sklearn.svm.NuSVC¶
- class sklearn.svm.NuSVC(nu=0.5, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, verbose=False, max_iter=-1, random_state=None)¶
Nu-Support Vector Classification.
Similar to SVC but uses a parameter to control the number of support vectors.
The implementation is based on libsvm.
Parameters : nu : float, optional (default=0.5)
An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1].
kernel : string, optional (default=’rbf’)
Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix.
degree : int, optional (default=3)
degree of kernel function is significant only in poly, rbf, sigmoid
gamma : float, optional (default=0.0)
kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken.
coef0 : float, optional (default=0.0)
independent term in kernel function. It is only significant in poly/sigmoid.
probability: boolean, optional (default=False) :
Whether to enable probability estimates. This must be enabled prior to calling fit, and will slow down that method.
shrinking: boolean, optional (default=True) :
Whether to use the shrinking heuristic.
tol : float, optional (default=1e-3)
Tolerance for stopping criterion.
cache_size : float, optional
Specify the size of the kernel cache (in MB)
verbose : bool, default: False
Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context.
max_iter : int, optional (default=-1)
Hard limit on iterations within solver, or -1 for no limit.
random_state : int seed, RandomState instance, or None (default)
The seed of the pseudo random number generator to use when shuffling the data for probability estimation.
See also
Examples
>>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) NuSVC(cache_size=200, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1]
Attributes
support_ array-like, shape = [n_SV] Index of support vectors. support_vectors_ array-like, shape = [n_SV, n_features] Support vectors. n_support_ array-like, dtype=int32, shape = [n_class] number of support vector for each class. dual_coef_ array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ array, shape = [n_class-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel.
coef_ is readonly property derived from dual_coef_ and support_vectors_
intercept_ array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Methods
decision_function(X) Distance of the samples X to the separating hyperplane. fit(X, y[, sample_weight]) Fit the SVM model according to the given training data. get_params([deep]) Get parameters for this estimator. predict(X) Perform classification on samples in X. predict_log_proba(X) Compute log probabilities of possible outcomes for samples in X. predict_proba(X) Compute probabilities of possible outcomes for samples in X. score(X, y) Returns the mean accuracy on the given test data and labels. set_params(**params) Set the parameters of this estimator. - __init__(nu=0.5, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, verbose=False, max_iter=-1, random_state=None)¶
- decision_function(X)¶
Distance of the samples X to the separating hyperplane.
Parameters : X : array-like, shape = [n_samples, n_features]
Returns : X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]
Returns the decision function of the sample for each class in the model.
- fit(X, y, sample_weight=None)¶
Fit the SVM model according to the given training data.
Parameters : X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features.
y : array-like, shape (n_samples,)
Target values (class labels in classification, real numbers in regression)
sample_weight : array-like, shape (n_samples,)
Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points.
Returns : self : object
Returns self.
Notes
If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse matrices as input.
- get_params(deep=True)¶
Get parameters for this estimator.
Parameters : deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns : params : mapping of string to any
Parameter names mapped to their values.
- label_¶
DEPRECATED: The label_ attribute has been renamed to classes_ for consistency and will be removed in 0.15.
- predict(X)¶
Perform classification on samples in X.
For an one-class model, +1 or -1 is returned.
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns : y_pred : array, shape = [n_samples]
Class labels for samples in X.
- predict_log_proba(X)¶
Compute log probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training time: fit with attribute probability set to True.
Parameters : X : array-like, shape = [n_samples, n_features]
Returns : X : array-like, shape = [n_samples, n_classes]
Returns the log-probabilities of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_.
Notes
The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets.
- predict_proba(X)¶
Compute probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training time: fit with attribute probability set to True.
Parameters : X : array-like, shape = [n_samples, n_features]
Returns : X : array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_.
Notes
The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets.
- score(X, y)¶
Returns the mean accuracy on the given test data and labels.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Labels for X.
Returns : z : float
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :