{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "
Title
Image Element
\n", "
Dependencies
Plotly
\n", "
Backends
Bokeh
Matplotlib
Plotly
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "hv.extension('plotly')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like ``Raster``, a HoloViews ``Image`` allows you to view 2D arrays using an arbitrary color map. Unlike ``Raster``, an ``Image`` is associated with a [2D coordinate system in continuous space](Continuous_Coordinates.ipynb), which is appropriate for values sampled from some underlying continuous distribution (as in a photograph or other measurements from locations in real space)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ls = np.linspace(0, 10, 200)\n", "xx, yy = np.meshgrid(ls, ls)\n", "\n", "bounds=(-1,-1,1,1) # Coordinate system: (left, bottom, right, top)\n", "img = hv.Image(np.sin(xx)*np.cos(yy), bounds=bounds)\n", "img" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Slicing, sampling, etc. on an ``Image`` all operate in this continuous space, whereas the corresponding operations on a ``Raster`` work on the raw array coordinates." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img + img[-0.5:0.5, -0.5:0.5]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how, because our declared coordinate system is continuous, we can slice with any floating-point value we choose. The appropriate range of the samples in the input numpy array will always be displayed, whether or not there are samples at those specific floating-point values. This also allows us to index by a floating value, since the ``Image`` is defined as a continuous space it will snap to the closest coordinate, to inspect the closest coordinate we can use the ``closest`` method:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "closest = img.closest((0.1,0.1))\n", "points = hv.Points([closest])\n", "print('The value at position %s is %s' % (closest, img[0.1, 0.1]))\n", "img * points.opts(color='black', marker='cross', size=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also easily take cross-sections of the Image by using the sample method or collapse a dimension using the ``reduce`` method:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "img.sample(x=0) + img.reduce(x=np.mean)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For full documentation and the available style and plot options, use ``hv.help(hv.Image).``" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 1 }