<!-- HTML header for doxygen 1.8.14-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.11"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>Caffe2 - Python API: caffe2/python/layers/adaptive_weight.py Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link rel="icon" href="/static/favicon.png" type="image/x-icon">
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { init_search(); });
</script>
<link href="stylesheet.css" rel="stylesheet" type="text/css" />
<link href="main.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td id="projectlogo" width="56"><a href="/"><img alt="Logo" src="Caffe2-with-name-55-tall.png"/></a></td>
  <td id="projectalign" style="padding-left: 0.5em;">
   <div id="projectname">Caffe2 - Python API
   </div>
   <div id="projectbrief">A deep learning, cross platform ML framework</div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="namespaces.html"><span>Packages</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li><a href="/doxygen-c/html/classes.html"><span>C++&#160;API</span></a></li>
      <li><a href="/doxygen-python/html/annotated.html"><span>Python&#160;API</span></a></li>
      <li><a href="https://github.com/caffe2/caffe2"><span>GitHub</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_20697b8f204bdfcab31e6b1a416f3ab8.html">caffe2</a></li><li class="navelem"><a class="el" href="dir_f4fda25fc5253eea1ed54677ae5fa2de.html">python</a></li><li class="navelem"><a class="el" href="dir_089acc4850099be1eaf6d1a580d434f4.html">layers</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">adaptive_weight.py</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment"># @package adaptive_weight</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"># Module caffe2.fb.python.layers.adaptive_weight</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> absolute_import</div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> division</div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> print_function</div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="keyword">from</span> __future__ <span class="keyword">import</span> unicode_literals</div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;</div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="keyword">from</span> <a class="code" href="namespacecaffe2_1_1python.html">caffe2.python</a> <span class="keyword">import</span> core, schema</div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="keyword">from</span> <a class="code" href="namespacecaffe2_1_1python_1_1layers_1_1layers.html">caffe2.python.layers.layers</a> <span class="keyword">import</span> ModelLayer</div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="keyword">import</span> numpy <span class="keyword">as</span> np</div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="stringliteral">&#39;&#39;&#39;</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="stringliteral">Implementation of adaptive weighting: https://arxiv.org/pdf/1705.07115.pdf</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="stringliteral">&#39;&#39;&#39;</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;</div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;</div><div class="line"><a name="l00016"></a><span class="lineno"><a class="line" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html">   16</a></span>&#160;<span class="keyword">class </span><a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html">AdaptiveWeight</a>(<a class="code" href="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer.html">ModelLayer</a>):</div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;    <span class="keyword">def </span>__init__(</div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;        self,</div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;        model,</div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;        input_record,</div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;        name=<span class="stringliteral">&#39;adaptive_weight&#39;</span>,</div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;        optimizer=<span class="keywordtype">None</span>,</div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;        weights=<span class="keywordtype">None</span>,</div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;        **kwargs</div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;    ):</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;        super(AdaptiveWeight,</div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;              self).