|
QuantLib: a free/open-source library for quantitative finance
fully annotated source code - version 1.38
|
Gauss-Gegenbauer integration. More...
#include <gaussianquadratures.hpp>
Inheritance diagram for GaussGegenbauerIntegration:
Collaboration diagram for GaussGegenbauerIntegration:Public Member Functions | |
| GaussGegenbauerIntegration (Size n, Real lambda) | |
Public Member Functions inherited from GaussianQuadrature | |
| GaussianQuadrature (Size n, const GaussianOrthogonalPolynomial &p) | |
| template<class F > | |
| Real | operator() (const F &f) const |
| Size | order () const |
| const Array & | weights () |
| const Array & | x () |
Additional Inherited Members | |
Protected Attributes inherited from GaussianQuadrature | |
| Array | x_ |
| Array | w_ |
Gauss-Gegenbauer integration.
This class performs a 1-dimensional Gauss-Gegenbauer integration.
\[ \int_{-1}^{1} f(x) \mathrm{d}x \]
The weighting function is
\[ w(x)=(1-x^2)^{\lambda-1/2} \]
Definition at line 220 of file gaussianquadratures.hpp.
| GaussGegenbauerIntegration | ( | Size | n, |
| Real | lambda | ||
| ) |
Definition at line 222 of file gaussianquadratures.hpp.