QuantLib: a free/open-source library for quantitative finance
Reference manual - version 1.40
Loading...
Searching...
No Matches
Matrix Class Reference

Matrix used in linear algebra. More...

#include <ql/math/matrix.hpp>

Public Member Functions

Constructors, destructor, and assignment
 Matrix ()
 creates a null matrix
 Matrix (Size rows, Size columns)
 creates a matrix with the given dimensions
 Matrix (Size rows, Size columns, Real value)
 creates the matrix and fills it with value
template<class Iterator>
 Matrix (Size rows, Size columns, Iterator begin, Iterator end)
 creates the matrix and fills it with data from a range.
 Matrix (const Matrix &)
 Matrix (Matrix &&) noexcept
 Matrix (std::initializer_list< std::initializer_list< Real > >)
Matrixoperator= (const Matrix &)
Matrixoperator= (Matrix &&) noexcept
bool operator== (const Matrix &) const
bool operator!= (const Matrix &) const
Iterator access
const_iterator begin () const
iterator begin ()
const_iterator end () const
iterator end ()
const_reverse_iterator rbegin () const
reverse_iterator rbegin ()
const_reverse_iterator rend () const
reverse_iterator rend ()
const_row_iterator row_begin (Size i) const
row_iterator row_begin (Size i)
const_row_iterator row_end (Size i) const
row_iterator row_end (Size i)
const_reverse_row_iterator row_rbegin (Size i) const
reverse_row_iterator row_rbegin (Size i)
const_reverse_row_iterator row_rend (Size i) const
reverse_row_iterator row_rend (Size i)
const_column_iterator column_begin (Size i) const
column_iterator column_begin (Size i)
const_column_iterator column_end (Size i) const
column_iterator column_end (Size i)
const_reverse_column_iterator column_rbegin (Size i) const
reverse_column_iterator column_rbegin (Size i)
const_reverse_column_iterator column_rend (Size i) const
reverse_column_iterator column_rend (Size i)
Element access
const_row_iterator operator[] (Size) const
const_row_iterator at (Size) const
row_iterator operator[] (Size)
row_iterator at (Size)
Array diagonal () const
Realoperator() (Size i, Size j) const
Inspectors
Size rows () const
Size columns () const
bool empty () const
Size size1 () const
Size size2 () const

(Note that these are not member symbols.)

Matrix operator+ (const Matrix &, const Matrix &)
Matrix operator+ (const Matrix &, Matrix &&)
Matrix operator+ (Matrix &&, const Matrix &)
Matrix operator+ (Matrix &&, Matrix &&)
Matrix operator- (const Matrix &)
Matrix operator- (Matrix &&)
Matrix operator- (const Matrix &, const Matrix &)
Matrix operator- (const Matrix &, Matrix &&)
Matrix operator- (Matrix &&, const Matrix &)
Matrix operator- (Matrix &&, Matrix &&)
Matrix operator* (const Matrix &, Real)
Matrix operator* (Matrix &&, Real)
Matrix operator* (Real, const Matrix &)
Matrix operator* (Real, Matrix &&)
Matrix operator/ (const Matrix &, Real)
Matrix operator/ (Matrix &&, Real)
Array operator* (const Array &, const Matrix &)
Array operator* (const Matrix &, const Array &)
Matrix operator* (const Matrix &, const Matrix &)
Matrix transpose (const Matrix &)
Matrix outerProduct (const Array &v1, const Array &v2)
template<class Iterator1, class Iterator2>
Matrix outerProduct (Iterator1 v1begin, Iterator1 v1end, Iterator2 v2begin, Iterator2 v2end)
void swap (Matrix &, Matrix &) noexcept
std::ostream & operator<< (std::ostream &, const Matrix &)
Matrix inverse (const Matrix &m)
Real determinant (const Matrix &m)
Matrix CholeskyDecomposition (const Matrix &m, bool flexible=false)
Matrix pseudoSqrt (const Matrix &, SalvagingAlgorithm::Type=SalvagingAlgorithm::None)
 Returns the pseudo square root of a real symmetric matrix.
Matrix rankReducedSqrt (const Matrix &, Size maxRank, Real componentRetainedPercentage, SalvagingAlgorithm::Type)
 Returns the rank-reduced pseudo square root of a real symmetric matrix.

Algebraic operators

typedef Realiterator
typedef const Realconst_iterator
typedef std::reverse_iterator< iterator > reverse_iterator
typedef std::reverse_iterator< const_iterator > const_reverse_iterator
typedef Realrow_iterator
typedef const Realconst_row_iterator
typedef std::reverse_iterator< row_iterator > reverse_row_iterator
typedef std::reverse_iterator< const_row_iterator > const_reverse_row_iterator
typedef step_iterator< iterator > column_iterator
typedef step_iterator< const_iterator > const_column_iterator
typedef std::reverse_iterator< column_iteratorreverse_column_iterator
typedef std::reverse_iterator< const_column_iteratorconst_reverse_column_iterator
const Matrixoperator+= (const Matrix &)
const Matrixoperator-= (const Matrix &)
const Matrixoperator*= (Real)
const Matrixoperator/= (Real)

Utilities

void swap (Matrix &) noexcept

Detailed Description

Matrix used in linear algebra.

This class implements the concept of Matrix as used in linear algebra. As such, it is not meant to be used as a container.

Constructor & Destructor Documentation

◆ Matrix()

template<class Iterator>
Matrix ( Size rows,
Size columns,
Iterator begin,
Iterator end )

creates the matrix and fills it with data from a range.

Warning
if the range defined by [begin, end) is larger than the size of the matrix, a memory access violation might occur. It is up to the user to avoid this.

Member Function Documentation

◆ operator+=()

const Matrix & operator+= ( const Matrix & m)
Precondition
all matrices involved in an algebraic expression must have the same size.

◆ pseudoSqrt()

Matrix pseudoSqrt ( const Matrix & ,
SalvagingAlgorithm::Type = SalvagingAlgorithm::None )
related

Returns the pseudo square root of a real symmetric matrix.

Given a matrix \( M \), the result \( S \) is defined as the matrix such that \( S S^T = M. \) If the matrix is not positive semi definite, it can return an approximation of the pseudo square root using a (user selected) salvaging algorithm.

For more information see: R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes, The Journal of Risk, 2(2), Winter 1999/2000. http://www.rebonato.com/correlationmatrix.pdf

Revised and extended in "Monte Carlo Methods in Finance", by Peter Jäckel, Chapter 6.

Precondition
the given matrix must be symmetric.
Warning
Higham algorithm only works for correlation matrices.
Tests
  • the correctness of the results is tested by reproducing known good data.
  • the correctness of the results is tested by checking returned values against numerical calculations.

◆ rankReducedSqrt()

Matrix rankReducedSqrt ( const Matrix & ,
Size maxRank,
Real componentRetainedPercentage,
SalvagingAlgorithm::Type  )
related

Returns the rank-reduced pseudo square root of a real symmetric matrix.

The result matrix has rank<=maxRank. If maxRank>=size, then the specified percentage of eigenvalues out of the eigenvalues' sum is retained.

If the input matrix is not positive semi definite, it can return an approximation of the pseudo square root using a (user selected) salvaging algorithm.

Precondition
the given matrix must be symmetric.