proxygen
SpookyHashV2.h
Go to the documentation of this file.
1 /*
2  * Copyright 2017-present Facebook, Inc.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // This is version 2 of SpookyHash, incompatible with version 1.
18 //
19 // SpookyHash: a 128-bit noncryptographic hash function
20 // By Bob Jenkins, public domain
21 // Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
22 // Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
23 // Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
24 // Feb 2 2012: production, same bits as beta
25 // Feb 5 2012: adjusted definitions of uint* to be more portable
26 // Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough.
27 // August 5 2012: SpookyV2 (different results)
28 //
29 // Up to 3 bytes/cycle for long messages. Reasonably fast for short messages.
30 // All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
31 //
32 // This was developed for and tested on 64-bit x86-compatible processors.
33 // It assumes the processor is little-endian. There is a macro
34 // controlling whether unaligned reads are allowed (by default they are).
35 // This should be an equally good hash on big-endian machines, but it will
36 // compute different results on them than on little-endian machines.
37 //
38 // Google's CityHash has similar specs to SpookyHash, and CityHash is faster
39 // on new Intel boxes. MD4 and MD5 also have similar specs, but they are orders
40 // of magnitude slower. CRCs are two or more times slower, but unlike
41 // SpookyHash, they have nice math for combining the CRCs of pieces to form
42 // the CRCs of wholes. There are also cryptographic hashes, but those are even
43 // slower than MD5.
44 //
45 
46 #pragma once
47 
48 #include <cstddef>
49 #include <cstdint>
50 
51 namespace folly {
52 namespace hash {
53 
54 // clang-format off
55 
57 {
58 public:
59  //
60  // SpookyHash: hash a single message in one call, produce 128-bit output
61  //
62  static void Hash128(
63  const void *message, // message to hash
64  size_t length, // length of message in bytes
65  uint64_t *hash1, // in/out: in seed 1, out hash value 1
66  uint64_t *hash2); // in/out: in seed 2, out hash value 2
67 
68  //
69  // Hash64: hash a single message in one call, return 64-bit output
70  //
71  static uint64_t Hash64(
72  const void *message, // message to hash
73  size_t length, // length of message in bytes
74  uint64_t seed) // seed
75  {
76  uint64_t hash1 = seed;
77  Hash128(message, length, &hash1, &seed);
78  return hash1;
79  }
80 
81  //
82  // Hash32: hash a single message in one call, produce 32-bit output
83  //
84  static uint32_t Hash32(
85  const void *message, // message to hash
86  size_t length, // length of message in bytes
87  uint32_t seed) // seed
88  {
89  uint64_t hash1 = seed, hash2 = seed;
90  Hash128(message, length, &hash1, &hash2);
91  return (uint32_t)hash1;
92  }
93 
94  //
95  // Init: initialize the context of a SpookyHash
96  //
97  void Init(
98  uint64_t seed1, // any 64-bit value will do, including 0
99  uint64_t seed2); // different seeds produce independent hashes
100 
101  //
102  // Update: add a piece of a message to a SpookyHash state
103  //
104  void Update(
105  const void *message, // message fragment
106  size_t length); // length of message fragment in bytes
107 
108 
109  //
110  // Final: compute the hash for the current SpookyHash state
111  //
112  // This does not modify the state; you can keep updating it afterward
113  //
114  // The result is the same as if SpookyHash() had been called with
115  // all the pieces concatenated into one message.
116  //
117  void Final(
118  uint64_t *hash1, // out only: first 64 bits of hash value.
119  uint64_t *hash2) const; // out only: second 64 bits of hash value.
120 
121  //
122  // left rotate a 64-bit value by k bytes
123  //
124  static inline uint64_t Rot64(uint64_t x, int k)
125  {
126  return (x << k) | (x >> (64 - k));
127  }
128 
129  //
130  // This is used if the input is 96 bytes long or longer.
131  //
132  // The internal state is fully overwritten every 96 bytes.
133  // Every input bit appears to cause at least 128 bits of entropy
134  // before 96 other bytes are combined, when run forward or backward
135  // For every input bit,
136  // Two inputs differing in just that input bit
137  // Where "differ" means xor or subtraction
138  // And the base value is random
139  // When run forward or backwards one Mix
140  // I tried 3 pairs of each; they all differed by at least 212 bits.
141  //
142  static inline void Mix(
143  const uint64_t *data,
144  uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3,
145  uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7,
146  uint64_t &s8, uint64_t &s9, uint64_t &s10,uint64_t &s11)
147  {
148  s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
149  s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
150  s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
151  s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
152  s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
153  s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
154  s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
155  s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
156  s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
157  s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
158  s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
159  s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
160  }
161 
162  //
163  // Mix all 12 inputs together so that h0, h1 are a hash of them all.
164  //
165  // For two inputs differing in just the input bits
166  // Where "differ" means xor or subtraction
167  // And the base value is random, or a counting value starting at that bit
168  // The final result will have each bit of h0, h1 flip
169  // For every input bit,
170  // with probability 50 +- .3%
171  // For every pair of input bits,
172  // with probability 50 +- 3%
173  //
174  // This does not rely on the last Mix() call having already mixed some.
175  // Two iterations was almost good enough for a 64-bit result, but a
176  // 128-bit result is reported, so End() does three iterations.
177  //
178  static inline void EndPartial(
179  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
180  uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
181  uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
182  {
183  h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
184  h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
185  h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
186  h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
187  h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
188  h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
189  h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
190  h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
191  h7 += h9; h10^= h7; h9 = Rot64(h9,38);
192  h8 += h10; h11^= h8; h10= Rot64(h10,53);
193  h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
194  h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
195  }
196 
197  static inline void End(
198  const uint64_t *data,
199  uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
200  uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
201  uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
202  {
203  h0 += data[0]; h1 += data[1]; h2 += data[2]; h3 += data[3];
204  h4 += data[4]; h5 += data[5]; h6 += data[6]; h7 += data[7];
205  h8 += data[8]; h9 += data[9]; h10 += data[10]; h11 += data[11];
206  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
207  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
208  EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
209  }
210 
211  //
212  // The goal is for each bit of the input to expand into 128 bits of
213  // apparent entropy before it is fully overwritten.
214  // n trials both set and cleared at least m bits of h0 h1 h2 h3
215  // n: 2 m: 29
216  // n: 3 m: 46
217  // n: 4 m: 57
218  // n: 5 m: 107
219  // n: 6 m: 146
220  // n: 7 m: 152
221  // when run forwards or backwards
222  // for all 1-bit and 2-bit diffs
223  // with diffs defined by either xor or subtraction
224  // with a base of all zeros plus a counter, or plus another bit, or random
225  //
226  static inline void ShortMix(uint64_t &h0, uint64_t &h1,
227  uint64_t &h2, uint64_t &h3)
228  {
229  h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
230  h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
231  h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
232  h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
233  h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
234  h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
235  h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
236  h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
237  h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
238  h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
239  h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
240  h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
241  }
242 
243  //
244  // Mix all 4 inputs together so that h0, h1 are a hash of them all.
245  //
246  // For two inputs differing in just the input bits
247  // Where "differ" means xor or subtraction
248  // And the base value is random, or a counting value starting at that bit
249  // The final result will have each bit of h0, h1 flip
250  // For every input bit,
251  // with probability 50 +- .3% (it is probably better than that)
252  // For every pair of input bits,
253  // with probability 50 +- .75% (the worst case is approximately that)
254  //
255  static inline void ShortEnd(uint64_t &h0, uint64_t &h1,
256  uint64_t &h2, uint64_t &h3)
257  {
258  h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
259  h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
260  h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
261  h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
262  h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
263  h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
264  h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
265  h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
266  h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
267  h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
268  h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
269  }
270 
271 private:
272 
273  //
274  // Short is used for messages under 192 bytes in length
275  // Short has a low startup cost, the normal mode is good for long
276  // keys, the cost crossover is at about 192 bytes. The two modes were
277  // held to the same quality bar.
278  //
279  static void Short(
280  const void *message, // message (byte array, not necessarily aligned)
281  size_t length, // length of message (in bytes)
282  uint64_t *hash1, // in/out: in the seed, out the hash value
283  uint64_t *hash2); // in/out: in the seed, out the hash value
284 
285  // number of uint64_t's in internal state
286  static constexpr size_t sc_numVars = 12;
287 
288  // size of the internal state
289  static constexpr size_t sc_blockSize = sc_numVars*8;
290 
291  // size of buffer of unhashed data, in bytes
292  static constexpr size_t sc_bufSize = 2*sc_blockSize;
293 
294  //
295  // sc_const: a constant which:
296  // * is not zero
297  // * is odd
298  // * is a not-very-regular mix of 1's and 0's
299  // * does not need any other special mathematical properties
300  //
301  static constexpr uint64_t sc_const = 0xdeadbeefdeadbeefULL;
302 
303  uint64_t m_data[2*sc_numVars]; // unhashed data, for partial messages
304  uint64_t m_state[sc_numVars]; // internal state of the hash
305  size_t m_length; // total length of the input so far
306  uint8_t m_remainder; // length of unhashed data stashed in m_data
307 };
308 
309 // clang-format on
310 
311 } // namespace hash
312 } // namespace folly
Definition: InvokeTest.cpp:58
static void Short(const void *message, size_t length, uint64_t *hash1, uint64_t *hash2)
Definition: test.c:42
static void ShortEnd(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
Definition: SpookyHashV2.h:255
static uint32_t Hash32(const void *message, size_t length, uint32_t seed)
Definition: SpookyHashV2.h:84
static const int seed
static void Mix(const uint64_t *data, uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3, uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7, uint64_t &s8, uint64_t &s9, uint64_t &s10, uint64_t &s11)
Definition: SpookyHashV2.h:142
—— Concurrent Priority Queue Implementation ——
Definition: AtomicBitSet.h:29
void Init(uint64_t seed1, uint64_t seed2)
static uint64_t Rot64(uint64_t x, int k)
Definition: SpookyHashV2.h:124
uint64_t m_state[sc_numVars]
Definition: SpookyHashV2.h:304
static uint64_t Hash64(const void *message, size_t length, uint64_t seed)
Definition: SpookyHashV2.h:71
static constexpr size_t sc_blockSize
Definition: SpookyHashV2.h:289
static void Hash128(const void *message, size_t length, uint64_t *hash1, uint64_t *hash2)
constexpr auto data(C &c) -> decltype(c.data())
Definition: Access.h:71
static constexpr size_t sc_bufSize
Definition: SpookyHashV2.h:292
void Final(uint64_t *hash1, uint64_t *hash2) const
static constexpr size_t sc_numVars
Definition: SpookyHashV2.h:286
static void ShortMix(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
Definition: SpookyHashV2.h:226
void Update(const void *message, size_t length)
KeyT k
static void End(const uint64_t *data, uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3, uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7, uint64_t &h8, uint64_t &h9, uint64_t &h10, uint64_t &h11)
Definition: SpookyHashV2.h:197
uint64_t m_data[2 *sc_numVars]
Definition: SpookyHashV2.h:303
static constexpr uint64_t sc_const
Definition: SpookyHashV2.h:301
static void EndPartial(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3, uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7, uint64_t &h8, uint64_t &h9, uint64_t &h10, uint64_t &h11)
Definition: SpookyHashV2.h:178