DGtal
1.5.beta
|
#include <DGtal/math/MPolynomial.h>
Data Structures | |
class | EvalFun |
class | EvalFun2 |
Public Types | |
typedef TRing | Ring |
typedef TOwner | Owner |
typedef TAlloc | Alloc |
typedef TX | X |
typedef MPolynomial< n, Ring, Alloc > | MPolyN |
Type for the multivariate polynomial. More... | |
typedef MPolynomial< n - 1, X, typename Alloc::template rebind< X >::other > | MPolyNM1 |
Public Member Functions | |
operator MPolyNM1 () const | |
template<typename XX > | |
MPolynomialEvaluatorImpl< n - 1, Ring, MPolynomialEvaluatorImpl< n, Ring, Owner, Alloc, X >, Alloc, XX > | operator() (const XX &x) const |
Private Member Functions | |
MPolynomialEvaluatorImpl (const Owner &owner, const X &evalpoint) | |
template<typename XX , typename Fun > | |
void | evaluate (XX &res, const Fun &evalfun) const |
Private Attributes | |
const Owner & | myOwner |
const X & | myEvalPoint |
Friends | |
template<int nn, class TT , class AA , class SS > | |
class | MPolynomialEvaluator |
template<int nn, class TT , class HLHL , class AA , class SS > | |
class | MPolynomialEvaluatorImpl |
Description of template class 'MPolynomialEvaluatorImpl'
Another helper for polynomial evaluation. This template is returned from MPolynomialEvaluator<n, TRing, TAlloc>::operator().
The template parameter TOwner is the type of the "owner" of this template, i.e. either MPolynomialEvaluator<n+1, TRing, TAlloc> or MPolynomialEvaluatorImpl<n+1, TRing, ..., TAlloc>.
This class is a backport from Spielwiese.
Definition at line 192 of file MPolynomial.h.
typedef TAlloc DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::Alloc |
Definition at line 197 of file MPolynomial.h.
typedef MPolynomial< n, Ring, Alloc> DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::MPolyN |
Type for the multivariate polynomial.
Definition at line 200 of file MPolynomial.h.
typedef MPolynomial< n - 1, X, typename Alloc::template rebind<X>::other > DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::MPolyNM1 |
Type for the "child" multivariate polynomial, where the first variable X has been substituted by its value. Note that the ring type has been substituted by the type of the variable (i.e. X).
Definition at line 209 of file MPolynomial.h.
typedef TOwner DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::Owner |
Definition at line 196 of file MPolynomial.h.
typedef TRing DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::Ring |
Definition at line 195 of file MPolynomial.h.
typedef TX DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::X |
Definition at line 198 of file MPolynomial.h.
|
inlineprivate |
Definition at line 222 of file MPolynomial.h.
|
inlineprivate |
This will be called from a child (i.e. a class of type MPolynomialEvaluatorImpl<n-1, Ring, MPolynomialEvaluator<n,Ring,Owner,Alloc,X>, Alloc, X>) to trigger evaluation.
Definition at line 271 of file MPolynomial.h.
References DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::myOwner.
|
inline |
Allows casting to poly<n-1, S>.
Definition at line 319 of file MPolynomial.h.
References DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::myOwner.
|
inline |
Continues evaluation with the next indeterminant. Functor returining a "child" evaluator implementation.
x | the next indeterminant. |
Definition at line 338 of file MPolynomial.h.
|
friend |
Definition at line 212 of file MPolynomial.h.
|
friend |
Definition at line 215 of file MPolynomial.h.
|
private |
Definition at line 219 of file MPolynomial.h.
Referenced by DGtal::MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >::EvalFun::operator()(), and DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::EvalFun< XX, Fun >::operator()().
|
private |
Definition at line 218 of file MPolynomial.h.
Referenced by DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::evaluate(), DGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::operator MPolyNM1(), and DGtal::MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >::operator X().