
Attack Secure Boot of SEP

windknown@pangu

Agenda
• Secure Boot of iPhone

• SEP Hardware

• SEP Boot Process

• Mailbox

• Memory Layout

• Boot TZ0

• Memory protection

• New Memory Layout

• Attack Secure Boot

• Access Memory of SEP

• Control Memory of SEP

Secure Boot of iPhone

Boot Chain
• AP and SEP have separated secure boot chains

• AP has different modes (Normal/DFU/Restore/Upgrade)

• SEP is straightforward

Key Concepts
• IMG4 file = Payload (IM4P) + Manifest (IM4M)

• Payload verification

• Manifest is verified by Apple’s Root CA public key embedded in ROM

• The hash of each stage payload must matches the one in manifest

• Payload decryption

• Keybags of iBSS/iBEC/LLB/iBoot are decrypted by AP GID key

• Keybag of SEP firmware is decrypted by SEP GID key

• SEP has its own nonce for DFU/Recovery

Attack Secure Boot
• @axi0mx released source code of checkm8 exploit

• It supports devices up to iPhone X (A11)

• The vulnerability lies in AP ROM so Apple cannot fix it

• Allow us to execute arbitrary code in DFU mode

• checkra1n jailbreak was released by checkra1n team

• Lifetime tethered jailbreak ?

• Apple tries to stop it in iOS 14

• checkm8 does not allow us to control code running on SEP

• SEPROM bug ?

SEP Hardware

Basics of SEP Hardware
• CPU architecture

• ARMv7 - iPhone 5S/6/6S/SE/7

• ARMv8 - iPhone 8/X and newer devices

• Dedicated RAM

• Relatively small size - 4096 bytes for old devices

• Dedicated peripherals

• Crypto engine (GID/UID)

• TRNG

• Shared peripherals with AP

• Power manager (PMGR)

• Mailbox

• Shared memory

References
• “Demystifying the Secure Enclave Processor”

• Black Hat USA 2016

• https://securerom.fun 😍

• SEPROM binaries for A7/A8/A9/A10

• “Apple Platform Security (Fall 2019)”
• Communication between the Secure Enclave and the application processor is tightly

controlled by isolating it to an interrupt-driven mailbox and shared memory data buffers.

• When the device starts up, an ephemeral memory protection key is created by the
Secure Enclave Boot ROM, entangled with the device’s unique ID (UID), and used to
encrypt the Secure Enclave’s portion of the device’s memory space.

https://securerom.fun
https://securerom.fun

SEP Boot Process

Startup
• Codes snapshots are from AppleSEPROM-230.0.0.4.1 (S8000) by default

• Instruction at PA (physical address) 0x0 is executed

• LDR PC, =sub_4254

• Setup MMU to enable virtual memory address translation

• Jump to init function at 0x1000_4CDC and switch to thumb

Virtual Memory Setup
• TTBCR.EAE=1 -> Using Large Physical Address Extension

• 32bit VA map to 40bit PA (Long-descriptor translation)

• TTBR0 = 0x2_0D00_00A0 (64-bit format)

• Guess SEPROM is mapped at PA 0x2_0D00_0000

• Page tables are stored at ROM+0xA0

• MAIR: Attr0=04 Attr1=4F Attr2=F4 Attr3=4F Attr4=04 Attr5=4F Attr6=04 Attr7=04

Virtual Memory Layout
• 1st-level table at ROM+0xA0 has two entries

• One table and one block

• 2nd-level table is at ROM+0x1000

• 3rd-level table is at ROM+0x2000 and ROM+0x3000

VA PA Size Access AttrIndx

0x4000 0x2_0D00_4000 0x1000 r-x Attr0=04 (Device memory)

0x1000_0000 0x2_0D00_0000 0x2_0000 r-x Attr3=4F (Normal memory)

0x1013_0000 0x2_0D90_0000 0x1000 rw- Attr5=4F (Normal memory)

0x1018_0000 0x8000_0000 0x3000 rw- Attr4=04 (Device memory)

0x1018_8000 0x8000_0000 0x1000 rw- Attr6=04 (Device memory)

0xC000_0000 0x2_0000_0000 0x1_0000_0000 rw- Attr0=04 (Device memory)

ROM

Dedicated RAM
(Stack+Data)

Unavailable for now

Mapped IO registers

Initialization
• Store CPU tick count at 0x1013_0FC0

• Set SP=0x1013_0400

• Set VBAR to 0x1000_4000

• Set CPSR.M to 0x13 (Supervisor mode)

• Clear LR and SP for other modes

• Set all registers to 0xdeadbeef

• Clear memory 0x1013_0000 to 0x1013_0D80

• 0x1013_0000 ~ 0x1013_0400 is stack

• 0x1013_0400 ~ 0x1013_0D80 is bss data

• Copy data from 0x1001_3D80 to 0x1013_0D80 (size is 0xF00-0xD80)

