0

-0.7488293790723275 -0.7490234375 -0.625 -0.5 0.0

-0.5855142437236265 -0.58544921875 -0.5 -0.5 0.0

Table 3.5: Decimal representation of randomly generated numbers with 5 precision
reduction methods.

certain cases when using IP-based similarity.3 As shown in Table 3.4, this indeed yields

a slight improvement. When applying post-processing, however, the two approaches

are equivalent. While this method achieves extreme 32x compression on the disk and

retains most of the retrieval performance. The downside of 1-bit and 8-bit is that if one

wishes to use standard retrieval pipelines, these variables would have to be converted to

a supported, larger, data type.

3When using 0 and 1, the IP similarity of 0 and 1 is the same as 0 and 0 while for �0.5 and 0.5 they
are �0.25 and 0.25 respectively.

Chapter 3. Dimension Reduction 35

Finally, reducing precision can be readily combined with dimension reduction methods

(see Section 3.2.5), such as PCA (prior to changing the data type). As shown in the last

row of Table 3.4, this can lead to the compressed size be 100x smaller while retaining

75% retrieval performance on HotpotQA and 89% for NaturalQuestions (see Table 3.6).

3.2.5 Combination of PCA and Precision Reduction

It is possible to combine methods for dimension reduction with methods for reducing

data type precision. The results in Figure 3.4 show that PCA can be combined with

e.g. 8-bit precision reduction with negligible loss in performance.

128 256 384 512 640 768

Dimensions

0.35

0.40

0.45

0.50

0.55

0.60

R
-P

re
ci

si
on

468
12

24

32

48
6496

192

4.8

38.4

32

4 1-bit (no PCA)

8-bit (no PCA)

16-bit (no PCA)

32-bit (no PCA)

PCA + 1-bit

PCA + 8-bit

PCA + 16-bit

PCA + 32-bit

Figure 3.4: Combination of PCA and precision reduction. Compression ratio is shown
in text. 16-bit and 32-bit values overlap with 8-bit and their compression ratios are not
shown. Measured on HotpotQA with DPR-CLS.

Chapter 3. Dimension Reduction 36

Method Compression
Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.934 0.758 0.920 (100%)

Gaussian Projection 6× 0.825 0.848 0.855 (93%)

Sparse Projection 6× 0.826 0.848 0.856 (93%)

Dimension Dropping 6× 0.840 0.863 0.867 (94%)

Greedy Dimension Dropping 6× 0.845 0.873 0.873 (95%)

PCA 6× 0.908 0.907 0.910 (99%)

PCA (scaled top 5) 6× 0.916 0.910 0.920 (100%)

Autoencoder (single layer) 6× 0.915 0.910 0.914 (99%)

Autoencoder (full) 6× 0.903 0.907 0.910 (99%)

Autoencoder (shallow decoder) 6× 0.916 0.918 0.919 (100%)

Autoencoder + L1 (single layer) 6× 0.918 0.918 0.921 (100%)

Autoencoder + L1 (full) 6× 0.909 0.910 0.913 (99%)

Autoencoder + L1 (shallow decoder) 6× 0.918 0.917 0.919 (100%)

Precision 16-bit 2× 0.921 0.917 0.920 (100%)

Precision 8-bit 4× 0.920 0.921 0.922 (100%)

Precision 1-bit (offset 0.5) 32× 0.902 0.902 0.904 (98%)

Precision 1-bit (offset 0) 32× 0.892 0.902 0.904 (98%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.854 0.862 0.858 (93%)

PCA (128) + Precision 8-bit 24× 0.906 0.904 0.909 (99%)

Table 3.6: Overview of compression method performance (from 768) using either L2

or inner product for retrieval. Inputs are based on (1) original and (2) centered and
normalized output of DPR-CLS. Performance is measured by R-Precision on Natu-
ralQuestions.

Chapter 3. Dimension Reduction 37

3.3 Analysis

3.3.1 Model Comparison

The comparison of all discussed dimension reduction methods is shown in Table 3.4. It

also shows the role of centering and normalization post-encoding which systematically

improves the performance. The best performing model for dimension reduction is the

autoencoder with L1 regularization and either just a single projection layer for the

encoder and decoder or with the shallow decoder (6x compression with 97% retrieval

performance).

We also show the major experiments in Table 3.6 (table structure equivalent to that

for the pruned dataset in Table 3.4) on Natural Question [41] with identical dataset

pre-processing. The performance is overall larger because the task is different and the

set of documents is lower (1.5 million spans) but comparatively the trends are in line

with the previous conclusions of the thesis.

3.3.2 Speed.

Despite the autoencoder providing slightly better retrieval performance and PCA being

generally easier to use (due to the lack of hyperparameters), there are several tradeoffs

in model selection. Once the models are trained, the runtime performance (encoding) is

comparable though for PCA it is a single matrix projection while for the autoencoder it

may be several layers and activation functions.

Depending on the specific library used for implementation, however, the results differ.

Figure 3.5 shows that the autoencoder (implemented in PyTorch) is much slower than

any other model when run on a CPU but the fastest when run on a GPU. Similarly,

PCA works best if used from the PyTorch library (whether on CPU or GPU) and from

the standard Scikit package. Except for Scikit, there seems to be little relation between

the target dimensionality and computation time.

3.3.3 Data size

A crucial aspect of the PCA and autoencoder methods is how much data they need

for training. In the following, we experimented with limiting the number of training

samples for PCA and the linear autoencoder. Results are shown in Figure 3.6.

4PyTorch 1.9.1, scikit-learn 0.23.2, RTX 2080 Ti (CUDA 11.4), 64�2.1GHz Intel Xeon E5-2683 v4,
1TB RAM.

Chapter 3. Dimension Reduction 38

32 256 512 768

Dimension

50

100

150

200

250

300

350
T

im
e

(s
)

PCA (scikit), encode

PCA (Torch, GPU), encode

PCA (Torch, CPU), encode

Auto. (GPU), encode

Auto. (CPU), encode

PCA (scikit), train

PCA (Torch, GPU), train

PCA (Torch, CPU), train

Auto. (GPU), train

Auto. (CPU), train

Figure 3.5: Speed comparison of PCA and autoencoder (model 3) implemented in
PyTorch and Scikit4split into training and encoding parts. Models were trained on
documents and queries jointly (normalized).

While Ma et al. [27] used a much larger training set to fit PCA, we find that PCA requires

very few samples (lower-bounded by 128 which is also the number of dimensions used for

this experiment). This is because in the case of PCA training data is used to estimate

the data covariance matrix which has been shown to work well when using a few samples

[93]. Additionally, we find that overall the autoencoder needs more data to outperform

PCA.

Next, we experimented with adding more (potentially irrelevant) documents to the

knowledge base. For this, we kept the training data for the autoencoder and PCA

to the original size. The results are shown as dashed lines in Figure 3.6. Retrieval per-

formance quickly deteriorates for both models (faster than for the uncompressed case),

highlighting the importance of filtering irrelevant documents from the knowledge base.

3.3.4 Retrieval errors

So far, our evaluation focused on quantitative comparisons. In the following, we compare

the distribution of documents retrieved before and after compression to investigate if

there are systematic differences. We carry out this analysis using HotpotQA which, by

design, requires two documents in order to answer a given query. We compare retrieval

with the original document embeddings to retrieval with PCA and 1-bit compression.

Chapter 3. Dimension Reduction 39

128 103.0 104.0 105.0 106.0 107.0 107.5

Docs count (log scale)

0.40

0.45

0.50

0.55

0.60

R
-P

re
ci

si
on

PCA (training docs)

Auto. (training docs)

Uncompressed

PCA (eval docs)

Auto. (eval docs)

Uncomp. (eval docs)

Figure 3.6: Dependency of PCA and autoencoder performance (evaluated on Hot-
potQA dev data, trained on document encodings) by modifying training data (solid
lines) and by adding irrelevant documents to the retrieval pool (dashed lines). Black
crosses indicate the original training size. Note the log scale on the x-axis and the
truncation of the y-axis.

Uncompressed PCA 1bit

Uncompressed 1.00

PCA 0.87 1.00

1bit 0.81 0.80 1.00

Table 3.7: Correlation of the number of retrieved documents for HotpotQA queries
in different retrieval modes: uncompressed, PCA (128) and 1-bit precision with R-
Precisions (centered & normalized) of 0.618, 0.579 and 0.561, respectively.

We find that there are no systematic differences compared to the uncompressed retrieval.

This is demonstrated by the small off-diagonal values in Figure 3.7. This result shows

that if the retriever working with uncompressed embeddings returns two relevant doc-

uments in the top-k for a given query, also the retriever working with the compressed

index is very likely to include the same two documents in the top-k. This is further

shown by the Pearson correlation in Table 3.7.

Overall this suggests that the compressed index can be used on downstream tasks with

predictable performance loss based on the slightly worsened retrieval performance. Fur-

thermore, there do not seem to be any systematic differences even between the two

vastly different compression methods used for this experiment (PCA and 1-bit preci-

sion). This indicates that, despite their methodological differences, the two compression

Chapter 3. Dimension Reduction 40

approaches seem to remove the same redundances in the uncompressed data. We leave

a more detailed exploration of these findings for future work.

0 1 2

PCA retrieved

0

1

2

16.2

35.6

35.2

3.9

5.2

1.7

1.9

0.3

0.0

0 1 2

1bit retrieved

0

1

2

16.0

2.9

31.98.1

5.8 32.4

2.2

0.6

0.1

Figure 3.7: Distribution of the number of retrieved documents for HotpotQA queries
before and after compression: PCA (128) and 1-bit precision with R-Precisions (cen-
tered & normalized).

Chapter 4

Discussion

In this section, we briefly discuss the main conclusions from our experiments and analysis

in the form of recommendations for NLP practitioners. We also discuss the general

approach to dimensionality reduction from the point of view of distance learning and

the limitations. We summarize together with ideas for future work.

4.1 Recommendations

4.1.1 Importance of Pre-/post-processing

As our results show, for all methods (and models), centering and normalization should

be done before and after dimension reduction, as it boosts the performance of every

model.

4.1.2 Method recommendation

While most compression methods achieve similar retrieval performance and compression

ratios (cf. Table 3.4 and Table 3.6), PCA stands out in the following regards:

• It requires only minimal implementation effort and no tuning of hyper-parameters

beyond selecting how many principal components to keep.

• As our analysis shows, the PCA matrix can be estimated well with only 1000

document or query embeddings. It is not necessary to learn a transformation

matrix on the full knowledge base.

• PCA can easily be combined with precision reduction based approaches.

41

Chapter 4. Discussion 42

4.1.3 Splitting

Small gains (both performance and smaller knowledge base size) can be achieved by

splitting on sentence boundaries (e.g. 6 sentences instead of 100 tokens). Further im-

provements can be possibly made by using the same splitting scheme in model pretrain-

ing.

4.2 Pitfalls of Reconstruction Loss

Despite PCA and autoencoder being the most successful methods, low reconstruction

loss provides no theoretical guarantee to the retrieval performance. Consider a simple

linear projection that can be represented as a diagonal matrix that projects to a space of

the same dimensionality. This function has a trivial inverse and therefore no information

is lost when it is applied. The retrieval is however disrupted, as it will mostly depend on

the first dimension and nothing else. This is a major flaw of approaches that minimize

the vector reconstruction loss because the optimized quantity is different to the actual

goal.

