{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "
Title
TriMesh Element
\n", "
Dependencies
Bokeh
\n", "
Backends
Bokeh
Matplotlib
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "from holoviews import opts\n", "from scipy.spatial import Delaunay\n", "\n", "hv.extension('bokeh')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A ``TriMesh`` represents a mesh of triangles represented as the simplexes and vertices. The simplexes represent the indices into the vertex data, made up of three indices per triangle. The mesh therefore follows a datastructure very similar to a graph, with the abstract connectivity between nodes stored on the ``TriMesh`` element itself, the node or vertex positions stored on a ``Nodes`` element and the concrete ``EdgePaths`` making up each triangle generated when required by accessing the edgepaths attribute.\n", "\n", "Unlike a Graph each simplex is represented as the node indices of the three corners of each triangle rather than the usual source and target node.\n", "\n", "We will begin with a simple random mesh, generated by sampling some random integers and then applying Delaunay triangulation, which is available in SciPy. We can then construct the ``TriMesh`` by passing it the **simplexes** and the **vertices** (or **nodes**)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n_verts = 100\n", "pts = np.random.randint(1, n_verts, (n_verts, 2))\n", "tris = Delaunay(pts)\n", "\n", "trimesh = hv.TriMesh((tris.simplices, pts))\n", "trimesh" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To make this easier TriMesh also provides a convenient ``from_vertices`` method, which will apply the Delaunay triangulation and construct the ``TriMesh`` for us:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "hv.TriMesh.from_vertices(np.random.randn(100, 2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Just like the ``Graph`` element we can access the ``Nodes`` and ``EdgePaths`` via the ``.nodes`` and ``.edgepaths`` attributes respectively." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "trimesh.nodes + trimesh.edgepaths" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's make a slightly more interesting example by generating a more complex geometry. Here we will compute a geometry, then apply Delaunay triangulation again and finally apply a mask to drop nodes in the center." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# First create the x and y coordinates of the points.\n", "n_angles = 36\n", "n_radii = 8\n", "min_radius = 0.25\n", "radii = np.linspace(min_radius, 0.95, n_radii)\n", "\n", "angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)\n", "angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)\n", "angles[:, 1::2] += np.pi/n_angles\n", "\n", "x = (radii*np.cos(angles)).flatten()\n", "y = (radii*np.sin(angles)).flatten()\n", "z = (np.cos(radii)*np.cos(angles*3.0)).flatten()\n", "nodes = np.column_stack([x, y, z])\n", "\n", "# Apply Delaunay triangulation\n", "delaunay = Delaunay(np.column_stack([x, y]))\n", "\n", "# Mask off unwanted triangles.\n", "xmid = x[delaunay.simplices].mean(axis=1)\n", "ymid = y[delaunay.simplices].mean(axis=1)\n", "mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)\n", "simplices = delaunay.simplices[np.logical_not(mask)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once again we can simply supply the simplices and nodes to the ``TriMesh``." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nodes = hv.Points(nodes, vdims='z')\n", "hv.TriMesh((simplices, nodes))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also do something more interesting, e.g. by adding a value dimension to the vertices and coloring the edges by the vertex averaged value using the ``edge_color`` plot option:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "trimesh = hv.TriMesh((simplices, nodes))\n", "\n", "trimesh.opts(\n", " opts.TriMesh(cmap='viridis', edge_color='z', filled=True, height=400, \n", " inspection_policy='edges', tools=['hover'], width=400))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For full documentation and the available style and plot options, use ``hv.help(hv.TriMesh).``" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }