proxygen
SpookyHashV1.h
Go to the documentation of this file.
1 /*
2  * Copyright 2017-present Facebook, Inc.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // This is version 1 of SpookyHash, incompatible with version 2.
18 //
19 // SpookyHash: a 128-bit noncryptographic hash function
20 // By Bob Jenkins, public domain
21 // Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
22 // Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
23 // Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
24 // Feb 2 2012: production, same bits as beta
25 // Feb 5 2012: adjusted definitions of uint* to be more portable
26 // Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough.
27 //
28 // Up to 3 bytes/cycle for long messages. Reasonably fast for short messages.
29 // All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
30 //
31 // This was developed for and tested on 64-bit x86-compatible processors.
32 // It assumes the processor is little-endian. There is a macro
33 // controlling whether unaligned reads are allowed (by default they are).
34 // This should be an equally good hash on big-endian machines, but it will
35 // compute different results on them than on little-endian machines.
36 //
37 // Google's CityHash has similar specs to SpookyHash, and CityHash is faster
38 // on some platforms. MD4 and MD5 also have similar specs, but they are orders
39 // of magnitude slower. CRCs are two or more times slower, but unlike
40 // SpookyHash, they have nice math for combining the CRCs of pieces to form
41 // the CRCs of wholes. There are also cryptographic hashes, but those are even
42 // slower than MD5.
43 //
44 
45 #pragma once
46 
47 #include <cstddef>
48 #include <cstdint>
49 
50 namespace folly {
51 namespace hash {
52 
53 // clang-format off
54 
56 {
57 public:
58  //
59  // SpookyHash: hash a single message in one call, produce 128-bit output
60  //
61  static void Hash128(
62  const void *message, // message to hash
63  size_t length, // length of message in bytes
64  uint64_t *hash1, // in/out: in seed 1, out hash value 1
65  uint64_t *hash2); // in/out: in seed 2, out hash value 2
66 
67  //
68  // Hash64: hash a single message in one call, return 64-bit output
69  //
70  static uint64_t Hash64(
71  const void *message, // message to hash
72  size_t length, // length of message in bytes
73  uint64_t seed) // seed
74  {
75  uint64_t hash1 = seed;
76  Hash128(message, length, &hash1, &seed);
77  return hash1;
78  }
79 
80  //
81  // Hash32: hash a single message in one call, produce 32-bit output
82  //
83  static uint32_t Hash32(
84  const void *message, // message to hash
85  size_t length, // length of message in bytes
86  uint32_t seed) // seed
87  {
88  uint64_t hash1 = seed, hash2 = seed;
89  Hash128(message, length, &hash1, &hash2);
90  return (uint32_t)hash1;
91  }
92 
93  //
94  // Init: initialize the context of a SpookyHash
95  //
96  void Init(
97  uint64_t seed1, // any 64-bit value will do, including 0
98  uint64_t seed2); // different seeds produce independent hashes
99 
100  //
101  // Update: add a piece of a message to a SpookyHash state
102  //
103  void Update(
104  const void *message, // message fragment
105  size_t length); // length of message fragment in bytes
106 
107 
108  //
109  // Final: compute the hash for the current SpookyHash state
110  //
111  // This does not modify the state; you can keep updating it afterward
112  //
113  // The result is the same as if SpookyHash() had been called with
114  // all the pieces concatenated into one message.
115  //
116  void Final(
117  uint64_t *hash1, // out only: first 64 bits of hash value.
118  uint64_t *hash2); // out only: second 64 bits of hash value.
119 
120  //
121  // left rotate a 64-bit value by k bytes
122  //
123  static inline uint64_t Rot64(uint64_t x, int k)
124  {
125  return (x << k) | (x >> (64 - k));
126  }
127 
128  //
129  // This is used if the input is 96 bytes long or longer.
130  //
131  // The internal state is fully overwritten every 96 bytes.
132  // Every input bit appears to cause at least 128 bits of entropy
133  // before 96 other bytes are combined, when run forward or backward
134  // For every input bit,
135  // Two inputs differing in just that input bit
136  // Where "differ" means xor or subtraction
137  // And the base value is random
138  // When run forward or backwards one Mix
139  // I tried 3 pairs of each; they all differed by at least 212 bits.
140  //
141  static inline void Mix(
142  const uint64_t *data,
143  uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3,
144  uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7,
145  uint64_t &s8, uint64_t &s9, uint64_t &s10,uint64_t &s11)
146  {
147  s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
148  s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
149  s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
150  s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
151  s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
152  s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
153  s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
154  s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
155  s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
156  s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
157  s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
158  s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
159  }
160 
161  //
162  // Mix all 12 inputs together so that h0, h1 are a hash of them all.
163  //
164  // For two inputs differing in just the input bits
165  // Where "differ" means xor or subtraction
166  // And the base value is random, or a counting value starting at that bit
167  // The final result will have each bit of h0, h1 flip
168  // For every input bit,
169  // with probability 50 +- .3%
170  // For every pair of input bits,
171  // with probability 50 +- 3%
172  //
173  // This does not rely on the last Mix() call having already mixed some.
174  // Two iterations was almost good enough for a 64-bit result, but a
175  // 128-bit result is reported, so End() does three iterations.
176  //
177  static inline void EndPartial(
178  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
179  uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
180  uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
181  {
182  h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
183  h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
184  h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
185  h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
186  h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
187  h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
188  h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
189  h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
190  h7 += h9; h10^= h7; h9 = Rot64(h9,38);
191  h8 += h10; h11^= h8; h10= Rot64(h10,53);
192  h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
193  h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
194  }
195 
196  static inline void End(
197  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
198  uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
199  uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
200  {
201  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
202  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
203  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
204  }
205 
206  //
207  // The goal is for each bit of the input to expand into 128 bits of
208  // apparent entropy before it is fully overwritten.
209  // n trials both set and cleared at least m bits of h0 h1 h2 h3
210  // n: 2 m: 29
211  // n: 3 m: 46
212  // n: 4 m: 57
213  // n: 5 m: 107
214  // n: 6 m: 146
215  // n: 7 m: 152
216  // when run forwards or backwards
217  // for all 1-bit and 2-bit diffs
218  // with diffs defined by either xor or subtraction
219  // with a base of all zeros plus a counter, or plus another bit, or random
220  //
221  static inline void ShortMix(uint64_t &h0, uint64_t &h1,
222  uint64_t &h2, uint64_t &h3)
223  {
224  h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
225  h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
226  h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
227  h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
228  h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
229  h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
230  h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
231  h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
232  h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
233  h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
234  h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
235  h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
236  }
237 
238  //
239  // Mix all 4 inputs together so that h0, h1 are a hash of them all.
240  //
241  // For two inputs differing in just the input bits
242  // Where "differ" means xor or subtraction
243  // And the base value is random, or a counting value starting at that bit
244  // The final result will have each bit of h0, h1 flip
245  // For every input bit,
246  // with probability 50 +- .3% (it is probably better than that)
247  // For every pair of input bits,
248  // with probability 50 +- .75% (the worst case is approximately that)
249  //
250  static inline void ShortEnd(uint64_t &h0, uint64_t &h1,
251  uint64_t &h2, uint64_t &h3)
252  {
253  h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
254  h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
255  h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
256  h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
257  h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
258  h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
259  h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
260  h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
261  h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
262  h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
263  h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
264  }
265 
266 private:
267 
268  //
269  // Short is used for messages under 192 bytes in length
270  // Short has a low startup cost, the normal mode is good for long
271  // keys, the cost crossover is at about 192 bytes. The two modes were
272  // held to the same quality bar.
273  //
274  static void Short(
275  const void *message, // message (byte array, not necessarily aligned)
276  size_t length, // length of message (in bytes)
277  uint64_t *hash1, // in/out: in the seed, out the hash value
278  uint64_t *hash2); // in/out: in the seed, out the hash value
279 
280  // number of uint64_t's in internal state
281  static const size_t sc_numVars = 12;
282 
283  // size of the internal state
284  static const size_t sc_blockSize = sc_numVars*8;
285 
286  // size of buffer of unhashed data, in bytes
287  static const size_t sc_bufSize = 2*sc_blockSize;
288 
289  //
290  // sc_const: a constant which:
291  // * is not zero
292  // * is odd
293  // * is a not-very-regular mix of 1's and 0's
294  // * does not need any other special mathematical properties
295  //
296  static const uint64_t sc_const = 0xdeadbeefdeadbeefULL;
297 
298  uint64_t m_data[2*sc_numVars]; // unhashed data, for partial messages
299  uint64_t m_state[sc_numVars]; // internal state of the hash
300  size_t m_length; // total length of the input so far
301  uint8_t m_remainder; // length of unhashed data stashed in m_data
302 };
303 
304 // clang-format on
305 
306 } // namespace hash
307 } // namespace folly
Definition: InvokeTest.cpp:58
Definition: test.c:42
static const size_t sc_numVars
Definition: SpookyHashV1.h:281
static void EndPartial(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3, uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7, uint64_t &h8, uint64_t &h9, uint64_t &h10, uint64_t &h11)
Definition: SpookyHashV1.h:177
static void Mix(const uint64_t *data, uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3, uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7, uint64_t &s8, uint64_t &s9, uint64_t &s10, uint64_t &s11)
Definition: SpookyHashV1.h:141
static const uint64_t sc_const
Definition: SpookyHashV1.h:296
uint64_t m_state[sc_numVars]
Definition: SpookyHashV1.h:299
static const int seed
static uint64_t Hash64(const void *message, size_t length, uint64_t seed)
Definition: SpookyHashV1.h:70
void Final(uint64_t *hash1, uint64_t *hash2)
static void Hash128(const void *message, size_t length, uint64_t *hash1, uint64_t *hash2)
—— Concurrent Priority Queue Implementation ——
Definition: AtomicBitSet.h:29
void Update(const void *message, size_t length)
uint64_t m_data[2 *sc_numVars]
Definition: SpookyHashV1.h:298
void Init(uint64_t seed1, uint64_t seed2)
static const size_t sc_bufSize
Definition: SpookyHashV1.h:287
constexpr auto data(C &c) -> decltype(c.data())
Definition: Access.h:71
static void ShortEnd(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
Definition: SpookyHashV1.h:250
static uint32_t Hash32(const void *message, size_t length, uint32_t seed)
Definition: SpookyHashV1.h:83
static const size_t sc_blockSize
Definition: SpookyHashV1.h:284
static uint64_t Rot64(uint64_t x, int k)
Definition: SpookyHashV1.h:123
static void Short(const void *message, size_t length, uint64_t *hash1, uint64_t *hash2)
KeyT k
static void ShortMix(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
Definition: SpookyHashV1.h:221
static void End(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3, uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7, uint64_t &h8, uint64_t &h9, uint64_t &h10, uint64_t &h11)
Definition: SpookyHashV1.h:196