R =

1099 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

R−1 =

10−99 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

∀v ∈ Rd : L2((R−1 ×R)v, v) = L2(Iv, v) = 0 ⇒ L = 0

4.2.1 Distance Learning

In this subsection, we discuss a more general solution to dimension reduction for doc-

ument retrieval: distance/manifold learning. This task is also concerned with creating

a new vector space that has some key properties transferred from the original, higher-

dimensional, space (distances, ordering etc.). Figure 4.1 illustrates dimension reduction

on random vectors from 3D to 2D.1 The various methods are discussed later. Note the

distances between the three selected points in the 2D space.

1The 3D visualization is in itself a kind of dimension reduction but we add additional features
(leading verticals and grid) to make use of the human visual processing.

Chapter 4. Discussion 43

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0
0.2

0.4
0.6

0.8

0.0

0.2

0.4

0.6

0.8

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
PCA

t-SNE

MDS

MDS (nonmetric)

Figure 4.1: Example of dimension reduction using PCA, t-SNE and parametric and
non-parametric MDS from 3 to 2 dimensions.

4.2.1.1 Existing Approaches

The task of dimensionality reduction has been explored by standard statistical methods

by the name manifold learning.

The most used method is t-distributed stochastic neighbor (t-SNE) embedding built on

the work of Hinton and Roweis [94] or multidimensional scaling [95, 96]. They organize

a new vector space (of lower dimensionality) so that the L2 distances follow those of the

original space (extensions to other metrics also exist). Although the optimization goal is

more in line with our task of vector space compression with the preservation of nearest

neighbours, methods of manifold learning are limited by the large computation costs2

and the fact that they do not construct a function but rather move the discrete points

in the new space to lower the optimization loss. This makes it not applicable for online

purposes (i.e. adding new samples that need to be compressed as well).

Multidimensional Scaling. A widely used technique for dimensionality reduction is

MDS. An extension to this is using an arbitrary metric for the original space, though

the new organization is still based on the L2 distance. An important variant of this

method is nonmetric MDS which preserves the ordering of neighbours instead of trying

to model all distances accurately. This optimization goal is important for the task at

hand, dimensionality reduction for vectors used for document retrieval. A downside of

2The common fast implementation for t-SNE, Barnes-Hut [97, 98] is based on either quadtrees or
octrees and is limited to 3 dimensions.

Chapter 4. Discussion 44

MDS is that the support is limited to metrics only in the formal mathematical sense,

which the inner product does not satisfy and has very large computation costs.

Uniform Manifold Approximation and Projection for Dimension Reduction.

While the recent technique UMAP [99] solves some of the issues of t-SNE (target di-

mension limits), it is still too slow for practical purposes when applied to the whole

knowledge base.

All of the manifold learning methods are also very dependent on the hyperparameters,

which makes working with the techniques (in comparison to PCA) more difficult, also

yielding suboptimal results.

4.2.1.2 Gradient-based optimization

The main disadvantage of the approaches based on reconstruction loss is that their

optimization goal strays from what we are interested in, namely preserving distances

between vectors. We tried to reformulate the problem in terms of deep learning and

gradient-based optimization to alleviate the issue of speed and extensibility of standard

manifold learning approaches. We try to learn a function that maps the original vector

space to a lower-dimensional one while preserving similarities. That can be either a

simple linear projection A or generally a more complex differentiable function f :

L = MSE(sim(f(ti), f(tj)), sim(ti, tj))

After the function f is fitted, both the training and new data can be compressed by its

application. As opposed to manifold learning which usually leverages specific properties

of the metrics, here they can be any differentiable functions. The optimization was,

however, too slow, underperforming (between sparse projection and PCA) and did not

currently provide any benefits (results not shown in this thesis).

Similar to manifold learning, we may create completely new vectors instead of relying

on differentiable transformations. Given an already existing lower-dimensional repre-

sentation of the data, we may consider the following loss, computed the gradient and

updated the values. Assuming ti and tj are randomly sampled vectors and the new

vectors ni and nj are trainable parameters. The elements in the pairs of vectors need

not be from the same distribution. In this case, ti and ni may be queries and tj and nj

documents. The optimization goal is to have same similarities in the new vector space

Chapter 4. Discussion 45

as in the original one.

L = MSE(sim(ni, nj), sim(ti, tj))

Naturally, this is very susceptible to the initial organization of the vector space. We

considered two solutions for initialization of every dimension: uniform sampling from

(−1, 1) and sampling from a normal distribution with µ = 1 and σ2 = 1. We also

experimented with the normalization of the whole vector to the norm of 1. This method

does not, however, solve the issue that the result of the computation is not applicable

to new data and only reorganizes data at train-time.

We also tried to use unsupervised contrastive learning by considering close neighbours

in the original space as positive samples and distant neighbours as negative samples but

reached similar results:

L =

∑
ti,tj close e

sim(f(ti),f(tj))∑
ti,tj distant e

sim(f(ti),f(tj))

4.3 Limitation

We are fairly confident, based on prior existing research on this topic, that the explored

methods will not yield unexpected undesirable results. We aimed at making deployment

and experiments with large knowledge bases easier from compute and memory resrouces

point of view. A persisting bottleneck is the embedding model inference, which is re-

quired to generate the index for the whole knowledge base. Additionally, for extremely

resource limited scenarios, the application of these methods may not be straightforward.3

The key thing that could prevent from the described methods to be used by document

retrieval practicioners is the lack of quantification of how the loss in retrieval performance

affects the downstream task performance. While we shown that there are no probably

no systematic differences in the kinds of documents that are retrieved, it is still unknown

whether 90% of original retrieval performance means that a specific question answering

system will have 90% exact match. Because this depends heavily on the specific task,

we leave this question open for future survey and would like to see curves downstream

task performance - retrieval retrieval performance for multiple systems and tasks.

3For example, to avoid having the whole 150GB index in memory, one must interweave embedding
model inference with dimension reduction steps.

Chapter 4. Discussion 46

4.4 Summary

In this work, we examined several simple unsupervised methods for dimensionality reduc-

tion for retrieval-based NLP tasks: random projections, PCA, autoencoder and precision

reduction and their combination. We also documented the data requirements of each

method and their reliance on pre- and post-processing. We explored several options for

splitting and filtering and reported that the commonly used practices are adequate. We

stress the importance of pre- and post-processing (centering + normalization).

Future research

As shown in prior works, dimension reduction can take place also during training where

the loss is more in-line with the retrieval goal. Methods for dimension reduction after

training, however, rely mostly on reconstruction loss, which is suboptimal. Therefore

more research for dimension reduction methods is needed, such as fast manifold or

distance-based learning.

Despite negative results with gradient-based metric learning, we believe that with enough

research, it may show to be useful. It also leads to many new questions, for example, if

the loss uses the inner product as the similarity in the new space and L2 in the original,

it is unclear to which extent the trained function would be able to capture the original

L2 structure with the inner product as the similarity metric.

Appendix A

Fusion Discussion

Intuitively it makes more sense to prefer early fusion, to maximize the model’s access

to extra information [36, 100]. However, this can also be a disadvantage, as the signal

from the artefact can get lost during the long computation. In the case of an artefact

which is the gold output of a similar query from the training data, later fusion makes

more sense. This also allows for a degree of explainability. By examining the forward

pass of the last function we could determine what the contribution of the artefact was

to the produced output.

The decision of how late the fusion should be depends heavily on the artefact type. The

application of every function in the chain of computation projects the input to some

latent space. The final function fn is special because it projects the output of previous

functions to the space of possible outputs for the whole model. In this space, there is the

prediction ŷ and also the true output y. The task performance metric is defined in this

space. During inference, adding an artefact should ideally move the prediction in the

output space closer to the correct output. Assuming c is the intermediate computation

and there are two (overloaded) functions that produce a prediction: ŷx = fn(c) and

ŷξ = fn(c, ξ). In circumstances in which adding the artefact helps, L(ŷξ, y) < L(ŷx, y),

where L is a loss function such as cross-entropy. This is illustrated in the first row of

Figure A.1 for n = 2.

Assume that we can create an inverse of the last projection and see where the correct

output lies in the intermediate representation. There may be multiple such ct : fn(ct) = y

or none, if too much information was lost by the first projection f1. Further, assume

that there is always at least one such ct. We may then define an intermediate loss

Li for each model computation by measuring the distance of the partial computations

to the back-projection. Similarly to late fusion, we consider two overloaded functions

that produce the intermediate representation cx = f1(q) and cξ = f1(q, ξ). Adding the

47

Appendix A. Fusion Discussion 48

artefact then ideally moves the intermediate representation closer to the back-projection

and reduces the intermediate loss: Li(cξ, ct) < Li(cx, ct).
1

This is illustrated in the second row of Figure A.1, which depicts a model with only

two computational steps: f2 ◦ f1. Early fusion (second row) adds the artefact to f1,

while late fusion adds it in the next step. For simplicity in the figure, we consider

the standard L2 distance loss between the points. In both cases, adding the artefact

reduced the target loss. For early function, the intermediate loss was also reduced and

the target loss was lower. This does not always happen and complex computations may

still at some point project the intermediate computation to the same point regardless of

whether an artefact was added earlier or not. It may also be the case that training with

artefacts takes a longer time and the intermediate loss is higher but that the presence

of the artefacts will make the model converge to a better optimum (lower generalization

error).

y
ŷ

ŷ

f₂(cₓ)

f₂(c,ξ)

cₓf₁(q)

q

y
ŷₓ

ŷ

f₂(cₓ)

f₂(c)

cₓf₁(q)

f₁(q,ξ)
q c

f₂(cₜ)cₜ

Projection 1 Projection 2 = OutputInput Space

ξ

ξ

ξ ξ

Figure A.1: Example of how late (top) and early (bottom) fusions affect the pro-
jections into intermediate spaces. The lengths of dashed lines correspond to the loss
(longer is greater loss). Adding an artefact ξ to the computation decreases the loss in
both early and late fusions.

Even though the invertibility of projections in this paper is only used as an illustration

for the artefact fusion and an intermediate loss does not have to be defined in practice,

invertible neural networks are an ongoing topic of research [101, 102]. The combination

1In case of multiple elements that map to y, we can define a loss that considers the minimum distance
to any of them: Li′ = minLi(c, ct). If there is no such element in the projection space, then we may
consider the elements that project close to the target Ct = arg minL(f2(c), y).

Appendix A. Fusion Discussion 49

of artefact retrieval and invertible neural networks has not yet been explored to our

knowledge.

List of Figures

Figure 1.1 General scheme of NLP models utilizing artefacts by retrieving

them from a knowledge base and fusing them into the model in order to

produce a better output. Dashed links are utilized only in knowledge base

creation and usually not all at once. 5

Figure 1.2 Conceptualized overview of retrieval on whole documents. Not

actually used in practice with dense vector representations. 9

Figure 1.3 Conceptualized overview of retrieval on document spans. 9

Figure 1.4 Comparison of different BERT-based embedding models and ver-

sions when using faster but slightly inaccurate nearest neighbour search.

[CLS] is the specific token embedding from the last layer while (Avg) is

all token average. 13

Figure 1.5 Effect of data centering and normalization on performance (eval-

uated with FAISS). 14

Figure 1.6 First two dimensions of 15 random queries and 15 random docu-

ments and their positions after preprocessing. 15

Figure 2.1 Retrieval performance and knowledge base size after being split

using different methods. Note the cut-off y-axis. 19

Figure 2.2 Retrieval performance and knowledge base size after being filtered

using length-based heuristics. Note the cut-off y-axis. 21

Figure 2.3 Distribution of span length either with word or characte count. . . 21

Figure 2.4 Example of two retrieval and one pruning steps on two queries.

For both queries, the spans are sorted from left to right by decreasing

similarity. Spans with bold borders are those considered as retrieved.