• Call main logic function

Main Function
• Initialize some peripherals

• Clear CPU tick counts stored in 0x1013_0FC0

• 8 slots in total (0x40 bytes)

• Read some settings from fuses

• If it’s fresh boot

• Initialize TRNG

• Generate 4 bytes stack cookie

• boot() function will start to talk to AP via mailbox

• It shall never return

Mailbox
• The only communication channel between SEP and AP

• AP functions

• akf_start/akf_send_mbox/akf_recv_mbox/akf_stop

• Type of SEP is 2

• 8 bytes message could be sent and received

• Underlying implementation

• Read/write of mapped IO registers accessible for both sides

• Base address of AP: 0x2_0DA0_4000

• Base address of SEP: VA 0xCDA0_0B80 (PA 0x2_0DA0_0B80)

IO Registers of Mailbox

Offset Size Description Using

0x0 4 Bytes Disable interrupt Mask all interrupts in start (IN/OUT Empty/Nonempty)

0x4 4 Bytes Enable interrupt Enable OUT Nonempty in receiving / Enable IN Empty in sending

0x8 4 Bytes Inbox status Enable/Full/Empty/Overflow/Underflow

0x10 8 Bytes Inbox value for AP AP write message to

0x18 8 Bytes Outbox value for SEP SEP read message from

0x20 4 Bytes Outbox status Enable/Full/Empty/Overflow/Underflow

0x30 8 Bytes Inbox value for SEP SEP write message to

0x38 8 Bytes Outbox value for AP AP read message from

Messages of Mailbox
• Each message could contain 4 bytes data

• When talking to SEPROM, endpoint=255

• Message with opcode>100 is sent from SEP to AP

• If a message is successfully handled, SEP will send reply message with opcode+100
Opcode Description Param Data

1/2 Ping
3 Generate nonce
4 Report nonce Index of nonce to get (0-4) 4 bytes of nonce (reply)
5 Boot TZ0
6 Boot SEPOS 0 (normal) / 1 (restore) (PA>>12) of where SEP image4 data is
7 Send ART data (PA>>12) of where ART data is
8 Resume
9 Set flag 0 or 1
10 Panic immediatly
14 TEST mode?
15 Seed DPA
16 Generate random data 4 bytes random data (reply)
201 Status 1 or 2
255 Report panic

Added in A9

Internal use on
 special device?

boot()
• Clear out nonce values (20 bytes)

• Initialize mailbox

• Enter message handler loop for first time

• Break the loop after receiving “boot tz0” message

• boot_tz0() will setup protection for external RAM

• Now SEP has sufficient memory to load OS

• Enter message handler loop for second time

• Break the loop after receiving “boot sepos” message

• Continue to verify and load SEPOS

Message Loop
• The loop simply waits for a message to come in from AP and do proper

action according to the opcode

• The 1st stage will handle following opcodes

• 1/2/3/4/5/8/9/10/14/15/16

• The 2nd stage will handle following opcodes

• 1/2/3/4/6/7/9/10/15/16

• AP ROM and iBoot only send ping and nonce related messages

• Kernel will send “boot tz0”/“boot sepos”/“ART”/“resume” to actually load
SEPOS

Boot TZ0

TZ0
• AP needs to set TZ0/TZ1 registers before sending “boot tz0”

• Three 4-bytes registers(base/end/lock) for each trust zone

• Base/end registers = (PA>>12) & 0x3F_FFFF

• Physical memory address of iPhone starts from 0x8_0000_0000

• e.g. 0x8_7D80_0000 -> 0x7_D800

• Once lock register is set, base/end registers can not be set again

• A7 uses one register for base & end

• ((end PA>>20)<<16 | (base PA>>20)) & 0x3FFF_3FFF

• TZ1 is only needed for devices running KPP at EL3

• TZ0/TZ1 registers belong to AMCC (Apple’s Memory Cache Controller)

Memory Protection
• SEP needs more memory to load OS

• TZ0 describes the memory region will be used by SEP

• Protecting SEP memory

• Isolation

• AMCC will stop AP from accessing TZ0 memory once it’s locked

• Encryption

• Transparent encryption/decryption by inline AES engine

• Integrity

• Checksum of encrypted memory

Setup TZ0
• iBoot will set TZ0/TZ1 registers before jumping to kernel entry

• TZ0 base/end registers are at 0x2_0000_0480/0x2_0000_0484

• TZ1 base/end registers are at 0x2_0000_0488/0x2_0000_048C

• Lock registers are at 0x2_0000_0490/0x2_0000_0494

• Values from testing

TZ0 base TZ0 end TZ1 base TZ1 end
A7 0x5_0000 0x3F7_03F7
A8 0x0 0xBFF 0x3_F580 0x3_F5FF
A9 0x7_D800 0x7_E5FF 0x7_D780 0x7_D7FF

