# This file is part of OpenDrift.
#
# OpenDrift is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2
#
# OpenDrift is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with OpenDrift. If not, see <https://www.gnu.org/licenses/>.
#
# Copyright 2015, Knut-Frode Dagestad, MET Norway
"""
Leeway is the search and rescue (SAR) model developed by the US Coast Guard, as originally described in
Allen, A.A, 2005: Leeway Divergence, USCG R&D Center Technical Report CG-D-05-05. Available through http://www.ntis.gov, reference ADA435435
Allen A.A. and J.V. Plourde (1999) Review of Leeway; Field Experiments and Implementation, USCG R&D Center Technical Report CG-D-08-99. Available through http://www.ntis.gov, reference ADA366414
and later extended and modified by e.g.
Breivik, O., A. Allen, C. Maisondieu, J.-C. Roth, and B. Forest, 2012: The leeway of shipping containers at different immersion levels. Ocean Dyn., 62, 741–752, doi:10.1007/s10236-012-0522-z
The Leeway model is based on empirically determined coefficients as tabulated in https://github.com/OpenDrift/opendrift/blob/master/opendrift/models/OBJECTPROP.DAT
The Leeway model is been reprogrammed in Python for OpenDrift by Knut-Frode Dagestad of the Norwegian Meteorological Institute.
"""
from builtins import range
import os
from collections import OrderedDict
import logging
logger = logging.getLogger(__name__)
import numpy as np
from opendrift.models.basemodel import OpenDriftSimulation
from opendrift.elements import LagrangianArray
from opendrift.config import CONFIG_LEVEL_ESSENTIAL, CONFIG_LEVEL_BASIC, CONFIG_LEVEL_ADVANCED
RIGHT = 0
LEFT = 1
# Defining the leeway element properties
[docs]
class LeewayObj(LagrangianArray):
"""Extending LagrangianArray with variables relevant for leeway objects.
"""
variables = LagrangianArray.add_variables([
('object_type', {
'dtype': np.uint16,
'units': '1',
'seed': False,
'default': 0
}),
('orientation', {
'dtype': np.uint8,
'units': '1',
'description':
'0/1 is left/right of downwind. Randomly chosen at seed time',
'seed': False,
'default': 1
}),
('jibe_probability', {
'dtype': np.float32,
'units': '1/h',
'description':
'Probability per hour that an object may change orientation (jibing)',
'default': 0.04
}),
('capsized', {
'dtype': np.uint8,
'units': '1',
'description': '0 is not capsized, changed to 1 after capsizing (irreversible). After capsizing, leeway coeffieiencts are reduced as given by config item capsized:leeway_fraction',
'seed': True,
'default': 0
}),
('downwind_slope', {
'dtype': np.float32,
'units': '%',
'seed': False,
'default': 1
}),
('crosswind_slope', {
'dtype': np.float32,
'units': '1',
'seed': False,
'default': 1
}),
('downwind_offset', {
'dtype': np.float32,
'units': 'cm/s',
'seed': False,
'default': 0
}),
('crosswind_offset', {
'dtype': np.float32,
'units': 'cm/s',
'seed': False,
'default': 0
}),
('downwind_eps', {
'dtype': np.float32,
'units': 'cm/s',
'seed': False,
'default': 0
}),
('crosswind_eps', {
'dtype': np.float32,
'units': 'cm/s',
'seed': False,
'default': 0
}),
('current_drift_factor', {
'dtype':
np.float32,
'units':
'1',
'description':
'Elements are moved with this fraction of the '
'current vector, in addition to currents '
'and Stokes drift',
'default':
1
})
])
[docs]
class Leeway(OpenDriftSimulation):
"""The Leeway model in the OpenDrift framework.
Advects a particle (a drifting object) with the ambient current and
as a function of the wind vector according to the drift properties
of the object.