Spans in green are relevant for the given query and spans in red are not

relevant. 22

Figure 2.5 Autofiltering performance of dev queries on spans filtered using

the same dev queries. Filtering is done using either top-10 or top-20 spans. 23

Figure 2.6 Autofiltering performance of dev queries on spans filtered using

train queries. Filtering is done using top-10 spans. 24

50

List of Figures 51

Figure 2.7 Training classifier accuracy for most common class classifier and

logistic regression based on data from individual filtering steps or cum-

mulative data up to a certain step (total). 24

Figure 3.1 Dimension reduction using different random projections methods.

Presented values are the max of 3 runs (except for greedy dimension drop-

ping, which is deterministic), semi-transparent lines correspond to the

minimum. Embeddings are provided by centered and normalized DPR-

CLS. Final vectors are also post-processed by centering and normalization. 29

Figure 3.2 Dimension reduction using PCA (top) and Autoencoder (bottom)

trained either on document index, query embeddings or both. Each fig-

ure corresponds to one of the four possible combinations of centering and

normalizing the input data. The output vectors are not post-processed.

Reconstruction loss (MSE, average for both documents and queries) is

shown in transparent colour and computed in original data space. Hori-

zontal lines show uncompressed performance. Embeddings are provided

by DPR-CLS. 30

Figure 3.3 100 randomly generated points with 5 precision reductions meth-

ods. 32-bit and 16-bit overlap, 1-bit has only 4 options. 34

Figure 3.4 Combination of PCA and precision reduction. Compression ratio

is shown in text. 16-bit and 32-bit values overlap with 8-bit and their

compression ratios are not shown. Measured on HotpotQA with DPR-CLS. 35

Figure 3.5 Speed comparison of PCA and autoencoder (model 3) implemented

in PyTorch and Scikit2split into training and encoding parts. Models were

trained on documents and queries jointly (normalized). 38

Figure 3.6 Dependency of PCA and autoencoder performance (evaluated on

HotpotQA dev data, trained on document encodings) by modifying train-

ing data (solid lines) and by adding irrelevant documents to the retrieval

pool (dashed lines). Black crosses indicate the original training size. Note

the log scale on the x-axis and the truncation of the y-axis. 39

Figure 3.7 Distribution of the number of retrieved documents for HotpotQA

queries before and after compression: PCA (128) and 1-bit precision with

R-Precisions (centered & normalized). 40

Figure 4.1 Example of dimension reduction using PCA, t-SNE and parametric

and non-parametric MDS from 3 to 2 dimensions. 43

List of Figures 52

Figure A.1 Example of how late (top) and early (bottom) fusions affect the

projections into intermediate spaces. The lengths of dashed lines corre-

spond to the loss (longer is greater loss). Adding an artefact ξ to the

computation decreases the loss in both early and late fusions. 48

List of Tables

Table 1.1 Categorization of described NLP systems in terms of the artefact

retrieval typology. Fusion describe both where it occurs and what mech-

anism it employs, Keys describes not only the key type but also the

retrieval mechanism (e.g. metric). 7

Table 1.2 Example of questions from HotpotQA and Natural Questions. Sim-

ilarity is measured on centered and normalized embeddings from DPR-

CLS. Higher always means more similar (L2 is for this reason negated). . 11

Table 1.3 Number of training and dev queries and documents for the different

datasets used. *Whole Wikipedia dump. 12

Table 3.1 Effect of pre-processing transformations on embeddings produced

by DPR-CLS. Means and standard deviations are computed separately

for documents and queries. Transformation into z-scores includes centering. 27

Table 3.2 Average L1 and L2 norms of document and query embeddings from

DPR-CLS without pre-processing. 30

Table 3.3 Hyperparameters of autoencoder architectures. L1 regularization

is used only when explicitly mentioned. 32

Table 3.4 Overview of compression method performance (from 768) using

either L2 or inner product for retrieval. Inputs are based on centered

and normalized output of DPR-CLS and the outputs optionally post-

processed again. Performance is measured by R-Precision on the pruned

HotpotQA dataset. 33

Table 3.5 Decimal representation of randomly generated numbers with 5 pre-

cision reduction methods. 34

Table 3.6 Overview of compression method performance (from 768) using

either L2 or inner product for retrieval. Inputs are based on (1) original

and (2) centered and normalized output of DPR-CLS. Performance is

measured by R-Precision on NaturalQuestions. 36

53

List of Tables 54

Table 3.7 Correlation of the number of retrieved documents for HotpotQA

queries in different retrieval modes: uncompressed, PCA (128) and 1-bit

precision with R-Precisions (centered & normalized) of 0.618, 0.579 and

0.561, respectively. 39

Bibliography

[1] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang.

Realm: Retrieval-augmented language model pre-training. arXiv preprint

arXiv:2002.08909, 2020.

[2] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim

Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp

tasks. arXiv preprint arXiv:2005.11401, 2020.

[3] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani,

Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Mail-

lard, et al. Kilt: a benchmark for knowledge intensive language tasks. In Pro-

ceedings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 2523–2544,

2021.

[4] Moin Nadeem, Wei Fang, Brian Xu, Mitra Mohtarami, and James Glass. Fakta:

An automatic end-to-end fact checking system. In Proceedings of the 2019 Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics (Demonstrations), pages 78–83, 2019.

[5] Charles L Chen. Neural Network Models for Tasks in Open-Domain and Closed-

Domain Question Answering. Ohio University, 2020.

[6] Andon Tchechmedjiev, Pavlos Fafalios, Katarina Boland, Malo Gasquet, Matthäus

Zloch, Benjamin Zapilko, Stefan Dietze, and Konstantin Todorov. Claimskg: A

knowledge graph of fact-checked claims. In International Semantic Web Confer-

ence, pages 309–324. Springer, 2019.

[7] Robert Logan, Nelson F Liu, Matthew E Peters, Matt Gardner, and Sameer Singh.

Barack’s wife hillary: Using knowledge graphs for fact-aware language modeling.

In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 5962–5971, 2019.

