QuantLib: a free/open-source library for quantitative finance
Reference manual - version 1.40
Loading...
Searching...
No Matches
GaussianCopulaPolicy Struct Reference

#include <ql/experimental/math/gaussiancopulapolicy.hpp>

Public Types

typedef int initTraits

Public Member Functions

 GaussianCopulaPolicy (const std::vector< std::vector< Real > > &factorWeights=std::vector< std::vector< Real > >(), const initTraits &dummy=int())
Size numFactors () const
initTraits getInitTraits () const
 returns a copy of the initialization arguments
Probability cumulativeY (Real val, Size iVariable) const
Probability cumulativeZ (Real z) const
 Cumulative probability of the idiosyncratic factors (all the same)
Probability density (const std::vector< Real > &m) const
Real inverseCumulativeY (Probability p, Size iVariable) const
Real inverseCumulativeZ (Probability p) const
Real inverseCumulativeDensity (Probability p, Size iFactor) const
std::vector< RealallFactorCumulInverter (const std::vector< Real > &probs) const

Detailed Description

Gaussian Latent Model's copula policy. Its simplicity is a result of the convolution stability of the Gaussian distribution.

Examples
BasketLosses.cpp.

Member Function Documentation

◆ numFactors()

Size numFactors ( ) const

Number of independent random factors. This is the only methos that ould stop the class from being static, it is needed for the MC generator construction.

◆ cumulativeY()

Probability cumulativeY ( Real val,
Size iVariable ) const

Cumulative probability of a given latent variable The iVariable parameter is the index of the requested variable.

◆ density()

Probability density ( const std::vector< Real > & m) const

Probability density of a given realization of values of the systemic factors (remember they are independent). In the normal case, since they all follow the same law it is just a trivial product of the same density. Intended to be used in numerical integration of an arbitrary function depending on those values.

◆ inverseCumulativeY()

Real inverseCumulativeY ( Probability p,
Size iVariable ) const

Returns the inverse of the cumulative distribution of the (modelled) latent variable (as indexed by iVariable). The normal stability avoids the convolution of the factors' distributions

◆ inverseCumulativeZ()

Real inverseCumulativeZ ( Probability p) const

Returns the inverse of the cumulative distribution of the idiosyncratic factor (identically distributed for all latent variables)

◆ inverseCumulativeDensity()

Real inverseCumulativeDensity ( Probability p,
Size iFactor ) const

Returns the inverse of the cumulative distribution of the systemic factor iFactor.