

An anime popularity predictor

Lab Group: BCF3 Group 4
Toh Jing Qiang (U2121442H)
Toh Jing Hua (2121032L)
Xu YinFeng (U2121162B)

Motivation: High cost of producing anime

\$2 million

"an average 13-episode anime season costs around 250 million yen (or \$2 million)" (Eric, 2015)

Motivation: High cost of producing anime

Maximise Profits

Dataset used

MyAnimeList.net API

- Animes from 2000 to 2021
- Scrap and clean for EDA & ML

Presentation Outline

1. Motivation

- a. Problem Definition
- o. Dataset

2. Setting the Stage

- a. Data Collection
- b. Data Cleaning and Preprocessing
- c. Exploratory Data Analysis & Visualization
- d. Data-driven recommendations

3. Core Analysis

- a. Machine Learning
- b. Regression
- c. Classification

4. Project Outcomes

- a. Outcomes
- b. Interesting Things to Note
- c. More Data-driven Insights + Recommendations
- d. Conclusion
- e. Learning Points

Data Collection

[2.1 Data Collection]

Animes from 2000-2021 (100/season)

	id	title	main_picture	start_date	end_date	synopsis	mean	rank	popularity	num_list_users	 genres num	_episodes	start_season	broadcast
0	95	Turn A Gundam	{'medium': 'https://api- cdn.myanimelist.net/im		2000-04- 14	It is the Correct Century, two millennia after	7.71	1049	2892	40743	 [{'id': 1, 'name': 'Action'), {'id': 2, 'name'	50	{'year': 1999, 'season': 'spring'}	('day_of_the_week': 'friday', 'start_time': '1

焼き鳥

2.2
Data Cleaning & Preprocessing

[2.2a Data Cleaning & Preprocessing]

Missing values

```
# No synopsis information available
data_clean["synopsis"].fillna(value = "no_Synopsis", inplace = True)
# Anime still airing/ongoing
data clean["end_date"].fillna(value = "airing", inplace = True)
# Anime not broadcasted, replace missing value with the same formet for easy sorting
data clean["broadcast"].fillna(value = "{'day of the week': 'NIL', 'start time': 'NIL'}", inplace = True)
# Source not known
data clean["source"].fillna(value = "unknown", inplace = True)
# Not rated
data clean["rating"].fillna(value = "no rating", inplace = True)
# No genre information
data clean["genres"].fillna(value = "[{'id': -1, 'name': 'no genre'}]", inplace = True)
# Animes that do not have enough user giving their scorings, so replace null with value -1
data clean["mean"].fillna(value = "-1", inplace = True)
# Check null values after cleaning
data clean.isnull().sum()
```


[2.2b Data Cleaning & Preprocessing]

JSON Manipulation

Converting columns to JSON and splitting into individual columns for manipulation and feature engineering

start season

studios

broadcast

genres

statistics

```
# Splitting start season column into individual year and season columns
def split_start_season(data_clean):
    # create NaN columns
    data_clean['start_season_year'] = np.nan
    data_clean['start_season_season'] = np.nan
     for row in range(0,len(data clean)):
        if data_clean['start_season'][row] == float('NaN'):
        #convert from string to ison
        start_season = (json.loads(data_clean['start_season'][row].replace("'", "\"")))
        year = start_season['year']
        season = start season['season']
        data_clean['start_season_year'][row] = year
        data clean['start season season'][row] = season
     # drop original column
    data clean.drop(columns=['start season'], inplace=True)
    return data_clean
```

```
# Splitting striticics column into watching, completed, on hold, plan to watch and num of user columns

def split_stritici(dats_cleam):

### def split_striticic_dats_cleam):

### def split_striticic_dats_cleam):

### deta_cleam('striticic_completed') = mp.nam

dats_cleam('striticic_completed') = mp.nam

dats_cleam('striticic_momplet') = mp.nam

### deta_cleam('striticic_mom_list_users') = mp.nam

### deta_cleam('striticic_mom_list_users') = mp.nam

### deta_cleam('striticic_mom_list_users') = mp.nam

### convert from scring to jos

### sconvert from scring to jos

### scring from scring to jos

#### scring from scring f
```

```
# Splitting broadcast column into individual day and time columns

def split_broadcast(data_clean):
    # create Now Columns

    data_clean('broadcast_day_of_the_week'] = np.nan

    data_clean('broadcast_start_time'] = np.nan

for row in range(0,len(data_clean)):
    # convert from string to json
    broadcast = (json.loads(data_clean('broadcast')[row].replace("", "\")))

    data_clean('broadcast_day_of_the_week')[row] = broadcast['day_of_the_week']
    try:
        data_clean('broadcast_start_time')[row] = broadcast['start_time']
        except:
        data_clean('broadcast_start_time')[row] = 'NIL'

# drop_original_column

data_clean.drop(columns=['broadcast'], inplace=True)

return data_clean
```

```
# Convert genres into json format
def json_genres(data_clean):
    #Convert genres string to json
    for row in range(0, len(data_clean)):
        genres = json.loads(data_clean['genres'][row].replace("'", "\""))
        data_clean['genres'][row] = genres
    return data_clean
```

