<!DOCTYPE html>
<html>
 <head>
  <meta charset="utf-8"/>
  <meta content="width=device-width, initial-scale=1.0" name="viewport"/>
  <meta content="width=device-width,initial-scale=1" name="viewport"/>
  <meta content="ie=edge" http-equiv="x-ua-compatible"/>
  <meta content="Copy to clipboard" name="lang:clipboard.copy"/>
  <meta content="Copied to clipboard" name="lang:clipboard.copied"/>
  <meta content="en" name="lang:search.language"/>
  <meta content="True" name="lang:search.pipeline.stopwords"/>
  <meta content="True" name="lang:search.pipeline.trimmer"/>
  <meta content="No matching documents" name="lang:search.result.none"/>
  <meta content="1 matching document" name="lang:search.result.one"/>
  <meta content="# matching documents" name="lang:search.result.other"/>
  <meta content="[\s\-]+" name="lang:search.tokenizer"/>
  <link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect"/>
  <link href="https://fonts.googleapis.com/css?family=Roboto+Mono:400,500,700|Roboto:300,400,400i,700&amp;display=fallback" rel="stylesheet"/>
  <style>
   body,
      input {
        font-family: "Roboto", "Helvetica Neue", Helvetica, Arial, sans-serif
      }

      code,
      kbd,
      pre {
        font-family: "Roboto Mono", "Courier New", Courier, monospace
      }
  </style>
  <link href="../_static/stylesheets/application.css" rel="stylesheet"/>
  <link href="../_static/stylesheets/application-palette.css" rel="stylesheet"/>
  <link href="../_static/stylesheets/application-fixes.css" rel="stylesheet"/>
  <link href="../_static/fonts/material-icons.css" rel="stylesheet"/>
  <meta content="84bd00" name="theme-color"/>
  <script src="../_static/javascripts/modernizr.js">
  </script>
  <title>
   torchtrtc — Torch-TensorRT v1.0.0 documentation
  </title>
  <link href="../_static/material.css" rel="stylesheet" type="text/css"/>
  <link href="../_static/pygments.css" rel="stylesheet" type="text/css"/>
  <link href="../_static/collapsible-lists/css/tree_view.css" rel="stylesheet" type="text/css"/>
  <script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js">
  </script>
  <script src="../_static/jquery.js">
  </script>
  <script src="../_static/underscore.js">
  </script>
  <script src="../_static/doctools.js">
  </script>
  <script src="../_static/language_data.js">
  </script>
  <script src="../_static/collapsible-lists/js/CollapsibleLists.compressed.js">
  </script>
  <script src="../_static/collapsible-lists/js/apply-collapsible-lists.js">
  </script>
  <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js">
  </script>
  <script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML">
  </script>
  <script type="text/x-mathjax-config">
   MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})
  </script>
  <link href="../genindex.html" rel="index" title="Index"/>
  <link href="../search.html" rel="search" title="Search"/>
  <link href="use_from_pytorch.html" rel="next" title="Using Torch-TensorRT Directly From PyTorch"/>
  <link href="ptq.html" rel="prev" title="Post Training Quantization (PTQ)"/>
 </head>
 <body data-md-color-accent="light-green" data-md-color-primary="light-green" dir="ltr">
  <svg class="md-svg">
   <defs data-children-count="0">
    <svg height="448" id="__github" viewbox="0 0 416 448" width="416" xmlns="http://www.w3.org/2000/svg">
     <path d="M160 304q0 10-3.125 20.5t-10.75 19T128 352t-18.125-8.5-10.75-19T96 304t3.125-20.5 10.75-19T128 256t18.125 8.5 10.75 19T160 304zm160 0q0 10-3.125 20.5t-10.75 19T288 352t-18.125-8.5-10.75-19T256 304t3.125-20.5 10.75-19T288 256t18.125 8.5 10.75 19T320 304zm40 0q0-30-17.25-51T296 232q-10.25 0-48.75 5.25Q229.5 240 208 240t-39.25-2.75Q130.75 232 120 232q-29.5 0-46.75 21T56 304q0 22 8 38.375t20.25 25.75 30.5 15 35 7.375 37.25 1.75h42q20.5 0 37.25-1.75t35-7.375 30.5-15 20.25-25.75T360 304zm56-44q0 51.75-15.25 82.75-9.5 19.25-26.375 33.25t-35.25 21.5-42.5 11.875-42.875 5.5T212 416q-19.5 0-35.5-.75t-36.875-3.125-38.125-7.5-34.25-12.875T37 371.5t-21.5-28.75Q0 312 0 260q0-59.25 34-99-6.75-20.5-6.75-42.5 0-29 12.75-54.5 27 0 47.5 9.875t47.25 30.875Q171.5 96 212 96q37 0 70 8 26.25-20.5 46.75-30.25T376 64q12.75 25.5 12.75 54.5 0 21.75-6.75 42 34 40 34 99.5z" fill="currentColor">
     </path>
    </svg>
   </defs>
  </svg>
  <input class="md-toggle" data-md-toggle="drawer" id="__drawer" type="checkbox"/>
  <input class="md-toggle" data-md-toggle="search" id="__search" type="checkbox"/>
  <label class="md-overlay" data-md-component="overlay" for="__drawer">
  </label>
  <a class="md-skip" href="#tutorials/torchtrtc" tabindex="1">
   Skip to content
  </a>
  <header class="md-header" data-md-component="header">
   <nav class="md-header-nav md-grid">
    <div class="md-flex navheader">
     <div class="md-flex__cell md-flex__cell--shrink">
      <a class="md-header-nav__button md-logo" href="../index.html" title="Torch-TensorRT v1.0.0 documentation">
       <i class="md-icon">
        
       </i>
      </a>
     </div>
     <div class="md-flex__cell md-flex__cell--shrink">
      <label class="md-icon md-icon--menu md-header-nav__button" for="__drawer">
      </label>
     </div>
     <div class="md-flex__cell md-flex__cell--stretch">
      <div class="md-flex__ellipsis md-header-nav__title" data-md-component="title">
       <span class="md-header-nav__topic">
        Torch-TensorRT
       </span>
       <span class="md-header-nav__topic">
        torchtrtc
       </span>
      </div>
     </div>
     <div class="md-flex__cell md-flex__cell--shrink">
      <label class="md-icon md-icon--search md-header-nav__button" for="__search">
      </label>
      <div class="md-search" data-md-component="search" role="dialog">
       <label class="md-search__overlay" for="__search">
       </label>
       <div class="md-search__inner" role="search">
        <form action="../search.html" class="md-search__form" method="get" name="search">
         <input autocapitalize="off" autocomplete="off" class="md-search__input" data-md-component="query" data-md-state="active" name="q" placeholder="Search" spellcheck="false" type="text"/>
         <label class="md-icon md-search__icon" for="__search">
         </label>
         <button class="md-icon md-search__icon" data-md-component="reset" tabindex="-1" type="reset">
          
         </button>
        </form>
        <div class="md-search__output">
         <div class="md-search__scrollwrap" data-md-scrollfix="">
          <div class="md-search-result" data-md-component="result">
           <div class="md-search-result__meta">
            Type to start searching
           </div>
           <ol class="md-search-result__list">
           </ol>
          </div>
         </div>
        </div>
       </div>
      </div>
     </div>
     <div class="md-flex__cell md-flex__cell--shrink">
      <div class="md-header-nav__source">
       <a class="md-source" data-md-source="github" href="https://github.com/nvidia/Torch-TensorRT/" title="Go to repository">
        <div class="md-source__icon">
         <svg height="28" viewbox="0 0 24 24" width="28" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
          <use height="24" width="24" xlink:href="#__github">
          </use>
         </svg>
        </div>
        <div class="md-source__repository">
         Torch-TensorRT
        </div>
       </a>
      </div>
     </div>
     <div class="md-flex__cell md-flex__cell--shrink dropdown">
      <button class="dropdownbutton">
       Versions
      </button>
      <div class="dropdown-content md-hero">
       <a href="https://nvidia.github.io/Torch-TensorRT/" title="master">
        master
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v1.0.0/" title="v1.0.0">
        v1.0.0
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.4.1/" title="v0.4.1">
        v0.4.1
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.4.0/" title="v0.4.0">
        v0.4.0
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.3.0/" title="v0.3.0">
        v0.3.0
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.2.0/" title="v0.2.0">
        v0.2.0
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.1.0/" title="v0.1.0">
        v0.1.0
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.0.3/" title="v0.0.3">
        v0.0.3
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.0.2/" title="v0.0.2">
        v0.0.2
       </a>
       <a href="https://nvidia.github.io/Torch-TensorRT/v0.0.1/" title="v0.0.1">
        v0.0.1
       </a>
      </div>
     </div>
    </div>
   </nav>
  </header>
  <div class="md-container">
   <nav class="md-tabs" data-md-component="tabs">
    <div class="md-tabs__inner md-grid">
     <ul class="md-tabs__list">
      <li class="md-tabs__item">
       <a class="md-tabs__link" href="../index.html">
        Torch-TensorRT v1.0.0 documentation
       </a>
      </li>
     </ul>
    </div>
   </nav>
   <main class="md-main">
    <div class="md-main__inner md-grid" data-md-component="container">
     <div class="md-sidebar md-sidebar--primary" data-md-component="navigation">
      <div class="md-sidebar__scrollwrap">
       <div class="md-sidebar__inner">
        <nav class="md-nav md-nav--primary" data-md-level="0">
         <label class="md-nav__title md-nav__title--site" for="__drawer">
          <a class="md-nav__button md-logo" href="../index.html" title="Torch-TensorRT v1.0.0 documentation">
           <i class="md-icon">
            
           </i>
          </a>
          <a href="../index.html" title="Torch-TensorRT v1.0.0 documentation">
           Torch-TensorRT
          </a>
         </label>
         <div class="md-nav__source">
          <a class="md-source" data-md-source="github" href="https://github.com/nvidia/Torch-TensorRT/" title="Go to repository">
           <div class="md-source__icon">
            <svg height="28" viewbox="0 0 24 24" width="28" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
             <use height="24" width="24" xlink:href="#__github">
             </use>
            </svg>
           </div>
           <div class="md-source__repository">
            Torch-TensorRT
           </div>
          </a>
         </div>
         <ul class="md-nav__list">
          <li class="md-nav__item">
           <span class="md-nav__link caption">
            <span class="caption-text">
             Getting Started
            </span>
           </span>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="installation.html">
            Installation
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="getting_started_with_cpp_api.html">
            Getting Started with C++
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="getting_started_with_python_api.html">
            Using Torch-TensorRT in Python
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="creating_torchscript_module_in_python.html">
            Creating a TorchScript Module
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="creating_torchscript_module_in_python.html#working-with-torchscript-in-python">
            Working with TorchScript in Python
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="creating_torchscript_module_in_python.html#saving-torchscript-module-to-disk">
            Saving TorchScript Module to Disk
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="ptq.html">
            Post Training Quantization (PTQ)
           </a>
          </li>
          <li class="md-nav__item">
           <input class="md-toggle md-nav__toggle" data-md-toggle="toc" id="__toc" type="checkbox"/>
           <label class="md-nav__link md-nav__link--active" for="__toc">
            torchtrtc
           </label>
           <a class="md-nav__link md-nav__link--active" href="#">
            torchtrtc
           </a>
           <nav class="md-nav md-nav--secondary">
            <ul class="md-nav__list" data-md-scrollfix="">
             <li class="md-nav__item">
              <a class="md-nav__extra_link" href="../_sources/tutorials/torchtrtc.rst.txt">
               Show Source
              </a>
             </li>
            </ul>
           </nav>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="use_from_pytorch.html">
            Using Torch-TensorRT Directly From PyTorch
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="runtime.html">
            Deploying Torch-TensorRT Programs
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="using_dla.html">
            DLA
           </a>
          </li>
          <li class="md-nav__item">
           <span class="md-nav__link caption">
            <span class="caption-text">
             Notebooks
            </span>
           </span>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_notebooks/lenet-getting-started.html">
            Torch-TensorRT Getting Started - LeNet
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_notebooks/Resnet50-example.html">
            Torch-TensorRT Getting Started - ResNet 50
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_notebooks/ssd-object-detection-demo.html">
            Object Detection with Torch-TensorRT (SSD)
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_notebooks/vgg-qat.html">
            Deploying Quantization Aware Trained models in INT8 using Torch-TensorRT
           </a>
          </li>
          <li class="md-nav__item">
           <span class="md-nav__link caption">
            <span class="caption-text">
             Python API Documenation
            </span>
           </span>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../py_api/torch_tensorrt.html">
            torch_tensorrt
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../py_api/logging.html">
            torch_tensorrt.logging
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../py_api/ptq.html">
            torch_tensorrt.ptq
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../py_api/ptq.html#classes">
            Classes
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../py_api/ptq.html#enums">
            Enums
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../py_api/ts.html">
            torch_tensorrt.ts
           </a>
          </li>
          <li class="md-nav__item">
           <span class="md-nav__link caption">
            <span class="caption-text">
             C++ API Documenation
            </span>
           </span>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_cpp_api/torch_tensort_cpp.html">
            Torch-TensorRT C++ API
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_cpp_api/namespace_torch_tensorrt.html">
            Namespace torch_tensorrt
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_cpp_api/namespace_torch_tensorrt__logging.html">
            Namespace torch_tensorrt::logging
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_cpp_api/namespace_torch_tensorrt__torchscript.html">
            Namespace torch_tensorrt::torchscript
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../_cpp_api/namespace_torch_tensorrt__ptq.html">
            Namespace torch_tensorrt::ptq
           </a>
          </li>
          <li class="md-nav__item">
           <span class="md-nav__link caption">
            <span class="caption-text">
             Contributor Documentation
            </span>
           </span>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../contributors/system_overview.html">
            System Overview
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../contributors/writing_converters.html">
            Writing Converters
           </a>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../contributors/useful_links.html">
            Useful Links for Torch-TensorRT Development
           </a>
          </li>
          <li class="md-nav__item">
           <span class="md-nav__link caption">
            <span class="caption-text">
             Indices
            </span>
           </span>
          </li>
          <li class="md-nav__item">
           <a class="md-nav__link" href="../indices/supported_ops.html">
            Operators Supported
           </a>
          </li>
         </ul>
        </nav>
       </div>
      </div>
     </div>
     <div class="md-sidebar md-sidebar--secondary" data-md-component="toc">
      <div class="md-sidebar__scrollwrap">
       <div class="md-sidebar__inner">
        <nav class="md-nav md-nav--secondary">
         <ul class="md-nav__list" data-md-scrollfix="">
          <li class="md-nav__item">
           <a class="md-nav__extra_link" href="../_sources/tutorials/torchtrtc.rst.txt">
            Show Source
           </a>
          </li>
          <li class="md-nav__item" id="searchbox">
          </li>
         </ul>
        </nav>
       </div>
      </div>
     </div>
     <div class="md-content">
      <article class="md-content__inner md-typeset" role="main">
       <span id="id1">
       </span>
       <h1 id="tutorials-torchtrtc--page-root">
        torchtrtc
        <a class="headerlink" href="#tutorials-torchtrtc--page-root" title="Permalink to this headline">
         ¶
        </a>
       </h1>
       <p>
        <code class="docutils literal notranslate">
         <span class="pre">
          torchtrtc
         </span>
        </code>
        is a CLI application for using the Torch-TensorRT compiler. It serves as an easy way to compile a
TorchScript Module with Torch-TensorRT from the command-line to quickly check support or as part of
a deployment pipeline. All basic features of the compiler are supported including post training
quantization (though you must already have a calibration cache file to use the PTQ feature). The compiler can
output two formats, either a TorchScript program with the TensorRT engine embedded or
the TensorRT engine itself as a PLAN file.