__init__(model, name, input_record, **kwargs)</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;        self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a008fc83163e927890cb2f369177e1175">output_schema</a> = <a class="code" href="classcaffe2_1_1python_1_1schema_1_1_scalar.html">schema.Scalar</a>(</div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;            np.float32, self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer.html#afa1a900475c7b729a2d964dc33a76a2d">get_next_blob_reference</a>(<span class="stringliteral">&#39;adaptive_weight&#39;</span>)</div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;        )</div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;        self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#adeb0ac17b151ac30ea33f1737ae5f208">data</a> = self.input_record.field_blobs()</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;        self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a1d5f4db3947e649e1321f019e2f7f501">num</a> = len(self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#adeb0ac17b151ac30ea33f1737ae5f208">data</a>)</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;        <span class="comment"># mu_i = log(sigma_i^2)</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;        <span class="keywordflow">if</span> weights <span class="keywordflow">is</span> <span class="keywordtype">None</span>:</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;            <span class="comment"># mu_i is set such that all initial weights are 1. / num</span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;            initializer = (<span class="stringliteral">&#39;ConstantFill&#39;</span>, {<span class="stringliteral">&#39;value&#39;</span>: np.log(self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a1d5f4db3947e649e1321f019e2f7f501">num</a> / 2.)})</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;        <span class="keywordflow">else</span>:</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;            <span class="keyword">assert</span> len(weights) == self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a1d5f4db3947e649e1321f019e2f7f501">num</a></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;            weights = np.array(weights).astype(np.float32)</div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;            values = np.log(1. / 2. / weights)</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;            initializer = (</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;                <span class="stringliteral">&#39;GivenTensorFill&#39;</span>, {</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;                    <span class="stringliteral">&#39;values&#39;</span>: values,</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;                    <span class="stringliteral">&#39;dtype&#39;</span>: core.DataType.FLOAT</div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;                }</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;            )</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;        self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a51301a8e485296a62a9f818cd9e56d31">mu</a> = self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer.html#a4a38cc38d554962035fd272810615f26">create_param</a>(</div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;            param_name=<span class="stringliteral">&#39;mu&#39;</span>,</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;            shape=[self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a1d5f4db3947e649e1321f019e2f7f501">num</a>],</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;            initializer=initializer,</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;            optimizer=optimizer,</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;        )</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;    <span class="keyword">def </span>concat_data(self, net):</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;        reshaped = [</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;            net.NextScopedBlob(<span class="stringliteral">&#39;reshaped_data_%d&#39;</span> % i) <span class="keywordflow">for</span> i <span class="keywordflow">in</span> range(self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a1d5f4db3947e649e1321f019e2f7f501">num</a>)</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;        ]</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;        <span class="comment"># coerce shape for single real values</span></div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;        <span class="keywordflow">for</span> i <span class="keywordflow">in</span> range(self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a1d5f4db3947e649e1321f019e2f7f501">num</a>):</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;            net.Reshape(</div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;                [self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#adeb0ac17b151ac30ea33f1737ae5f208">data</a>[i]],</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;                [reshaped[i], net.NextScopedBlob(<span class="stringliteral">&#39;new_shape_%d&#39;</span> % i)],</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;                shape=[1]</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;            )</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;        concated = net.NextScopedBlob(<span class="stringliteral">&#39;concated_data&#39;</span>)</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;        net.Concat(</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;            reshaped, [concated, net.NextScopedBlob(<span class="stringliteral">&#39;concated_new_shape&#39;</span>)],</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;            axis=0</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;        )</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;        <span