"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import holoviews as hv\n",
"from holoviews import opts\n",
"\n",
"hv.extension('matplotlib')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A ``Path`` element represents one more lines, connecting arbitrary points in two-dimensional space. ``Path`` supports plotting an individual line or multiple subpaths, which should be supplied as a list. Each path should be defined in a columnar format such as NumPy arrays, DataFrames or dictionaries for each column. For a full description of the path geometry data model see the [Geometry Data User Guide](../user_guide/Geometry_Data.ipynb).\n",
"\n",
"In this example we will create a Lissajous curve, which describe complex harmonic motion:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lin = np.linspace(0, np.pi*2, 200)\n",
"\n",
"def lissajous(t, a, b, delta):\n",
" return (np.sin(a * t + delta), np.sin(b * t), t)\n",
"\n",
"hv.Path([lissajous(lin, 3, 5, np.pi/2)]).opts(color='black', linewidth=4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"If you looked carefully the ``lissajous`` function actually returns three columns, respectively for the x, y columns and a third column describing the point in time. By declaring a value dimension for that third column we can also color the Path by time. Since the value is cyclical we will also use a cyclic colormap (``'hsv'``) to represent this variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hv.Path([lissajous(lin, 3, 5, np.pi/2)], vdims='time').opts(\n",
" cmap='hsv', color='time', linewidth=4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we do not provide a ``color`` overlaid ``Path`` elements will cycle colors just like other elements do unlike ``Curve`` a single ``Path`` element can contain multiple lines that are disconnected from each other. A ``Path`` can therefore often useful to draw arbitrary annotations on top of an existing plot.\n",
"\n",
"A ``Path`` Element accepts multiple formats for specifying the paths, the simplest of which is passing a list of ``Nx2`` arrays of the x- and y-coordinates, alternative we can pass lists of coordinates. In this example we will create some coordinates representing rectangles and ellipses annotating an ``RGB`` image:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"angle = np.linspace(0, 2*np.pi, 100)\n",
"baby = list(zip(0.15*np.sin(angle), 0.2*np.cos(angle)-0.2))\n",
"\n",
"adultR = [(0.25, 0.45), (0.35,0.35), (0.25, 0.25), (0.15, 0.35), (0.25, 0.45)]\n",
"adultL = [(-0.3, 0.4), (-0.3, 0.3), (-0.2, 0.3), (-0.2, 0.4),(-0.3, 0.4)]\n",
"scene = hv.RGB.load_image('../assets/penguins.png')\n",
"\n",
"(scene * hv.Path([adultL, adultR]) * hv.Path(baby)).opts(\n",
" opts.Path(linewidth=4)\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A ``Path`` can also be used as a means to display a number of lines with the same sampling along the x-axis at once. If we initialize the ``Path`` with a tuple of x-coordinates and stacked y-coordinates, we can quickly view a number of lines at once. Here we will generate a number of random traces each slightly offset along the y-axis:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"N, NLINES = 100, 10\n",
"paths = hv.Path((np.arange(N), np.random.rand(N, NLINES) + np.arange(NLINES)[np.newaxis, :]))\n",
"paths2 = hv.Path((np.arange(N), np.random.rand(N, NLINES) + np.arange(NLINES)[np.newaxis, :]))\n",
"\n",
"(paths * paths2).opts(aspect=3, fig_size=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For full documentation and the available style and plot options, use ``hv.help(hv.Path).``"
]
}
],
"metadata": {
"language_info": {
"name": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}