Functions to convert and splitting JSON columns

[2.2c Data Cleaning & Preprocessing]

Feature Engineering

New Features Generated:

- From 'broadcast':
 - broadcast_day_of_the_week
 - broadcast_start_time
- From 'start_season'
 - start_season_year
 - start_season_season
- From 'statistics'
 - statistics_watching
 - statistics_completed
 - statistics_on_hold
 - statistics_dropped
 - statistics_plan_to_watch
 - statistics_num_list_users
 - Aggregation:
 - positive_viewership_fraction: statistics_watching + statistics_completed + statistics_plan_to_watch
 - negative_viewership_fraction: statistics_on_hold + statistics_dropped

Creating positive/negative viewership feature

```
# *function to be called after split statistics() function*
def get_pos_neg_viewership(anime, viewership_types_list):
    total pos neg views = 0
   for viewership_type in viewership_types_list:
       total pos neg views += data clean[viewership type][anime]
    return total_pos_neg_views
def create_viewership_fraction(data_clean):
    # create NaN columns
    data_clean['positive_viewership_fraction'] = np.nan
    data_clean['negative_viewership_fraction'] = np.nan
    positive viewership = [
       'statistics_watching'
        'statistics_completed',
        'statistics plan to watch'
    negative_viewership = [
        'statistics_on_hold'
        'statistics dropped'
    for anime in range(0, len(data clean)):
       total_views = data_clean['statistics_num_list_users'][anime]
       # calulating the total postive and total negative views respectively
        total_pos_views = get_pos_neg_viewership(anime, positive_viewership)
       total_neg_views = get_pos_neg_viewership(anime, negative_viewership)
       # calculate percentage fraction & create a new column
       data_clean['positive_viewership_fraction'][anime] = round(total_pos_views/total_views, 4)
       data clean['negative viewership fraction'][anime] = round(total neg views/total views, 4)
   return data clean
```


[2.2d Data Cleaning & Preprocessing]

Feature Engineering - 'success'

'success' (1: successful, 0: not successful)

- Top 500 <u>rank</u>
- Top 500 *popularity*
- <u>mean</u> above 8.5
- positive_viewership_fraction above 0.975

[2.2e Data Cleaning & Preprocessing]

Time Series - Genres

Using start_season_year and genres to create genre time series dataframe for analysis

```
for row in range(len(genres_time_series_df)):
   skip = False
   single_year_row = {}
   start_season_year = genres_time_series_df['start_season_year'][row]
   # skip years earlier than 1999
   if start_season_year < 1999.0:
       continue
   # if start season year already exists in the dataframe, just add
   for year in new genres time series df['Start Season Year']:
       if start_season_year == year:
           # add to dataframe
           genre = genres_time_series_df['genre'][row]
           genre_count = genres_time_series_df['count'][row]
           new_genres_time_series_df.loc[new_genres_time_series_df['Start Season Year'] == start_seas
           skip = True
           break
   if skip:
   single_year_row['Start Season Year'] = [start_season_year]
    for genre in genres list:
       # add to dictionary the start season year and count
       if genre == genres_time_series_df['genre'][row]:
           single_year_row[genre] = [genres_time_series_df['count'][row]]
           single_year_row[genre] = [0]
   new_genres_time_series_df = new_genres_time_series_df.append(pd.DataFrame(single_year_row), ignore
```

new genres time series df

	Start Season Year	School	Suspense	Mystery	Adventure	Slice of Life	Sports	Martial Arts	Space	Comedy	 Shounen	Game	Shoujo	Sci- Fi
0	1999.0	3	1	20	127	35	0	0	6	167	 103	0	1	38
1	2000.0	14	0	18	144	12	10	4	12	172	 88	26	22	76
2	2001.0	34	0	14	110	36	41	8	15	161	 95	6	25	88
3	2002.0	40	0	27	149	51	23	25	19	234	 111	21	32	127
4	2003.0	18	0	20	148	26	26	6	8	168	110	12	20	126
5	2004.0	31	13	34	155	23	23	9	20	223	 169	23	34	127
6	2005.0	24	3	24	102	30	23	5	9	202	 139	16	32	124
7	2006.0	33	6	31	112	23	6	13	8	212	 108	15	33	82
8	2007.0	41	8	35	112	24	19	48	10	166	 86	8	23	58
9	2008.0	54	11	25	81	35	17	7	8	167	 79	21	31	62
10	2009.0	49	13	31	87	60	22	15	12	206	77	6	21	49
11	2010.0	42	5	19	67	38	30	9	14	194	 61	17	21	46
12	2011.0	53	10	26	68	45	15	11	2	155	 97	16	32	43
13	2012.0	75	6	28	44	74	26	9	12	159	 72	17	23	53
14	2013.0	69	4	18	51	59	29	5	10	157	67	23	21	27
15	2014.0	80	5	23	71	66	18	12	13	174	 83	22	37	49
16	2015.0	70	4	23	56	64	22	13	14	158	81	19	27	47
17	2016.0	77	2	29	47	90	25	4	11	151	 61	18	29	33
18	2017.0	50	3	23	41	56	28	5	4	128	60	27	14	31
19	2018.0	41	6	22	60	88	20	19	5	142	 49	22	24	29
20	2019.0	52	5	18	58	60	17	17	10	133	47	21	21	53
21	2020.0	38	5	19	80	51	14	26	0	120	29	14	13	31
22	2021.0	38	8	24	64	59	11	25	8	110	 52	7	13	38

[2.2f Data Cleaning & Preprocessing]

One Hot Encoding

One hot encoding of categorical variables:

- media_type
- source
- rating
- start_season_season
- start_season_year

- status
- nsfw
- genres
- studios

```
# Import the encoder from sklearn
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
# OneHotEncoding of categorical predictors (not the response)
cat variables = [
    'media type', 'source', 'rating', 'start season season',
    'start season year', 'status', 'nsfw'
] + [f"genre-{i}" for i in genres_expanded.columns] + [f"studio-{i}" for i in studios_expanded.columns]
anime cat = anime expanded df[cat variables]
ohe.fit(anime cat)
anime cat ohe = pd.DataFrame(ohe.transform(anime cat).toarray(),
                             columns=ohe.get feature names(anime cat.columns))
# Check the encoded variables
anime_cat_ohe.info()
```

```
media type movie
media type music
media type ona
media_type_ova
media_type_special
media type tv
source_4_koma_manga
source book
source card game
source digital manga
source_game
source_light_novel
source manga
source mixed media
source music
source novel
source original
source_other
source picture book
source radio
source unknown
source visual novel
source_web_manga
source web novel
rating g
rating_no_rating
rating pg
rating_pg_13
rating r
rating r+
start_season_season_fall
start season season spring
start season season summer
```


Genres

Top 5 genres from 2000 to 2021:

 Comedy, action, fantasy, adventure and shounen

Genres trend from 2000 to 2021:

- [Decreasing Trend] 'Shounen', 'Comedy' and 'Adventure'
- [Increasing Trend] 'Slice of Life', and 'Music'

[2.3a Exploratory Data Analysis & Visualization]

Genres

 It is surprising to see that 'Shounen', 'Comedy' and 'Adventure' have a decreasing trend

[2.3b Exploratory Data Analysis & Visualization]

Award Winning vs No Genre

Comparing animes with 'Award Winning' and 'no_genre' genres

'Award Winning' animes:

- Higher popularity
- Higher ranked
- Higher ratings

[2.3c Exploratory Data Analysis & Visualization]

Studios

Top 5 anime studios from 2000 to 2021:

• Toei Animation, Sunrise, TMS Entertainment, Madhouse, OLM

Mean rating vs various features

Mean rating compared with:

• 'source'

- 'genres'
- 'media_type'
- 'studios'

• 'rating'

Media Type vs Mean

Genres vs Mean

[2.3d Exploratory Data Analysis & Visualization]