class="keywordflow">return</span> concated</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;    <span class="keyword">def </span>compute_adaptive_sum(self, x, net):</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;        mu_exp = net.NextScopedBlob(<span class="stringliteral">&#39;mu_exp&#39;</span>)</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;        net.Exp(self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a51301a8e485296a62a9f818cd9e56d31">mu</a>, mu_exp)</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;        mu_exp_double = net.NextScopedBlob(<span class="stringliteral">&#39;mu_exp_double&#39;</span>)</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;        net.Scale(mu_exp, mu_exp_double, scale=2.0)</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;        weighted_x = net.NextScopedBlob(<span class="stringliteral">&#39;weighted_x&#39;</span>)</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;        net.Div([x, mu_exp_double], weighted_x)</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;        weighted_elements = net.NextScopedBlob(<span class="stringliteral">&#39;weighted_elements&#39;</span>)</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;        net.Add([weighted_x, self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a51301a8e485296a62a9f818cd9e56d31">mu</a>], weighted_elements)</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;        net.SumElements(weighted_elements, self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a008fc83163e927890cb2f369177e1175">output_schema</a>())</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;    <span class="keyword">def </span>add_ops(self, net):</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;        data = self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#aa44e375c9fdb3ac0cf4333dd3c76cfe5">concat_data</a>(net)</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;        self.<a class="code" href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#adf69325cf0df5de32e5875748849e7ec">compute_adaptive_sum</a>(data, net)</div><div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer_html"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer.html">caffe2.python.layers.layers.ModelLayer</a></div><div class="ttdef"><b>Definition:</b> <a href="layers_8py_source.html#l00195">layers.py:195</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer_html_afa1a900475c7b729a2d964dc33a76a2d"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer.html#afa1a900475c7b729a2d964dc33a76a2d">caffe2.python.layers.layers.ModelLayer.get_next_blob_reference</a></div><div class="ttdeci">def get_next_blob_reference(self, name)</div><div class="ttdef"><b>Definition:</b> <a href="layers_8py_source.html#l00346">layers.py:346</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight_html_aa44e375c9fdb3ac0cf4333dd3c76cfe5"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#aa44e375c9fdb3ac0cf4333dd3c76cfe5">caffe2.python.layers.adaptive_weight.AdaptiveWeight.concat_data</a></div><div class="ttdeci">def concat_data(self, net)</div><div class="ttdef"><b>Definition:</b> <a href="adaptive__weight_8py_source.html#l00055">adaptive_weight.py:55</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight_html_a1d5f4db3947e649e1321f019e2f7f501"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a1d5f4db3947e649e1321f019e2f7f501">caffe2.python.layers.adaptive_weight.AdaptiveWeight.num</a></div><div class="ttdeci">num</div><div class="ttdef"><b>Definition:</b> <a href="adaptive__weight_8py_source.html#l00032">adaptive_weight.py:32</a></div></div>
<div class="ttc" id="namespacecaffe2_1_1python_html"><div class="ttname"><a href="namespacecaffe2_1_1python.html">caffe2.python</a></div><div class="ttdef"><b>Definition:</b> <a href="python_2____init_____8py_source.html#l00001">__init__.py:1</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight_html_a51301a8e485296a62a9f818cd9e56d31"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a51301a8e485296a62a9f818cd9e56d31">caffe2.python.layers.adaptive_weight.AdaptiveWeight.mu</a></div><div class="ttdeci">mu</div><div class="ttdef"><b>Definition:</b> <a href="adaptive__weight_8py_source.html#l00048">adaptive_weight.py:48</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight_html_a008fc83163e927890cb2f369177e1175"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#a008fc83163e927890cb2f369177e1175">caffe2.python.layers.adaptive_weight.AdaptiveWeight.output_schema</a></div><div class="ttdeci">output_schema</div><div class="ttdef"><b>Definition:</b> <a href="adaptive__weight_8py_source.html#l00028">adaptive_weight.py:28</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight_html"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html">caffe2.python.layers.adaptive_weight.AdaptiveWeight</a></div><div class="ttdef"><b>Definition:</b> <a href="adaptive__weight_8py_source.html#l00016">adaptive_weight.py:16</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1schema_1_1_scalar_html"><div class="ttname"><a href="classcaffe2_1_1python_1_1schema_1_1_scalar.html">caffe2.python.schema.Scalar</a></div><div class="ttdef"><b>Definition:</b> <a href="schema_8py_source.html#l00579">schema.py:579</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight_html_adeb0ac17b151ac30ea33f1737ae5f208"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#adeb0ac17b151ac30ea33f1737ae5f208">caffe2.python.layers.adaptive_weight.AdaptiveWeight.data</a></div><div class="ttdeci">data</div><div class="ttdef"><b>Definition:</b> <a href="adaptive__weight_8py_source.html#l00031">adaptive_weight.py:31</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer_html_a4a38cc38d554962035fd272810615f26"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1layers_1_1_model_layer.html#a4a38cc38d554962035fd272810615f26">caffe2.python.layers.layers.ModelLayer.create_param</a></div><div class="ttdeci">def create_param(self, param_name, shape, initializer, optimizer, ps_param=None, regularizer=None)</div><div class="ttdef"><b>Definition:</b> <a href="layers_8py_source.html#l00331">layers.py:331</a></div></div>
