JACOBI_POLYNOMIAL
Jacobi Polynomials


JACOBI_POLYNOMIAL is a MATLAB library which evaluates the Jacobi polynomial.

For a given choice of the parameters a and b, both greater than -1, the Jacobi polynomials are a set of polynomials which are pairwise orthogonal with respect to the integral:

        integral (-1<=x<=+1) J(i,a,b,x) J(j,a,b,x) (1-x)^a (1+x)^b dx
      
That is, this integral is 0 unless i = j. J(i,a,b,x) indicates the Jacobi polynomial of degree i.

The standard Jacobi polynomials can be defined by a three term recurrence formula that is a bit too ugly to quote here.

It is worth noting that the definition of the Jacobi polynomials is general enough that it includes some familiar families as special cases:

Licensing:

The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.

Languages:

JACOBI_POLYNOMIAL is available in a C++ version and a FORTRAN90 version and a MATLAB version.

Related Data and Programs:

CHEBYSHEV_POLYNOMIAL, a MATLAB library which evaluates the Chebyshev polynomial and associated functions.

HERMITE_POLYNOMIAL, a MATLAB library which evaluates the physicist's Hermite polynomial, the probabilist's Hermite polynomial, the Hermite function, and related functions.

JACOBI_RULE, a MATLAB program which can compute and print a Gauss-Jacobi quadrature rule.

LAGUERRE_POLYNOMIAL, a MATLAB library which evaluates the Laguerre polynomial, the generalized Laguerre polynomials, and the Laguerre function.

LEGENDRE_POLYNOMIAL, a MATLAB library which evaluates the Legendre polynomial and associated functions.

POLPAK, a MATLAB library which evaluates a variety of mathematical functions.

TEST_VALUES, a MATLAB library which supplies test values of various mathematical functions.

Reference:

  1. Theodore Chihara,
    An Introduction to Orthogonal Polynomials,
    Gordon and Breach, 1978,
    ISBN: 0677041500,
    LC: QA404.5 C44.
  2. Walter Gautschi,
    Orthogonal Polynomials: Computation and Approximation,
    Oxford, 2004,
    ISBN: 0-19-850672-4,
    LC: QA404.5 G3555.
  3. Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
    NIST Handbook of Mathematical Functions,
    Cambridge University Press, 2010,
    ISBN: 978-0521192255,
    LC: QA331.N57.
  4. Gabor Szego,
    Orthogonal Polynomials,
    American Mathematical Society, 1992,
    ISBN: 0821810235,
    LC: QA3.A5.v23.

Source Code:

Examples and Tests:

You can go up one level to the MATLAB source codes.


Last modified on 20 March 2012.