       </p>
       <p>
        All that is required to run the program after compilation is for C++ linking against
        <code class="docutils literal notranslate">
         <span class="pre">
          libtorchtrt.so
         </span>
        </code>
        or in Python importing the torch_tensorrt package. All other aspects of using compiled modules are identical
to standard TorchScript. Load with
        <code class="docutils literal notranslate">
         <span class="pre">
          torch.jit.load()
         </span>
        </code>
        and run like you would run any other module.
       </p>
       <div class="highlight-txt notranslate">
        <div class="highlight">
         <pre><span></span>torchtrtc [input_file_path] [output_file_path]
  [input_specs...] {OPTIONS}

  Torch-TensorRT is a compiler for TorchScript, it will compile and optimize
  TorchScript programs to run on NVIDIA GPUs using TensorRT

OPTIONS:

    -h, --help                        Display this help menu
    Verbiosity of the compiler
      -v, --verbose                     Dumps debugging information about the
                                        compilation process onto the console
      -w, --warnings                    Disables warnings generated during
                                        compilation onto the console (warnings
                                        are on by default)
      --i, --info                       Dumps info messages generated during
                                        compilation onto the console
    --build-debuggable-engine         Creates a debuggable engine
    --use-strict-types                Restrict operating type to only use set
                                      operation precision
    --allow-gpu-fallback              (Only used when targeting DLA
                                      (device-type)) Lets engine run layers on
                                      GPU if they are not supported on DLA
    --require-full-compilation        Require that the model should be fully
                                      compiled to TensorRT or throw an error
    --disable-tf32                    Prevent Float32 layers from using the
                                      TF32 data format
    --sparse-weights                  Enable sparsity for weights of conv and
                                      FC layers
    -p[precision...],
    --enabled-precision=[precision...]
                                      (Repeatable) Enabling an operating
                                      precision for kernels to use when
                                      building the engine (Int8 requires a
                                      calibration-cache argument) [ float |
                                      float32 | f32 | fp32 | half | float16 |
                                      f16 | fp16 | int8 | i8 | char ]
                                      (default: float)
    -d[type], --device-type=[type]    The type of device the engine should be
                                      built for [ gpu | dla ] (default: gpu)
    --gpu-id=[gpu_id]                 GPU id if running on multi-GPU platform
                                      (defaults to 0)
    --dla-core=[dla_core]             DLACore id if running on available DLA
                                      (defaults to 0)
    --engine-capability=[capability]  The type of device the engine should be
                                      built for [ standard | safety |
                                      dla_standalone ]
    --calibration-cache-file=[file_path]
                                      Path to calibration cache file to use
                                      for post training quantization
    --teo=[torch-executed-ops...],
    --torch-executed-ops=[torch-executed-ops...]
                                      (Repeatable) Operator in the graph that
                                      should always be run in PyTorch for
                                      execution (partial compilation must be
                                      enabled)
    --tem=[torch-executed-mods...],
    --torch-executed-mods=[torch-executed-mods...]
                                      (Repeatable) Module that should always
                                      be run in Pytorch for execution (partial
                                      compilation must be enabled)
    --mbs=[torch-executed-mods...],
    --min-block-size=[torch-executed-mods...]
