Fork me on GitHub

sklearn.cluster.MeanShift

class sklearn.cluster.MeanShift(bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True)

MeanShift clustering

Parameters :

bandwidth : float, optional

Bandwidth used in the RBF kernel If not set, the bandwidth is estimated. See clustering.estimate_bandwidth.

seeds : array [n_samples, n_features], optional

Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters.

min_bin_freq : int, optional

To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1.

cluster_all : boolean, default True

If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1.

Notes

Scalability:

Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2).

Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function.

Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used.

References

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.

Attributes

cluster_centers_ array, [n_clusters, n_features] Coordinates of cluster centers.
labels_ :   Labels of each point.

Methods

fit(X) Perform clustering.
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
__init__(bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True)
fit(X)

Perform clustering.

Parameters :

X : array-like, shape=[n_samples, n_features]

Samples to cluster.

fit_predict(X, y=None)

Performs clustering on X and returns cluster labels.

Parameters :

X : ndarray, shape (n_samples, n_features)

Input data.

Returns :

y : ndarray, shape (n_samples,)

cluster labels

get_params(deep=True)

Get parameters for this estimator.

Parameters :

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns :

params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :
Previous
Next