"""
ElementType = LeewayObj
required_variables = {
'x_wind': {
'fallback': None
},
'y_wind': {
'fallback': None
},
'x_sea_water_velocity': {
'fallback': None
},
'y_sea_water_velocity': {
'fallback': None
},
'sea_surface_wave_stokes_drift_x_velocity': {
'fallback': 0,
'important': False
},
'sea_surface_wave_stokes_drift_y_velocity': {
'fallback': 0,
'important': False
},
'land_binary_mask': {
'fallback': None
},
}
# Default colors for plotting
status_colors = {
'initial': 'green',
'active': 'blue',
'missing_data': 'gray',
'stranded': 'red',
'evaporated': 'yellow',
'dispersed': 'magenta'
}
# Configuration
def __init__(self, d=None, *args, **kwargs):
# Read leeway object properties from file
if d is None:
d = os.path.dirname(os.path.realpath(__file__))
objprop_file = open(d + '/OBJECTPROP.DAT', 'r')
else:
objprop_file = open(d, 'r')
# objprop_file=open('/home/oyvindb/Pro/opendrift/OBJECTPROP.DAT','r')
objproptxt = objprop_file.readlines()
objprop_file.close()
self.leewayprop = OrderedDict({})
for i in range(len(objproptxt) // 3 + 1):
# Stop at first blank line
if not objproptxt[i * 3].strip():
break
elems = objproptxt[i * 3].split()[0]
objKey = objproptxt[i * 3].split()[0].strip()
arr = [float(x) for x in objproptxt[i * 3 + 2].split()]
props = {'OBJKEY': objKey}
props['Description'] = objproptxt[i * 3 + 1].strip()
props['DWSLOPE'] = arr[0]
props['DWOFFSET'] = arr[1]
props['DWSTD'] = arr[2]
props['CWRSLOPE'] = arr[3]
props['CWROFFSET'] = arr[4]
props['CWRSTD'] = arr[5]
props['CWLSLOPE'] = arr[6]
props['CWLOFFSET'] = arr[7]
props['CWLSTD'] = arr[8]
self.leewayprop[i + 1] = props
# Config
descriptions = [
self.leewayprop[p]['Description'] for p in self.leewayprop
]
# Calling general constructor of parent class
super(Leeway, self).__init__(*args, **kwargs)
self._add_config({
'seed:object_type': {
'type': 'enum',
'enum': descriptions,
'default': descriptions[0],
'description': 'Leeway object category for this simulation',
'level': CONFIG_LEVEL_ESSENTIAL
},
'seed:jibe_probability': {
'type': 'float',
'default': 0.04,
'min': 0,
'max': 1,
'description':
'Probability per hour for jibing (objects changing orientation)',
'units': 'probability',
'level': CONFIG_LEVEL_BASIC
},
'processes:capsizing': {
'type': 'bool',
'default': False,
'description':
'If True, elements can be capsized when wind exceeds threshold given by config item capsize:wind_threshold',
'level': CONFIG_LEVEL_BASIC
},
'capsizing:leeway_fraction': {
'type': 'float',
'default': 0.4,
'min': 0,
'max': 1,
'description':
'After capsizing, leeway coefficients are reduced by multiplying by this factor',
'units': 'fraction',
'level': CONFIG_LEVEL_BASIC
},
'capsizing:wind_threshold': {
'type': 'float',
'default': 30,
'min': 0,
'max': 50,
'description':
'Probability of capsizing per hour is: 0.5 + 0.5tanh((windspeed-wind_threshold)/wind_threshold_sigma)',
'units': 'm/s',
'level': CONFIG_LEVEL_BASIC
},
'capsizing:wind_threshold_sigma': {
'type': 'float',
'default': 5,
'min': 0,
'max': 20,
'description':
'Sigma parameter in parameterization of capsize probability',
'units': 'm/s',
'level': CONFIG_LEVEL_BASIC
},
'drift:stokes_drift': {'type': 'bool', 'default': False,
'description': 'Advection elements with surface Stokes drift (wave orbital motion). Note that this is originally considered to be implicit in Leeway coefficients.',
'level': CONFIG_LEVEL_ADVANCED},
})
self._set_config_default('general:time_step_minutes', 10)
self._set_config_default('general:time_step_output_minutes', 60)
self._set_config_default('drift:max_speed', 5)
[docs]
def seed_elements(self, lon, lat, object_type=None, **kwargs):
"""Seed particles in a cone-shaped area over a time period."""
