Fork me on GitHub

sklearn.dummy.DummyClassifier

class sklearn.dummy.DummyClassifier(strategy='stratified', random_state=None)

DummyClassifier is a classifier that makes predictions using simple rules.

This classifier is useful as a simple baseline to compare with other (real) classifiers. Do not use it for real problems.

Parameters :

strategy: str :

Strategy to use to generate predictions.
  • “stratified”: generates predictions by respecting the training set’s class distribution.
  • “most_frequent”: always predicts the most frequent label in the training set.
  • “uniform”: generates predictions uniformly at random.

random_state: int seed, RandomState instance, or None (default) :

The seed of the pseudo random number generator to use.

Attributes

classes_ array or list of array of shape = [n_classes] Class labels for each output.
n_classes_ array or list of array of shape = [n_classes] Number of label for each output.
class_prior_ array or list of array of shape = [n_classes] Probability of each class for each output.
n_outputs_ int, Number of outputs.
outputs_2d_ bool, True if the output at fit is 2d, else false.

Methods

fit(X, y) Fit the random classifier.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on test vectors X.
predict_log_proba(X) Return log probability estimates for the test vectors X.
predict_proba(X) Return probability estimates for the test vectors X.
score(X, y) Returns the mean accuracy on the given test data and labels.
set_params(**params) Set the parameters of this estimator.
__init__(strategy='stratified', random_state=None)
fit(X, y)

Fit the random classifier.

Parameters :

X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

y : array-like, shape = [n_samples] or [n_samples, n_outputs]

Target values.

Returns :

self : object

Returns self.

get_params(deep=True)

Get parameters for this estimator.

Parameters :

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns :

params : mapping of string to any

Parameter names mapped to their values.

predict(X)

Perform classification on test vectors X.

Parameters :

X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number of features.

Returns :

y : array, shape = [n_samples] or [n_samples, n_outputs]

Predicted target values for X.

predict_log_proba(X)

Return log probability estimates for the test vectors X.

Parameters :

X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number of features.

Returns :

P : array-like or list of array-like of shape = [n_samples, n_classes]

Returns the log probability of the sample for each class in the model, where classes are ordered arithmetically for each output.

predict_proba(X)

Return probability estimates for the test vectors X.

Parameters :

X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Input vectors, where n_samples is the number of samples and n_features is the number of features.

Returns :

P : array-like or list of array-lke of shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are ordered arithmetically, for each output.

score(X, y)

Returns the mean accuracy on the given test data and labels.

Parameters :

X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns :

z : float

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :
Previous
Next