- Tutorial: Statistical Learning for scientific data analysis
- A tutorial on statistical-learning for scientific data processing
- Statistical learning: the setting and the estimator object in the scikit-learn
- Supervised learning: predicting an output variable from high-dimensional observations
- Model selection: choosing estimators and their parameters
- Unsupervised learning: seeking representations of the data
- Putting it all together
- Finding help
- A tutorial on statistical-learning for scientific data processing
- 1. Supervised learning
- 1.1. Generalized Linear Models
- 1.1.1. Ordinary Least Squares
- 1.1.2. Ridge Regression
- 1.1.3. Lasso
- 1.1.4. Elastic Net
- 1.1.5. Multi-task Lasso
- 1.1.6. Least Angle Regression
- 1.1.7. LARS Lasso
- 1.1.8. Orthogonal Matching Pursuit (OMP)
- 1.1.9. Bayesian Regression
- 1.1.10. Logistic regression
- 1.1.11. Stochastic Gradient Descent - SGD
- 1.1.12. Perceptron
- 1.1.13. Passive Aggressive Algorithms
- 1.2. Support Vector Machines
- 1.3. Stochastic Gradient Descent
- 1.4. Nearest Neighbors
- 1.5. Gaussian Processes
- 1.6. Cross decomposition
- 1.7. Naive Bayes
- 1.8. Decision Trees
- 1.9. Ensemble methods
- 1.10. Multiclass and multilabel algorithms
- 1.11. Feature selection
- 1.12. Semi-Supervised
- 1.13. Linear and quadratic discriminant analysis
- 1.14. Isotonic regression
- 1.1. Generalized Linear Models
- 2. Unsupervised learning
- 2.1. Gaussian mixture models
- 2.2. Manifold learning
- 2.3. Clustering
- 2.3.1. Overview of clustering methods
- 2.3.2. K-means
- 2.3.3. Affinity Propagation
- 2.3.4. Mean Shift
- 2.3.5. Spectral clustering
- 2.3.6. Hierarchical clustering
- 2.3.7. DBSCAN
- 2.3.8. Clustering performance evaluation
- 2.4. Biclustering
- 2.5. Decomposing signals in components (matrix factorization problems)
- 2.6. Covariance estimation
- 2.7. Novelty and Outlier Detection
- 2.8. Hidden Markov Models
- 2.9. Density Estimation
- 2.10. Neural network models (unsupervised)
- 3. Model selection and evaluation
- 3.1. Cross-validation: evaluating estimator performance
- 3.2. Grid Search: Searching for estimator parameters
- 3.2.1. Exhaustive Grid Search
- 3.2.2. Randomized Parameter Optimization
- 3.2.3. Alternatives to brute force parameter search
- 3.2.3.1. Model specific cross-validation
- 3.2.3.2. Information Criterion
- 3.2.3.3. Out of Bag Estimates
- 3.2.3.3.1. sklearn.ensemble.RandomForestClassifier
- 3.2.3.3.2. sklearn.ensemble.RandomForestRegressor
- 3.2.3.3.3. sklearn.ensemble.ExtraTreesClassifier
- 3.2.3.3.4. sklearn.ensemble.ExtraTreesRegressor
- 3.2.3.3.5. sklearn.ensemble.GradientBoostingClassifier
- 3.2.3.3.6. sklearn.ensemble.GradientBoostingRegressor
- 3.3. Pipeline: chaining estimators
- 3.4. FeatureUnion: Combining feature extractors
- 3.5. Model evaluation: quantifying the quality of predictions
- 3.5.1. The scoring parameter: defining model evaluation rules
- 3.5.2. Function for prediction-error metrics
- 3.5.2.1. Classification metrics
- 3.5.2.1.1. Accuracy score
- 3.5.2.1.2. Average precision score
- 3.5.2.1.3. Confusion matrix
- 3.5.2.1.4. Classification report
- 3.5.2.1.5. Hamming loss
- 3.5.2.1.6. Jaccard similarity coefficient score
- 3.5.2.1.7. Precision, recall and F-measures
- 3.5.2.1.8. Hinge loss
- 3.5.2.1.9. Log loss
- 3.5.2.1.10. Matthews correlation coefficient
- 3.5.2.1.11. Receiver operating characteristic (ROC)
- 3.5.2.1.12. Zero one loss
- 3.5.2.2. Regression metrics
- 3.5.2.1. Classification metrics
- 3.5.3. Clustering metrics
- 3.5.4. Biclustering metrics
- 3.5.5. Dummy estimators
- 4. Dataset transformations
