opendrift.models.radionuclides
Attributes
Classes
Extending Lagrangian3DArray with specific properties for radionuclides |
|
Radionuclide particle trajectory model based on the OpenDrift framework. |
Module Contents
- opendrift.models.radionuclides.logger
- class opendrift.models.radionuclides.Radionuclide(**kwargs)[source]
Bases:
opendrift.models.oceandrift.Lagrangian3DArray
Extending Lagrangian3DArray with specific properties for radionuclides
Initialises a LagrangianArray with given properties.
- Args:
Keyword arguments (kwargs) with names corresponding to the OrderedDict ‘variables’ of the class, and corresponding values. The values must be ndarrays of equal length, or scalars. All (or none) variables must be given, unless a default value is specified in the OrderedDict ‘variables’ An empty object may be created by giving no input.
- variables
- class opendrift.models.radionuclides.RadionuclideDrift(*args, **kwargs)[source]
Bases:
opendrift.models.oceandrift.OceanDrift
Radionuclide particle trajectory model based on the OpenDrift framework.
Developed at MET Norway
Generic module for particles that are subject to vertical turbulent mixing with the possibility for positive or negative buoyancy
Particles could be e.g. oil droplets, plankton, or sediments
Radionuclide functionality include interactions with solid matter (particles and sediments) through transformation processes, implemented with stochastic approach for speciation.
Under construction.
Initialise OpenDriftSimulation
- Args:
- seed: integer or None. A given integer will yield identical
random numbers drawn each simulation. Random numbers are e.g. used to distribute particles spatially when seeding, and may be used by modules (subclasses) for e.g. diffusion. Specifying a fixed value (default: 0) is useful for sensitivity tests. With seed = None, different random numbers will be drawn for subsequent runs, even with identical configuration/input.
- iomodule: name of module used to export data
default: netcdf, see
opendrift.io
for more alternatives. iomodule is module/filename without preceeding io_- loglevel: set to 0 (default) to retrieve all debug information.
Provide a higher value (e.g. 20) to receive less output. Use the string ‘custom’ to configure logging from outside.
- logtime: if True, a time stamp is given for each logging line.
logtime can also be given as a python time specifier (e.g. ‘%H:%M:%S’)
- ElementType
Any trajectory model implementation must define an ElementType.
- required_variables
Any trajectory model implementation must list needed variables.
- set_init_diameter(num, idxs, diam)[source]
Initialize diameter for particles, according to size distribution
- seed_elements(*args, **kwargs)[source]
Seed elements with given position(s), time and properties.
- Arguments:
- lon: scalar or array
central longitude(s).
- lat: scalar or array
central latitude(s).
- radius: scalar or array
radius in meters around each lon-lat pair, within which particles will be randomly seeded.
- number: integer, total number of particles to be seeded
If number is None, the number of elements is the length of lon/lat or time if these are arrays. Otherwise the number of elements are obtained from the config-default.
- time: datenum or list
The time at which particles are seeded/released. If time is a list with two elements, elements are seeded continously from start/first to end/last time. If time is a list with more than two elements, the number of elements is equal to len(time) and are seeded as a time series.
- radius_type: string
If ‘gaussian’ (default), the radius is the standard deviation in x-y-directions. If ‘uniform’, elements are spread evenly and always inside a circle with the given radius.
- kwargs:
keyword arguments containing properties/attributes and values corresponding to the actual particle type (ElementType). These are forwarded to the ElementType class. All properties for which there are no default value must be specified.
- update_terminal_velocity(Tprofiles=None, Sprofiles=None, z_index=None)[source]
Calculate terminal velocity for Pelagic Egg
according to S. Sundby (1983): A one-dimensional model for the vertical distribution of pelagic fish eggs in the mixed layer Deep Sea Research (30) pp. 645-661
Method copied from ibm.f90 module of LADIM: Vikebo, F., S. Sundby, B. Aadlandsvik and O. Otteraa (2007), Fish. Oceanogr. (16) pp. 216-228
- update_transfer_rates()[source]
Pick out the correct row from transfer_rates for each element. Modify the transfer rates according to local environmental conditions
- update_speciation()[source]
Check if transformation processes shall occur Do transformation (change value of self.elements.specie) Update element properties for the transformed elements
- sorption_to_sediments(sp_in=None, sp_out=None)[source]
Update radionuclide properties when sorption to sediments occurs
- desorption_from_sediments(sp_in=None, sp_out=None)[source]
Update radionuclide properties when desorption from sediments occurs
- update_radionuclide_diameter(sp_in=None, sp_out=None)[source]
Update the diameter of the radionuclides when specie is changed
- bottom_interaction(Zmin=None)[source]
Change speciation of radionuclides that reach bottom due to settling. particle specie -> sediment specie
- resuspension()[source]
Simple method to estimate the resuspension of sedimented particles, checking whether the current speed near the bottom is above a critical velocity Sediment species -> Particle specie
- write_netcdf_radionuclide_density_map(filename, pixelsize_m='auto', zlevels=None, deltat=None, density_proj=None, llcrnrlon=None, llcrnrlat=None, urcrnrlon=None, urcrnrlat=None, activity_unit=None, time_avg_conc=False, horizontal_smoothing=False, smoothing_cells=0, reader_sea_depth=None)[source]
Write netCDF file with map of radionuclide species densities and concentrations
- get_radionuclide_density_array(pixelsize_m, z_array, density_proj=None, llcrnrlon=None, llcrnrlat=None, urcrnrlon=None, urcrnrlat=None, weight=None)[source]
compute a particle concentration map from particle positions Use user defined projection (density_proj=<proj4_string>) or create a lon/lat grid (density_proj=None)