{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "
Title
ItemTable Element
\n", "
Dependencies
Plotly
\n", "
Backends
Bokeh
Matplotlib
Plotly
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import holoviews as hv\n", "hv.extension('plotly')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An ``ItemTable`` is an ordered collection of key, value pairs. It can be used to directly visualize items in a tabular format where the items may be supplied as an ``OrderedDict`` or a list of (key,value) pairs. A standard Python dictionary can be easily visualized using a call to the ``.items()`` method, though the entries in such a dictionary are not kept in any particular order, and so you may wish to sort them before display. One typical usage for an ``ItemTable`` is to list parameter values or measurements associated with an adjacent ``Element``." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "hv.ItemTable([('Age', 10), ('Weight',15), ('Height','0.8 meters')])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For full documentation and the available style and plot options, use ``hv.help(hv.ItemTable).``" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 1 }