QuantLib: a free/open-source library for quantitative finance
Reference manual - version 1.40
Loading...
Searching...
No Matches
MCLongstaffSchwartzEngine< GenericEngine, MC, RNG, S, RNG_Calibration > Class Template Referenceabstract

Longstaff-Schwarz Monte Carlo engine for early exercise options. More...

#include <ql/pricingengines/mclongstaffschwartzengine.hpp>

Inheritance diagram for MCLongstaffSchwartzEngine< GenericEngine, MC, RNG, S, RNG_Calibration >:

Public Types

typedef MC< RNG >::path_type path_type
typedef McSimulation< MC, RNG, S >::stats_type stats_type
typedef McSimulation< MC, RNG, S >::path_pricer_type path_pricer_type
typedef McSimulation< MC, RNG, S >::path_generator_type path_generator_type
typedef McSimulation< MC, RNG_Calibration, S >::path_generator_type path_generator_type_calibration
Public Types inherited from Observer
typedef set_type::iterator iterator
Public Types inherited from McSimulation< MC, RNG, Statistics >
typedef MonteCarloModel< MC, RNG, Statistics >::path_generator_type path_generator_type
typedef MonteCarloModel< MC, RNG, Statistics >::path_pricer_type path_pricer_type
typedef MonteCarloModel< MC, RNG, Statistics >::stats_type stats_type
typedef MonteCarloModel< MC, RNG, Statistics >::result_type result_type

Public Member Functions

 MCLongstaffSchwartzEngine (ext::shared_ptr< StochasticProcess > process, Size timeSteps, Size timeStepsPerYear, bool brownianBridge, bool antitheticVariate, bool controlVariate, Size requiredSamples, Real requiredTolerance, Size maxSamples, BigNatural seed, Size nCalibrationSamples=Null< Size >(), ext::optional< bool > brownianBridgeCalibration=ext::nullopt, ext::optional< bool > antitheticVariateCalibration=ext::nullopt, BigNatural seedCalibration=Null< Size >())
void calculate () const override
Public Member Functions inherited from GenericEngine< ArgumentsType, ResultsType >
PricingEngine::arguments * getArguments () const override
const PricingEngine::results * getResults () const override
void reset () override
void update () override
Public Member Functions inherited from Observable
 Observable (const Observable &)
Observableoperator= (const Observable &)
 Observable (Observable &&)=delete
Observableoperator= (Observable &&)=delete
void notifyObservers ()
Public Member Functions inherited from Observer
 Observer (const Observer &)
Observeroperator= (const Observer &)
std::pair< iterator, bool > registerWith (const ext::shared_ptr< Observable > &)
void registerWithObservables (const ext::shared_ptr< Observer > &)
Size unregisterWith (const ext::shared_ptr< Observable > &)
void unregisterWithAll ()
virtual void deepUpdate ()
Public Member Functions inherited from McSimulation< MC, RNG, Statistics >
result_type value (Real tolerance, Size maxSamples=QL_MAX_INTEGER, Size minSamples=1023) const
 add samples until the required absolute tolerance is reached
result_type valueWithSamples (Size samples) const
 simulate a fixed number of samples
result_type errorEstimate () const
 error estimated using the samples simulated so far
const stats_typesampleAccumulator () const
 access to the sample accumulator for richer statistics
void calculate (Real requiredTolerance, Size requiredSamples, Size maxSamples) const
 basic calculate method provided to inherited pricing engines

Protected Member Functions

virtual ext::shared_ptr< LongstaffSchwartzPathPricer< path_type > > lsmPathPricer () const =0
TimeGrid timeGrid () const override
ext::shared_ptr< path_pricer_typepathPricer () const override
ext::shared_ptr< path_generator_typepathGenerator () const override
Protected Member Functions inherited from McSimulation< MC, RNG, Statistics >
 McSimulation (bool antitheticVariate, bool controlVariate)
virtual ext::shared_ptr< path_pricer_typecontrolPathPricer () const
virtual ext::shared_ptr< path_generator_typecontrolPathGenerator () const
virtual ext::shared_ptr< PricingEnginecontrolPricingEngine () const
virtual result_type controlVariateValue () const

Protected Attributes

ext::shared_ptr< StochasticProcessprocess_
const Size timeSteps_
const Size timeStepsPerYear_
const bool brownianBridge_
const Size requiredSamples_
const Real requiredTolerance_
const Size maxSamples_
const BigNatural seed_
const Size nCalibrationSamples_
const bool brownianBridgeCalibration_
const bool antitheticVariateCalibration_
const BigNatural seedCalibration_
ext::shared_ptr< LongstaffSchwartzPathPricer< path_type > > pathPricer_
ext::shared_ptr< MonteCarloModel< MC, RNG_Calibration, S > > mcModelCalibration_
Protected Attributes inherited from GenericEngine< ArgumentsType, ResultsType >
ArgumentsType arguments_
ResultsType results_
Protected Attributes inherited from McSimulation< MC, RNG, Statistics >
ext::shared_ptr< MonteCarloModel< MC, RNG, Statistics > > mcModel_
bool antitheticVariate_
bool controlVariate_

Additional Inherited Members

Static Protected Member Functions inherited from McSimulation< MC, RNG, Statistics >
static Real maxError (const Sequence &sequence)

Detailed Description

template<class GenericEngine, template< class > class MC, class RNG, class S = Statistics, class RNG_Calibration = RNG>
class QuantLib::MCLongstaffSchwartzEngine< GenericEngine, MC, RNG, S, RNG_Calibration >

Longstaff-Schwarz Monte Carlo engine for early exercise options.

References:

Francis Longstaff, Eduardo Schwartz, 2001. Valuing American Options by Simulation: A Simple Least-Squares Approach, The Review of Financial Studies, Volume 14, No. 1, 113-147

Tests
the correctness of the returned value is tested by reproducing results available in web/literature

Constructor & Destructor Documentation

◆ MCLongstaffSchwartzEngine()

template<class GenericEngine, template< class > class MC, class RNG, class S, class RNG_Calibration>
MCLongstaffSchwartzEngine ( ext::shared_ptr< StochasticProcess > process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples = Null<Size>(),
ext::optional< bool > brownianBridgeCalibration = ext::nullopt,
ext::optional< bool > antitheticVariateCalibration = ext::nullopt,
BigNatural seedCalibration = Null<Size>() )

If the parameters brownianBridge and antitheticVariate are not given they are chosen to be identical to the respective parameters for pricing; the seed for calibration is chosen to be zero if the pricing seed is zero and otherwise as the pricing seed plus some offset to avoid identical paths in calibration and pricing; note however that this has no effect for low discrepancy RNGs usually, it is therefore recommended to use pseudo random generators for the calibration phase always (and possibly quasi monte carlo in the subsequent pricing).

Member Function Documentation

◆ calculate()

template<class GenericEngine, template< class > class MC, class RNG, class S, class RNG_Calibration>
void calculate ( ) const
overridevirtual

Implements PricingEngine.

◆ timeGrid()

template<class GenericEngine, template< class > class MC, class RNG, class S, class RNG_Calibration>
TimeGrid timeGrid ( ) const
overrideprotectedvirtual

◆ pathPricer()

template<class GenericEngine, template< class > class MC, class RNG, class S, class RNG_Calibration>
ext::shared_ptr< typename MCLongstaffSchwartzEngine< GenericEngine, MC, RNG, S, RNG_Calibration >::path_pricer_type > pathPricer ( ) const
overrideprotectedvirtual

◆ pathGenerator()

template<class GenericEngine, template< class > class MC, class RNG, class S, class RNG_Calibration>
ext::shared_ptr< typename MCLongstaffSchwartzEngine< GenericEngine, MC, RNG, S, RNG_Calibration >::path_generator_type > pathGenerator ( ) const
overrideprotectedvirtual