# All particles carry their own object_type (number),
# but so far we only use one for each sim
# objtype = np.ones(number)*object_type
lon = np.atleast_1d(lon).ravel()
lat = np.atleast_1d(lat).ravel()
if 'number' in kwargs and kwargs['number'] is not None:
number = kwargs['number']
elif len(lon) > 1:
number = len(lon)
else:
number = self.get_config('seed:number')
if object_type is None:
object_name = self.get_config('seed:object_type')
# Get number from name
found = False
for object_type in range(1, len(self.leewayprop) + 1):
if self.leewayprop[object_type]['OBJKEY'] == object_name or (
self.leewayprop[object_type]['Description']
== object_name):
found = True
break
if found is False:
logger.info(self.list_configspec())
raise ValueError('Object %s not available' % object_type)
logger.info('Seeding elements of object type %i: %s (%s)' %
(object_type, self.leewayprop[object_type]['OBJKEY'],
self.leewayprop[object_type]['Description']))
# Drift orientation of particles. 0 is right of downwind,
# 1 is left of downwind
# orientation = 1*(np.random.rand(number)>=0.5)
# Odd numbered particles are left-drifting, even are right of downwind.
orientation = np.r_[:number] % 2
ones = np.ones_like(orientation)
# Downwind leeway properties.
# Generate normal, N(0,1), random perturbations for leeway coeffs.
# Negative downwind slope must be avoided as
# particles should drift downwind.
# The problem arises because of high error variances (see e.g. PIW-1).
downwind_slope = ones * self.leewayprop[object_type]['DWSLOPE']
downwind_offset = ones * self.leewayprop[object_type]['DWOFFSET']
dwstd = self.leewayprop[object_type]['DWSTD']
rdw = np.zeros(number)
epsdw = np.zeros(number)
for i in range(number):
rdw[i] = np.random.randn(1)[0]
epsdw[i] = rdw[i] * dwstd
# Avoid negative downwind slopes
while downwind_slope[i] + epsdw[i] / 20.0 < 0.0:
rdw[i] = np.random.randn(1)
epsdw[i] = rdw[i] * dwstd
downwind_eps = epsdw
# NB
# downwind_eps = np.zeros(number)
# Crosswind leeway properties
rcw = np.random.randn(number)
crosswind_slope = np.zeros(number)
crosswind_offset = np.zeros(number)
crosswind_eps = np.zeros(number)
crosswind_slope[orientation == RIGHT] = \
self.leewayprop[object_type]['CWRSLOPE']
crosswind_slope[orientation == LEFT] = \
self.leewayprop[object_type]['CWLSLOPE']
crosswind_offset[orientation == RIGHT] = \
self.leewayprop[object_type]['CWROFFSET']
crosswind_offset[orientation == LEFT] = \
self.leewayprop[object_type]['CWLOFFSET']
crosswind_eps[orientation == RIGHT] = \
rcw[orientation == RIGHT] * \
self.leewayprop[object_type]['CWRSTD']
crosswind_eps[orientation == LEFT] = \
rcw[orientation == LEFT] * \
self.leewayprop[object_type]['CWLSTD']
# NB
# crosswind_eps = np.zeros(number)
# Store seed data for ASCII format output
if hasattr(self, 'seed_cone_arguments'):
self.ascii = self.seed_cone_arguments
else:
self.ascii = {
'lon': lon,
'lat': lat,
'radius': kwargs['radius'] if 'radius' in kwargs else 0,
'number': number,
'time': kwargs['time']
}
# Call general seed_elements function of OpenDriftSimulation class
# with the specific values calculated
super(Leeway, self).seed_elements(lon,
lat,
orientation=orientation,
object_type=object_type,
downwind_slope=downwind_slope,
crosswind_slope=crosswind_slope,
downwind_offset=downwind_offset,
crosswind_offset=crosswind_offset,
downwind_eps=downwind_eps,
crosswind_eps=crosswind_eps,
**kwargs)
[docs]
def list_object_categories(self, substr=None):
'''Display leeway categories to screen
Print only objects containing 'substr', if specified'''
for i, p in enumerate(self.leewayprop):
description = self.leewayprop[p]['Description']
objkey = self.leewayprop[p]['OBJKEY']
if substr is not None:
if substr.lower() not in description.lower() + objkey.lower():
continue
print('%i %s %s' % (i + 1, objkey, description))
[docs]
def plot_capsize_probability(self):
U = np.linspace(0, 35, 100)
wind_threshold = self.get_config('capsizing:wind_threshold')
sigma = self.get_config('capsizing:wind_threshold_sigma')
p = self.capsize_probability(U, wind_threshold, sigma)
import matplotlib.pyplot as plt
plt.plot(U, p)
plt.title(f'p(u) = 0.5 + 0.5*tanh((u - {wind_threshold} / {sigma})')
plt.xlabel('Wind speed [m/s]')
plt.ylabel('Probability of capsizing per hour')
plt.show()
[docs]
def capsize_probability(self, wind, threshold, sigma):
return .5 + .5*np.tanh((wind-threshold)/sigma)
[docs]
def update(self):
"""Update positions and properties of leeway particles."""