                                      Minimum number of contiguous TensorRT
                                      supported ops to compile a subgraph to
                                      TensorRT
    --embed-engine                    Whether to treat input file as a
                                      serialized TensorRT engine and embed it
                                      into a TorchScript module (device spec
                                      must be provided)
    --num-min-timing-iter=[num_iters] Number of minimization timing iterations
                                      used to select kernels
    --num-avg-timing-iters=[num_iters]
                                      Number of averaging timing iterations
                                      used to select kernels
    --workspace-size=[workspace_size] Maximum size of workspace given to
                                      TensorRT
    --max-batch-size=[max_batch_size] Maximum batch size (must be &gt;= 1 to be
                                      set, 0 means not set)
    -t[threshold],
    --threshold=[threshold]           Maximum acceptable numerical deviation
                                      from standard torchscript output
                                      (default 2e-5)
    --no-threshold-check              Skip checking threshold compliance
    --truncate-long-double,
    --truncate, --truncate-64bit      Truncate weights that are provided in
                                      64bit to 32bit (Long, Double to Int,
                                      Float)
    --save-engine                     Instead of compiling a full a
                                      TorchScript program, save the created
                                      engine to the path specified as the
                                      output path
    input_file_path                   Path to input TorchScript file
    output_file_path                  Path for compiled TorchScript (or
                                      TensorRT engine) file
    input_specs...                    Specs for inputs to engine, can either
                                      be a single size or a range defined by
                                      Min, Optimal, Max sizes, e.g.
                                      "(N,..,C,H,W)"
                                      "[(MIN_N,..,MIN_C,MIN_H,MIN_W);(OPT_N,..,OPT_C,OPT_H,OPT_W);(MAX_N,..,MAX_C,MAX_H,MAX_W)]".
                                      Data Type and format can be specified by
                                      adding an "@" followed by dtype and "%"
                                      followed by format to the end of the
                                      shape spec. e.g. "(3, 3, 32,
                                      32)@f16%NHWC"
    "--" can be used to terminate flag options and force all following
    arguments to be treated as positional options
</pre>
        </div>
       </div>
       <p>
        e.g.
       </p>
       <div class="highlight-shell notranslate">
        <div class="highlight">
         <pre><span></span>torchtrtc tests/modules/ssd_traced.jit.pt ssd_trt.ts <span class="s2">"[(1,3,300,300); (1,3,512,512); (1, 3, 1024, 1024)]@f16%contiguous"</span> -p f16
</pre>
        </div>
       </div>
      </article>
     </div>
    </div>
   </main>
  </div>
  <footer class="md-footer">
   <div class="md-footer-nav">
    <nav class="md-footer-nav__inner md-grid">
     <a class="md-flex md-footer-nav__link md-footer-nav__link--prev" href="ptq.html" rel="prev" title="Post Training Quantization (PTQ)">
      <div class="md-flex__cell md-flex__cell--shrink">
       <i class="md-icon md-icon--arrow-back md-footer-nav__button">
       </i>
      </div>
      <div class="md-flex__cell md-flex__cell--stretch md-footer-nav__title">
       <span class="md-flex__ellipsis">
        <span class="md-footer-nav__direction">
         Previous
        </span>
        Post Training Quantization (PTQ)
       </span>
      </div>
     </a>
     <a class="md-flex md-footer-nav__link md-footer-nav__link--next" href="use_from_pytorch.html" rel="next" title="Using Torch-TensorRT Directly From PyTorch">
      <div class="md-flex__cell md-flex__cell--stretch md-footer-nav__title">
       <span class="md-flex__ellipsis">
        <span class="md-footer-nav__direction">
         Next
        </span>
        Using Torch-TensorRT Directly From PyTorch
       </span>
      </div>
      <div class="md-flex__cell md-flex__cell--shrink">
       <i class="md-icon md-icon--arrow-forward md-footer-nav__button">
       </i>
      </div>
     </a>
    </nav>
   </div>
   <div class="md-footer-meta md-typeset">
    <div class="md-footer-meta__inner md-grid">
     <div class="md-footer-copyright">
      <div class="md-footer-copyright__highlight">
       © Copyright 2021, NVIDIA Corporation.
      </div>
      Created using
      <a href="http://www.sphinx-doc.org/">
       Sphinx
      </a>
      3.1.2.
             and
      <a href="https://github.com/bashtage/sphinx-material/">
       Material for
              Sphinx
      </a>
     </div>
    </div>
   </div>
  </footer>
  <script src="../_static/javascripts/application.js">
  </script>
  <script>
   app.initialize({version: "1.0.4", url: {base: ".."}})
  </script>
 </body>
</html>