Mean rating vs Studios

Studio of the anime vs mean rating of the anime:

- Quality is better than quantity
- The top 5 most common studios are not seen in top 20 studios with highest mean ratings

[2.3e Exploratory Data Analysis & Visualization]

Multivariate Relationships

Relationship between mean, rank, popularity, positive/negative viewership:

- mean, rank and popularity are correlated
- negative/positive viewership have **no significant correlation** with mean, rank, popularity

[2.3f Exploratory Data Analysis & Visualization]

More EDA

More EDA found in Jupyter notebook:

- num_episodes
- average_episode_duration
- start_season_season
- Previous EDA in details

[2.3g Exploratory Data Analysis & Visualization]

Data-driven recommendations

Data-driven Recommendations:

- Studios should
 - a. Focus on quality instead of quantity of anime
 - b. Broadcast anime regardless of the season
 - c. Not focus on producing anime that generate more positive views through fan-services

Machine Learning

Classification

 Determine probability of success of an anime (Yes/No)

Regression

- **Predict** mean rating
- High mean rating == anime well-received (positive correlation with ranking & popularity)

Objective

- Studios can predict the mean rating and classify the probability of success of the anime before production
- Maximizing profits from viewership, events and merchandise sales from pre-production anime fine-tuning

[Regression Models]

Regression

Goal:

• **Estimate** 'mean' rating of an anime based on the features of animes before they are produced

Models:

- Linear Regression
- Lasso Regression
- Ridge Regression [Best]

Best regression model

Ranking of regression models:

- 1. Ridge regression (~0.7)
- 2. Lasso regression (~0.6)
- 3. Linear regression (~0.4)

Why ridge regression worked better:

- We had an enormous amount of variables in our dataset (900+ variables) and using normal linear regression to fit all the variables may result in overfitting
- Ridge regression helps minimise overfitting by regularising the coefficients. This causes some coefficients to be near @ .
- This helps us to select relevant features by making the coefficients of irrelevant features to be almost 0.
- Hence, ridge regression reduces overfitting and increases the performance of the model.

Why lasso regression performed slightly worse than ridge regression:

- This could have reduced the accuracy as the variables might have had some impact on the prediction as well
- Hence, it performed slightly worse than ridge regression

[Classification Models + Performance Metrics]

Classification

Goal:

Classify future success based on features of animes before they are produced

How:

Predicting the probability of '1' in the 'success' feature

Models:

- LinearSVC
- Decision Trees
- Random Forest [Best]

Performance Metrics:

- K-fold cross validation (K = 5)
 - TPR, TNR, Confusion Matrix
 - o Precision, Recall (TPR), F1 score
 - ROC AUC Score
 - Out-of-bag (oob) score for random forest models
 - Performance consistency (standard deviation)

```
in [22]: def model_performance(random_forest, X_train, X_test, y_train, y_test):
            from sklearn.model_selection import cross_val_predict
            from sklearn.model_selection import cross_val_score
            # K-Fold Cross Validation
            y_train_pred = cross_val_predict(random_forest, X_train, y_train, cv=5)
            y_test_pred = cross_val_predict(random_forest, X_test, y_test, cv=5)
            train_scores = cross_val_score(random_forest, X_train, y_train, cv=5, scoring = "accuracy")
            test_scores = cross_val_score(random_forest, X_test, y_test, cv=5, scoring = "accuracy")
            #confusion_matrix_TPR_TNR(y_train, y_test, y_train_pred, y_test_pred, train_scores, test_scores)
            print("-> Train Dataset")
            confusion_matrix_TPR_TNR(y_train, y_train_pred, train_scores, "Train")
            get_precision_recall(y_train, y_train_pred)
             get_fl_score(y_train, y_train_pred)
             confusion_matrix_TPR_TNR(y_test, y_test_pred, test_scores, "Test")
             get_precision_recall(y_test, y_test_pred)
             get_f1_score(y_test, y_test_pred)
             ROC_AUC(random_forest, X_test, y_test, "Test")
                get_cob_score(random_forest)
```


LinearSVC

Reason for trying:

Large dataset with many rows and features

Performance:

 [Poor] Very low classification accuracy (~0.6), true positive rate, precision, recall, and f1_score (~0.2) for both train and test dataset

Reason for performance:

 LinearSVC more suited for text classification instead of categorical and continuous dataset