- 4.1. Feature extraction
- 4.1.1. Loading features from dicts
- 4.1.2. Feature hashing
- 4.1.3. Text feature extraction
- 4.1.3.1. The Bag of Words representation
- 4.1.3.2. Sparsity
- 4.1.3.3. Common Vectorizer usage
- 4.1.3.4. Tf–idf term weighting
- 4.1.3.5. Decoding text files
- 4.1.3.6. Applications and examples
- 4.1.3.7. Limitations of the Bag of Words representation
- 4.1.3.8. Vectorizing a large text corpus with the hashing trick
- 4.1.3.9. Performing out-of-core scaling with HashingVectorizer
- 4.1.3.10. Customizing the vectorizer classes
- 4.1.4. Image feature extraction
- 4.2. Preprocessing data
- 4.3. Kernel Approximation
- 4.4. Random Projection
- 4.5. Pairwise metrics, Affinities and Kernels
- 4.1. Feature extraction
- 5. Dataset loading utilities
- 5.1. General dataset API
- 5.2. Toy datasets
- 5.3. Sample images
- 5.4. Sample generators
- 5.5. Datasets in svmlight / libsvm format
- 5.6. The Olivetti faces dataset
- 5.7. The 20 newsgroups text dataset
- 5.8. Downloading datasets from the mldata.org repository
- 5.9. The Labeled Faces in the Wild face recognition dataset
- 5.10. Forest covertypes
- Examples
- General examples
- Examples based on real world datasets
- Biclustering
- Clustering
- Covariance estimation
- Cross decomposition
- Dataset examples
- Decomposition
- Ensemble methods
- Tutorial exercises
- Gaussian Process for Machine Learning
- Generalized Linear Models
- Manifold learning
- Gaussian Mixture Models
- Nearest Neighbors
- Semi Supervised Classification
- Support Vector Machines
- Decision Trees
- General examples
- Support
- 0.14
- 0.13.1
- 0.13
- 0.12.1
- 0.12
- 0.11
- 0.10
- 0.9
- 0.8
- 0.7
- 0.6
- 0.5
- 0.4
- Earlier versions
- External Resources, Videos and Talks
- About us
- Documentation of scikit-learn 0.14
- 5. Dataset loading utilities
- 5.1. General dataset API
- 5.2. Toy datasets
- 5.3. Sample images
- 5.4. Sample generators
- 5.5. Datasets in svmlight / libsvm format
- 5.6. The Olivetti faces dataset
- 5.7. The 20 newsgroups text dataset
- 5.8. Downloading datasets from the mldata.org repository
- 5.9. The Labeled Faces in the Wild face recognition dataset
- 5.10. Forest covertypes
- Forest covertypes
- The Labeled Faces in the Wild face recognition dataset
- Downloading datasets from the mldata.org repository
- The Olivetti faces dataset
- The 20 newsgroups text dataset
- Reference
- sklearn.cluster: Clustering
- sklearn.cluster.bicluster: Biclustering
- sklearn.covariance: Covariance Estimators
- sklearn.covariance.EmpiricalCovariance
- sklearn.covariance.EllipticEnvelope
- sklearn.covariance.GraphLasso
- sklearn.covariance.GraphLassoCV
- sklearn.covariance.LedoitWolf
- sklearn.covariance.MinCovDet
- sklearn.covariance.OAS
- sklearn.covariance.ShrunkCovariance
- sklearn.covariance.empirical_covariance
- sklearn.covariance.ledoit_wolf
- sklearn.covariance.shrunk_covariance
- sklearn.covariance.oas
- sklearn.covariance.graph_lasso
- sklearn.cross_validation: Cross Validation
- sklearn.cross_validation.Bootstrap
- sklearn.cross_validation.KFold
- sklearn.cross_validation.LeaveOneLabelOut
- sklearn.cross_validation.LeaveOneOut
- sklearn.cross_validation.LeavePLabelOut
- sklearn.cross_validation.LeavePOut
- sklearn.cross_validation.StratifiedKFold
- sklearn.cross_validation.ShuffleSplit
- sklearn.cross_validation.StratifiedShuffleSplit
- sklearn.cross_validation.train_test_split
- sklearn.cross_validation.cross_val_score
- sklearn.cross_validation.permutation_test_score
- sklearn.cross_validation.check_cv
- sklearn.datasets: Datasets
- Loaders
- sklearn.datasets.fetch_20newsgroups
- sklearn.datasets.fetch_20newsgroups_vectorized
- sklearn.datasets.load_boston
- sklearn.datasets.load_diabetes
- sklearn.datasets.load_digits
- sklearn.datasets.load_files
- sklearn.datasets.load_iris
- sklearn.datasets.load_lfw_pairs
- sklearn.datasets.fetch_lfw_pairs
- sklearn.datasets.load_lfw_people
- sklearn.datasets.fetch_lfw_people
- sklearn.datasets.load_linnerud
- sklearn.datasets.fetch_mldata
- sklearn.datasets.fetch_olivetti_faces
- sklearn.datasets.fetch_california_housing
- sklearn.datasets.fetch_covtype
- sklearn.datasets.load_mlcomp
- sklearn.datasets.load_sample_image
- sklearn.datasets.load_sample_images
- sklearn.datasets.load_svmlight_file
- sklearn.datasets.dump_svmlight_file
- Samples generator
- sklearn.datasets.make_blobs
- sklearn.datasets.make_classification
- sklearn.datasets.make_circles
- sklearn.datasets.make_friedman1
- sklearn.datasets.make_friedman2
- sklearn.datasets.make_friedman3
- sklearn.datasets.make_gaussian_quantiles
- sklearn.datasets.make_hastie_10_2
- sklearn.datasets.make_low_rank_matrix
- sklearn.datasets.make_moons
- sklearn.datasets.make_multilabel_classification
- sklearn.datasets.make_regression
- sklearn.datasets.make_s_curve
- sklearn.datasets.make_sparse_coded_signal
- sklearn.datasets.make_sparse_spd_matrix
- sklearn.datasets.make_sparse_uncorrelated
- sklearn.datasets.make_spd_matrix
- sklearn.datasets.make_swiss_roll
- sklearn.datasets.make_biclusters
- sklearn.datasets.make_checkerboard
- Loaders
- sklearn.decomposition: Matrix Decomposition
- sklearn.decomposition.PCA
- sklearn.decomposition.ProbabilisticPCA
- sklearn.decomposition.ProjectedGradientNMF
- sklearn.decomposition.RandomizedPCA
- sklearn.decomposition.KernelPCA
- sklearn.decomposition.FactorAnalysis
- sklearn.decomposition.FastICA
- sklearn.decomposition.TruncatedSVD
- sklearn.decomposition.NMF
- sklearn.decomposition.SparsePCA
- sklearn.decomposition.MiniBatchSparsePCA
- sklearn.decomposition.SparseCoder
- sklearn.decomposition.DictionaryLearning
- sklearn.decomposition.MiniBatchDictionaryLearning
- sklearn.decomposition.fastica
- sklearn.decomposition.dict_learning
- sklearn.decomposition.dict_learning_online
- sklearn.decomposition.sparse_encode
- sklearn.dummy: Dummy estimators
- sklearn.ensemble: Ensemble Methods
- 3.2.3.3.1. sklearn.ensemble.RandomForestClassifier
- sklearn.ensemble.RandomTreesEmbedding
- 3.2.3.3.2. sklearn.ensemble.RandomForestRegressor
- 3.2.3.3.3. sklearn.ensemble.ExtraTreesClassifier
- 3.2.3.3.4. sklearn.ensemble.ExtraTreesRegressor
- sklearn.ensemble.AdaBoostClassifier
- sklearn.ensemble.AdaBoostRegressor
- 3.2.3.3.5. sklearn.ensemble.GradientBoostingClassifier
- 3.2.3.3.6. sklearn.ensemble.GradientBoostingRegressor
- partial dependence
- sklearn.feature_extraction: Feature Extraction
- sklearn.feature_selection: Feature Selection
- sklearn.feature_selection.SelectPercentile
- sklearn.feature_selection.SelectKBest
- sklearn.feature_selection.SelectFpr
- sklearn.feature_selection.SelectFdr
- sklearn.feature_selection.SelectFwe
- sklearn.feature_selection.RFE
- sklearn.feature_selection.RFECV
- sklearn.feature_selection.chi2
- sklearn.feature_selection.f_classif
- sklearn.feature_selection.f_regression
- sklearn.gaussian_process: Gaussian Processes
- sklearn.gaussian_process.GaussianProcess
- sklearn.gaussian_process.correlation_models.absolute_exponential
- sklearn.gaussian_process.correlation_models.squared_exponential
- sklearn.gaussian_process.correlation_models.generalized_exponential
- sklearn.gaussian_process.correlation_models.pure_nugget