windspeed = np.sqrt(self.environment.x_wind**2 +
self.environment.y_wind**2)
# CCC update wind direction
winddir = np.arctan2(self.environment.x_wind, self.environment.y_wind)
# Capsizing
if self.get_config('processes:capsizing') is True:
wind_threshold = self.get_config('capsizing:wind_threshold')
wind_threshold_sigma = self.get_config('capsizing:wind_threshold_sigma')
# For forward run, elements can be capsized, but for backwards run, only capsized elements can be un-capsized
if self.simulation_direction() == 1: # forward run
can_be_capsized = np.where(self.elements.capsized==0)[0]
else:
can_be_capsized = np.where(self.elements.capsized==1)[0]
if len(can_be_capsized) > 0:
probability = self.capsize_probability(windspeed[can_be_capsized],
wind_threshold, wind_threshold_sigma)*np.abs(self.time_step.total_seconds())/3600
# NB: assuming small timestep
to_be_capsized = np.where(np.random.rand(len(can_be_capsized)) < probability)[0]
to_be_capsized = can_be_capsized[to_be_capsized]
logger.warning(f'Capsizing {len(to_be_capsized)} of {len(can_be_capsized)} elements')
self.elements.capsized[to_be_capsized] = 1 - self.elements.capsized[to_be_capsized]
# Move particles with the leeway CCC TODO
downwind_leeway = (
(self.elements.downwind_slope + self.elements.downwind_eps / 20.0)
* windspeed + self.elements.downwind_offset +
self.elements.downwind_eps / 2.0) * .01 # In m/s
crosswind_leeway = ((self.elements.crosswind_slope +
self.elements.crosswind_eps / 20.0) * windspeed +
self.elements.crosswind_offset +
self.elements.crosswind_eps / 2.0) * .01 # In m/s
sinth = np.sin(winddir)
costh = np.cos(winddir)
y_leeway = downwind_leeway * costh + crosswind_leeway * sinth
x_leeway = -downwind_leeway * sinth + crosswind_leeway * costh
capsize_fraction = self.get_config('capsizing:leeway_fraction') # Reducing leeway for capsized elements
x_leeway[self.elements.capsized==1] *= capsize_fraction
y_leeway[self.elements.capsized==1] *= capsize_fraction
self.update_positions(-x_leeway, y_leeway)
# Move particles with ambient current
self.update_positions(self.environment.x_sea_water_velocity,
self.environment.y_sea_water_velocity)
# Jibe elements randomly according to given probability
jibe_rate = -np.log(1 - self.elements.jibe_probability
) / 3600 # Hourly to instantaneous
jp_per_timestep = 1 - np.exp(
-jibe_rate * np.abs(self.time_step.total_seconds()))
jib = jp_per_timestep > np.random.random(self.num_elements_active())
self.elements.crosswind_slope[
jib] = -self.elements.crosswind_slope[jib]
self.elements.orientation[jib] = 1 - self.elements.orientation[jib]
logger.debug('Jibing %i out of %i elements.' %
(np.sum(jib), self.num_elements_active()))
# Move elements with Stokes drift, if activated.
# Note: Stokesdrift is originally considered to be implicit in Leeway coefficients,
# however, this study by Sutherland (2024) indicates it should be added explicitly:
# https://link.springer.com/article/10.1007/s10236-024-01600-3
self.stokes_drift()
[docs]
def export_ascii(self, filename):
'''Export output to ASCII format of original version'''
try:
f = open(filename, 'w')
except:
raise ValueError('Could not open file for writing: ' + filename)
for inp in ['lon', 'lat', 'radius', 'time']:
if len(np.atleast_1d(self.ascii[inp])) == 1:
if isinstance(self.ascii[inp], np.ndarray):
self.ascii[inp] = self.ascii[inp].item()
self.ascii[inp] = [self.ascii[inp], self.ascii[inp]]
f.write('# Drift simulation initiated [UTC]:\n')
f.write('simDate simTime\n')
f.write(self.start_time.strftime('%Y-%m-%d\t%H:%M:%S\t#\n'))
f.write('# Model version:\n'
'modelVersion\n'
' 3.00\n' # OpenDrift version
'# Object class id & name:\n'
'objectClassId objectClassName\n')
try:
objtype = self.elements.object_type[0]
except:
objtype = self.elements_deactivated.object_type[0]
f.write(' %i\t%s\n' % (objtype, self.leewayprop[objtype]['OBJKEY']))
f.write('# Seeding start time, position & radius:\n'
'startDate\tstartTime\tstartLon\tstartLat\tstartRad\n')
f.write('%s\t%s\t%s\t%s\n' %
(self.ascii['time'][0], self.ascii['lon'][0],
self.ascii['lat'][0], self.ascii['radius'][0] / 1000.))
f.write('# Seeding end time, position & radius:\n'
'endDate\tendTime\tendLon\tendLat\tendRad\n')
f.write('%s\t%s\t%s\t%s\n' %
(self.ascii['time'][1], self.ascii['lon'][1],
self.ascii['lat'][1], self.ascii['radius'][1] / 1000.))
seedDuration = (self.ascii['time'][1] -
self.ascii['time'][0]).total_seconds() / 60.
seedSteps = seedDuration / (self.time_step_output.total_seconds() /
60.)
seedSteps = np.maximum(1, seedSteps)
f.write('# Duration of seeding [min] & [timesteps]:\n'
'seedDuration seedSteps\n'
' %i %i\n'
'# Length of timestep [min]:\n'
'timeStep\n' % (seedDuration, seedSteps))
f.write('%i\n' % (self.time_step_output.total_seconds() / 60.))
f.write('# Length of model simulation [min] & [timesteps]:\n'
'simLength simSteps\n')
f.write('%i\t%i\n' % ((self.time - self.start_time).total_seconds() /
60., self.steps_output))
f.write('# Total no of seeded particles:\n'
'seedTotal\n'
' %s\n' % (self.num_elements_activated()))
f.write('# Particles seeded per timestep:\n'
'seedRate\n'
' %i\n' % (self.num_elements_activated() / seedSteps))
index_of_first, index_of_last = \
self.index_of_activation_and_deactivation()
beforeseeded = 0
lons, statuss = self.get_property('lon')
lats, statuss = self.get_property('lat')
orientations, statuss = self.get_property('orientation')
for step in range(self.steps_output):
lon = lons[step, :]
lat = lats[step, :]
orientation = orientations[step, :]
status = statuss[step, :]
if sum(status ==
0) == 0: # All elements deactivated: using last position
lon = lons[step - 1, :]
lat = lats[step - 1, :]
orientation = orientations[step - 1, :]
status = statuss[step - 1, :]
num_active = np.sum(~status.mask)
status[status.mask] = 41 # seeded on land
lon[status.mask] = 0
lat[status.mask] = 0
orientation[status.mask] = 0
status[status == 0] = 11 # active
status[status == 1] = 41 # stranded
f.write('\n# Date [UTC]:\nnowDate nowTime\n')
f.write((
self.start_time +
self.time_step_output * step).strftime('%Y-%m-%d\t%H:%M:%S\n'))
f.write(
'# Time passed [min] & [timesteps], now seeded, seeded so far:\ntimePassed nStep nowSeeded nSeeded\n'
)
f.write(' %i\t%i\t%i\t%i\n' %
((self.time_step_output * step).total_seconds() / 60,
step + 1, num_active - beforeseeded, num_active))
beforeseeded = num_active
f.write('# Mean position:\nmeanLon meanLat\n')
f.write('%f\t%f\n' %
(np.mean(lon[status == 11]), np.mean(lat[status == 11])))
f.write('# Particle data:\n')
f.write('id lon lat state age orientation\n')
age_minutes = self.time_step_output.total_seconds() * (
step - index_of_first) / 60
age_minutes[age_minutes < 0] = 0
for i in range(num_active):
f.write('%i\t%.6f\t%.6f\t%i\t%i\t%i\n' %
(i + 1, lon[i], lat[i], status[i], age_minutes[i],
orientation[i]))
f.close()
[docs]
def _substance_name(self):
# TODO: find a better algorithm to return name of object category
if self.history is not None:
object_type = self.history['object_type'][0, 0]
if not np.isfinite(object_type): # For backward simulations
object_type = self.history['object_type'][-1, 0]
else:
object_type = np.atleast_1d(self.elements_scheduled.object_type)[0]
if np.isfinite(object_type):
return self.leewayprop[object_type]['OBJKEY']
else:
return ''