A10 0x7_D200 0x7_DDFF - -
A11 0xB_0FD8 0xB_C3D7 - -

boot_tz0()
• Read TZ0 registers and make sure it’s locked

• Set memory ranges for encryption

• Generate AES keys and active encryption

• Only setup encryption channel for SEPROM

• Zero out memory to be used for new page tables

• Setup new page tables and switch TTBR0

• New TTBR0 is PA 0x2_0D90_0DA0 (VA 0x1013_0DA0)

• Map more memory

Transparent Encryption
• AES-256-XEX(XTS) mode

• It’s designed for disk encryption

• Require two 32 bytes keys and 16 bytes sector (no IV required)

• Each block is 16 bytes

• Apple adds 16 bytes MAC for every two blocks

• Keys are generated by patterns include 24 random bytes per boot

• Two encryption channels are supported

• SEPROM is accessing PA 0xC8_XXXX_XXXX

• SEPOS is using 0x88_XXXX_XXXX instead

• Raw encrypted memory is at PA 0x8_XXXX_XXXX

• Useful memory size is only half of total memory

Memory Regions
• External memory usage

• Construct 40 bits PA from TZ0 registers

• PA = 0x8_0000_0000 + (value << 12)

• A8 TZ0 register: 0/0xBFF -> 0x8_0000_0000 to 0x8_00C0_0000

• Divide memory into 3 parts

Memory Mapping
• SEP needs to setup new page tables in external memory

• BUT current page tables are immutable

• How to access external memory at first place?

• Remember VA 0x1018_000 is already mapped to PA 0x8000_0000

• Looks like that SEP supports to map one PA to another PA

New Page Tables
• After memory protection is turned on, SEP starts to setup new page tables

• It maps 0xC8_00BF_3000 to 0x8000_0000 (VA 0x1018_0000) with 3 pages for storing
new page tables

• New 1st-level table is at 0x1013_0DA0 (dedicated memory)

• The first entry now points to 0xC8_00BF_3000

• Copy current page tables from 0x1000_1000 to 0x1018_0000 (3 pages)

• Clear entries of VA 0x4000

• Map VA 0x101F_0000 to PA 0xC8_00BF_3000 (3 pages)

• Easy to modify page tables later

• Switch TTBR0 to 0x2_0D90_0DA0

• Map more VAs: 0x1014_0000/0x1012_E000/0x1016_0000

New Virtual Memory Layout

VA PA Size Access AttrIndx
0x4000 0x2_0D00_4000 0x1000 r-x Attr0=04 (Device memory)
0x1000_0000 0x2_0D00_0000 0x2_0000 r-x Attr3=4F (Normal memory)
0x1012_E000 0xC8_00BF_1000 0x2000 rw- Attr1=4F (Normal memory)
0x1013_0000 0x2_0D90_0000 0x1000 rw- Attr5=4F (Normal memory)
0x1014_0000 0x8_00BF_F000 0x1000 rw- Attr1=4F (Normal memory)
0x1016_0000 0xC8_00BF_7000 0x1000 rw- Attr1=4F (Normal memory)
0x1018_0000 0x8000_0000 0x3000 rw- Attr4=04 (Device memory)
0x1018_8000 0x8000_0000 0x1000 rw- Attr6=04 (Device memory)
0x101F_0000 0xC8_00BF_3000 0x3000 rw- Attr1=4F (Normal memory)
0xC000_0000 0x2_0000_0000 0x1_0000_0000 rw- Attr0=04 (Device memory)

Load SEPOS
• After boot TZ0, SEP is ready for loading SEPOS

• It will copy IMG4 firmware into its own protected memory

• Decode IMG4 file and do verification

• Generate AES keys again for channel used by SEPOS (0x88_XXXX_XXXX)

• Decrypt the payload

• Setup bootarg and jump to SEP firmware (+0x0)

Attack Surfaces
• Mapped IO registers

• SEP messages

• IMG4 parser

Attack Secure Boot

Memory Isolation
• With checkm8 exploit, we are capable of patching iBoot & executing arbitrary code

• Test logics of AMCC

• Try to read TZ0 memory after it’s locked

• Return all zero

• SEP ROM external memory region (by reverse engineering)

• 0x8_0000_0000+((uint32_t)TZ0_base<<12) ~
0x8_0000_0000+((uint32_t)TZ0_end<<12)+0x1000

• AMCC prevents AP from visiting TZ0 memory (guessing)

• 0x8_0000_0000+((uint32_t or uint64_t?)TZ0_base<<12) ~
0x8_0000_0000+((uint32_t or uint64_t?)TZ0_end<<12)+0x1000

WHAT IF
TZ0_base += 0x10_0000
TZ0_end += 0x10_0000

Bypass Memory Isolation
• A8 TZ0 register: 0/0xBFF -> 0x10_0000/0x10_0BFF

• Try to read TZ0 memory again after “boot tz0” 🤩

• SEP ROM will have same external memory

• 0x8_0000_0000 ~ 0x8_00C0_0000

• AMCC may try protect memory (cast to uint64_t)

• 0x9_0000_0000 ~ 0x9_00C0_0000

Test More Devices
• A8/A9/A10

• SEP can boot successfully and AP can access SEP memory

• A7 (boot_tz0 fail immediately)
• panic(cpu 0 caller 0xfffffff022896c9c): "AMC Error! AMC_IRERRDBG_STS=0x1020000, MCCTAGPARLOG1/2=0/0,

MCCDATERRLOG=0, MCCAFERRLOG0/1=0x5ff070/0xf1409, CH0RNKCFG0/1=0x1/0, CH1RNKCFG0/1=0x1/0"@/BuildRoot/Library/
Caches/com.apple.xbs/Sources/AppleS5L8960X_kext/AppleS5L8960X-159/AppleS5L8960XPlatformErrorHandler.cpp:145

• SEPROM handles TZ0 values as uint64_t -> SEP access invalid memory address

• A11 (timeout - no status 2 reply after boot_tz0)
• panic(cpu 0 caller 0xfffffff0232bb748): "SEP Boot Failure: status check 2 failed - 0xe00002d6”@/Library/Caches/com.apple.xbs/

Sources/AppleSEPManager/AppleSEPManager-553.120.4/AppleSEPBooter.cpp:210

• SEPROM may be vulnerable, but it hangs somewhere (due to some checks?)

• No binary to do further investigation 🥺

Next Move
• We could now read/write SEP memory

• BUT the memory is encrypted and verified

• Replay attack is possible but not easy

• Remember two pages are not encrypted

• 0x8_00BF_0000 and 0x8_00BF_F000

• Anything interesting to overwrite?

Generate AES Keys
• boot_tz0() first maps 0x8_00BF_F000 to 0x8000_0000 with one page

• At this time VA 0x1018_0000 points to raw memory 0x8_00BF_F000

• It then generates two 24 random bytes to derive AES keys

• The random bytes are stored at following addresses

• 0x1018_0018 / 0x1018_0048

• Possible to race it from AP !

• A10 seems to have 0x1_0000 bytes dedicated memory

• Page tables are no longer on external memory

• The random bytes are stored on stack

• No chance to race it

Control SEPROM Memory
• Patch iBoot to add TZ0 registers with 0x10_0000

• Send “boot tz0” message

• Keep writing const values at 0x8_00BF_F018/0x8_00BF_F048 for a while

• Same random bytes -> same AES keys

• Try to read data at 0x8_00BF_3000

• Reboot and adjust race time until we get same encrypted data

Control SEPOS Memory
• SEPOS is using another encryption channel

• AES keys are generated again when received “boot sepos” message

• This time random bytes are stored at 0x1014_0000/0x1014_0030

• Try race it

• Failed 😑

• Issue for racing memory between two CPUs - CACHE

• 0x1014_0000 is marked as normal memory

• 0x1018_0000 is marked as device memory

• Cache enabled -> SEP can not be aware of memory modification from AP

Enlarge Attack Surface
• We could force SEPROM (A8/A9) to use fixed AES keys

• SEP firmware IMG4 file will be copied into external memory

• Send arbitrary firmware -> SEP panics -> dump encrypted memory

• We could read encrypted memory of any plain data

• Before jumping to SEPOS, SEP will switch to another encryption channel

• There is a time window for us to race SEP firmware memory

• Big attack surface, many choices

• Same target -> load arbitrary SEPOS

• Choosing racy objects/writing exploit/testing -> huge pain 🤯🤯🤯

Review
• TZ0 memory isolation bypass

• A8/A9/A10 are vulnerable

• A7/A11 are not vulnerable

• But failure results are different

• Random bytes (for deriving key) are stored on external memory

• A7/A8/A9

• Consequences

• A8/A9 - Load arbitrary SEPOS

• A10- Replay attack

Demo

One More Page
• After I gave the talk at MOSEC 2020

• An attendee told me that A8 SEPROM is not checking TZ0 lock !

• And I found out this is TRUE 🤣

• Patch iBoot not to set TZ0 lock -> accessing SEP memory

• The very first version (A7) actually handles TZ0 registers most correctly

• My exploit to load arbitrary SEPOS is gentle

• Looking forward to see more ways to exploit it 😜

Thanks & QA