- sklearn.gaussian_process.correlation_models.cubic
- sklearn.gaussian_process.correlation_models.linear
- sklearn.gaussian_process.regression_models.constant
- sklearn.gaussian_process.regression_models.linear
- sklearn.gaussian_process.regression_models.quadratic
- sklearn.grid_search: Grid Search
- sklearn.hmm: Hidden Markov Models
- sklearn.isotonic: Isotonic regression
- sklearn.kernel_approximation Kernel Approximation
- sklearn.semi_supervised Semi-Supervised Learning
- sklearn.lda: Linear Discriminant Analysis
- sklearn.linear_model: Generalized Linear Models
- sklearn.linear_model.ARDRegression
- sklearn.linear_model.BayesianRidge
- sklearn.linear_model.ElasticNet
- 3.2.3.1.6. sklearn.linear_model.ElasticNetCV
- sklearn.linear_model.Lars
- 3.2.3.1.3. sklearn.linear_model.LarsCV
- sklearn.linear_model.Lasso
- 3.2.3.1.5. sklearn.linear_model.LassoCV
- sklearn.linear_model.LassoLars
- 3.2.3.1.4. sklearn.linear_model.LassoLarsCV
- 3.2.3.2.1. sklearn.linear_model.LassoLarsIC
- sklearn.linear_model.LinearRegression
- sklearn.linear_model.LogisticRegression
- sklearn.linear_model.MultiTaskLasso
- sklearn.linear_model.MultiTaskElasticNet
- sklearn.linear_model.OrthogonalMatchingPursuit
- sklearn.linear_model.OrthogonalMatchingPursuitCV
- sklearn.linear_model.PassiveAggressiveClassifier
- sklearn.linear_model.PassiveAggressiveRegressor
- sklearn.linear_model.Perceptron
- sklearn.linear_model.RandomizedLasso
- sklearn.linear_model.RandomizedLogisticRegression
- sklearn.linear_model.Ridge
- sklearn.linear_model.RidgeClassifier
- 3.2.3.1.2. sklearn.linear_model.RidgeClassifierCV
- 3.2.3.1.1. sklearn.linear_model.RidgeCV
- sklearn.linear_model.SGDClassifier
- sklearn.linear_model.SGDRegressor
- sklearn.linear_model.lars_path
- sklearn.linear_model.lasso_path
- sklearn.linear_model.lasso_stability_path
- sklearn.linear_model.orthogonal_mp
- sklearn.linear_model.orthogonal_mp_gram
- sklearn.manifold: Manifold Learning
- sklearn.metrics: Metrics
- Model Selection Interface
- Classification metrics
- sklearn.metrics.accuracy_score
- sklearn.metrics.auc
- sklearn.metrics.average_precision_score
- sklearn.metrics.classification_report
- sklearn.metrics.confusion_matrix
- sklearn.metrics.f1_score
- sklearn.metrics.fbeta_score
- sklearn.metrics.hamming_loss
- sklearn.metrics.hinge_loss
- sklearn.metrics.jaccard_similarity_score
- sklearn.metrics.log_loss
- sklearn.metrics.matthews_corrcoef
- sklearn.metrics.precision_recall_curve
- sklearn.metrics.precision_recall_fscore_support
- sklearn.metrics.precision_score
- sklearn.metrics.recall_score
- sklearn.metrics.roc_auc_score
- sklearn.metrics.roc_curve
- sklearn.metrics.zero_one_loss
- Regression metrics
- Clustering metrics
- sklearn.metrics.adjusted_mutual_info_score
- sklearn.metrics.adjusted_rand_score
- sklearn.metrics.completeness_score
- sklearn.metrics.homogeneity_completeness_v_measure
- sklearn.metrics.homogeneity_score
- sklearn.metrics.mutual_info_score
- sklearn.metrics.normalized_mutual_info_score
- sklearn.metrics.silhouette_score
- sklearn.metrics.silhouette_samples
- sklearn.metrics.v_measure_score
- Biclustering metrics
- Pairwise metrics
- sklearn.metrics.pairwise.additive_chi2_kernel
- sklearn.metrics.pairwise.chi2_kernel
- sklearn.metrics.pairwise.distance_metrics
- sklearn.metrics.pairwise.euclidean_distances
- sklearn.metrics.pairwise.kernel_metrics
- sklearn.metrics.pairwise.linear_kernel
- sklearn.metrics.pairwise.manhattan_distances
- sklearn.metrics.pairwise.pairwise_distances
- sklearn.metrics.pairwise.pairwise_kernels
- sklearn.metrics.pairwise.polynomial_kernel
