"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import holoviews as hv\n",
"from holoviews import opts\n",
"hv.extension('bokeh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A ``Violin`` element is used to visualise the distribution of a dataset by displaying its probability density. It is very similar to the ``BoxWhisker`` element but provides a more faithful representation even for bi- or multimodal data. The probability density is shown by the area akin to a vertical and mirrored ``Distribution`` element. The thick black bar in the centre represents the interquartile range, the thin black line extended from it represents the 95% confidence intervals, and the white dot is the median.\n",
"\n",
"The data of a ``Violin`` Element may have any number of key dimensions representing the grouping of the value dimension and a single value dimensions representing the distribution of values within each group. See the [Tabular Datasets](../../../user_guide/08-Tabular_Datasets.ipynb) user guide for supported data formats, which include arrays, pandas dataframes and dictionaries of arrays.\n",
"\n",
"In the simplest case a ``Violin`` can be used to display a single distribution of values, such as a NumPy array of normally distributed values:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(37)\n",
"violin = hv.Violin(np.random.randn(100), vdims='Value')\n",
"violin"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Violin element supports multiple options for indicating the distribution values in addition to the default ``inner`` value of 'box'. The 'stick' option visualizes each sample as a single line while 'quartiles' highlights the first, second and third quartiles. Additionally the ``bandwidth`` and ``cut`` options may be used to control the kernel density estimate:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"stick = violin.relabel(group='Stick').opts(opts.Violin(inner='stick', cut=0.1, bandwidth=0.1))\n",
"quartiles = violin.relabel(group='Quartiles').opts(opts.Violin(inner='quartiles', cut=1., bandwidth=1))\n",
"stick + quartiles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ``Violin`` element is particularly useful to compare multiple distribution across different categories. As a simple example we can create a dataset of values with randomly assigned Group and Category values and compare the distributions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"groups = [chr(65+g) for g in np.random.randint(0, 3, 200)]\n",
"violin = hv.Violin((groups, np.random.randint(0, 5, 200), np.random.randn(200)),\n",
" ['Group', 'Category'], 'Value')\n",
"violin.opts(opts.Violin(height=400, show_legend=False, width=600, violin_color=hv.dim('Category').str()), clone=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively we can also use the `split` keyword to split compare two conditions for each `Violin` (in this example we use a style mapping to create a True/False conditions for 'Category' values above and below 2):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"violin.opts(opts.Violin(height=400, show_legend=True, width=600, split=hv.dim('Category')>2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For full documentation and the available style and plot options, use ``hv.help(hv.Violin).``"
]
}
],
"metadata": {
"language_info": {
"name": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}