
Using a Highly Dynamic Language for Development
Advantages of and lessons learned from using Common Lisp in games

Nicolas Hafner

Shirakumo Games

Abstract

Games face an interesting challenge. They require rapid
development, are highly interactive, and pose soft real-
time performance constraints. While smaller games these
days have also been developed in dynamic languages
such as Python or Lua, traditionally engines are still
written in static languages like C++ and C, with an
additional scripting language on top to handle game-
play mechanics. Common Lisp offers an environment
that’s both dynamic and performant enough to allow
for a full stack game development system that is highly
favourable to fast iteration and modular design.

Keywords: Common Lisp, game development, dynamic
languages, object orientation

1 Introduction

Video games pose an interesting engineering chal-
lenge. They are highly dynamic in their nature, as
users can perform various, sometimes far-reaching
changes to the program at any time, and yet they
must remain responsive under soft real-time con-
straints. Additionally, the development of games
itself is highly dynamic, as changes to the game re-
quire constant testing and refinement. Long pauses
between making a change and being able to prop-
erly evaluate its effects can gravely discourage test-
ing, which leads to a much worse product.

A typical approach to solve this set of constraints
is to use multiple languages in combination. A
rather low-level language like C++ or C to han-
dle the “core engine”, and an integrated scripting
language like Lua to handle gameplay logic. How-
ever, this approach has multiple issues of its own:
it can be hard to distinguish which parts should be
a part of the core engine, and which should not.
The scripting cannot integrate with everything the
engine offers, as an explicit interface has to be de-
signed that can deal with the scripting language’s
own data types and routines. For performance rea-
sons a highly dynamic part may also need to be
lowered down into the static language, making iter-
ation much slower and harder to deal with.

Finally, the lack of runtime debugging means
that any problems appearing in the core engine of-
ten lead to a crash of the entire program, which
makes diagnosing and fixing the issue much harder.
This difficulty often leads to defensive programming
strategies, where errors are simply ignored or oth-
erwise coerced, leading them to cause issues further
down the line, complicating debugging of the final
product even more.

In this paper we instead take a holistic approach,
using Common Lisp for the full stack of both the
core engine and the gameplay tools and mechanics.
Common Lisp is a highly dynamic language, allow-
ing runtime redefinition of functions, variables, and
classes, even to the point of completely reloading or
changing an underlying library or system while the
program is being executed. Yet, despite this dy-
namism, Common Lisp is a compiled language that
takes great care to support the writing of efficient
code. Highly optimising compilers like SBCL allow
you to write fast code without having to drop down
into another language.

We explore in detail some of the aspects of Com-
mon Lisp that make it particularly suited for games,
and also discuss some of the pitfalls we encountered
and how to combat them.

2 Related Works

Please see our prior work on using Common Lisp for
game development and real-time computer graph-
ics[2][3]. As this is otherwise primarily an overview
of Common Lisp facilities and our experiences, we
do not compare this paper to other work.

3 Modularity Through Mixins

The Common Lisp Object System (CLOS) has a
couple of traits that remain rare in programming
languages in use today, but make for excellent tools
to support game development. Relevant to this sec-
tion are serialised multiple inheritance and the stan-
dard generic function method combination. These
features can be used to implement a system resem-
bling ECS, though also offer a few advantages that

1



3 Modularity Through Mixins 2

make combination of behaviours more natural.
In CLOS, methods are not attached to classes,

but are instead parts of a generic function. Meth-
ods “specialise” to one or several of the required
arguments of the function to a class. When the
generic function is called, the system must first de-
termine the set of “applicable methods”. This set
depends on the method combination used by the
generic function. For brevity’s sake, we will only
look at the standard method combination here.

The standard method combination offers meth-
ods in four flavours: primary, :before, :after,
and :around. These methods are grouped together,
then filtered for applicable methods by checking
whether the arguments passed to the generic func-
tion match their specialised classes, and finally sorted
by how specific the specialisations are to the argu-
ments passed. With this completed set, the meth-
ods are invoked as illustrated in Figure 1.

Fig. 1: The standard method combination be-
haviour illustrated

As a brief example, let us consider Listing 1.
Here we define a generic function of two arguments
called handle, as well as three methods. Each of the
methods requires the first argument to be a subclass
of tick. Method 1 and 2 also require the second
argument to be a subclass of player, and method
3 a subclass of enemy.

