Source code for torch.nn.modules.sparse

import torch
from torch.autograd import Variable
from torch.nn.parameter import Parameter

from .module import Module
from .. import functional as F


[docs]class Embedding(Module): r"""A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. Args: num_embeddings (int): size of the dictionary of embeddings embedding_dim (int): the size of each embedding vector padding_idx (int, optional): If given, pads the output with zeros whenever it encounters the index. max_norm (float, optional): If given, will renormalize the embeddings to always have a norm lesser than this norm_type (float, optional): The p of the p-norm to compute for the max_norm option scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the frequency of the words in the mini-batch. sparse (boolean, optional): if ``True``, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients. Attributes: weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) Shape: - Input: LongTensor `(N, W)`, N = mini-batch, W = number of indices to extract per mini-batch - Output: `(N, W, embedding_dim)` Notes: Keep in mind that only a limited number of optimizers support sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) Examples:: >>> # an Embedding module containing 10 tensors of size 3 >>> embedding = nn.Embedding(10, 3) >>> # a batch of 2 samples of 4 indices each >>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]]) >>> embedding(input) (0 ,.,.) = -1.0822 1.2522 0.2434 0.8393 -0.6062 -0.3348 0.6597 0.0350 0.0837 0.5521 0.9447 0.0498 (1 ,.,.) = 0.6597 0.0350 0.0837 -0.1527 0.0877 0.4260 0.8393 -0.6062 -0.3348 -0.8738 -0.9054 0.4281 [torch.FloatTensor of size (2,4,3)] >>> # example with padding_idx >>> embedding = nn.Embedding(10, 3, padding_idx=0) >>> input = torch.LongTensor([[0,2,0,5]]) >>> embedding(input) (0 ,.,.) = 0.0000 0.0000 0.0000 0.3452 0.4937 -0.9361 0.0000 0.0000 0.0000 0.0706 -2.1962 -0.6276 [torch.FloatTensor of size (1,4,3)] """ def __init__(self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2, scale_grad_by_freq=False, sparse=False, _weight=None): super(Embedding, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings' elif padding_idx < 0: assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings' padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq if _weight is None: self.weight = Parameter(torch.Tensor(num_embeddings, embedding_dim)) self.reset_parameters() else: assert list(_weight.shape) == [num_embeddings, embedding_dim], \ 'Shape of weight does not match num_embeddings and embedding_dim' self.weight = Parameter(_weight) self.sparse = sparse def reset_parameters(self): self.weight.data.normal_(0, 1) if self.padding_idx is not None: self.weight.data[self.padding_idx].fill_(0) def forward(self, input): return F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) def __repr__(self): s = '{name}({num_embeddings}, {embedding_dim}' if self.padding_idx is not None: s += ', padding_idx={padding_idx}' if self.max_norm is not None: s += ', max_norm={max_norm}' if self.norm_type != 2: s += ', norm_type={norm_type}' if self.scale_grad_by_freq is not False: s += ', scale_grad_by_freq={scale_grad_by_freq}' if self.sparse is not False: s += ', sparse=True' s += ')' return s.format(name=self.__class__.__name__, **self.__dict__)
[docs] @classmethod def from_pretrained(cls, embeddings, freeze=True): r"""Creates Embedding instance from given 2-dimensional FloatTensor. Args: embeddings (Tensor): FloatTensor containing weights for the Embedding. First dimension is being passed to Embedding as 'num_embeddings', second as 'embedding_dim'. freeze (boolean, optional): If ``True``, the tensor does not get updated in the learning process. Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True`` Examples:: >> # FloatTensor containing pretrained weights >> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) >> embedding = nn.Embedding.from_pretrained(weight) >> # Get embeddings for index 1 >> input = torch.LongTensor([1]) >> embedding(input) 4.0000 5.1000 6.3000 [torch.FloatTensor of size (1,3)] """ assert embeddings.dim() == 2, \ 'Embeddings parameter is expected to be 2-dimensional' rows, cols = embeddings.shape embedding = cls(num_embeddings=rows, embedding_dim=cols, _weight=embeddings) embedding.weight.requires_grad = not freeze return embedding
[docs]class EmbeddingBag(Module): r"""Computes sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings. For bags of constant length, * nn.EmbeddingBag with `mode=sum` is equivalent to nn.Embedding followed by `torch.sum(dim=1)` * with `mode=mean` is equivalent to nn.Embedding followed by `torch.mean(dim=1)` However, nn.EmbeddingBag is much more time and memory efficient than using a chain of these operations. Args: num_embeddings (int): size of the dictionary of embeddings embedding_dim (int): the size of each embedding vector max_norm (float, optional): If given, will renormalize the embeddings to always have a norm lesser than this norm_type (float, optional): The p of the p-norm to compute for the max_norm option scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the frequency of the words in the dictionary. mode (string, optional): 'sum' | 'mean'. Specifies the way to reduce the bag. Default: 'mean' sparse (boolean, optional): if ``True``, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients. Attributes: weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) Inputs: input, offsets - **input** (``N`` or ``B x N``): LongTensor containing the indices of the embeddings to extract. When `input` is 1D Tensor of shape `N`, an `offsets` Tensor is given, that contains the starting position of each new sequence in the mini-batch. - **offsets** (``B`` or ``None``): LongTensor containing the starting positions of each sample in a mini-batch of variable length sequences. If `input` is 2D (``B x N``), then offsets does not need to be given, as the `input` is treated as a mini-batch of fixed length sequences of length `N` each. Shape: - Input: LongTensor `N`, N = number of embeddings to extract (or) LongTensor ``B x N``, B = number of sequences in mini-batch, N = number of embeddings per sequence - Offsets: LongTensor `B`, B = number of bags. The values are the offsets in `input` for each bag, i.e. the cumsum of lengths. Offsets is not given if Input is 2D ``B x N`` Tensor, the input is considered to be of fixed-length sequences - Output: `(B, embedding_dim)` Examples:: >>> # an Embedding module containing 10 tensors of size 3 >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum') >>> # a batch of 2 samples of 4 indices each >>> input = torch.LongTensor([1,2,4,5,4,3,2,9]) >>> offsets = torch.LongTensor([0,4]) >>> embedding_sum(input, offsets) -0.7296 -4.6926 0.3295 -0.5186 -0.5631 -0.2792 [torch.FloatTensor of size (2,3)] """ def __init__(self, num_embeddings, embedding_dim, max_norm=None, norm_type=2, scale_grad_by_freq=False, mode='mean', sparse=False): super(EmbeddingBag, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq self.weight = Parameter(torch.Tensor(num_embeddings, embedding_dim)) self.mode = mode self.sparse = sparse self.reset_parameters() def reset_parameters(self): self.weight.data.normal_(0, 1) def forward(self, input, offsets=None): return F.embedding_bag(self.weight, input, offsets, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse) def __repr__(self): s = '{name}({num_embeddings}, {embedding_dim}' if self.max_norm is not None: s += ', max_norm={max_norm}' if self.norm_type != 2: s += ', norm_type={norm_type}' if self.scale_grad_by_freq is not False: s += ', scale_grad_by_freq={scale_grad_by_freq}' s += ', mode={mode}' s += ')' return s.format(name=self.__class__.__name__, **self.__dict__)
# TODO: SparseLinear