<!-- HTML header for doxygen 1.8.14-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.11"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>Caffe2 - C++ API: caffe2/core/blob_serialization.h Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link rel="icon" href="/static/favicon.png" type="image/x-icon">
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { init_search(); });
</script>
<link href="stylesheet.css" rel="stylesheet" type="text/css" />
<link href="main.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td id="projectlogo" width="56"><a href="/"><img alt="Logo" src="Caffe2-with-name-55-tall.png"/></a></td>
  <td id="projectalign" style="padding-left: 0.5em;">
   <div id="projectname">Caffe2 - C++ API
   </div>
   <div id="projectbrief">A deep learning, cross platform ML framework</div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="pages.html"><span>Related&#160;Pages</span></a></li>
      <li><a href="modules.html"><span>Modules</span></a></li>
      <li><a href="annotated.html"><span>Data&#160;Structures</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li><a href="/doxygen-c/html/classes.html"><span>C++&#160;API</span></a></li>
      <li><a href="/doxygen-python/html/annotated.html"><span>Python&#160;API</span></a></li>
      <li><a href="https://github.com/caffe2/caffe2"><span>GitHub</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
      <li><a href="globals.html"><span>Globals</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_20697b8f204bdfcab31e6b1a416f3ab8.html">caffe2</a></li><li class="navelem"><a class="el" href="dir_78eec69ac3a4b32ad49d9e5fc7146850.html">core</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">blob_serialization.h</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="preprocessor">#ifndef CAFFE2_CORE_BLOB_SERIALIZATION_H_</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="preprocessor">#define CAFFE2_CORE_BLOB_SERIALIZATION_H_</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;</div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="preprocessor">#include &lt;limits&gt;</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="preprocessor">#include &lt;future&gt;</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;</div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="preprocessor">#include &lt;google/protobuf/repeated_field.h&gt;</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;</div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="preprocessor">#include &quot;caffe2/core/blob.h&quot;</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="preprocessor">#include &quot;caffe2/core/blob_serializer_base.h&quot;</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="preprocessor">#include &quot;caffe2/core/tensor.h&quot;</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="preprocessor">#include &quot;caffe2/core/typeid.h&quot;</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="preprocessor">#include &quot;caffe2/core/types.h&quot;</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="preprocessor">#include &quot;caffe2/utils/simple_queue.h&quot;</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;</div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;CAFFE2_DECLARE_int(caffe2_tensor_chunk_size);</div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;CAFFE2_DECLARE_int(caffe2_max_tensor_serializer_threads);</div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;CAFFE2_DECLARE_bool(caffe2_serialize_fp16_as_bytes);</div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;</div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="keyword">namespace </span><a class="code" href="namespacecaffe2.html">caffe2</a> {</div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;</div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;constexpr <span class="keyword">auto</span> kTensorBlobType = <span class="stringliteral">&quot;Tensor&quot;</span>;</div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment">// String used to separate chunk id from the blob name when storing in DB</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;constexpr <span class="keyword">auto</span> kChunkIdSeparator = <span class="stringliteral">&quot;#%&quot;</span>;</div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="comment">// The Blob serialization registry and serializer creator functions.</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;CAFFE_DECLARE_TYPED_REGISTRY(</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;    BlobSerializerRegistry,</div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;    CaffeTypeId,</div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;    BlobSerializerBase,</div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;    std::unique_ptr);</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="preprocessor">#define REGISTER_BLOB_SERIALIZER(id, ...) \</span></div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="preprocessor">  CAFFE_REGISTER_TYPED_CLASS(BlobSerializerRegistry, id, __VA_ARGS__)</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="comment">// Creates an operator with the given operator definition.</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="keyword">inline</span> unique_ptr&lt;BlobSerializerBase&gt; CreateSerializer(CaffeTypeId <span class="keywordtype">id</span>) {</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;  <span class="keywordflow">return</span> BlobSerializerRegistry()-&gt;Create(<span class="keywordtype">id</span>);</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;}</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;</div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00046"></a><span class="lineno"><a class="line" href="classcaffe2_1_1_tensor_serializer.html">   46</a></span>&#160;<span class="keyword">class </span><a class="code" href="classcaffe2_1_1_tensor_serializer.html">TensorSerializer</a> : <span class="keyword">public</span> <a class="code" href="classcaffe2_1_1_blob_serializer_base.html">BlobSerializerBase</a> {</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160; <span class="keyword">public</span>:</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;  <a class="code" href="classcaffe2_1_1_tensor_serializer.html">TensorSerializer</a>() : context_() {}</div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;  ~<a class="code" href="classcaffe2_1_1_tensor_serializer.html">TensorSerializer</a>()<span class="keyword"> override </span>{}</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;  <span class="keywordtype">void</span> <a class="code" href="classcaffe2_1_1_tensor_serializer.html#a5946d70063bdf3a892b94a65a2cf8fe1">Serialize</a>(</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;      <span class="keyword">const</span> <a class="code" href="classcaffe2_1_1_blob.html">Blob</a>&amp; blob,</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;      <span class="keyword">const</span> <span class="keywordtype">string</span>&amp; name,</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;      SerializationAcceptor acceptor) <span class="keyword">override</span>;</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;  <span class="keywordtype">void</span> SerializeWithChunkSize(</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;      <span class="keyword">const</span> <a class="code" href="classcaffe2_1_1_blob.html">Blob</a>&amp; blob,</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;      <span class="keyword">const</span> <span class="keywordtype">string</span>&amp; name,</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;      SerializationAcceptor acceptor,</div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;      <span class="keywordtype">int</span> chunk_size) <span class="keyword">override</span>;</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;  <span class="keywordtype">void</span> <a class="code" href="classcaffe2_1_1_tensor_serializer.html#a5946d70063bdf3a892b94a65a2cf8fe1">Serialize</a>(<span class="keyword">const</span> <a class="code" href="classcaffe2_1_1_tensor.html">Tensor&lt;Context&gt;</a>&amp; tensor, <span class="keyword">const</span> <span class="keywordtype">string</span>&amp; name,</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;                 TensorProto* proto, <span class="keywordtype">size_t</span> chunkBegin, int32_t chunkSize);</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160; <span class="keyword">private</span>:</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;  <span class="comment">// A utility function to store the device context detauls.</span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;  <span class="keywordtype">void</span> StoreDeviceDetail(<span class="keyword">const</span> <a class="code" href="classcaffe2_1_1_tensor.html">Tensor&lt;Context&gt;</a>&amp; input, TensorProto* proto);</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;  Context context_;</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;};</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;</div><div class="line"><a name="l00077"></a><span class="lineno"><a class="line" href="classcaffe2_1_1_blob_deserializer_base.html">   77</a></span>&#160;<span class="keyword">class </span><a class="code" href="classcaffe2_1_1_blob_deserializer_base.html">BlobDeserializerBase</a> {</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160; <span class="keyword">public</span>:</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;  <span class="keyword">virtual</span> ~<a class="code" href="classcaffe2_1_1_blob_deserializer_base.html">BlobDeserializerBase</a>() {}</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;  <span class="comment">// Deserializes from a BlobProto object.