[8] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-

ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan

Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman

55

Bibliography 56

Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cas-

sirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osin-

dero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improving

language models by retrieving from trillions of tokens, 2021.

[9] Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Efficient nearest neigh-

bor language models. In Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing, pages 5703–5714, 2021.

[10] Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason

Weston. Wizard of wikipedia: Knowledge-powered conversational agents. arXiv

preprint arXiv:1811.01241, 2018.

[11] Sixing Wu, Ying Li, Dawei Zhang, Yang Zhou, and Zhonghai Wu. Topicka: Gener-

ating commonsense knowledge-aware dialogue responses towards the recommended

topic fact. In IJCAI, volume 2020, pages 3766–3772, 2020.

[12] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike

Lewis. Generalization through memorization: Nearest neighbor language mod-

els. arXiv preprint arXiv:1911.00172, 2019.

[13] Dani Yogatama, Cyprien de Masson d’Autume, and Lingpeng Kong. Adaptive

semiparametric language models. Transactions of the Association for Computa-

tional Linguistics, 9:362–373, 2021.

[14] Vilém Zouhar, Marius Mosbach, Debanjali Biswas, and Dietrich Klakow. Arte-

fact retrieval: Overview of NLP models with knowledge base access. In Work-

shop on Commonsense Reasoning and Knowledge Bases, 2021. URL https:

//openreview.net/forum?id=9_oCNR6R9l2.

[15] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,

Mike Gatford, et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

[16] Vilém Zouhar, Marius Mosbach, Miaoran Zhang, and Dietrich Klakow. Knowledge

base index compression via dimensionality and precision reduction. arXiv preprint

arXiv:2204.02906, 2022.

[17] Bhaskar Mitra and Nick Craswell. Neural models for information retrieval. arXiv

preprint arXiv:1705.01509, 2017.

[18] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. Multi-stage doc-

ument ranking with bert. arXiv preprint arXiv:1910.14424, 2019.

[19] Amir Soleimani, Christof Monz, and Marcel Worring. Bert for evidence retrieval

and claim verification. Advances in Information Retrieval, 12036:359, 2020.

https://openreview.net/forum?id=9_oCNR6R9l2
https://openreview.net/forum?id=9_oCNR6R9l2

Bibliography 57

[20] Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen-tau Yih, Barlas Oguz,

Veselin Stoyanov, and Gargi Ghosh. Multi-task retrieval for knowledge-intensive

tasks. In Proceedings of the 59th Annual Meeting of the Association for Compu-

tational Linguistics and the 11th International Joint Conference on Natural Lan-

guage Processing (Volume 1: Long Papers), pages 1098–1111, Online, August 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.89.

URL https://aclanthology.org/2021.acl-long.89.

[21] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep

neural networks for natural language understanding. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 4487–

4496, 2019.

[22] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert

for text classification? In China National Conference on Chinese Computational

Linguistics, pages 194–206. Springer, 2019.

[23] Hyun Kim, Joon-Ho Lim, Hyun-Ki Kim, and Seung-Hoon Na. Qe bert: bilingual

bert using multi-task learning for neural quality estimation. In Proceedings of the

Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day

2), pages 85–89, 2019.

[24] Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettle-

moyer, and Sonal Gupta. Muppet: Massive multi-task representations with pre-

finetuning. arXiv preprint arXiv:2101.11038, 2021.

[25] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. Sparse,

dense, and attentional representations for text retrieval. Transactions of the As-

sociation for Computational Linguistics, 9:329–345, 2021.

[26] Gautier Izacard, Fabio Petroni, Lucas Hosseini, Nicola De Cao, Sebastian Riedel,

and Edouard Grave. A memory efficient baseline for open domain question an-

swering. arXiv preprint arXiv:2012.15156, 2020.

[27] Xueguang Ma, Minghan Li, Kai Sun, Ji Xin, and Jimmy Lin. Simple and effec-

tive unsupervised redundancy elimination to compress dense vectors for passage

retrieval. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, pages 2854–2859, 2021.

[28] Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. Efficient passage re-

trieval with hashing for open-domain question answering. arXiv preprint

arXiv:2106.00882, 2021.

https://aclanthology.org/2021.acl-long.89

Bibliography 58

[29] Mahboob Alam Khalid, Valentin Jijkoun, and Maarten de Rijke. The impact of

named entity normalization on information retrieval for question answering. In

European Conference on Information Retrieval, pages 705–710. Springer, 2008.

[30] Seung-Hoon Na. Two-stage document length normalization for information re-

trieval. ACM Transactions on Information Systems (TOIS), 33(2):1–40, 2015.

[31] Dwaipayan Roy, Debasis Ganguly, Sumit Bhatia, Srikanta Bedathur, and Mandar

Mitra. Using word embeddings for information retrieval: How collection and term

normalization choices affect performance. In Proceedings of the 27th ACM inter-

national conference on information and knowledge management, pages 1835–1838,

2018.

[32] William Timkey and Marten van Schijndel. All bark and no bite: Rogue di-

mensions in transformer language models obscure representational quality. In

Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, pages 4527–4546, 2021.

[33] Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gribovskaya, Devang Agrawal,

Adam Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Masson d’Autume, Sebas-

tian Ruder, Dani Yogatama, et al. Pitfalls of static language modelling. arXiv

preprint arXiv:2102.01951, 2021.

[34] Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan

Salakhutdinov, and William W Cohen. Open domain question answering using

early fusion of knowledge bases and text. 2018.

[35] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language

models with a continuous cache. arXiv preprint arXiv:1612.04426, 2016.

[36] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain

question answering. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 6769–6781, 2020.

[37] Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. Question and answer test-

train overlap in open-domain question answering datasets. In Proceedings of the

16th Conference of the European Chapter of the Association for Computational

Linguistics: Main Volume, pages 1000–1008, 2021.

[38] Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay-

Yoon Lee, Lizhen Tan, Lazaros Polymenakos, and Andrew McCallum. Case-

based reasoning for natural language queries over knowledge bases. arXiv preprint

arXiv:2104.08762, 2021.

