tesseract  3.05.02
conv_net_classifier.h
Go to the documentation of this file.
1 /**********************************************************************
2  * File: conv_net_classifier.h
3  * Description: Declaration of Convolutional-NeuralNet Character Classifier
4  * Author: Ahmad Abdulkader
5  * Created: 2007
6  *
7  * (C) Copyright 2008, Google Inc.
8  ** Licensed under the Apache License, Version 2.0 (the "License");
9  ** you may not use this file except in compliance with the License.
10  ** You may obtain a copy of the License at
11  ** http://www.apache.org/licenses/LICENSE-2.0
12  ** Unless required by applicable law or agreed to in writing, software
13  ** distributed under the License is distributed on an "AS IS" BASIS,
14  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  ** See the License for the specific language governing permissions and
16  ** limitations under the License.
17  *
18  **********************************************************************/
19 
20 // The ConvNetCharClassifier inherits from the base classifier class:
21 // "CharClassifierBase". It implements a Convolutional Neural Net classifier
22 // instance of the base classifier. It uses the Tesseract Neural Net library
23 // The Neural Net takes a scaled version of a bitmap and feeds it to a
24 // Convolutional Neural Net as input and performs a FeedForward. Each output
25 // of the net corresponds to class_id in the CharSet passed at construction
26 // time.
27 // Afterwards, the outputs of the Net are "folded" using the folding set
28 // (if any)
29 #ifndef CONV_NET_CLASSIFIER_H
30 #define CONV_NET_CLASSIFIER_H
31 
32 #include <string>
33 #include "char_samp.h"
34 #include "char_altlist.h"
35 #include "char_set.h"
36 #include "feature_base.h"
37 #include "classifier_base.h"
38 #include "neural_net.h"
39 #include "lang_model.h"
40 #include "tuning_params.h"
41 
42 namespace tesseract {
43 
44 // Folding Ratio is the ratio of the max-activation of members of a folding
45 // set that is used to compute the min-activation of the rest of the set
46 static const float kFoldingRatio = 0.75;
47 
49  public:
50  ConvNetCharClassifier(CharSet *char_set, TuningParams *params,
51  FeatureBase *feat_extract);
52  virtual ~ConvNetCharClassifier();
53  // The main training function. Given a sample and a class ID the classifier
54  // updates its parameters according to its learning algorithm. This function
55  // is currently not implemented. TODO(ahmadab): implement end-2-end training
56  virtual bool Train(CharSamp *char_samp, int ClassID);
57  // A secondary function needed for training. Allows the trainer to set the
58  // value of any train-time parameter. This function is currently not
59  // implemented. TODO(ahmadab): implement end-2-end training
60  virtual bool SetLearnParam(char *var_name, float val);
61  // Externally sets the Neural Net used by the classifier. Used for training
62  void SetNet(tesseract::NeuralNet *net);
63 
64  // Classifies an input charsamp and return a CharAltList object containing
65  // the possible candidates and corresponding scores
66  virtual CharAltList * Classify(CharSamp *char_samp);
67  // Computes the cost of a specific charsamp being a character (versus a
68  // non-character: part-of-a-character OR more-than-one-character)
69  virtual int CharCost(CharSamp *char_samp);
70 
71 
72  private:
73  // Neural Net object used for classification
74  tesseract::NeuralNet *char_net_;
75  // data buffers used to hold Neural Net inputs and outputs
76  float *net_input_;
77  float *net_output_;
78 
79  // Init the classifier provided a data-path and a language string
80  virtual bool Init(const string &data_file_path, const string &lang,
81  LangModel *lang_mod);
82  // Loads the NeuralNets needed for the classifier
83  bool LoadNets(const string &data_file_path, const string &lang);
84  // Loads the folding sets provided a data-path and a language string
85  virtual bool LoadFoldingSets(const string &data_file_path,
86  const string &lang,
87  LangModel *lang_mod);
88  // Folds the output of the NeuralNet using the loaded folding sets
89  virtual void Fold();
90  // Scales the input char_samp and feeds it to the NeuralNet as input
91  bool RunNets(CharSamp *char_samp);
92 };
93 }
94 #endif // CONV_NET_CLASSIFIER_H
virtual bool SetLearnParam(char *var_name, float val)
virtual CharAltList * Classify(CharSamp *char_samp)
ConvNetCharClassifier(CharSet *char_set, TuningParams *params, FeatureBase *feat_extract)
virtual int CharCost(CharSamp *char_samp)
virtual bool Train(CharSamp *char_samp, int ClassID)
void SetNet(tesseract::NeuralNet *net)