<div class="ttc" id="namespacecaffe2_1_1python_1_1layers_1_1layers_html"><div class="ttname"><a href="namespacecaffe2_1_1python_1_1layers_1_1layers.html">caffe2.python.layers.layers</a></div><div class="ttdef"><b>Definition:</b> <a href="layers_8py_source.html#l00001">layers.py:1</a></div></div>
<div class="ttc" id="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight_html_adf69325cf0df5de32e5875748849e7ec"><div class="ttname"><a href="classcaffe2_1_1python_1_1layers_1_1adaptive__weight_1_1_adaptive_weight.html#adf69325cf0df5de32e5875748849e7ec">caffe2.python.layers.adaptive_weight.AdaptiveWeight.compute_adaptive_sum</a></div><div class="ttdeci">def compute_adaptive_sum(self, x, net)</div><div class="ttdef"><b>Definition:</b> <a href="adaptive__weight_8py_source.html#l00073">adaptive_weight.py:73</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- HTML footer for doxygen 1.8.14-->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated on Thu Apr 19 2018 13:04:04 for Caffe2 - Python API by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.11
</small></address>
<div class="footerContainer">
  <div id="footer_wrap" class="wrapper footerWrapper">
    <div class="footerBlocks">
      <div id="fb_oss" class="footerSection fbOpenSourceFooter">
          <svg class="facebookOSSLogoSvg" viewBox="0 0 1133.9 1133.9" x="0px" y="0px" height=50 width=50>
            <g>
              <path class="logoRing outerRing" d="M 498.3 3.7 c 153.6 88.9 307.3 177.7 461.1 266.2 c 7.6 4.4 10.3 9.1 10.3 17.8 c -0.3 179.1 -0.2 358.3 0 537.4 c 0 8.1 -2.4 12.8 -9.7 17.1 c -154.5 88.9 -308.8 178.1 -462.9 267.5 c -9 5.2 -15.5 5.3 -24.6 0.1 c -153.9 -89.2 -307.9 -178 -462.1 -266.8 C 3 838.8 0 833.9 0 825.1 c 0.3 -179.1 0.2 -358.3 0 -537.4 c 0 -8.6 2.6 -13.6 10.2 -18 C 164.4 180.9 318.4 92 472.4 3 C 477 -1.5 494.3 -0.7 498.3 3.7 Z M 48.8 555.3 c 0 79.9 0.2 159.9 -0.2 239.8 c -0.1 10 3 15.6 11.7 20.6 c 137.2 78.8 274.2 157.8 411 237.3 c 9.9 5.7 17 5.7 26.8 0.1 c 137.5 -79.8 275.2 -159.2 412.9 -238.5 c 7.4 -4.3 10.5 -8.9 10.5 -17.8 c -0.3 -160.2 -0.3 -320.5 0 -480.7 c 0 -8.8 -2.8 -13.6 -10.3 -18 C 772.1 218 633.1 137.8 494.2 57.4 c -6.5 -3.8 -11.5 -4.5 -18.5 -0.5 C 336.8 137.4 197.9 217.7 58.8 297.7 c -7.7 4.4 -10.2 9.2 -10.2 17.9 C 48.9 395.5 48.8 475.4 48.8 555.3 Z" />
              <path class="logoRing middleRing" d="M 184.4 555.9 c 0 -33.3 -1 -66.7 0.3 -100 c 1.9 -48 24.1 -86 64.7 -110.9 c 54.8 -33.6 110.7 -65.5 167 -96.6 c 45.7 -25.2 92.9 -24.7 138.6 1 c 54.4 30.6 108.7 61.5 162.2 93.7 c 44 26.5 67.3 66.8 68 118.4 c 0.9 63.2 0.9 126.5 0 189.7 c -0.7 50.6 -23.4 90.7 -66.6 116.9 c -55 33.4 -110.8 65.4 -167.1 96.5 c -43.4 24 -89 24.2 -132.3 0.5 c -57.5 -31.3 -114.2 -64 -170 -98.3 c -41 -25.1 -62.9 -63.7 -64.5 -112.2 C 183.5 621.9 184.3 588.9 184.4 555.9 Z M 232.9 556.3 c 0 29.5 0.5 59.1 -0.1 88.6 c -0.8 39.2 16.9 67.1 50.2 86.2 c 51.2 29.4 102.2 59.2 153.4 88.4 c 31.4 17.9 63.6 18.3 95 0.6 c 53.7 -30.3 107.1 -61.2 160.3 -92.5 c 29.7 -17.5 45 -44.5 45.3 -78.8 c 0.6 -61.7 0.5 -123.5 0 -185.2 c -0.3 -34.4 -15.3 -61.5 -44.9 -79 C 637.7 352.6 583 320.8 527.9 290 c -27.5 -15.4 -57.2 -16.1 -84.7 -0.7 c -56.9 31.6 -113.4 64 -169.1 97.6 c -26.4 15.9 -40.7 41.3 -41.1 72.9 C 232.6 491.9 232.9 524.1 232.9 556.3 Z" />
              <path class="logoRing innerRing" d="M 484.9 424.4 c 69.8 -2.8 133.2 57.8 132.6 132 C 617 630 558.5 688.7 484.9 689.1 c -75.1 0.4 -132.6 -63.6 -132.7 -132.7 C 352.1 485 413.4 421.5 484.9 424.4 Z M 401.3 556.7 c -3.4 37.2 30.5 83.6 83 84.1 c 46.6 0.4 84.8 -37.6 84.9 -84 c 0.1 -46.6 -37.2 -84.4 -84.2 -84.6 C 432.2 472.1 397.9 518.3 401.3 556.7 Z" />
            </g>
          </svg>
        <h2>Facebook Open Source</h2>
      </div>
      <div class="footerSection">
        <a class="footerLink" href="https://code.facebook.com/projects/" target="_blank">Open Source Projects</a>
        <a class="footerLink" href="https://github.com/facebook/" target="_blank">GitHub</a>
        <a class="footerLink" href="https://twitter.com/fbOpenSource" target="_blank">Twitter</a>
      </div>
      <div class="footerSection rightAlign">
        <a class="footerLink" href="https://github.com/caffe2/caffe2" target="_blank">Contribute to this project on GitHub</a>
      </div>
    </div>
  </div>
</div>
<script type="text/javascript" src="/js/jekyll-link-anchors.js"></script>
<script>
  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
  m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
  ga('create', '{{ site.gacode }}', 'auto');
  ga('send', 'pageview');
</script>
</body>
</html>