R/mice.impute.norm.boot.R
mice.impute.norm.boot.RdImputes univariate missing data using linear regression with bootstrap
mice.impute.norm.boot(y, ry, x, wy = NULL, ...)
| y | Vector to be imputed |
|---|---|
| ry | Logical vector of length |
| x | Numeric design matrix with |
| wy | Logical vector of length |
| ... | Other named arguments. |
Vector with imputed data, same type as y, and of length
sum(wy)
Draws a bootstrap sample from x[ry,] and y[ry], calculates
regression weights and imputes with normal residuals.
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice:
Multivariate Imputation by Chained Equations in R. Journal of
Statistical Software, 45(3), 1-67.
https://www.jstatsoft.org/v45/i03/
Other univariate imputation functions:
mice.impute.cart(),
mice.impute.lda(),
mice.impute.logreg.boot(),
mice.impute.logreg(),
mice.impute.mean(),
mice.impute.midastouch(),
mice.impute.mnar.logreg(),
mice.impute.norm.nob(),
mice.impute.norm.predict(),
mice.impute.norm(),
mice.impute.pmm(),
mice.impute.polr(),
mice.impute.polyreg(),
mice.impute.quadratic(),
mice.impute.rf(),
mice.impute.ri()
Gerko Vink, Stef van Buuren, 2018