|
Point Cloud Library (PCL)
1.11.1-dev
|
39 #ifndef PCL_FEATURES_IMPL_GRSD_H_
40 #define PCL_FEATURES_IMPL_GRSD_H_
42 #include <pcl/features/grsd.h>
43 #include <pcl/features/rsd.h>
45 template <
typename Po
intInT,
typename Po
intNT,
typename Po
intOutT>
int
47 double min_radius_plane,
48 double max_radius_noise,
49 double min_radius_cylinder,
50 double max_min_radius_diff)
52 if (min_radius > min_radius_plane)
54 if (max_radius > min_radius_cylinder)
56 if (min_radius < max_radius_noise)
58 if (max_radius - min_radius < max_min_radius_diff)
64 template <
typename Po
intInT,
typename Po
intNT,
typename Po
intOutT>
void
70 PCL_ERROR (
"[pcl::%s::computeFeature] A voxel cell width needs to be set!\n", getClassName ().c_str ());
82 grid.
filter (*cloud_downsampled);
90 rsd.
setRadiusSearch (std::max (search_radius_, std::sqrt (3.0) * width_ / 2));
95 std::vector<int> types (radii->
size ());
96 std::transform(radii->
points.cbegin (), radii->
points.cend (), types.begin (),
97 [](
const auto& point) {
99 return GRSDEstimation<PointInT, PointNT, PointOutT>::getSimpleType(point.r_min, point.r_max); });
102 Eigen::MatrixXi transition_matrix = Eigen::MatrixXi::Zero (NR_CLASS + 1, NR_CLASS + 1);
103 for (std::size_t idx = 0; idx < cloud_downsampled->size (); ++idx)
105 const int source_type = types[idx];
107 for (
const int &neighbor : neighbors)
109 int neighbor_type = NR_CLASS;
111 neighbor_type = types[neighbor];
112 transition_matrix (source_type, neighbor_type)++;
120 for (
int i = 0; i < NR_CLASS + 1; i++)
121 for (
int j = i; j < NR_CLASS + 1; j++)
122 output[0].histogram[nrf++] = transition_matrix (i, j) + transition_matrix (j, i);
125 #define PCL_INSTANTIATE_GRSDEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::GRSDEstimation<T,NT,OutT>;
VoxelGrid assembles a local 3D grid over a given PointCloud, and downsamples + filters the data.
std::uint32_t height
The point cloud height (if organized as an image-structure).
std::vector< PointT, Eigen::aligned_allocator< PointT > > points
The point data.
void setLeafSize(const Eigen::Vector4f &leaf_size)
Set the voxel grid leaf size.
void filter(PointCloud &output)
Calls the filtering method and returns the filtered dataset in output.
typename PointCloudIn::Ptr PointCloudInPtr
virtual void setInputCloud(const PointCloudConstPtr &cloud)
Provide a pointer to the input dataset.
std::uint32_t width
The point cloud width (if organized as an image-structure).
RSDEstimation estimates the Radius-based Surface Descriptor (minimal and maximal radius of the local ...
void compute(PointCloudOut &output)
Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using th...
void setInputNormals(const PointCloudNConstPtr &normals)
Provide a pointer to the input dataset that contains the point normals of the XYZ dataset.
void resize(std::size_t count)
Resizes the container to contain count elements.
std::vector< int > getNeighborCentroidIndices(const PointT &reference_point, const Eigen::MatrixXi &relative_coordinates) const
Returns the indices in the resulting downsampled cloud of the points at the specified grid coordinate...
shared_ptr< PointCloud< PointT > > Ptr
void setSearchSurface(const PointCloudInConstPtr &cloud)
Provide a pointer to a dataset to add additional information to estimate the features for every point...
static int getSimpleType(float min_radius, float max_radius, double min_radius_plane=0.100, double max_radius_noise=0.015, double min_radius_cylinder=0.175, double max_min_radius_diff=0.050)
Get the type of the local surface based on the min and max radius computed.
void computeFeature(PointCloudOut &output) override
Estimate the Global Radius-based Surface Descriptor (GRSD) for a set of points given by <setInputClou...
void clear()
Removes all points in a cloud and sets the width and height to 0.
void setRadiusSearch(double radius)
Set the sphere radius that is to be used for determining the nearest neighbors used for the feature e...
void setSaveLeafLayout(bool save_leaf_layout)
Set to true if leaf layout information needs to be saved for later access.