</span></div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;  <span class="keyword">virtual</span> <span class="keywordtype">void</span> Deserialize(<span class="keyword">const</span> BlobProto&amp; proto, <a class="code" href="classcaffe2_1_1_blob.html">Blob</a>* blob) = 0;</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;};</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;CAFFE_DECLARE_REGISTRY(BlobDeserializerRegistry, <a class="code" href="classcaffe2_1_1_blob_deserializer_base.html">BlobDeserializerBase</a>);</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;<span class="preprocessor">#define REGISTER_BLOB_DESERIALIZER(name, ...) \</span></div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;<span class="preprocessor">  CAFFE_REGISTER_CLASS(BlobDeserializerRegistry, name, __VA_ARGS__)</span></div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;<span class="comment">// Creates an operator with the given operator definition.</span></div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;<span class="keyword">inline</span> unique_ptr&lt;BlobDeserializerBase&gt; CreateDeserializer(<span class="keyword">const</span> <span class="keywordtype">string</span>&amp; type) {</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;  <span class="keywordflow">return</span> BlobDeserializerRegistry()-&gt;Create(type);</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;}</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00102"></a><span class="lineno"><a class="line" href="classcaffe2_1_1_tensor_deserializer.html">  102</a></span>&#160;<span class="keyword">class </span><a class="code" href="classcaffe2_1_1_tensor_deserializer.html">TensorDeserializer</a> : <span class="keyword">public</span> <a class="code" href="classcaffe2_1_1_blob_deserializer_base.html">BlobDeserializerBase</a> {</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160; <span class="keyword">public</span>:</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;  <span class="keywordtype">void</span> Deserialize(<span class="keyword">const</span> BlobProto&amp; proto, <a class="code" href="classcaffe2_1_1_blob.html">Blob</a>* blob) <span class="keyword">override</span>;</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;  <span class="keywordtype">void</span> Deserialize(<span class="keyword">const</span> TensorProto&amp; proto, <a class="code" href="classcaffe2_1_1_tensor.html">Tensor&lt;Context&gt;</a>* tensor);</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;};</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;<span class="comment">// Implementations</span></div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;<span class="keyword">namespace </span>detail {</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> SrcType, <span class="keyword">typename</span> DstType, <span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;<span class="keyword">inline</span> <span class="keywordtype">void</span> CopyToProtoAsIs(</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> size,</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;    <span class="keyword">const</span> SrcType* src,</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;    google::protobuf::RepeatedField&lt;DstType&gt;* field,</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;    Context* context) {</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;  static_assert(</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;      <span class="keyword">sizeof</span>(SrcType) == <span class="keyword">sizeof</span>(DstType),</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;      <span class="stringliteral">&quot;The source type and dest type cannot be copied as-is. Did &quot;</span></div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;      <span class="stringliteral">&quot;you mean CopyToProtoWithCast?&quot;</span>);</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;  field-&gt;Reserve(size);</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; size; ++i) {</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;    field-&gt;Add(0);</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;  }</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;  context-&gt;template Copy&lt;SrcType, Context, CPUContext&gt;(</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;      size, src, <span class="keyword">reinterpret_cast&lt;</span>SrcType*<span class="keyword">&gt;</span>(field-&gt;mutable_data()));</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;  <span class="comment">// Make sure that we finish the copy into the protobuf.</span></div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;  context-&gt;FinishDeviceComputation();</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;}</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> SrcType, <span class="keyword">typename</span> DstType, <span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;<span class="keyword">inline</span> <span class="keywordtype">void</span> CopyToProtoWithCast(</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> size,</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    <span class="keyword">const</span> SrcType* src,</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    google::protobuf::RepeatedField&lt;DstType&gt;* field,</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;    Context* context) {</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;  <span class="comment">// TODO: we are having one unnecessary copy here if the context is already</span></div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;  <span class="comment">// CPUContext. Remove it if it is performance critical.</span></div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;  unique_ptr&lt;SrcType[]&gt; buffer(<span class="keyword">new</span> SrcType[size]);</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;  context-&gt;template Copy&lt;SrcType, Context, CPUContext&gt;(</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;      size, src, buffer.get());</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;  context-&gt;FinishDeviceComputation();</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;  field-&gt;Reserve(size);</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; size; ++i) {</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;    field-&gt;Add(static_cast&lt;DstType&gt;(buffer[i]));</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;  }</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;}</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> SrcType, <span class="keyword">typename</span> DstType, <span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;<span class="keyword">inline</span> <span class="keywordtype">void</span> CopyFromProtoAsIs(</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> size,</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;    <span class="keyword">const</span> google::protobuf::RepeatedField&lt;SrcType&gt;&amp; field,</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;    DstType* dst,</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;    Context* context) {</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;  static_assert(</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;      <span class="keyword">sizeof</span>(SrcType) == <span class="keyword">sizeof</span>(DstType),</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;      <span class="stringliteral">&quot;The source type and dest type cannot be copied as-is. Did &quot;</span></div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;      <span class="stringliteral">&quot;you mean CopyFromProtoWithCast?&quot;</span>);</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;  CAFFE_ENFORCE_EQ(size, field.size(), <span class="stringliteral">&quot;Incorrect proto field size.&quot;</span>);</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;  context-&gt;template Copy&lt;DstType, CPUContext, Context&gt;(</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;      size, <span class="keyword">reinterpret_cast&lt;</span><span class="keyword">const </span>DstType*<span class="keyword">&gt;</span>(field.data()), dst);</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;}</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> SrcType, <span class="keyword">typename</span> DstType, <span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;<span class="keyword">inline</span> <span class="keywordtype">void</span> CopyFromProtoWithCast(</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">size_t</span> size,</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    <span class="keyword">const</span> google::protobuf::RepeatedField&lt;SrcType&gt;&amp; field,</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;    DstType* dst,</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;    Context* context) {</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;  CAFFE_ENFORCE_EQ(size, field.size(), <span class="stringliteral">&quot;Incorrect proto field size.&quot;</span>);</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;  <span class="comment">// TODO: we are having one unnecessary copy here if the context is already</span></div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;  <span class="comment">// CPUContext. Remove it if it is performance critical.</span></div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;  unique_ptr&lt;DstType[]&gt; buffer(<span class="keyword">new</span> DstType[size]);</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;  <span class="keyword">const</span> SrcType* src = field.data();</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; size; ++i) {</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;    buffer[i] = <span class="keyword">static_cast&lt;</span>DstType<span class="keyword">&gt;</span>(src[i]);</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;  }</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;  context-&gt;template Copy&lt;DstType, CPUContext, Context&gt;(size, buffer.get(), dst);</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;}</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;}  <span class="comment">// namespace detail</span></div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00186"></a><span class="lineno"><a class="line" href="classcaffe2_1_1_tensor_serializer.html#a5946d70063bdf3a892b94a65a2cf8fe1">  186</a></span>&#160;<span class="keywordtype">void</span> <a class="code" href="classcaffe2_1_1_tensor_serializer.html#a5946d70063bdf3a892b94a65a2cf8fe1">TensorSerializer&lt;Context&gt;::Serialize</a>(</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    <span class="keyword">const</span> <a class="code" href="classcaffe2_1_1_blob.html">Blob</a>&amp; blob,</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">string</span>&amp; name,</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;    BlobSerializerBase::SerializationAcceptor acceptor) {</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;  this-&gt;SerializeWithChunkSize(blob, name, acceptor, kDefaultChunkSize);</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;}</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;<span class="keywordtype">void</span> <a class="code" href="classcaffe2_1_1_tensor_serializer.html">TensorSerializer&lt;Context&gt;::SerializeWithChunkSize</a>(</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    <span class="keyword">const</span> <a class="code" href="classcaffe2_1_1_blob.html">Blob</a>&amp; blob,</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">string</span>&amp; name,</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;    BlobSerializerBase::SerializationAcceptor acceptor,</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;    <span class="keywordtype">int</span> chunk_size) {</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;  CAFFE_ENFORCE(blob.<a class="code" href="classcaffe2_1_1_blob.html#a2200340329c81963cb0aa885f1af7958">IsType</a>&lt;<a class="code" href="classcaffe2_1_1_tensor.html">Tensor&lt;Context&gt;</a>&gt;());</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;  <span class="keyword">const</span> <span class="keyword">auto</span>&amp; tensor = blob.template Get&lt;Tensor&lt;Context&gt;&gt;();</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;  <span class="keywordflow">if</span> (chunk_size == kNoChunking) {</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;    chunk_size = tensor.size() + 1; <span class="comment">// to account for empty tensors</span></div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;  } <span class="keywordflow">else</span> <span class="keywordflow">if</span> (chunk_size == kDefaultChunkSize) {</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;    chunk_size = FLAGS_caffe2_tensor_chunk_size;</div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;  }</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;  <span class="keyword">auto</span> processChunk = [&amp;](int64_t chunkStart) {</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;    BlobProto blob_proto;</div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;    blob_proto.set_name(name);</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;    blob_proto.set_type(kTensorBlobType);</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;    TensorProto&amp; proto = *blob_proto.mutable_tensor();</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;    proto.set_name(name);</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    this-&gt;<a class="code" href="classcaffe2_1_1_tensor_serializer.html#a5946d70063bdf3a892b94a65a2cf8fe1">Serialize</a>(</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;        tensor, name, blob_proto.mutable_tensor(), chunkStart, chunk_size);</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;    acceptor(</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;        MakeString(name, kChunkIdSeparator, chunkStart / chunk_size),</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;        blob_proto.SerializeAsString());</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;  };</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;<span class="preprocessor">#ifndef __ANDROID__</span></div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;  std::vector&lt;std::future&lt;void&gt;&gt; futures;</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;  <span class="comment">// Poorman&#39;s IOBound ThreadPool</span></div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;  <a class="code" href="classcaffe2_1_1_simple_queue.html">SimpleQueue&lt;size_t&gt;</a> chunkQueue;</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;  <span class="keyword">auto</span> task = [&amp;]() {</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;    <span class="keywordtype">size_t</span> chunkStart;</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;    <span class="keywordflow">while</span> (chunkQueue.Pop(&amp;chunkStart)) {</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;      processChunk(chunkStart);</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;    }</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;  };</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;  <span class="keywordflow">if</span> (tensor.size() &gt; chunk_size) {</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;    <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; FLAGS_caffe2_max_tensor_serializer_threads; ++i) {</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;      futures.emplace_back(std::async(std::launch::async, task));</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;    }</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;  }</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;<span class="preprocessor">#endif</span></div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;  VLOG(1) &lt;&lt; <span class="stringliteral">&quot;Serializing blob &quot;</span> &lt;&lt; name;</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;  <span class="comment">// Serialize whole vector. If vector is empty, it&#39;s shape still needs to be</span></div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;  <span class="comment">// serialized in empty proto</span></div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">size_t</span> chunkBegin = 0;</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;       chunkBegin &lt; std::max(tensor.size(), <span class="keyword">static_cast&lt;</span>TIndex<span class="keyword">&gt;</span>(1));</div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;       chunkBegin += chunk_size) {</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;    VLOG(2) &lt;&lt; <span class="stringliteral">&quot;Starting a chunk at &quot;</span> &lt;&lt; chunkBegin;</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;<span class="preprocessor">#ifndef __ANDROID__</span></div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;    <span class="keywordflow">if</span> (tensor.size() &gt; chunk_size) {</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;      chunkQueue.Push(chunkBegin);</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;    } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;      <span class="comment">// Sync mode for small tensors</span></div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;      processChunk(chunkBegin);</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;    }</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;<span class="preprocessor">#else</span></div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;    <span class="comment">// Since Android does not have std::future, we will always do sync mode</span></div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;    processChunk(chunkBegin);</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;<span class="preprocessor">#endif</span></div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;  }</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;<span class="preprocessor">#ifndef __ANDROID__</span></div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;  chunkQueue.NoMoreJobs();</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;  <span class="keywordflow">for</span> (<span class="keyword">auto</span>&amp; fut : futures) {</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;    fut.get();</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;  }</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;<span class="preprocessor">#endif</span></div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;}</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;<span class="keywordtype">void</span> <a class="code" href="classcaffe2_1_1_tensor_serializer.html#a5946d70063bdf3a892b94a65a2cf8fe1">TensorSerializer&lt;Context&gt;::Serialize</a>(</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;    <span class="keyword">const</span> <a class="code" href="classcaffe2_1_1_tensor.html">Tensor&lt;Context&gt;</a>&amp; input,</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">string</span>&amp; <span class="comment">/*name*/</span>,</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;    TensorProto* proto_ptr,</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;    <span class="keywordtype">size_t</span> chunkBegin,</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;    int32_t chunkSize) {</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;  CAFFE_ENFORCE(</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;      chunkBegin &lt;= input.<a class="code" href="classcaffe2_1_1_tensor.html#a87087b9548e9bad215d663389abda32e">size</a>(),</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;      <span class="stringliteral">&quot;Chunk begin is out of tensor: &quot;</span>,</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;      chunkBegin,</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;      <span class="charliteral">&#39; &#39;</span>,</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;      input.<a class="code" href="classcaffe2_1_1_tensor.html#a87087b9548e9bad215d663389abda32e">size</a>());</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;  <span class="keywordflow">if</span> (chunkBegin + chunkSize &gt; input.<a class="code" href="classcaffe2_1_1_tensor.html#a87087b9548e9bad215d663389abda32e">size</a>()) {</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;    chunkSize = input.<a class="code" href="classcaffe2_1_1_tensor.html#a87087b9548e9bad215d663389abda32e">size</a>() - chunkBegin;</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;  }</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;  CAFFE_ENFORCE(</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;      input.<a class="code" href="classcaffe2_1_1_tensor.html#a1a62756c55baf42bfa933cd998398de7">raw_data</a>() || chunkSize == 0,</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;      <span class="stringliteral">&quot;The input does not have data input yet. This is probably because you &quot;</span></div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;      <span class="stringliteral">&quot;created a tensor of non-zero shape but never filled its data via &quot;</span></div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;      <span class="stringliteral">&quot;mutable_data() calls. This means that it makes no sense to serialize &quot;</span></div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;      <span class="stringliteral">&quot;the tensor content.&quot;</span>);</div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;  TensorProto&amp; proto = *proto_ptr;</div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;  proto.mutable_segment()-&gt;set_begin(chunkBegin);</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;  proto.mutable_segment()-&gt;set_end(chunkBegin + chunkSize);</div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; input.<a class="code" href="classcaffe2_1_1_tensor.html#aea51c872873f4db0abad47713315e81f">ndim</a>(); ++i) {</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;    proto.add_dims(input.<a class="code" href="classcaffe2_1_1_tensor.html#abec0a0587f4afb6baf486bb0659ec47d">dim</a>(i));</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;  }</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;  <span class="keyword">const</span> TensorProto::DataType data_type = TypeMetaToDataType(input.<a class="code" href="classcaffe2_1_1_tensor.html#a0503013b9587314bb88b060dd73f678e">meta</a>());</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;  proto.set_data_type(data_type);</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;  StoreDeviceDetail(input, &amp;proto);</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;  <span class="comment">// A lot of copypaste is error prone. Should we create a macro for this?</span></div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;  <span class="keywordflow">switch</span> (data_type) {</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_FLOAT:</div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;    detail::CopyToProtoAsIs(</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;        chunkSize,</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;        input.template data&lt;float&gt;() + chunkBegin,</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;        proto.mutable_float_data(),</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_INT32:</div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;    detail::CopyToProtoAsIs(</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;        chunkSize,</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;        input.template data&lt;int&gt;() + chunkBegin,</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;        proto.mutable_int32_data(),</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_BYTE:</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;    LOG(FATAL) &lt;&lt; <span class="stringliteral">&quot;This should not happen. When serializing, &quot;</span></div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;                  <span class="stringliteral">&quot;BYTE is deprecated and moved to UINT8.&quot;</span>;</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_STRING:</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;    {</div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;      proto.mutable_string_data()-&gt;Reserve(chunkSize);</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;      <span class="keyword">const</span> <span class="keywordtype">string</span>* content = input.template data&lt;string&gt;();</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;      <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = chunkBegin; i &lt; chunkBegin + chunkSize; ++i) {</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;        proto.add_string_data(content[i]);</div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;      }</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;    }</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_BOOL:</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;    detail::CopyToProtoWithCast(</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;        chunkSize,</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;        input.template data&lt;bool&gt;() + chunkBegin,</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;        proto.mutable_int32_data(),</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_UINT8:</div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;    detail::CopyToProtoWithCast(</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;        chunkSize,</div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;        input.template data&lt;uint8_t&gt;() + chunkBegin,</div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;        proto.mutable_int32_data(),</div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_INT8:</div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;    detail::CopyToProtoWithCast(</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;        chunkSize,</div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;        input.template data&lt;int8_t&gt;() + chunkBegin,</div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;        proto.mutable_int32_data(),</div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_UINT16:</div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;    detail::CopyToProtoWithCast(</div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;        chunkSize,</div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;        input.template data&lt;uint16_t&gt;() + chunkBegin,</div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;        proto.mutable_int32_data(),</div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_INT16:</div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;    detail::CopyToProtoWithCast(</div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;        chunkSize,</div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;        input.template data&lt;int16_t&gt;() + chunkBegin,</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;        proto.mutable_int32_data(),</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_INT64:</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;    detail::CopyToProtoAsIs(</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;        chunkSize,</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;        input.template data&lt;int64_t&gt;() + chunkBegin,</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;        proto.mutable_int64_data(),</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_FLOAT16: {</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;    <span class="keywordflow">if</span> (FLAGS_caffe2_serialize_fp16_as_bytes) {</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;      <span class="keyword">const</span> <span class="keywordtype">int</span> kValue = 1;</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;      CAFFE_ENFORCE_EQ(</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;          reinterpret_cast&lt;const char*&gt;(&amp;kValue)[0],</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;          1,</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;          <span class="stringliteral">&quot;Serialization of FLOAT16 on big endian platform &quot;</span></div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;          <span class="stringliteral">&quot;is not written yet.