Bibliography 59

[39] Haitian Sun, Tania Bedrax-Weiss, and William Cohen. Pullnet: Open domain

question answering with iterative retrieval on knowledge bases and text. In Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-

cessing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 2380–2390, 2019.

[40] Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew McCallum. Question an-

swering on knowledge bases and text using universal schema and memory networks.

arXiv preprint arXiv:1704.08384, 2017.

[41] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton

Lee, et al. Natural questions: a benchmark for question answering research. Trans-

actions of the Association for Computational Linguistics, 7:453–466, 2019.

[42] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 3973–3983, 2019.

[43] Jimmy Lin. A proposed conceptual framework for a representational approach to

information retrieval. arXiv preprint arXiv:2110.01529, 2021.

[44] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-

document transformer. arXiv preprint arXiv:2004.05150, 2020.

[45] Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota, Yusheng Xie, and

R Manmatha. Docformer: End-to-end transformer for document understanding.

In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 993–1003, 2021.

[46] Yuanhua Lv and ChengXiang Zhai. When documents are very long, bm25 fails!

In Proceedings of the 34th international ACM SIGIR conference on Research and

development in Information Retrieval, pages 1103–1104, 2011.

[47] S Sathya Bama, MI Ahmed, and A Saravanan. A survey on performance evalua-

tion measures for information retrieval system. International Research Journal of

Engineering and Technology, 2(2):1015–1020, 2015.

[48] Tetsuya Sakai. On the reliability of information retrieval metrics based on graded

relevance. Information processing & management, 43(2):531–548, 2007.

[49] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search

with gpus. IEEE Transactions on Big Data, 2019.

Bibliography 60

[50] Godfrey N Lance and William T Williams. Computer programs for hierarchical

polythetic classification (“similarity analyses”). The Computer Journal, 9(1):60–

64, 1966.

[51] Narina Thakur, Deepti Mehrotra, Abhay Bansal, and Manju Bala. Analysis and

implementation of the bray–curtis distance-based similarity measure for retrieving

information from the medical repository. In International Conference on Innova-

tive Computing and Communications, pages 117–125. Springer, 2019.

[52] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transac-

tions on Information theory, 37(1):145–151, 1991.

[53] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. National

Institute of Science of India, 1936.

[54] MK Vijaymeena and K Kavitha. A survey on similarity measures in text mining.

Machine Learning and Applications: An International Journal, 3(2):19–28, 2016.

[55] Rajesh Joshi and Satish Kumar. A dissimilarity measure based on jensen shannon

divergence measure. International Journal of General Systems, 48(3):280–301,

2019.

[56] Pinky Sitikhu, Kritish Pahi, Pujan Thapa, and Subarna Shakya. A comparison of

semantic similarity methods for maximum human interpretability. In 2019 arti-

�cial intelligence for transforming business and society (AITB), volume 1, pages

1–4. IEEE, 2019.

[57] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan

Salakhutdinov, and Christopher D Manning. Hotpotqa: A dataset for diverse,

explainable multi-hop question answering. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing, pages 2369–2380, 2018.

[58] Rishav Chakravarti, Anthony Ferritto, Bhavani Iyer, Lin Pan, Radu Florian, Salim

Roukos, and Avirup Sil. Towards building a robust industry-scale question answer-

ing system. In Proceedings of the 28th International Conference on Computational

Linguistics: Industry Track, pages 90–101, 2020.

[59] Man Luo, Shuguang Chen, and Chitta Baral. A simple approach to jointly

rank passages and select relevant sentences in the obqa context. arXiv preprint

arXiv:2109.10497, 2021.

[60] Ronghan Li, Lifang Wang, Shengli Wang, and Zejun Jiang. Asynchronous multi-

grained graph network for interpretable multi-hop reading comprehension. 2021.

Bibliography 61

[61] Jiayu Ding, Siyuan Wang, Qin Chen, and Zhongyu Wei. Reasoning chain

based adversarial attack for multi-hop question answering. arXiv preprint

arXiv:2112.09658, 2021.

[62] Nicolas Gontier, Siva Reddy, and Christopher Pal. Does entity abstraction help

generative transformers reason? arXiv preprint arXiv:2201.01787, 2022.

[63] Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. Inpars:

Data augmentation for information retrieval using large language models. arXiv

preprint arXiv:2202.05144, 2022.

[64] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. In Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 4171–4186, 2019.

[65] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2019.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008, 2017.

[67] Chen Qu, Liu Yang, Minghui Qiu, W Bruce Croft, Yongfeng Zhang, and Mohit

Iyyer. Bert with history answer embedding for conversational question answering.

In Proceedings of the 42nd international ACM SIGIR conference on research and

development in information retrieval, pages 1133–1136, 2019.

[68] Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani, Yuta Nakashima, and Haruo

Takemura. Bert representations for video question answering. In Proceedings of

the IEEE/CVF Winter Conference on Applications of Computer Vision, pages

1556–1565, 2020.

[69] Rohit Kumar Kaliyar, Anurag Goswami, and Pratik Narang. Fakebert: Fake news

detection in social media with a bert-based deep learning approach. Multimedia

tools and applications, 80(8):11765–11788, 2021.

[70] Yang Liu. Fine-tune bert for extractive summarization. arXiv preprint

arXiv:1903.10318, 2019.

[71] Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. arXiv

preprint arXiv:1908.08345, 2019.

Bibliography 62

[72] Kai Hakala and Sampo Pyysalo. Biomedical named entity recognition with multi-

lingual bert. In Proceedings of The 5th Workshop on BioNLP Open Shared Tasks,

pages 56–61, 2019.

[73] Subendhu Rongali, Luca Soldaini, Emilio Monti, and Wael Hamza. Don’t parse,

generate! a sequence to sequence architecture for task-oriented semantic parsing.

In Proceedings of The Web Conference 2020, pages 2962–2968, 2020.