-> Train Dataset

Goodness of Fit of Model (Train Dataset) Classification Accuracy: 0.5658134238815472 True Positive Rate: 0.47112462006079026 True Negative Rate: 0.7542561065877128

Precision: 0.47112462006079026 Recall: 0.18925518925518925 f1_score: 0.2700348432055749

-> Test Dataset

Goodness of Fit of Model (Test Dataset) Classification Accuracy: 0.6525811471765229 True Positive Rate: 0.4298642533936652 True Negative Rate: 0.7304457527333894

Precision: 0.4298642533936652 Recall: 0.12907608695652173 f1_score: 0.19853709508881923

Decision Tree

Reason for trying:

• Categorical and continuous dataset

Performance:

- [Decent]
- Classification accuracy (~0.8)
- ROC AUC Score (~0.8)
- True positive rate, precision, recall, and F1 score

Reason for performance:

Categorical and continuous dataset suited

-> Train Dataset

Goodness of Fit of Model (Train Dataset) Classification Accuracy: 0.8330556757242089 True Positive Rate: 0.6963657678780774

True Negative Rate: 0.8939393939393939

Precision: 0.6963657678780774

Recall: 0.72

f1 score: 0.7079856972586411

-> Test Dataset

Goodness of Fit of Model (Test Dataset) Classification Accuracy: 0.810316436934934 True Positive Rate: 0.6642547033285094 True Negative Rate: 0.8611111111111111

Precision: 0.6642547033285094 Recall: 0.6339779005524862 f1_score: 0.6487632508833923

Random Forest VI

Reason for trying:

• Ensemble of decision trees (Many trees built)

Performance:

- [Good]
- Classification accuracy, TPR, F1 Score
- ROC AUC Score (~0.8 to ~ 0.94)

Reason for performance:

- Random Forest builds multiple decision trees and merge them together to get a more accurate and stable prediction
- Random Forest prevent overfitting on datasets

-> Train Dataset

Goodness of Fit of Model (Train Dataset) Classification Accuracy: 0.8812277064474792 True Positive Rate: 0.8696356275303644 True Negative Rate: 0.8848145846281334

Precision: 0.8696356275303644 Recall: 0.6588957055214724 f1 score: 0.7497382198952879

-> Test Dataset

Goodness of Fit of Model (Test Dataset) Classification Accuracy: 0.8464784348599377 True Positive Rate: 0.8163265306122449 True Negative Rate: 0.8524271844660194

Precision: 0.8163265306122449 Recall: 0.5913978494623656 f1_score: 0.6858924395947

[Classification Feature Importance]

Random Forest V2

Random Forest Improvement:

- [Feature Importance]
- Removing 600+ features with '0' importance

Performance:

- [Great]
- Classification accuracy, TPR, TNR, F1 Score
- ROC AUC Score
- Performance speed & consistency (s.d. 0.00409)
- → Oob score

Reason for performance:

- Dimensionality of the model is reduced → ↑ Model speed & Performance since only important features are considered.
- Prevents overfitting, however performance only increase slightly as random forest models tend not to overfit

Goodness of Fit of Model (Train Dataset)
Classification Accuracy: 0.8785870343011218

True Positive Rate: 0.8598425196850393 True Negative Rate: 0.8831385642737897

Precision: 0.8598425196850393 Recall: 0.6610169491525424 f1 score: 0.7474332648870635

-> Test Dataset

Goodness of Fit of Model (Test Dataset)
Classification Accuracy: 0.8630287535200829
True Positive Rate: 0.8403041825095057
True Negative Rate: 0.8649300530631935

Precision: 0.8403041825095057 Recall: 0.6121883656509696 f1_score: 0.708333333333334

[Classification Feature Importance]

Random Forest V3

Random Forest Change:

- [Feature Importance]
- Top 50 important features

Performance:

- [Good but decreased performance]
- Classification accuracy, precision, recall, F1 Score
- ROC AUC Score
- Performance consistency
- J Oob score
- Performance speed

Reason for performance:

- Only 50 out of about 250+ important features were considered before splitting a node
- Reducing large number of features reduces the performance but increases the speed

Precision: 0.7997021593447505 Recall: 0.6536822884966524 f1_score: 0.7193569993302077

-> Test Dataset

Goodness of Fit of Model (Test Dataset) Classification Accuracy: 0.841476211649622 True Positive Rate: 0.7504105090311987 True Negative Rate: 0.8623115577889447