- sklearn.metrics.pairwise.rbf_kernel
- sklearn.mixture: Gaussian Mixture Models
- sklearn.multiclass: Multiclass and multilabel classification
- Multiclass and multilabel classification strategies
- sklearn.multiclass.OneVsRestClassifier
- sklearn.multiclass.OneVsOneClassifier
- sklearn.multiclass.OutputCodeClassifier
- sklearn.multiclass.fit_ovr
- sklearn.multiclass.predict_ovr
- sklearn.multiclass.fit_ovo
- sklearn.multiclass.predict_ovo
- sklearn.multiclass.fit_ecoc
- sklearn.multiclass.predict_ecoc
- sklearn.naive_bayes: Naive Bayes
- sklearn.neighbors: Nearest Neighbors
- sklearn.neighbors.NearestNeighbors
- sklearn.neighbors.KNeighborsClassifier
- sklearn.neighbors.RadiusNeighborsClassifier
- sklearn.neighbors.KNeighborsRegressor
- sklearn.neighbors.RadiusNeighborsRegressor
- sklearn.neighbors.NearestCentroid
- sklearn.neighbors.BallTree
- sklearn.neighbors.KDTree
- sklearn.neighbors.DistanceMetric
- sklearn.neighbors.KernelDensity
- sklearn.neighbors.kneighbors_graph
- sklearn.neighbors.radius_neighbors_graph
- sklearn.neural_network: Neural network models
- sklearn.cross_decomposition: Cross decomposition
- sklearn.pipeline: Pipeline
- sklearn.preprocessing: Preprocessing and Normalization
- sklearn.preprocessing.Binarizer
- sklearn.preprocessing.Imputer
- sklearn.preprocessing.KernelCenterer
- sklearn.preprocessing.LabelBinarizer
- sklearn.preprocessing.LabelEncoder
- sklearn.preprocessing.MinMaxScaler
- sklearn.preprocessing.Normalizer
- sklearn.preprocessing.OneHotEncoder
- sklearn.preprocessing.StandardScaler
- sklearn.preprocessing.add_dummy_feature
- sklearn.preprocessing.binarize
- sklearn.preprocessing.label_binarize
- sklearn.preprocessing.normalize
- sklearn.preprocessing.scale
- sklearn.qda: Quadratic Discriminant Analysis
- sklearn.random_projection: Random projection
- sklearn.svm: Support Vector Machines
- sklearn.tree: Decision Trees
- sklearn.utils: Utilities
- Who is using scikit-learn?
- Contributing
- Developers’ Tips for Debugging
- Maintainer / core-developer information
- How to optimize for speed
- Utilities for Developers
- Installing scikit-learn
- An introduction to machine learning with scikit-learn
- Choosing the right estimator
Identifying to which set of categories a new observation belong to.
Applications: Spam detection, Image recognition. Algorithms:SVM, nearest neighbors, random forest, ...
Predicting a continuous value for a new example.
Applications: Drug response, Stock prices. Algorithms:SVR, ridge regression, Lasso, ...
Automatic grouping of similar objects into sets.
Applications: Customer segmentation, Grouping experiment outcomes Algorithms:k-Means, spectral clustering, mean-shift, ...
Reducing the number of random variables to consider.
Applications: Visualization, Increased efficiency Algorithms:
Comparing, validating and choosing parameters and models.
Goal: Improved accuracy via parameter tuning Modules:
Feature extraction and normalization.
Application: Transforming input data such as text for use with machine learning algorithms. Modules:preprocessing, feature extraction.
News
- On-going development: What's new (changelog)
- August 2013. scikit-learn 0.14 is available for download (Changelog).
- July 22-28th, 2013: international sprint. During this week-long sprint, we gathered most of the core developers in Paris. We want to thank our sponsors, our hosts Télécom ParisTech and tinyclues, and donations that helped fund this event.
Community
- Questions? See stackoverflow # scikit-learn
- Mailing list: scikit-learn-general@lists.sourceforge.net
- IRC: #scikit-learn @ freenode