[74] Han He and Jinho Choi. Establishing strong baselines for the new decade: Se-

quence tagging, syntactic and semantic parsing with bert. In The Thirty-Third

International Flairs Conference, 2020.

[75] Zhengjie Gao, Ao Feng, Xinyu Song, and Xi Wu. Target-dependent sentiment

classification with bert. Ieee Access, 7:154290–154299, 2019.

[76] Manish Munikar, Sushil Shakya, and Aakash Shrestha. Fine-grained sentiment

classification using bert. In 2019 Arti�cial Intelligence for Transforming Business

and Society (AITB), volume 1, pages 1–5. IEEE, 2019.

[77] Pieter Delobelle, Thomas Winters, and Bettina Berendt. Robbert: a dutch

roberta-based language model. arXiv preprint arXiv:2001.06286, 2020.

[78] Branden Chan, Stefan Schweter, and Timo Möller. German’s next language model.

arXiv preprint arXiv:2010.10906, 2020.

[79] Jakub Sido, Ondřej Pražák, Pavel Přibáň, Jan Pašek, Michal Seják, and Miloslav

Konoṕık. Czert–czech bert-like model for language representation. arXiv preprint

arXiv:2103.13031, 2021.

[80] Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and Ziqing Yang. Pre-training

with whole word masking for chinese bert. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 29:3504–3514, 2021.

[81] Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma, Juhani Luotolahti, Tapio

Salakoski, Filip Ginter, and Sampo Pyysalo. Multilingual is not enough: Bert for

finnish. arXiv preprint arXiv:1912.07076, 2019.

[82] Zihan Wang, Stephen Mayhew, Dan Roth, et al. Extending multilingual bert to

low-resource languages. arXiv preprint arXiv:2004.13640, 2020.

[83] Stefan Daniel Dumitrescu, Andrei-Marius Avram, and Sampo Pyysalo. The birth

of romanian bert. arXiv preprint arXiv:2009.08712, 2020.

[84] Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli,

Gertjan van Noord, and Malvina Nissim. Bertje: A dutch bert model. arXiv

preprint arXiv:1912.09582, 2019.

Bibliography 63

[85] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging the gap between human and

machine translation. arXiv preprint arXiv:1609.08144, 2016.

[86] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019.

[87] Imola K Fodor. A survey of dimension reduction techniques. Technical report,

Citeseer, 2002.

[88] Samuel Kaski. Dimensionality reduction by random mapping: Fast similarity com-

putation for clustering. In 1998 IEEE International Joint Conference on Neural

Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat.

No. 98CH36227), volume 1, pages 413–418. IEEE, 1998.

[89] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science, 2(11):559–572, 1901. doi: 10.1080/14786440109462720.

[90] Jiaqi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: Simple and ef-

fective postprocessing for word representations. arXiv preprint arXiv:1702.01417,

2017.

[91] Changjie Hu, Xiaoli Hou, and Yonggang Lu. Improving the architecture of an

autoencoder for dimension reduction. In 2014 IEEE 11th Intl Conf on Ubiquitous

Intelligence and Computing and 2014 IEEE 11th Intl Conf on Autonomic and

Trusted Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and

Communications and Its Associated Workshops, pages 855–858. IEEE, 2014.

[92] Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality

reduction. Neurocomputing, 184:232–242, 2016.

[93] Saldju Tadjudin and David A Landgrebe. Covariance estimation with limited

training samples. IEEE Transactions on Geoscience and Remote Sensing, 37(4):

2113–2118, 1999.

[94] Geoffrey Hinton and Sam T Roweis. Stochastic neighbor embedding. In NIPS,

volume 15, pages 833–840. Citeseer, 2002.

[95] Joseph B Kruskal. Nonmetric multidimensional scaling: a numerical method.

Psychometrika, 29(2):115–129, 1964.

Bibliography 64

[96] Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory

and applications. Springer Science & Business Media, 2005.

[97] Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm.

nature, 324(6096):446–449, 1986.

[98] Laurens Van Der Maaten. Barnes-hut-sne. arXiv preprint arXiv:1301.3342, 2013.

[99] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[100] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative

models for open domain question answering. arXiv preprint arXiv:2007.01282,

2020.

[101] Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pel-

legrini, Ralf S Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe.

Analyzing inverse problems with invertible neural networks. arXiv preprint

arXiv:1808.04730, 2018.

[102] Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik

Jacobsen. Understanding and mitigating exploding inverses in invertible neural

networks. In International Conference on Arti�cial Intelligence and Statistics,

pages 1792–1800. PMLR, 2021.

	Declaration of Authorship
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Related Work
	1.2 Retrieval pipelines
	1.3 Setup
	1.3.1 Document Retrieval
	1.3.2 Evaluation
	1.3.3 Similarity Functions
	1.3.4 Data
	1.3.5 Model Comparison
	1.3.6 Embedding Model Overview

	2 Splitting & Filtering
	2.1 Splitting
	2.2 Filtering
	2.2.1 Heuristics
	2.2.2 Automatic filtering
	2.2.3 Discussion

	3 Dimension Reduction
	3.1 Problem Statement
	3.1.1 Pre-processing Transformations

	3.2 Compression Methods
	3.2.1 Random Projection
	3.2.2 Principal Component Analysis
	3.2.3 Autoencoder
	3.2.4 Precision Reduction
	3.2.5 Combination of PCA and Precision Reduction

	3.3 Analysis
	3.3.1 Model Comparison
	3.3.2 Speed.
	3.3.3 Data size
	3.3.4 Retrieval errors

	4 Discussion
	4.1 Recommendations
	4.1.1 Importance of Pre-/post-processing
	4.1.2 Method recommendation
	4.1.3 Splitting

	4.2 Pitfalls of Reconstruction Loss
	4.2.1 Distance Learning

	4.3 Limitation
	4.4 Summary

	A Fusion Discussion
	List of Figures
	List of Tables
	Bibliography