&quot;</span>);</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;      unique_ptr&lt;char[]&gt; buffer(<span class="keyword">new</span> <span class="keywordtype">char</span>[2 * chunkSize]);</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;      this-&gt;context_.template Copy&lt;char, Context, CPUContext&gt;(</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;          2 * chunkSize,</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;          <span class="keyword">reinterpret_cast&lt;</span><span class="keyword">const </span><span class="keywordtype">char</span>*<span class="keyword">&gt;</span>(</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;              input.template data&lt;float16&gt;() + chunkBegin),</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;          buffer.get());</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;      this-&gt;context_.FinishDeviceComputation();</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;      proto.set_byte_data(buffer.release(), 2 * chunkSize);</div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;    } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;      detail::CopyToProtoWithCast(</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;          chunkSize,</div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;          reinterpret_cast&lt;const uint16_t*&gt;(input.template data&lt;float16&gt;()) +</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;              chunkBegin,</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;          proto.mutable_int32_data(),</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;          &amp;this-&gt;context_);</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;    }</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;  } <span class="keywordflow">break</span>;</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_DOUBLE:</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;    detail::CopyToProtoAsIs(</div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        chunkSize,</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;        input.template data&lt;double&gt;() + chunkBegin,</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;        proto.mutable_double_data(),</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;        &amp;this-&gt;context_);</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;    <span class="keywordflow">break</span>;</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;  <span class="keywordflow">case</span> TensorProto_DataType_UNDEFINED: {</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;    proto.mutable_string_data()-&gt;Reserve(chunkSize);</div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;    <a class="code" href="classcaffe2_1_1_blob.html">Blob</a> temp_blob;</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">char</span>* raw_data = <span class="keyword">static_cast&lt;</span><span class="keyword">const </span><span class="keywordtype">char</span>*<span class="keyword">&gt;</span>(input.<a class="code" href="classcaffe2_1_1_tensor.html#a1a62756c55baf42bfa933cd998398de7">raw_data</a>());</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;    <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = chunkBegin; i &lt; chunkBegin + chunkSize; ++i) {</div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;      temp_blob.<a class="code" href="classcaffe2_1_1_blob.html#a4e110fabb1ecbe684576dc7b20ea6516">ShareExternal</a>(</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;          const_cast&lt;char*&gt;(raw_data + i * input.<a class="code" href="classcaffe2_1_1_tensor.html#a11e2525d6bea3b7d098982e2f23699ca">itemsize</a>()), input.<a class="code" href="classcaffe2_1_1_tensor.html#a0503013b9587314bb88b060dd73f678e">meta</a>());</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;      proto.add_string_data(temp_blob.<a class="code" href="classcaffe2_1_1_blob.html#aa77a7a69a0321d80895142e51dd287d5">Serialize</a>(<span class="stringliteral">&quot;&quot;</span>));</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    }</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;  } <span class="keywordflow">break</span>;</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;    <span class="comment">// Note: we intentially do not provide &quot;default:&quot; so if any new data types</span></div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;    <span class="comment">// are added, the compiler should warn the user to add the case here.</span></div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;  }</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;}</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;<span class="keywordtype">void</span> <a class="code" href="classcaffe2_1_1_tensor_deserializer.html">TensorDeserializer&lt;Context&gt;::Deserialize</a>(</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;    <span class="keyword">const</span> BlobProto&amp; blob_proto,</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;    <a class="code" href="classcaffe2_1_1_blob.html">Blob</a>* blob) {</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;  Deserialize(blob_proto.tensor(), blob-&gt;<a class="code" href="classcaffe2_1_1_blob.html#a355cff5bfcdfce83ac53ce2a2eef9ee4">GetMutable</a>&lt;<a class="code" href="classcaffe2_1_1_tensor.html">Tensor&lt;Context&gt;</a>&gt;());</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;}</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">class</span> Context&gt;</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;<span class="keywordtype">void</span> <a class="code" href="classcaffe2_1_1_tensor_deserializer.html">TensorDeserializer&lt;Context&gt;::Deserialize</a>(</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;    <span class="keyword">const</span> TensorProto&amp; proto,</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;    <a class="code" href="classcaffe2_1_1_tensor.html">Tensor&lt;Context&gt;</a>* tensor) {</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;  <span class="comment">// We create a local context for deserializing. Since Caffe2 contexts are</span></div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;  <span class="comment">// usually lightweighted, this should not involve too much overhead.</span></div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;  Context context(proto.device_detail());</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;  context.SwitchToDevice(0);</div><div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;  vector&lt;TIndex&gt; dims;</div><div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;  <span class="keywordflow">for</span> (<span class="keyword">const</span> TIndex d : proto.dims()) {</div><div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;    dims.push_back(d);</div><div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;  }</div><div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;  tensor-&gt;<a class="code" href="classcaffe2_1_1_tensor.html#a359b5ed5cfd9beaf7f62a5561d939c3b">Resize</a>(dims);</div><div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;</div><div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;  int64_t chunkBegin = 0;</div><div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;  <span class="keyword">auto</span> chunkEnd = tensor-&gt;<a class="code" href="classcaffe2_1_1_tensor.html#a87087b9548e9bad215d663389abda32e">size</a>();</div><div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;  <span class="keywordflow">if</span> (proto.has_segment()) {</div><div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;    chunkBegin = proto.segment().begin();</div><div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;    chunkEnd = proto.segment().end();</div><div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;  }</div><div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;  CAFFE_ENFORCE(</div><div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;      0 &lt;= chunkBegin &amp;&amp; chunkBegin &lt;= chunkEnd &amp;&amp; chunkEnd &lt;= tensor-&gt;size(),</div><div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;      <span class="stringliteral">&quot;Invalid chunk &quot;</span>,</div><div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;      chunkBegin,</div><div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;      <span class="charliteral">&#39; &#39;</span>,</div><div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;      chunkEnd,</div><div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;      <span class="stringliteral">&quot; with total tensor size &quot;</span>,</div><div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;      tensor-&gt;<a class="code" href="classcaffe2_1_1_tensor.html#a87087b9548e9bad215d663389abda32e">size</a>());</div><div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;  <span class="keyword">auto</span> chunkSize = chunkEnd - chunkBegin;</div><div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;</div><div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;  <span class="keywordflow">switch</span> (proto.data_type()) {</div><div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_FLOAT:</div><div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;      detail::CopyFromProtoAsIs(</div><div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;          chunkSize,</div><div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;          proto.float_data(),</div><div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;          tensor-&gt;template mutable_data&lt;float&gt;() + chunkBegin,</div><div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;          &amp;context);</div><div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_INT32:</div><div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;      detail::CopyFromProtoAsIs(</div><div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;          chunkSize,</div><div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;          proto.int32_data(),</div><div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;          tensor-&gt;template mutable_data&lt;int&gt;() + chunkBegin,</div><div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;          &amp;context);</div><div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_BYTE:</div><div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;      <span class="comment">// Since BYTE stores the data in a string field instead of a repreated</span></div><div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;      <span class="comment">// field we will have it special cased.</span></div><div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;      CAFFE_ENFORCE_EQ(</div><div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;          chunkSize, proto.byte_data().size(), <span class="stringliteral">&quot;Incorrect proto field size.&quot;</span>);</div><div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;      context.template Copy&lt;uint8_t, Context, CPUContext&gt;(</div><div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;          chunkSize,</div><div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;          <span class="keyword">reinterpret_cast&lt;</span><span class="keyword">const </span>uint8_t*<span class="keyword">&gt;</span>(proto.byte_data().data()),</div><div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;          tensor-&gt;template mutable_data&lt;uint8_t&gt;() + chunkBegin);</div><div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_STRING:</div><div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;      <span class="comment">// Special handing of string because it is a non-fundamental type.</span></div><div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;      {</div><div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;        <span class="keywordtype">string</span>* content = tensor-&gt;template mutable_data&lt;string&gt;();</div><div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;        <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; chunkSize; ++i) {</div><div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;          content[i + chunkBegin] = proto.string_data(i);</div><div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;        }</div><div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;      }</div><div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_BOOL:</div><div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;      detail::CopyFromProtoWithCast(</div><div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;          chunkSize,</div><div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;          proto.int32_data(),</div><div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;          tensor-&gt;template mutable_data&lt;bool&gt;() + chunkBegin,</div><div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;          &amp;context);</div><div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_UINT8:</div><div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;      detail::CopyFromProtoWithCast(</div><div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;          chunkSize,</div><div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;          proto.int32_data(),</div><div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;          tensor-&gt;template mutable_data&lt;uint8_t&gt;() + chunkBegin,</div><div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;          &amp;context);</div><div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_INT8:</div><div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;      detail::CopyFromProtoWithCast(</div><div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;          chunkSize,</div><div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;          proto.int32_data(),</div><div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;          tensor-&gt;template mutable_data&lt;int8_t&gt;() + chunkBegin,</div><div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;          &amp;context);</div><div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_UINT16:</div><div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;      detail::CopyFromProtoWithCast(</div><div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;          chunkSize,</div><div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;          proto.int32_data(),</div><div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;          tensor-&gt;template mutable_data&lt;uint16_t&gt;() + chunkBegin,</div><div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;          &amp;context);</div><div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_INT16:</div><div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;      detail::CopyFromProtoWithCast(</div><div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;          chunkSize,</div><div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;          proto.int32_data(),</div><div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;          tensor-&gt;template mutable_data&lt;int16_t&gt;() + chunkBegin,</div><div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;          &amp;context);</div><div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_INT64:</div><div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;      detail::CopyFromProtoAsIs(</div><div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;          chunkSize,</div><div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;          proto.int64_data(),</div><div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;          tensor-&gt;template mutable_data&lt;int64_t&gt;() + chunkBegin,</div><div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;          &amp;context);</div><div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_FLOAT16:</div><div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;      <span class="keywordflow">if</span> (proto.has_byte_data()) {</div><div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span> kValue = 1;</div><div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;        CAFFE_ENFORCE_EQ(</div><div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;            reinterpret_cast&lt;const char*&gt;(&amp;kValue)[0],</div><div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;            1,</div><div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;            <span class="stringliteral">&quot;Serialization of FLOAT16 on big endian platform &quot;</span></div><div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;            <span class="stringliteral">&quot;is not written yet.&quot;</span>);</div><div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;        CAFFE_ENFORCE_EQ(</div><div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;            2 * chunkSize,</div><div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;            proto.byte_data().size(),</div><div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;            <span class="stringliteral">&quot;Incorrect proto field size.