(defgeneric handle (event object))

(defmethod handle ((ev tick) (object player))) ; 1
(defmethod handle :before ((ev tick) (object player))) ; 2
(defmethod handle ((ev tick) (object enemy))) ; 3

Listing 1: A brief example of method definition

When handle is now called with a tick and
a player instance, first the method 2 is executed,
followed by the method 1. Method 3 is ignored, as
it does not match the arguments.

This method combination mechanism really shines
only once we consider inheritance and especially

multiple inheritance and the arising “mixin classes”.
Let us now define the classes we used for the previ-
ous listing. Listing 2 shows five classes being de-
fined, with tick being a subclass of event, and
player and enemy being subclasses of
physics-object.

(defclass event () ())
(defclass tick (event) ())

(defclass physics-object () ())
(defclass player (physics-object) ())
(defclass enemy (physics-object) ())

Listing 2: A brief example of method definition

We’ll now also change the second method to spe-
cialise on the physics-object instead of player.
For example, since both player and enemy are mov-
ing, we could be handling the collision resolution
there. If we now perform the same call from before,
Methods 2 and 1 will still be invoked. However,
unlike before, if we call the function with tick and
enemy, now methods 2 and 3 will be invoked, in-
stead of only method 3.

(defmethod handle :before ((ev tick) (object physics-object)))

Listing 3: The updated second method definition

In other OOP paradigms a similar behaviour
can usually be achieved by calling the method of
the superclass with super, but notice here that the
behaviour of method 2 does not require changing
anything about the other methods or subclasses.
It thus remains wholly encapsulated in its own be-
haviour.

So far so good. Now imagine that we decide
enemies should emit a light so that they’re always
visible. To implement this behaviour, we’re going
to define a new class, emitter, and define the light
flicker behaviour in a new handle method as shown
in Listing 4.

(defclass emitter () ())

(defmethod handle :before ((ev tick) (object emitter)))

Listing 4: The new class and method to handle
light flickering

To make the enemy adopt this new behaviour,
all we need to do is add emitter to the enemy list
of superclasses of the enemy class. Thanks to the
method combination, calls to handle will now in-
clude the emitter’s method, and we have achieved
the combination of the two behaviours.

(defclass enemy (physics-object emitter) ())

Listing 5: The updated enemy class definition

The order of the superclasses here is important.



4 Conditions, Handlers, and Restarts 3

Classes that appear earlier in the list have “prece-
dence” and are thus considered to be “more specific”
when the set of applicable methods is determined.
By having emitter appear after physics-object,
we ensure that the emitter’s :before method runs
after that of physics-object, ensuring the colli-
sions have already resolved properly once we con-
sider the lighting update.

Not having the emitter be a subclass of
physics-object ensures that we can also use it as a
superclass for other things such as completely static
lanterns that have no business having any interac-
tivity.

As an example from our actual code base, as of
writing, the player class has 8 direct superclasses
whose behaviours are combined together with the
player’s own. This combination of behaviours al-
lows encapsulating different parts and re-using them
in many cases. Keep in mind, too, that all of these
classes and methods can be redefined at runtime to
change, add, and remove behaviours from an object
while the game is still running.

We’ve also developed a system to tie shaders
into the CLOS inheritance model, allowing us to at-
tach GPU rendering behaviour to classes, and com-
bine it in a similar fashion[3].

One issue that crops up when behaviours are
segregated into such small compartments is that
you might not have enough control over the combi-
nation of them. The standard method combination
offers no fine-grained control to exclude or reorder
methods for a specific specialisation of an argument.
One could devise their own method combination
strategy to allow this kind of specialised behaviour,
however we are not convinced that this would not
lead to an ultimately even more confusing design.

While the standard method combination and
mixins offer a great deal of flexibility out of the box,
great care must still be taken when the overall class
hierarchy and function protocol is designed. Other-
wise behaviours will not combine cleanly and lead
to strange bugs, or might not combine properly at
all.

4 Conditions, Handlers, and Restarts

Debugging is of course an important aspect of pro-
gramming, but this is even more so the case when
the system can be redefined and changed during
runtime. Fortunately, Common Lisp offers an in-
credibly capable system to deal with runtime bugs.
This system comes in three parts, only one of which
is commonly found in other languages.

The first part is what’s called “conditions”, or
Exceptions in other languages. Conditions are “sig-
nalled” (thrown) and can then be “handled” (caught)
by a piece of code lower down in the stack. When
handled by a standard condition handler, the stack

unwinds to the point of the handler, and the match-
ing handler function is invoked to resolve the is-
sue. For our purposes here, Common Lisp offers two
types of conditions: warnings and errors. When a
warning is signalled that is not handled further up
the stack, it simply vanishes and execution contin-
ues from the signalling point unimpeded. If an error
remains unhandled, a dynamic debugger is invoked
instead and the signalling thread is paused. From
there one of the unique features comes to shine.

Restarts are on first look similar to conditions
and handlers. When a restart is established through
restart-case, it sets an unwind point for a partic-
ularly named restart with a function to be called
when that restart is triggered. Restarts themselves
can be triggered via a function called invoke-restart,
which can also pass along arguments for the restart
function. The idea with restarts is to provide one
or more ways for execution to continue or recover
safely from an error. When the debugger is invoked
from an unhandled error, it now has access to a list
of active restarts on the stack, and can invoke one
of them dynamically as the user sees fit.

This means that unlike traditional languages where
an error causes a stack trace and then tries to con-
tinue or simply crashes, in Common Lisp execution
is halted, waiting for you to analyse and potentially
fix the bug. Once you’re confident you know what
to do or have solved the issue, you can pick from
one of several ways to continue the execution from
the error. Doing so leaves the program running
at all times and means you don’t need to worry
about long recompilation times or setup times to
reproduce the error. You can immediately continue
where you left off.

The debugger also allows you to evaluate expres-
sions at runtime while in a particular stack frame,
allowing access to local variables in the process.
Since the Common Lisp runtime includes the full
compiler suite at all times, these expressions can be
arbitrary Lisp code, allowing for far more invasive
exploration of the bug and changes to the environ-
ment than easily possible with traditional out-of-
process debuggers.

The final piece is the existence of handler-bind.
This is a type of handler for conditions, but un-
like the regular handlers that cause the stack to
unwind, these handlers are invoked on top of the
stack of where the condition was signalled. As such,
they have full access to the dynamic environment
at the point of the error. In fact, this is also how
the top level debugger is invoked. However, with
handler-bind you can automate the error resolu-
tion and avoid requiring user input.

A system with well designed recovery points through
restarts can then be set up to automatically recover
from most errors in a way much more refined than
traditional Exceptions, as there is an inversion of



5 Optimisation 4

control.

(defmethod render ((scene scene))
(for ((object in scene))

(restart-case
(render object)

(continue ())))

(defmethod render ((main main))
(handler-bind ((error (lambda (condition)

(invoke-restart 'continue))))
(render (scene main))))

Listing 6: Simplified code illustrating the control
inversion of restarts

In Listing 6 we show two simple methods, the
first to render a scene, which simply iterates over
each object in the scene and establishes a continue
restart around the call to render the object. When
this restart is invoked, the stack unwinds to within
the for and then simply continues with the next
object.

If we now call render on a scene directly and
an error occurs, the debugger gets invoked as usual.
But this time, we can invoke the continue restart
from the debugger to skip rendering the object. We
could also define a “retry” restart to simply retry
rendering the object as well, if we wanted to.

However, importantly, for the main render
method, this restart is automatically invoked, en-
suring that any potential crashes at runtime of the
game are gracefully ignored. This handler could
also be defined elsewhere even higher up the stack,
or invoke the restart only under special conditions.
This works as the lambda of the handler-bind is
invoked at the point of error on top of the stack,
where the continue restart is visible.

Restarts and handlers are fantastic tools to cre-
ate a more error-friendly environment and to re-
cover from unfavourable situations. Combined with
the dynamic debugger and runtime compilation en-
vironment, these tools make debugging problems
and evolving a system over time a lot easier.

5 Optimisation

A frequent problem with highly dynamic language
is optimisation, as the dynamic nature of the lan-
guage prohibits making assumptions at compile time,
forcing repeated runtime dispatching. The focus on
safety will also insert bounds checks and similar as-
sertions into the code, which can have a big impact
on runtime in the hot loop.

To help with these issues, Common Lisp includes
several tools in the form of sorts of “compiler promises”.
You can use a declaration to promise to the compiler
that a variable’s value assumes a certain type. The
compiler can then use this promise to perform in-
ference and eliminate runtime dispatching. SBCL is
often times good enough at automatically inferring
the types to eliminate much of runtime dispatch on

its own, but for highly optimised functions, declar-
ing the types manually can be very beneficial still.

Additionally, Common Lisp offers several com-
piler tuning declarations. For instance, increasing
the speed switch to its maximum will tell the com-
piler to try and optimise the code as much as it
can. SBCL will then also emit warnings about cases
where it doesn’t have sufficient information to elimi-
nate dispatch, or where it must allocate on the heap.
Using this extra information, the programmer can
then refactor the code or add additional promises
to ensure the compiler can generate efficient code.

Another switch is the safety switch, which, when
set to its minimum, will tell the compiler to avoid
inserting safety checks such as runtime type checks,
bounds checks, or other features that typically help
catch bugs. Naturally this is a dangerous option,
as the generated code now becomes as unsafe as C
or assembly code, and misuse of functions declared
with this option can lead to memory corruptions.

You can also declare the type of a function, to
ensure that the compiler can infer return values
and arguments across function boundaries. SBCL’s
block compilation feature, when activated, also al-
lows it to reason across function boundaries within
the same compilation unit on its own.

Finally you can also declare functions to be inline,
allowing the compiler to inline the definitions at call
sites. This declaration comes with the usual advan-
tage of aiding inference and removing call overhead,
but does hamper dynamism, as a change to an in-
lined function now requires recompiling call sites as
well.

When focusing on the SBCL implementation,
there are several other optimisations that can be
done. SBCL offers full access to its code optimisa-
tion facilities and even its assembler routines. With
enough effort, code can be optimised on the assem-
bly level, and one could even emit special assembly
instructions where needed. Some libraries already
make use of these systems to speed up computa-
tions, but we have not touched them much ourselves
due to a lack of time so far. We do however make use
of the disassemble function to check the generated
assembly of functions, as another aid in optimisa-
tion. We also make use of the integrated statistical
profiler to observe the runtime of the game and de-
termine choke points.

These techniques focus mostly on type dispatch
within a function, with special focus on arithmetic
functions. Dispatch for generic functions cannot
be eliminated like this, and especially generic func-
tions with a lot of methods attached or complicated
method signatures can become a significant choke
point.

This can be combated largely with traditional
techniques of simplifying method signatures, split-
ting up generic functions, or rewriting them into



7 Conclusion 5

statically dispatching functions that can be inlined
to take advantage of type inference. We are also
investigating an alternate dispatch technique out-
lined by Robert Strandh[4] that should significantly
improve generic function dispatch time, potentially
even outperforming traditional vtable based approaches
as used in C++ or Java.

While all these opportunities mean that fast code
can be written in SBCL, the default is still on the
side of safety over performance, something we con-
sider an ultimately good thing. Fully optimising
code on the level of C, C++, or assembly requires
significant, but not insurmountable work.

6 Garbage Collection

Being such a highly dynamic language, it’s unavoid-
able that a garbage collector be involved. This can
be problematic for games where a GC cycle can eas-
ily eclipse the time budget of a single frame. There
already exists a breadth of literature on the topic
of GC types, GC tuning, etc. out there so we will
not go into a debate on the nature of GC or its
drawbacks and advantages here. Instead we will fo-
cus on the specific issues we have encountered and
what we’ve done to mitigate them.

The GC we use is SBCL’s default GC, a genera-
tional, compacting, single-threaded stop-the-world
collector. We do hope that SBCL will receive a bet-
ter GC such as the Memory Pool System[1] at some
point, but for now we’ve been focusing on minimis-
ing garbage production in our code to avoid fre-
quent and extensive GCs.

Garbage can be minimised in a number of ways,
the most general being object pooling, or in other
words manual garbage collection. By allocating
known needed objects ahead of time and simply re-
cycling them, we can avoid generating a lot of inter-
mittent garbage. Common Lisp gives us some very
useful tools here that make this process a lot easier.

