{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "
Title
Violin Element
\n", "
Dependencies
Bokeh
\n", "
Backends
\n", "
Bokeh
\n", "
Matplotlib
\n", " '
Plotly
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "from holoviews import opts\n", "hv.extension('bokeh')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A ``Violin`` element is used to visualise the distribution of a dataset by displaying its probability density. It is very similar to the ``BoxWhisker`` element but provides a more faithful representation even for bi- or multimodal data. The probability density is shown by the area akin to a vertical and mirrored ``Distribution`` element. The thick black bar in the centre represents the interquartile range, the thin black line extended from it represents the 95% confidence intervals, and the white dot is the median.\n", "\n", "The data of a ``Violin`` Element may have any number of key dimensions representing the grouping of the value dimension and a single value dimensions representing the distribution of values within each group. See the [Tabular Datasets](../../../user_guide/08-Tabular_Datasets.ipynb) user guide for supported data formats, which include arrays, pandas dataframes and dictionaries of arrays.\n", "\n", "In the simplest case a ``Violin`` can be used to display a single distribution of values, such as a NumPy array of normally distributed values:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.random.seed(37)\n", "violin = hv.Violin(np.random.randn(100), vdims='Value')\n", "violin" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Violin element supports multiple options for indicating the distribution values in addition to the default ``inner`` value of 'box'. The 'stick' option visualizes each sample as a single line while 'quartiles' highlights the first, second and third quartiles. Additionally the ``bandwidth`` and ``cut`` options may be used to control the kernel density estimate:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "stick = violin.relabel(group='Stick').opts(opts.Violin(inner='stick', cut=0.1, bandwidth=0.1))\n", "quartiles = violin.relabel(group='Quartiles').opts(opts.Violin(inner='quartiles', cut=1., bandwidth=1))\n", "stick + quartiles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ``Violin`` element is particularly useful to compare multiple distribution across different categories. As a simple example we can create a dataset of values with randomly assigned Group and Category values and compare the distributions." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "groups = [chr(65+g) for g in np.random.randint(0, 3, 200)]\n", "violin = hv.Violin((groups, np.random.randint(0, 5, 200), np.random.randn(200)),\n", " ['Group', 'Category'], 'Value')\n", "violin.opts(opts.Violin(height=400, show_legend=False, width=600, violin_color=hv.dim('Category').str()), clone=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Alternatively we can also use the `split` keyword to split compare two conditions for each `Violin` (in this example we use a style mapping to create a True/False conditions for 'Category' values above and below 2):" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "violin.opts(opts.Violin(height=400, show_legend=True, width=600, split=hv.dim('Category')>2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For full documentation and the available style and plot options, use ``hv.help(hv.Violin).``" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }