tesseract  3.05.02
language_model.cpp
Go to the documentation of this file.
1 // File: language_model.cpp
3 // Description: Functions that utilize the knowledge about the properties,
4 // structure and statistics of the language to help recognition.
5 // Author: Daria Antonova
6 // Created: Mon Nov 11 11:26:43 PST 2009
7 //
8 // (C) Copyright 2009, Google Inc.
9 // Licensed under the Apache License, Version 2.0 (the "License");
10 // you may not use this file except in compliance with the License.
11 // You may obtain a copy of the License at
12 // http://www.apache.org/licenses/LICENSE-2.0
13 // Unless required by applicable law or agreed to in writing, software
14 // distributed under the License is distributed on an "AS IS" BASIS,
15 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 // See the License for the specific language governing permissions and
17 // limitations under the License.
18 //
20 
21 #include <math.h>
22 
23 #include "language_model.h"
24 
25 #include "dawg.h"
26 #include "intproto.h"
27 #include "helpers.h"
28 #include "lm_state.h"
29 #include "lm_pain_points.h"
30 #include "matrix.h"
31 #include "params.h"
33 
34 #if (defined(_MSC_VER) && _MSC_VER < 1900) || defined(ANDROID)
35 double log2(double n) {
36  return log(n) / log(2.0);
37 }
38 #endif // _MSC_VER
39 
40 namespace tesseract {
41 
42 const float LanguageModel::kMaxAvgNgramCost = 25.0f;
43 
45  Dict *dict)
46  : INT_MEMBER(language_model_debug_level, 0, "Language model debug level",
47  dict->getCCUtil()->params()),
48  BOOL_INIT_MEMBER(language_model_ngram_on, false,
49  "Turn on/off the use of character ngram model",
50  dict->getCCUtil()->params()),
51  INT_MEMBER(language_model_ngram_order, 8,
52  "Maximum order of the character ngram model",
53  dict->getCCUtil()->params()),
54  INT_MEMBER(language_model_viterbi_list_max_num_prunable, 10,
55  "Maximum number of prunable (those for which"
56  " PrunablePath() is true) entries in each viterbi list"
57  " recorded in BLOB_CHOICEs",
58  dict->getCCUtil()->params()),
59  INT_MEMBER(language_model_viterbi_list_max_size, 500,
60  "Maximum size of viterbi lists recorded in BLOB_CHOICEs",
61  dict->getCCUtil()->params()),
62  double_MEMBER(language_model_ngram_small_prob, 0.000001,
63  "To avoid overly small denominators use this as the "
64  "floor of the probability returned by the ngram model.",
65  dict->getCCUtil()->params()),
66  double_MEMBER(language_model_ngram_nonmatch_score, -40.0,
67  "Average classifier score of a non-matching unichar.",
68  dict->getCCUtil()->params()),
69  BOOL_MEMBER(language_model_ngram_use_only_first_uft8_step, false,
70  "Use only the first UTF8 step of the given string"
71  " when computing log probabilities.",
72  dict->getCCUtil()->params()),
73  double_MEMBER(language_model_ngram_scale_factor, 0.03,
74  "Strength of the character ngram model relative to the"
75  " character classifier ",
76  dict->getCCUtil()->params()),
77  double_MEMBER(language_model_ngram_rating_factor, 16.0,
78  "Factor to bring log-probs into the same range as ratings"
79  " when multiplied by outline length ",
80  dict->getCCUtil()->params()),
81  BOOL_MEMBER(language_model_ngram_space_delimited_language, true,
82  "Words are delimited by space",
83  dict->getCCUtil()->params()),
84  INT_MEMBER(language_model_min_compound_length, 3,
85  "Minimum length of compound words",
86  dict->getCCUtil()->params()),
87  double_MEMBER(language_model_penalty_non_freq_dict_word, 0.1,
88  "Penalty for words not in the frequent word dictionary",
89  dict->getCCUtil()->params()),
90  double_MEMBER(language_model_penalty_non_dict_word, 0.15,
91  "Penalty for non-dictionary words",
92  dict->getCCUtil()->params()),
93  double_MEMBER(language_model_penalty_punc, 0.2,
94  "Penalty for inconsistent punctuation",
95  dict->getCCUtil()->params()),
96  double_MEMBER(language_model_penalty_case, 0.1,
97  "Penalty for inconsistent case",
98  dict->getCCUtil()->params()),
99  double_MEMBER(language_model_penalty_script, 0.5,
100  "Penalty for inconsistent script",
101  dict->getCCUtil()->params()),
102  double_MEMBER(language_model_penalty_chartype, 0.3,
103  "Penalty for inconsistent character type",
104  dict->getCCUtil()->params()),
105  // TODO(daria, rays): enable font consistency checking
106  // after improving font analysis.
107  double_MEMBER(language_model_penalty_font, 0.00,
108  "Penalty for inconsistent font",
109  dict->getCCUtil()->params()),
110  double_MEMBER(language_model_penalty_spacing, 0.05,
111  "Penalty for inconsistent spacing",
112  dict->getCCUtil()->params()),
113  double_MEMBER(language_model_penalty_increment, 0.01,
114  "Penalty increment",
115  dict->getCCUtil()->params()),
116  INT_MEMBER(wordrec_display_segmentations, 0, "Display Segmentations",
117  dict->getCCUtil()->params()),
118  BOOL_INIT_MEMBER(language_model_use_sigmoidal_certainty, false,
119  "Use sigmoidal score for certainty",
120  dict->getCCUtil()->params()),
121  dawg_args_(NULL, new DawgPositionVector(), NO_PERM),
122  fontinfo_table_(fontinfo_table), dict_(dict),
123  fixed_pitch_(false), max_char_wh_ratio_(0.0),
124  acceptable_choice_found_(false) {
125  ASSERT_HOST(dict_ != NULL);
126 }
127 
129  delete dawg_args_.updated_dawgs;
130 }
131 
133  bool fixed_pitch, float max_char_wh_ratio,
134  float rating_cert_scale) {
135  fixed_pitch_ = fixed_pitch;
136  max_char_wh_ratio_ = max_char_wh_ratio;
137  rating_cert_scale_ = rating_cert_scale;
138  acceptable_choice_found_ = false;
140 
141  // Initialize vectors with beginning DawgInfos.
146 
147  // Fill prev_word_str_ with the last language_model_ngram_order
148  // unichars from prev_word.
150  if (prev_word != NULL && prev_word->unichar_string() != NULL) {
151  prev_word_str_ = prev_word->unichar_string();
153  } else {
154  prev_word_str_ = " ";
155  }
156  const char *str_ptr = prev_word_str_.string();
157  const char *str_end = str_ptr + prev_word_str_.length();
158  int step;
160  while (str_ptr != str_end && (step = UNICHAR::utf8_step(str_ptr))) {
161  str_ptr += step;
163  }
164  ASSERT_HOST(str_ptr == str_end);
165  }
166 }
167 
172 static void ScanParentsForCaseMix(const UNICHARSET& unicharset,
173  LanguageModelState* parent_node) {
174  if (parent_node == NULL) return;
175  ViterbiStateEntry_IT vit(&parent_node->viterbi_state_entries);
176  for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) {
177  ViterbiStateEntry* vse = vit.data();
178  vse->competing_vse = NULL;
179  UNICHAR_ID unichar_id = vse->curr_b->unichar_id();
180  if (unicharset.get_isupper(unichar_id) ||
181  unicharset.get_islower(unichar_id)) {
182  UNICHAR_ID other_case = unicharset.get_other_case(unichar_id);
183  if (other_case == unichar_id) continue; // Not in unicharset.
184  // Find other case in same list. There could be multiple entries with
185  // the same unichar_id, but in theory, they should all point to the
186  // same BLOB_CHOICE, and that is what we will be using to decide
187  // which to keep.
188  ViterbiStateEntry_IT vit2(&parent_node->viterbi_state_entries);
189  for (vit2.mark_cycle_pt(); !vit2.cycled_list() &&
190  vit2.data()->curr_b->unichar_id() != other_case;
191  vit2.forward()) {}
192  if (!vit2.cycled_list()) {
193  vse->competing_vse = vit2.data();
194  }
195  }
196  }
197 }
198 
203 static bool HasBetterCaseVariant(const UNICHARSET& unicharset,
204  const BLOB_CHOICE* choice,
205  BLOB_CHOICE_LIST* choices) {
206  UNICHAR_ID choice_id = choice->unichar_id();
207  UNICHAR_ID other_case = unicharset.get_other_case(choice_id);
208  if (other_case == choice_id || other_case == INVALID_UNICHAR_ID)
209  return false; // Not upper or lower or not in unicharset.
210  if (unicharset.SizesDistinct(choice_id, other_case))
211  return false; // Can be separated by size.
212  BLOB_CHOICE_IT bc_it(choices);
213  for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) {
214  BLOB_CHOICE* better_choice = bc_it.data();
215  if (better_choice->unichar_id() == other_case)
216  return true; // Found an earlier instance of other_case.
217  else if (better_choice == choice)
218  return false; // Reached the original choice.
219  }
220  return false; // Should never happen, but just in case.
221 }
222 
250  bool just_classified,
251  int curr_col, int curr_row,
252  BLOB_CHOICE_LIST *curr_list,
253  LanguageModelState *parent_node,
254  LMPainPoints *pain_points,
255  WERD_RES *word_res,
256  BestChoiceBundle *best_choice_bundle,
257  BlamerBundle *blamer_bundle) {
258  if (language_model_debug_level > 0) {
259  tprintf("\nUpdateState: col=%d row=%d %s",
260  curr_col, curr_row, just_classified ? "just_classified" : "");
262  tprintf("(parent=%p)\n", parent_node);
263  else
264  tprintf("\n");
265  }
266  // Initialize helper variables.
267  bool word_end = (curr_row+1 >= word_res->ratings->dimension());
268  bool new_changed = false;
269  float denom = (language_model_ngram_on) ? ComputeDenom(curr_list) : 1.0f;
270  const UNICHARSET& unicharset = dict_->getUnicharset();
271  BLOB_CHOICE *first_lower = NULL;
272  BLOB_CHOICE *first_upper = NULL;
273  BLOB_CHOICE *first_digit = NULL;
274  bool has_alnum_mix = false;
275  if (parent_node != NULL) {
276  int result = SetTopParentLowerUpperDigit(parent_node);
277  if (result < 0) {
279  tprintf("No parents found to process\n");
280  return false;
281  }
282  if (result > 0)
283  has_alnum_mix = true;
284  }
285  if (!GetTopLowerUpperDigit(curr_list, &first_lower, &first_upper,
286  &first_digit))
287  has_alnum_mix = false;;
288  ScanParentsForCaseMix(unicharset, parent_node);
289  if (language_model_debug_level > 3 && parent_node != NULL) {
290  parent_node->Print("Parent viterbi list");
291  }
292  LanguageModelState *curr_state = best_choice_bundle->beam[curr_row];
293 
294  // Call AddViterbiStateEntry() for each parent+child ViterbiStateEntry.
295  ViterbiStateEntry_IT vit;
296  BLOB_CHOICE_IT c_it(curr_list);
297  for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
298  BLOB_CHOICE* choice = c_it.data();
299  // TODO(antonova): make sure commenting this out if ok for ngram
300  // model scoring (I think this was introduced to fix ngram model quirks).
301  // Skip NULL unichars unless it is the only choice.
302  //if (!curr_list->singleton() && c_it.data()->unichar_id() == 0) continue;
303  UNICHAR_ID unichar_id = choice->unichar_id();
304  if (unicharset.get_fragment(unichar_id)) {
305  continue; // Skip fragments.
306  }
307  // Set top choice flags.
308  LanguageModelFlagsType blob_choice_flags = kXhtConsistentFlag;
309  if (c_it.at_first() || !new_changed)
310  blob_choice_flags |= kSmallestRatingFlag;
311  if (first_lower == choice) blob_choice_flags |= kLowerCaseFlag;
312  if (first_upper == choice) blob_choice_flags |= kUpperCaseFlag;
313  if (first_digit == choice) blob_choice_flags |= kDigitFlag;
314 
315  if (parent_node == NULL) {
316  // Process the beginning of a word.
317  // If there is a better case variant that is not distinguished by size,
318  // skip this blob choice, as we have no choice but to accept the result
319  // of the character classifier to distinguish between them, even if
320  // followed by an upper case.
321  // With words like iPoc, and other CamelBackWords, the lower-upper
322  // transition can only be achieved if the classifier has the correct case
323  // as the top choice, and leaving an initial I lower down the list
324  // increases the chances of choosing IPoc simply because it doesn't
325  // include such a transition. iPoc will beat iPOC and ipoc because
326  // the other words are baseline/x-height inconsistent.
327  if (HasBetterCaseVariant(unicharset, choice, curr_list))
328  continue;
329  // Upper counts as lower at the beginning of a word.
330  if (blob_choice_flags & kUpperCaseFlag)
331  blob_choice_flags |= kLowerCaseFlag;
332  new_changed |= AddViterbiStateEntry(
333  blob_choice_flags, denom, word_end, curr_col, curr_row,
334  choice, curr_state, NULL, pain_points,
335  word_res, best_choice_bundle, blamer_bundle);
336  } else {
337  // Get viterbi entries from each parent ViterbiStateEntry.
338  vit.set_to_list(&parent_node->viterbi_state_entries);
339  int vit_counter = 0;
340  vit.mark_cycle_pt();
341  ViterbiStateEntry* parent_vse = NULL;
342  LanguageModelFlagsType top_choice_flags;
343  while ((parent_vse = GetNextParentVSE(just_classified, has_alnum_mix,
344  c_it.data(), blob_choice_flags,
345  unicharset, word_res, &vit,
346  &top_choice_flags)) != NULL) {
347  // Skip pruned entries and do not look at prunable entries if already
348  // examined language_model_viterbi_list_max_num_prunable of those.
349  if (PrunablePath(*parent_vse) &&
351  (language_model_ngram_on && parent_vse->ngram_info->pruned))) {
352  continue;
353  }
354  // If the parent has no alnum choice, (ie choice is the first in a
355  // string of alnum), and there is a better case variant that is not
356  // distinguished by size, skip this blob choice/parent, as with the
357  // initial blob treatment above.
358  if (!parent_vse->HasAlnumChoice(unicharset) &&
359  HasBetterCaseVariant(unicharset, choice, curr_list))
360  continue;
361  // Create a new ViterbiStateEntry if BLOB_CHOICE in c_it.data()
362  // looks good according to the Dawgs or character ngram model.
363  new_changed |= AddViterbiStateEntry(
364  top_choice_flags, denom, word_end, curr_col, curr_row,
365  c_it.data(), curr_state, parent_vse, pain_points,
366  word_res, best_choice_bundle, blamer_bundle);
367  }
368  }
369  }
370  return new_changed;
371 }
372 
379 bool LanguageModel::GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list,
380  BLOB_CHOICE **first_lower,
381  BLOB_CHOICE **first_upper,
382  BLOB_CHOICE **first_digit) const {
383  BLOB_CHOICE_IT c_it(curr_list);
384  const UNICHARSET &unicharset = dict_->getUnicharset();
385  BLOB_CHOICE *first_unichar = NULL;
386  for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
387  UNICHAR_ID unichar_id = c_it.data()->unichar_id();
388  if (unicharset.get_fragment(unichar_id)) continue; // skip fragments
389  if (first_unichar == NULL) first_unichar = c_it.data();
390  if (*first_lower == NULL && unicharset.get_islower(unichar_id)) {
391  *first_lower = c_it.data();
392  }
393  if (*first_upper == NULL && unicharset.get_isalpha(unichar_id) &&
394  !unicharset.get_islower(unichar_id)) {
395  *first_upper = c_it.data();
396  }
397  if (*first_digit == NULL && unicharset.get_isdigit(unichar_id)) {
398  *first_digit = c_it.data();
399  }
400  }
401  ASSERT_HOST(first_unichar != NULL);
402  bool mixed = (*first_lower != NULL || *first_upper != NULL) &&
403  *first_digit != NULL;
404  if (*first_lower == NULL) *first_lower = first_unichar;
405  if (*first_upper == NULL) *first_upper = first_unichar;
406  if (*first_digit == NULL) *first_digit = first_unichar;
407  return mixed;
408 }
409 
420  LanguageModelState *parent_node) const {
421  if (parent_node == NULL) return -1;
422  UNICHAR_ID top_id = INVALID_UNICHAR_ID;
423  ViterbiStateEntry* top_lower = NULL;
424  ViterbiStateEntry* top_upper = NULL;
425  ViterbiStateEntry* top_digit = NULL;
426  ViterbiStateEntry* top_choice = NULL;
427  float lower_rating = 0.0f;
428  float upper_rating = 0.0f;
429  float digit_rating = 0.0f;
430  float top_rating = 0.0f;
431  const UNICHARSET &unicharset = dict_->getUnicharset();
432  ViterbiStateEntry_IT vit(&parent_node->viterbi_state_entries);
433  for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) {
434  ViterbiStateEntry* vse = vit.data();
435  // INVALID_UNICHAR_ID should be treated like a zero-width joiner, so scan
436  // back to the real character if needed.
437  ViterbiStateEntry* unichar_vse = vse;
438  UNICHAR_ID unichar_id = unichar_vse->curr_b->unichar_id();
439  float rating = unichar_vse->curr_b->rating();
440  while (unichar_id == INVALID_UNICHAR_ID &&
441  unichar_vse->parent_vse != NULL) {
442  unichar_vse = unichar_vse->parent_vse;
443  unichar_id = unichar_vse->curr_b->unichar_id();
444  rating = unichar_vse->curr_b->rating();
445  }
446  if (unichar_id != INVALID_UNICHAR_ID) {
447  if (unicharset.get_islower(unichar_id)) {
448  if (top_lower == NULL || lower_rating > rating) {
449  top_lower = vse;
450  lower_rating = rating;
451  }
452  } else if (unicharset.get_isalpha(unichar_id)) {
453  if (top_upper == NULL || upper_rating > rating) {
454  top_upper = vse;
455  upper_rating = rating;
456  }
457  } else if (unicharset.get_isdigit(unichar_id)) {
458  if (top_digit == NULL || digit_rating > rating) {
459  top_digit = vse;
460  digit_rating = rating;
461  }
462  }
463  }
464  if (top_choice == NULL || top_rating > rating) {
465  top_choice = vse;
466  top_rating = rating;
467  top_id = unichar_id;
468  }
469  }
470  if (top_choice == NULL) return -1;
471  bool mixed = (top_lower != NULL || top_upper != NULL) &&
472  top_digit != NULL;
473  if (top_lower == NULL) top_lower = top_choice;
474  top_lower->top_choice_flags |= kLowerCaseFlag;
475  if (top_upper == NULL) top_upper = top_choice;
476  top_upper->top_choice_flags |= kUpperCaseFlag;
477  if (top_digit == NULL) top_digit = top_choice;
478  top_digit->top_choice_flags |= kDigitFlag;
479  top_choice->top_choice_flags |= kSmallestRatingFlag;
480  if (top_id != INVALID_UNICHAR_ID && dict_->compound_marker(top_id) &&
481  (top_choice->top_choice_flags &
483  // If the compound marker top choice carries any of the top alnum flags,
484  // then give it all of them, allowing words like I-295 to be chosen.
485  top_choice->top_choice_flags |=
487  }
488  return mixed ? 1 : 0;
489 }
490 
497  bool just_classified, bool mixed_alnum, const BLOB_CHOICE* bc,
498  LanguageModelFlagsType blob_choice_flags, const UNICHARSET& unicharset,
499  WERD_RES* word_res, ViterbiStateEntry_IT* vse_it,
500  LanguageModelFlagsType* top_choice_flags) const {
501  for (; !vse_it->cycled_list(); vse_it->forward()) {
502  ViterbiStateEntry* parent_vse = vse_it->data();
503  // Only consider the parent if it has been updated or
504  // if the current ratings cell has just been classified.
505  if (!just_classified && !parent_vse->updated) continue;
507  parent_vse->Print("Considering");
508  // If the parent is non-alnum, then upper counts as lower.
509  *top_choice_flags = blob_choice_flags;
510  if ((blob_choice_flags & kUpperCaseFlag) &&
511  !parent_vse->HasAlnumChoice(unicharset)) {
512  *top_choice_flags |= kLowerCaseFlag;
513  }
514  *top_choice_flags &= parent_vse->top_choice_flags;
515  UNICHAR_ID unichar_id = bc->unichar_id();
516  const BLOB_CHOICE* parent_b = parent_vse->curr_b;
517  UNICHAR_ID parent_id = parent_b->unichar_id();
518  // Digits do not bind to alphas if there is a mix in both parent and current
519  // or if the alpha is not the top choice.
520  if (unicharset.get_isdigit(unichar_id) &&
521  unicharset.get_isalpha(parent_id) &&
522  (mixed_alnum || *top_choice_flags == 0))
523  continue; // Digits don't bind to alphas.
524  // Likewise alphas do not bind to digits if there is a mix in both or if
525  // the digit is not the top choice.
526  if (unicharset.get_isalpha(unichar_id) &&
527  unicharset.get_isdigit(parent_id) &&
528  (mixed_alnum || *top_choice_flags == 0))
529  continue; // Alphas don't bind to digits.
530  // If there is a case mix of the same alpha in the parent list, then
531  // competing_vse is non-null and will be used to determine whether
532  // or not to bind the current blob choice.
533  if (parent_vse->competing_vse != NULL) {
534  const BLOB_CHOICE* competing_b = parent_vse->competing_vse->curr_b;
535  UNICHAR_ID other_id = competing_b->unichar_id();
536  if (language_model_debug_level >= 5) {
537  tprintf("Parent %s has competition %s\n",
538  unicharset.id_to_unichar(parent_id),
539  unicharset.id_to_unichar(other_id));
540  }
541  if (unicharset.SizesDistinct(parent_id, other_id)) {
542  // If other_id matches bc wrt position and size, and parent_id, doesn't,
543  // don't bind to the current parent.
544  if (bc->PosAndSizeAgree(*competing_b, word_res->x_height,
546  !bc->PosAndSizeAgree(*parent_b, word_res->x_height,
548  continue; // Competing blobchoice has a better vertical match.
549  }
550  }
551  vse_it->forward();
552  return parent_vse; // This one is good!
553  }
554  return NULL; // Ran out of possibilities.
555 }
556 
558  LanguageModelFlagsType top_choice_flags,
559  float denom,
560  bool word_end,
561  int curr_col, int curr_row,
562  BLOB_CHOICE *b,
563  LanguageModelState *curr_state,
564  ViterbiStateEntry *parent_vse,
565  LMPainPoints *pain_points,
566  WERD_RES *word_res,
567  BestChoiceBundle *best_choice_bundle,
568  BlamerBundle *blamer_bundle) {
569  ViterbiStateEntry_IT vit;
570  if (language_model_debug_level > 1) {
571  tprintf("AddViterbiStateEntry for unichar %s rating=%.4f"
572  " certainty=%.4f top_choice_flags=0x%x",
574  b->rating(), b->certainty(), top_choice_flags);
576  tprintf(" parent_vse=%p\n", parent_vse);
577  else
578  tprintf("\n");
579  }
580  // Check whether the list is full.
581  if (curr_state != NULL &&
582  curr_state->viterbi_state_entries_length >=
584  if (language_model_debug_level > 1) {
585  tprintf("AddViterbiStateEntry: viterbi list is full!\n");
586  }
587  return false;
588  }
589 
590  // Invoke Dawg language model component.
591  LanguageModelDawgInfo *dawg_info =
592  GenerateDawgInfo(word_end, curr_col, curr_row, *b, parent_vse);
593 
594  float outline_length =
596  // Invoke Ngram language model component.
597  LanguageModelNgramInfo *ngram_info = NULL;
599  ngram_info = GenerateNgramInfo(
601  denom, curr_col, curr_row, outline_length, parent_vse);
602  ASSERT_HOST(ngram_info != NULL);
603  }
604  bool liked_by_language_model = dawg_info != NULL ||
605  (ngram_info != NULL && !ngram_info->pruned);
606  // Quick escape if not liked by the language model, can't be consistent
607  // xheight, and not top choice.
608  if (!liked_by_language_model && top_choice_flags == 0) {
609  if (language_model_debug_level > 1) {
610  tprintf("Language model components very early pruned this entry\n");
611  }
612  delete ngram_info;
613  delete dawg_info;
614  return false;
615  }
616 
617  // Check consistency of the path and set the relevant consistency_info.
618  LMConsistencyInfo consistency_info(
619  parent_vse != NULL ? &parent_vse->consistency_info : NULL);
620  // Start with just the x-height consistency, as it provides significant
621  // pruning opportunity.
622  consistency_info.ComputeXheightConsistency(
624  // Turn off xheight consistent flag if not consistent.
625  if (consistency_info.InconsistentXHeight()) {
626  top_choice_flags &= ~kXhtConsistentFlag;
627  }
628 
629  // Quick escape if not liked by the language model, not consistent xheight,
630  // and not top choice.
631  if (!liked_by_language_model && top_choice_flags == 0) {
632  if (language_model_debug_level > 1) {
633  tprintf("Language model components early pruned this entry\n");
634  }
635  delete ngram_info;
636  delete dawg_info;
637  return false;
638  }
639 
640  // Compute the rest of the consistency info.
641  FillConsistencyInfo(curr_col, word_end, b, parent_vse,
642  word_res, &consistency_info);
643  if (dawg_info != NULL && consistency_info.invalid_punc) {
644  consistency_info.invalid_punc = false; // do not penalize dict words
645  }
646 
647  // Compute cost of associating the blobs that represent the current unichar.
648  AssociateStats associate_stats;
649  ComputeAssociateStats(curr_col, curr_row, max_char_wh_ratio_,
650  parent_vse, word_res, &associate_stats);
651  if (parent_vse != NULL) {
652  associate_stats.shape_cost += parent_vse->associate_stats.shape_cost;
653  associate_stats.bad_shape |= parent_vse->associate_stats.bad_shape;
654  }
655 
656  // Create the new ViterbiStateEntry compute the adjusted cost of the path.
657  ViterbiStateEntry *new_vse = new ViterbiStateEntry(
658  parent_vse, b, 0.0, outline_length,
659  consistency_info, associate_stats, top_choice_flags, dawg_info,
660  ngram_info, (language_model_debug_level > 0) ?
661  dict_->getUnicharset().id_to_unichar(b->unichar_id()) : NULL);
662  new_vse->cost = ComputeAdjustedPathCost(new_vse);
664  tprintf("Adjusted cost = %g\n", new_vse->cost);
665 
666  // Invoke Top Choice language model component to make the final adjustments
667  // to new_vse->top_choice_flags.
668  if (!curr_state->viterbi_state_entries.empty() && new_vse->top_choice_flags) {
669  GenerateTopChoiceInfo(new_vse, parent_vse, curr_state);
670  }
671 
672  // If language model components did not like this unichar - return.
673  bool keep = new_vse->top_choice_flags || liked_by_language_model;
674  if (!(top_choice_flags & kSmallestRatingFlag) && // no non-top choice paths
675  consistency_info.inconsistent_script) { // with inconsistent script
676  keep = false;
677  }
678  if (!keep) {
679  if (language_model_debug_level > 1) {
680  tprintf("Language model components did not like this entry\n");
681  }
682  delete new_vse;
683  return false;
684  }
685 
686  // Discard this entry if it represents a prunable path and
687  // language_model_viterbi_list_max_num_prunable such entries with a lower
688  // cost have already been recorded.
689  if (PrunablePath(*new_vse) &&
692  new_vse->cost >= curr_state->viterbi_state_entries_prunable_max_cost) {
693  if (language_model_debug_level > 1) {
694  tprintf("Discarded ViterbiEntry with high cost %g max cost %g\n",
695  new_vse->cost,
697  }
698  delete new_vse;
699  return false;
700  }
701 
702  // Update best choice if needed.
703  if (word_end) {
704  UpdateBestChoice(new_vse, pain_points, word_res,
705  best_choice_bundle, blamer_bundle);
706  // Discard the entry if UpdateBestChoice() found flaws in it.
707  if (new_vse->cost >= WERD_CHOICE::kBadRating &&
708  new_vse != best_choice_bundle->best_vse) {
709  if (language_model_debug_level > 1) {
710  tprintf("Discarded ViterbiEntry with high cost %g\n", new_vse->cost);
711  }
712  delete new_vse;
713  return false;
714  }
715  }
716 
717  // Add the new ViterbiStateEntry and to curr_state->viterbi_state_entries.
718  curr_state->viterbi_state_entries.add_sorted(ViterbiStateEntry::Compare,
719  false, new_vse);
720  curr_state->viterbi_state_entries_length++;
721  if (PrunablePath(*new_vse)) {
723  }
724 
725  // Update lms->viterbi_state_entries_prunable_max_cost and clear
726  // top_choice_flags of entries with ratings_sum than new_vse->ratings_sum.
727  if ((curr_state->viterbi_state_entries_prunable_length >=
729  new_vse->top_choice_flags) {
730  ASSERT_HOST(!curr_state->viterbi_state_entries.empty());
731  int prunable_counter = language_model_viterbi_list_max_num_prunable;
732  vit.set_to_list(&(curr_state->viterbi_state_entries));
733  for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) {
734  ViterbiStateEntry *curr_vse = vit.data();
735  // Clear the appropriate top choice flags of the entries in the
736  // list that have cost higher thank new_entry->cost
737  // (since they will not be top choices any more).
738  if (curr_vse->top_choice_flags && curr_vse != new_vse &&
739  curr_vse->cost > new_vse->cost) {
740  curr_vse->top_choice_flags &= ~(new_vse->top_choice_flags);
741  }
742  if (prunable_counter > 0 && PrunablePath(*curr_vse)) --prunable_counter;
743  // Update curr_state->viterbi_state_entries_prunable_max_cost.
744  if (prunable_counter == 0) {
745  curr_state->viterbi_state_entries_prunable_max_cost = vit.data()->cost;
746  if (language_model_debug_level > 1) {
747  tprintf("Set viterbi_state_entries_prunable_max_cost to %g\n",
749  }
750  prunable_counter = -1; // stop counting
751  }
752  }
753  }
754 
755  // Print the newly created ViterbiStateEntry.
756  if (language_model_debug_level > 2) {
757  new_vse->Print("New");
759  curr_state->Print("Updated viterbi list");
760  }
761 
762  return true;
763 }
764 
766  const ViterbiStateEntry *parent_vse,
767  LanguageModelState *lms) {
768  ViterbiStateEntry_IT vit(&(lms->viterbi_state_entries));
769  for (vit.mark_cycle_pt(); !vit.cycled_list() && new_vse->top_choice_flags &&
770  new_vse->cost >= vit.data()->cost; vit.forward()) {
771  // Clear the appropriate flags if the list already contains
772  // a top choice entry with a lower cost.
773  new_vse->top_choice_flags &= ~(vit.data()->top_choice_flags);
774  }
775  if (language_model_debug_level > 2) {
776  tprintf("GenerateTopChoiceInfo: top_choice_flags=0x%x\n",
777  new_vse->top_choice_flags);
778  }
779 }
780 
782  bool word_end,
783  int curr_col, int curr_row,
784  const BLOB_CHOICE &b,
785  const ViterbiStateEntry *parent_vse) {
786  // Initialize active_dawgs from parent_vse if it is not NULL.