For instance, we can ask the compiler to allocate
a number of objects on the stack by using a declara-
tion ((declare (dynamic-extent x))). However,
this works only if the compiler can know ahead of
time what size the object is, meaning only fixed size
arrays and known structs can be stack allocated.
Furthermore, stack space is much more limited, so
bigger allocations still have to happen on the heap.

For cases where the object is a class instance,
simply too big for the stack, or has to escape the
stack sometimes, we can still easily cache the in-
stance locally by using load-time-value.
load-time-value is a special operator that causes
the form it wraps to be executed when the code is
first loaded into the system, and then puts the re-
sult of that executed form in the place in the code
the load-time-value was at. Another way to un-
derstand it is that an anonymous global variable is

created where the object is stored, which is then
put in place of the original load-time-value.

This trick is very useful when we know the code
path is only ever accessed from one thread at a time.
Multi-threaded schemes would need to employ more
complex methods.

Another point where load-time-value becomes
very useful is when objects are said to be immutable,
and their construction arguments are known at com-
pile time. In this case, we can define a “compiler
macro” which is a macro that is executed to replace
a call to a particular function. This compiler macro
can then analyse the arguments to the function at
compile-time and choose to replace the call with a
load-time-value form if all arguments can be de-
termined statically. This substitution then avoids
the construction and allocation of the object, or
even the entire computation of the function at run-
time in a, to the user, completely transparent fash-
ion.

In Alloy, our UI toolkit, we use this trick exten-
sively to avoid the allocation of colour values, sizes,
and dimensional units.

Even with all of these tricks, it remains very
hard to completely eliminate allocations, as other
parts such as boxing of values or generation of bignums
can cause allocations in spots where it isn’t imme-
diately obvious. So far we have managed to keep
the game running smoothly enough by offloading
big GC cycles to load screens and transitions, but
it is clear that bigger games do need additional work
put into them to optimise them for garbage man-
agement.

7 Conclusion

The expressiveness of the Common Lisp Object Sys-
tem allows for rapid changes in game object be-
haviour, as well as the creation of reusable pieces
of behaviour that can often be seamlessly combined
together. With extensions to the Meta Object Pro-
tocol, this flexibility can even be extended to graph-
ics rendering routines and shaders.

The presence of the entire compiler environment
at runtime allows the developer to change any part
of the game while it is running. Doing so is espe-
cially feasible thanks to the presence of the restarts
and interactive debugger, which allow the game to
recover from a bug without having to crash and
restart the entire system.

While these features offer great amounts of flex-
ibility, there is a performance cost. Many of these
performance penalties can be avoided or circum-
vented with careful planning and design, but often
by sacrificing some of the dynamism. These opti-
misations also come at a greater development cost.

We believe that, since these optimisations can
be performed gradually over time and because no



8 Acknowledgements 6

optimisation opportunities are fundamentally ex-
cluded, Common Lisp still makes for a great candi-
date language for game development.

While there are many more intricacies to the
Common Lisp ecosystem, we hope that this paper
gives a brief insight into some of the advantages
and challenges present when working in a full stack
Common Lisp environment.

8 Acknowledgements

We would like to thank Robert Strandh, Florian
Hanke, Tobias Mansfield-Williams, and Selwyn Sim-
sek for their feedback on the paper.

References

[1] Richard Brooksby and Nicholas Barnes. The
memory pool system. Unpublished paper, 2002.

[2] Nicolas Hafner. Object oriented shader compo-
sition using clos. In Proceedings of the 11th Eu-
ropean Lisp Symposium on European Lisp Sym-
posium, ELS2018. European Lisp Scientific Ac-
tivities Association, 2018. ISBN 9782955747421.

[3] Nicolas Hafner. Shader pipeline and effect en-
capsulation using clos. In ELS, pages 66–72,
2019.

[4] Robert Strandh. Fast generic dispatch for com-
mon lisp. In Proceedings of ILC 2014 on 8th In-
ternational Lisp Conference, pages 89–96, 2014.


	Introduction
	Related Works
	Modularity Through Mixins
	Conditions, Handlers, and Restarts
	Optimisation
	Garbage Collection
	Conclusion
	Acknowledgements