&quot;</span>);</div><div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;        context.template Copy&lt;float16, Context, CPUContext&gt;(</div><div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;            chunkSize,</div><div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;            <span class="keyword">reinterpret_cast&lt;</span><span class="keyword">const </span>float16*<span class="keyword">&gt;</span>(proto.byte_data().data()),</div><div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;            tensor-&gt;template mutable_data&lt;float16&gt;() + chunkBegin);</div><div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;      } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;        <span class="comment">// Backward compatibility with models which used int32_data field</span></div><div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;        detail::CopyFromProtoWithCast(</div><div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;            chunkSize,</div><div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;            proto.int32_data(),</div><div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;            <span class="keyword">reinterpret_cast&lt;</span>uint16_t*<span class="keyword">&gt;</span>(</div><div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;                tensor-&gt;template mutable_data&lt;float16&gt;()) +</div><div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;                chunkBegin,</div><div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;            &amp;context);</div><div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;      }</div><div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_DOUBLE:</div><div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;      detail::CopyFromProtoAsIs(</div><div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;          chunkSize,</div><div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;          proto.double_data(),</div><div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;          tensor-&gt;template mutable_data&lt;double&gt;() + chunkBegin,</div><div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;          &amp;context);</div><div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;      <span class="keywordflow">break</span>;</div><div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;    <span class="keywordflow">case</span> TensorProto_DataType_UNDEFINED: {</div><div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;      <a class="code" href="classcaffe2_1_1_blob.html">Blob</a> temp_blob;</div><div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;      <span class="keywordtype">void</span>* raw_ptr = <span class="keyword">nullptr</span>;</div><div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;      <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; chunkSize; ++i) {</div><div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;        temp_blob.<a class="code" href="classcaffe2_1_1_blob.html#a77fd09388bb320062d332394be9b80cf">Deserialize</a>(proto.string_data(i));</div><div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;        <span class="keywordflow">if</span> (i == 0) {</div><div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;          raw_ptr = tensor-&gt;<a class="code" href="classcaffe2_1_1_tensor.html#a83bade6123fa388bf59497f2bad998d4">raw_mutable_data</a>(temp_blob.<a class="code" href="classcaffe2_1_1_blob.html#a50308d6febe9e777f19413994a9774a5">meta</a>());</div><div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;        }</div><div class="line"><a name="l00573"></a><span class="lineno">  573</span>&#160;        temp_blob.<a class="code" href="classcaffe2_1_1_blob.html#a50308d6febe9e777f19413994a9774a5">meta</a>().<a class="code" href="classcaffe2_1_1_type_meta.html#ac8dd4e4823774c12643659bc4acf9872">copy</a>()(</div><div class="line"><a name="l00574"></a><span class="lineno">  574</span>&#160;            temp_blob.GetRaw(),</div><div class="line"><a name="l00575"></a><span class="lineno">  575</span>&#160;            <span class="keyword">static_cast&lt;</span><span class="keywordtype">char</span>*<span class="keyword">&gt;</span>(raw_ptr) +</div><div class="line"><a name="l00576"></a><span class="lineno">  576</span>&#160;                (i + chunkBegin) * temp_blob.<a class="code" href="classcaffe2_1_1_blob.html#a50308d6febe9e777f19413994a9774a5">meta</a>().<a class="code" href="classcaffe2_1_1_type_meta.html#afadf4203c5a73569932fb9a0827408c8">itemsize</a>(),</div><div class="line"><a name="l00577"></a><span class="lineno">  577</span>&#160;            1);</div><div class="line"><a name="l00578"></a><span class="lineno">  578</span>&#160;      }</div><div class="line"><a name="l00579"></a><span class="lineno">  579</span>&#160;    }</div><div class="line"><a name="l00580"></a><span class="lineno">  580</span>&#160;  }</div><div class="line"><a name="l00581"></a><span class="lineno">  581</span>&#160;  context.FinishDeviceComputation();</div><div class="line"><a name="l00582"></a><span class="lineno">  582</span>&#160;}</div><div class="line"><a name="l00583"></a><span class="lineno">  583</span>&#160;</div><div class="line"><a name="l00584"></a><span class="lineno">  584</span>&#160;}  <span class="comment">// namespace caffe2</span></div><div class="line"><a name="l00585"></a><span class="lineno">  585</span>&#160;</div><div class="line"><a name="l00586"></a><span class="lineno">  586</span>&#160;<span class="preprocessor">#endif  // CAFFE2_CORE_BLOB_SERIALIZATION_H_</span></div><div class="ttc" id="classcaffe2_1_1_blob_html"><div class="ttname"><a href="classcaffe2_1_1_blob.html">caffe2::Blob</a></div><div class="ttdoc">Blob is a general container that hosts a typed pointer. </div><div class="ttdef"><b>Definition:</b> <a href="blob_8h_source.html#l00025">blob.h:25</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_a11e2525d6bea3b7d098982e2f23699ca"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#a11e2525d6bea3b7d098982e2f23699ca">caffe2::Tensor::itemsize</a></div><div class="ttdeci">size_t itemsize() const </div><div class="ttdoc">Return the number of bytes each item takes in the tensor. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00597">tensor.h:597</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_html_a4e110fabb1ecbe684576dc7b20ea6516"><div class="ttname"><a href="classcaffe2_1_1_blob.html#a4e110fabb1ecbe684576dc7b20ea6516">caffe2::Blob::ShareExternal</a></div><div class="ttdeci">std::remove_const&lt; T &gt;::type * ShareExternal(typename std::remove_const&lt; T &gt;::type *allocated)</div><div class="ttdoc">Sets the underlying object to the allocated one, but does not take over the ownership of the passed i...</div><div class="ttdef"><b>Definition:</b> <a href="blob_8h_source.html#l00163">blob.h:163</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_a0503013b9587314bb88b060dd73f678e"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#a0503013b9587314bb88b060dd73f678e">caffe2::Tensor::meta</a></div><div class="ttdeci">const TypeMeta &amp; meta() const </div><div class="ttdoc">Returns the TypeMeta object associated with the current data type. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00648">tensor.h:648</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_abec0a0587f4afb6baf486bb0659ec47d"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#abec0a0587f4afb6baf486bb0659ec47d">caffe2::Tensor::dim</a></div><div class="ttdeci">TIndex dim(const int i) const </div><div class="ttdoc">Returns the i-th dimension of the tensor. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00671">tensor.h:671</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_serializer_html"><div class="ttname"><a href="classcaffe2_1_1_tensor_serializer.html">caffe2::TensorSerializer</a></div><div class="ttdoc">TensorSerializer is the serializer for Tensors. </div><div class="ttdef"><b>Definition:</b> <a href="blob__serialization_8h_source.html#l00046">blob_serialization.h:46</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_deserializer_base_html"><div class="ttname"><a href="classcaffe2_1_1_blob_deserializer_base.html">caffe2::BlobDeserializerBase</a></div><div class="ttdoc">BlobDeserializerBase is an abstract class that deserializes a blob from a BlobProto or a TensorProto...</div><div class="ttdef"><b>Definition:</b> <a href="blob__serialization_8h_source.html#l00077">blob_serialization.h:77</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html"><div class="ttname"><a href="classcaffe2_1_1_tensor.html">caffe2::Tensor</a></div><div class="ttdoc">Tensor is the basic class in Caffe2 that stores a contiguous memory with its shape information...</div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00093">tensor.h:93</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_a87087b9548e9bad215d663389abda32e"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#a87087b9548e9bad215d663389abda32e">caffe2::Tensor::size</a></div><div class="ttdeci">TIndex size() const </div><div class="ttdoc">Returns the size (i.e. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00593">tensor.h:593</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_serializer_html_a5946d70063bdf3a892b94a65a2cf8fe1"><div class="ttname"><a href="classcaffe2_1_1_tensor_serializer.html#a5946d70063bdf3a892b94a65a2cf8fe1">caffe2::TensorSerializer::Serialize</a></div><div class="ttdeci">void Serialize(const Blob &amp;blob, const string &amp;name, SerializationAcceptor acceptor) override</div><div class="ttdoc">Serializes a Blob. </div><div class="ttdef"><b>Definition:</b> <a href="blob__serialization_8h_source.html#l00186">blob_serialization.h:186</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_html_aa77a7a69a0321d80895142e51dd287d5"><div class="ttname"><a href="classcaffe2_1_1_blob.html#aa77a7a69a0321d80895142e51dd287d5">caffe2::Blob::Serialize</a></div><div class="ttdeci">void Serialize(const string &amp;name, BlobSerializerBase::SerializationAcceptor acceptor, int chunk_size=kDefaultChunkSize) const </div><div class="ttdoc">Serializes the current blob, if possible. </div><div class="ttdef"><b>Definition:</b> <a href="blob__serialization_8cc_source.html#l00065">blob_serialization.cc:65</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_a359b5ed5cfd9beaf7f62a5561d939c3b"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#a359b5ed5cfd9beaf7f62a5561d939c3b">caffe2::Tensor::Resize</a></div><div class="ttdeci">void Resize(Ts...dim_source)</div><div class="ttdoc">Resizes a tensor. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00288">tensor.h:288</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_deserializer_html"><div class="ttname"><a href="classcaffe2_1_1_tensor_deserializer.html">caffe2::TensorDeserializer</a></div><div class="ttdoc">TensorDeserializer is the deserializer for Tensors. </div><div class="ttdef"><b>Definition:</b> <a href="blob__serialization_8h_source.html#l00102">blob_serialization.h:102</a></div></div>
<div class="ttc" id="namespacecaffe2_html"><div class="ttname"><a href="namespacecaffe2.html">caffe2</a></div><div class="ttdoc">A global dictionary that holds information about what Caffe2 modules have been loaded in the current ...</div><div class="ttdef"><b>Definition:</b> <a href="convert__encoded__to__raw__leveldb_8cc_source.html#l00047">convert_encoded_to_raw_leveldb.cc:47</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_a1a62756c55baf42bfa933cd998398de7"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#a1a62756c55baf42bfa933cd998398de7">caffe2::Tensor::raw_data</a></div><div class="ttdeci">const void * raw_data() const </div><div class="ttdoc">Returns a const raw void* pointer of the underlying storage. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00472">tensor.h:472</a></div></div>
<div class="ttc" id="classcaffe2_1_1_type_meta_html_ac8dd4e4823774c12643659bc4acf9872"><div class="ttname"><a href="classcaffe2_1_1_type_meta.html#ac8dd4e4823774c12643659bc4acf9872">caffe2::TypeMeta::copy</a></div><div class="ttdeci">TypedCopy copy() const </div><div class="ttdoc">Returns the typed copy function pointer for individual iterms. </div><div class="ttdef"><b>Definition:</b> <a href="typeid_8h_source.html#l00155">typeid.h:155</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_html_a355cff5bfcdfce83ac53ce2a2eef9ee4"><div class="ttname"><a href="classcaffe2_1_1_blob.html#a355cff5bfcdfce83ac53ce2a2eef9ee4">caffe2::Blob::GetMutable</a></div><div class="ttdeci">T * GetMutable(bool *is_new_object=nullptr)</div><div class="ttdoc">Gets a mutable pointer to the stored object. </div><div class="ttdef"><b>Definition:</b> <a href="blob_8h_source.html#l00101">blob.h:101</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_html_a50308d6febe9e777f19413994a9774a5"><div class="ttname"><a href="classcaffe2_1_1_blob.html#a50308d6febe9e777f19413994a9774a5">caffe2::Blob::meta</a></div><div class="ttdeci">const TypeMeta &amp; meta() const </div><div class="ttdoc">Returns the meta info of the blob. </div><div class="ttdef"><b>Definition:</b> <a href="blob_8h_source.html#l00063">blob.h:63</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_html_a77fd09388bb320062d332394be9b80cf"><div class="ttname"><a href="classcaffe2_1_1_blob.html#a77fd09388bb320062d332394be9b80cf">caffe2::Blob::Deserialize</a></div><div class="ttdeci">void Deserialize(const string &amp;content)</div><div class="ttdoc">Deserializes from a string containing either BlobProto or TensorProto. </div><div class="ttdef"><b>Definition:</b> <a href="blob__serialization_8cc_source.html#l00101">blob_serialization.cc:101</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_html_a2200340329c81963cb0aa885f1af7958"><div class="ttname"><a href="classcaffe2_1_1_blob.html#a2200340329c81963cb0aa885f1af7958">caffe2::Blob::IsType</a></div><div class="ttdeci">bool IsType() const </div><div class="ttdoc">Checks if the content stored in the blob is of type T. </div><div class="ttdef"><b>Definition:</b> <a href="blob_8h_source.html#l00058">blob.h:58</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_aea51c872873f4db0abad47713315e81f"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#aea51c872873f4db0abad47713315e81f">caffe2::Tensor::ndim</a></div><div class="ttdeci">int ndim() const </div><div class="ttdoc">Returns the number of dimensions of the data. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00589">tensor.h:589</a></div></div>
<div class="ttc" id="classcaffe2_1_1_simple_queue_html"><div class="ttname"><a href="classcaffe2_1_1_simple_queue.html">caffe2::SimpleQueue</a></div><div class="ttdef"><b>Definition:</b> <a href="simple__queue_8h_source.html#l00022">simple_queue.h:22</a></div></div>
<div class="ttc" id="classcaffe2_1_1_tensor_html_a83bade6123fa388bf59497f2bad998d4"><div class="ttname"><a href="classcaffe2_1_1_tensor.html#a83bade6123fa388bf59497f2bad998d4">caffe2::Tensor::raw_mutable_data</a></div><div class="ttdeci">void * raw_mutable_data(const TypeMeta &amp;meta)</div><div class="ttdoc">Returns a mutable raw pointer of the underlying storage. </div><div class="ttdef"><b>Definition:</b> <a href="tensor_8h_source.html#l00510">tensor.h:510</a></div></div>
<div class="ttc" id="classcaffe2_1_1_type_meta_html_afadf4203c5a73569932fb9a0827408c8"><div class="ttname"><a href="classcaffe2_1_1_type_meta.html#afadf4203c5a73569932fb9a0827408c8">caffe2::TypeMeta::itemsize</a></div><div class="ttdeci">const size_t &amp; itemsize() const </div><div class="ttdoc">Returns the size of the item. </div><div class="ttdef"><b>Definition:</b> <a href="typeid_8h_source.html#l00143">typeid.h:143</a></div></div>
<div class="ttc" id="classcaffe2_1_1_blob_serializer_base_html"><div class="ttname"><a href="classcaffe2_1_1_blob_serializer_base.html">caffe2::BlobSerializerBase</a></div><div class="ttdoc">BlobSerializerBase is an abstract class that serializes a blob to a string. </div><div class="ttdef"><b>Definition:</b> <a href="blob__serializer__base_8h_source.html#l00023">blob_serializer_base.h:23</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- HTML footer for doxygen 1.8.14-->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated on Thu Apr 19 2018 13:03:49 for Caffe2 - C++ API by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.11
</small></address>
<div class="footerContainer">
  <div id="footer_wrap" class="wrapper footerWrapper">
    <div class="footerBlocks">
      <div id="fb_oss" class="footerSection fbOpenSourceFooter">
          <svg class="facebookOSSLogoSvg" viewBox="0 0 1133.9 1133.9" x="0px" y="0px" height=50 width=50>
            <g>
              <path class="logoRing outerRing" d="M 498.3 3.7 c 153.6 88.9 307.3 177.7 461.1 266.2 c 7.6 4.4 10.3 9.1 10.3 17.8 c -0.3 179.1 -0.2 358.3 0 537.4 c 0 8.1 -2.4 12.8 -9.7 17.1 c -154.5 88.9 -308.8 178.1 -462.9 267.5 c -9 5.2 -15.5 5.3 -24.6 0.1 c -153.9 -89.2 -307.9 -178 -462.1 -266.8 C 3 838.8 0 833.9 0 825.1 c 0.3 -179.1 0.2 -358.3 0 -537.4 c 0 -8.6 2.6 -13.6 10.2 -18 C 164.4 180.9 318.4 92 472.4 3 C 477 -1.5 494.3 -0.7 498.3 3.7 Z M 48.8 555.3 c 0 79.9 0.2 159.9 -0.2 239.8 c -0.1 10 3 15.6 11.7 20.6 c 137.2 78.8 274.2 157.8 411 237.3 c 9.9 5.7 17 5.7 26.8 0.1 c 137.5 -79.8 275.2 -159.2 412.9 -238.5 c 7.4 -4.3 10.5 -8.9 10.5 -17.8 c -0.3 -160.2 -0.3 -320.5 0 -480.7 c 0 -8.8 -2.8 -13.6 -10.3 -18 C 772.1 218 633.1 137.8 494.2 57.4 c -6.5 -3.8 -11.5 -4.5 -18.5 -0.5 C 336.8 137.4 197.9 217.7 58.8 297.7 c -7.7 4.4 -10.2 9.2 -10.2 17.9 C 48.9 395.5 48.8 475.4 48.8 555.3 Z" />
              <path class="logoRing middleRing" d="M 184.4 555.9 c 0 -33.3 -1 -66.7 0.3 -100 c 1.9 -48 24.1 -86 64.7 -110.9 c 54.8 -33.6 110.7 -65.5 167 -96.6 c 45.7 -25.2 92.9 -24.7 138.6 1 c 54.4 30.6 108.7 61.5 162.2 93.7 c 44 26.5 67.3 66.8 68 118.4 c 0.9 63.2 0.9 126.5 0 189.7 c -0.7 50.6 -23.4 90.7 -66.6 116.9 c -55 33.4 -110.8 65.4 -167.1 96.5 c -43.4 24 -89 24.2 -132.3 0.5 c -57.5 -31.3 -114.2 -64 -170 -98.3 c -41 -25.1 -62.9 -63.7 -64.5 -112.2 C 183.5 621.9 184.3 588.9 184.4 555.9 Z M 232.9 556.3 c 0 29.5 0.5 59.1 -0.1 88.6 c -0.8 39.2 16.9 67.1 50.2 86.2 c 51.2 29.4 102.2 59.2 153.4 88.4 c 31.4 17.9 63.6 18.3 95 0.6 c 53.7 -30.3 107.1 -61.2 160.3 -92.5 c 29.7 -17.5 45 -44.5 45.3 -78.8 c 0.6 -61.7 0.5 -123.5 0 -185.2 c -0.3 -34.4 -15.3 -61.5 -44.9 -79 C 637.7 352.6 583 320.8 527.9 290 c -27.5 -15.4 -57.2 -16.1 -84.7 -0.7 c -56.9 31.6 -113.4 64 -169.1 97.6 c -26.4 15.9 -40.7 41.3 -41.1 72.9 C 232.6 491.9 232.9 524.1 232.9 556.3 Z" />
              <path class="logoRing innerRing" d="M 484.9 424.4 c 69.8 -2.8 133.2 57.8 132.6 132 C 617 630 558.5 688.7 484.9 689.1 c -75.1 0.4 -132.6 -63.6 -132.7 -132.7 C 352.1 485 413.4 421.5 484.9 424.4 Z M 401.3 556.7 c -3.4 37.2 30.5 83.6 83 84.1 c 46.6 0.4 84.8 -37.6 84.9 -84 c 0.1 -46.6 -37.2 -84.4 -84.2 -84.6 C 432.2 472.1 397.9 518.3 401.3 556.7 Z" />
            </g>
          </svg>
        <h2>Facebook Open Source</h2>
      </div>
      <div class="footerSection">
        <a class="footerLink" href="https://code.facebook.com/projects/" target="_blank">Open Source Projects</a>
        <a class="footerLink" href="https://github.com/facebook/" target="_blank">GitHub</a>
        <a class="footerLink" href="https://twitter.com/fbOpenSource" target="_blank">Twitter</a>
      </div>
      <div class="footerSection rightAlign">
        <a class="footerLink" href="https://github.com/caffe2/caffe2" target="_blank">Contribute to this project on GitHub</a>
      </div>
    </div>
  </div>
</div>
<script type="text/javascript" src="/js/jekyll-link-anchors.js"></script>
<script>
  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
  ga('create', '{{ site.gacode }}', 'auto');
  ga('send', 'pageview');
</script>
</body>
</html>