Precision: 0.7504105090311987 Recall: 0.625170998632011 f1 score: 0.682089552238806

[Classification Hyperparameter Tuning]

Random Forest V4

Random Forest Improvement:

- [Hyperparameter Tuning]
- 'criterion': 'entropy'
- 'n_estimators': 700

Performance:

- [Excellent]
- Classification accuracy, precision, recall, F1 Score, ROC AUC Score, Oob score, and performance consistency
- \bullet \longleftrightarrow TPR, TNR
- Performance speed between v1 & v2

Reason for performance:

- Entropy 'criterion':
 - Measures the disorder of features
 - Dataset is more suited for using entropy
- 'n estimators':
 - Number of trees built before taking the maximum voting or averages of prediction
 - Having a value of 700 over the default 100 is used as building more trees leads to better performance

Goodness of Fit of Model (Train Dataset)
Classification Accuracy: 0.8792495490274502
True Positive Rate: 0.861244019138756

True Negative Rate: 0.8839434276206323

Precision: 0.861244019138756 Recall: 0.6593406593406593 f1_score: 0.7468879668049794

-> Test Dataset

Goodness of Fit of Model (Test Dataset) Classification Accuracy: 0.8518734252260265 True Positive Rate: 0.8305084745762712

True Negative Rate: 0.8573500967117988

Precision: 0.8305084745762712 Recall: 0.5991847826086957 f1 score: 0.6961325966850828

Model Comparison

Models Built:

- LinearSVC
- Decision Tree
- Random Forest V1
- Random Forest V2
- Random Forest V3
- Random Forest V4

Model to Use:

- Random Forest V4
 - Classification accuracy of 89% on the test dataset
 - Excellent performance consistency and performance speed
 - Great performance metrics

	Model	Score
0	Random Forest V4	89.15
1	Random Forest V2	88.76
2	Random Forest V1	88.00
3	Random Forest V3	87.88
4	Decision Tree	84.22
5	Support Vector Machines	71.91

Outcomes

Important Features:

- 'average_episode_duration'
- 'num_episodes'
- 'source_manga'
- 'media_type_movie'
- 'rating_pg_13'

Classification:

Classify animes success probability with high accuracy of 89% [Random Forest V4]

Regression:

• Estimate 'mean' rating of animes reliably with about 0.7 R^2 [Ridge Regression]

Solving original Problem:

 Studios can fine-tune the anime before production and maximize their profits after production, ensuring their survivability in the industry

Interesting Things to Note

- Shounen, Comedy, and Adventure genres have a decreasing trend since they are among the top 5 genres commonly seen. Instead, Slice of Life and Music genres have an increasing trend. Thus, there is a shift in the genres trend that studios can take note of.
- Quality > quantity for increasing mean rating and thus profits.
- Random forest models have determined that over 70% of total number of features are not important.
 - This shows that feature engineering and selection is important in building machine learning models.

Data-driven Insights + Recommendations

More Insights:

- Important features that determine the success of an anime
 - 'average_episode_duration'
 - o 'num_episodes'
 - 'source_manga'
 - o 'media_type_movie'
 - o 'rating_pg_13'

More Recommendations:

- Studios should try to produce anime that originates from manga, has a pg_13 rating, and as a movie, which have a low number of episodes and long average episode duration.
- Movie franchises will likely be more successful than just regular anime. Therefore, studios should produce anime movie franchises too.

Data-driven Recommendations:

[From EDA presented previously]

- Studios should
 - a. Focus on quality instead of quantity of anime
 - o. Broadcast anime regardless of the season
 - . Not focus on producing anime that generate more positive views through fan-services

Conclusion

Anime fine-tuning & Maximize studios' profits

Learning Points

Data collection:

Scraping data using API calls

Data cleaning and preprocessing:

- Feature Engineering & Feature generation
- JSON manipulation techniques
- Generating time-series data

EDA & Visualization:

- Visualization plots with large number of datapoints
 - By reducing the data point size,
 - o By reducing the opacity of data points, or
 - By introducing random sampling
- 'genres' time-series EDA

Machine Learning:

- Machine Learning Models:
 - o Ridge Regression, Lasso Regression, Random Forest, LinearSVC
- Classification Performance Metrics:
 - F-score (Precision & Recall), out-of-bag (obb) score, ROC AUC score