787  // Otherwise use very_beginning_active_dawgs_.
788  if (parent_vse == NULL) {
791  } else {
792  if (parent_vse->dawg_info == NULL) return NULL; // not a dict word path
794  dawg_args_.permuter = parent_vse->dawg_info->permuter;
795  }
796 
797  // Deal with hyphenated words.
798  if (word_end && dict_->has_hyphen_end(b.unichar_id(), curr_col == 0)) {
799  if (language_model_debug_level > 0) tprintf("Hyphenated word found\n");
801  COMPOUND_PERM);
802  }
803 
804  // Deal with compound words.
805  if (dict_->compound_marker(b.unichar_id()) &&
806  (parent_vse == NULL || parent_vse->dawg_info->permuter != NUMBER_PERM)) {
807  if (language_model_debug_level > 0) tprintf("Found compound marker\n");
808  // Do not allow compound operators at the beginning and end of the word.
809  // Do not allow more than one compound operator per word.
810  // Do not allow compounding of words with lengths shorter than
811  // language_model_min_compound_length
812  if (parent_vse == NULL || word_end ||
814  parent_vse->length < language_model_min_compound_length) return NULL;
815 
816  int i;
817  // Check a that the path terminated before the current character is a word.
818  bool has_word_ending = false;
819  for (i = 0; i < parent_vse->dawg_info->active_dawgs.size(); ++i) {
820  const DawgPosition &pos = parent_vse->dawg_info->active_dawgs[i];
821  const Dawg *pdawg = pos.dawg_index < 0
822  ? NULL : dict_->GetDawg(pos.dawg_index);
823  if (pdawg == NULL || pos.back_to_punc) continue;;
824  if (pdawg->type() == DAWG_TYPE_WORD && pos.dawg_ref != NO_EDGE &&
825  pdawg->end_of_word(pos.dawg_ref)) {
826  has_word_ending = true;
827  break;
828  }
829  }
830  if (!has_word_ending) return NULL;
831 
832  if (language_model_debug_level > 0) tprintf("Compound word found\n");
834  } // done dealing with compound words
835 
836  LanguageModelDawgInfo *dawg_info = NULL;
837 
838  // Call LetterIsOkay().
839  // Use the normalized IDs so that all shapes of ' can be allowed in words
840  // like don't.
841  const GenericVector<UNICHAR_ID>& normed_ids =
843  DawgPositionVector tmp_active_dawgs;
844  for (int i = 0; i < normed_ids.size(); ++i) {
846  tprintf("Test Letter OK for unichar %d, normed %d\n",
847  b.unichar_id(), normed_ids[i]);
848  dict_->LetterIsOkay(&dawg_args_, normed_ids[i],
849  word_end && i == normed_ids.size() - 1);
850  if (dawg_args_.permuter == NO_PERM) {
851  break;
852  } else if (i < normed_ids.size() - 1) {
853  tmp_active_dawgs = *dawg_args_.updated_dawgs;
854  dawg_args_.active_dawgs = &tmp_active_dawgs;
855  }
857  tprintf("Letter was OK for unichar %d, normed %d\n",
858  b.unichar_id(), normed_ids[i]);
859  }
860  dawg_args_.active_dawgs = NULL;
861  if (dawg_args_.permuter != NO_PERM) {
864  } else if (language_model_debug_level > 3) {
865  tprintf("Letter %s not OK!\n",
867  }
868 
869  return dawg_info;
870 }
871 
873  const char *unichar, float certainty, float denom,
874  int curr_col, int curr_row, float outline_length,
875  const ViterbiStateEntry *parent_vse) {
876  // Initialize parent context.
877  const char *pcontext_ptr = "";
878  int pcontext_unichar_step_len = 0;
879  if (parent_vse == NULL) {
880  pcontext_ptr = prev_word_str_.string();
881  pcontext_unichar_step_len = prev_word_unichar_step_len_;
882  } else {
883  pcontext_ptr = parent_vse->ngram_info->context.string();
884  pcontext_unichar_step_len =
886  }
887  // Compute p(unichar | parent context).
888  int unichar_step_len = 0;
889  bool pruned = false;
890  float ngram_cost;
891  float ngram_and_classifier_cost =
892  ComputeNgramCost(unichar, certainty, denom,
893  pcontext_ptr, &unichar_step_len,
894  &pruned, &ngram_cost);
895  // Normalize just the ngram_and_classifier_cost by outline_length.
896  // The ngram_cost is used by the params_model, so it needs to be left as-is,
897  // and the params model cost will be normalized by outline_length.
898  ngram_and_classifier_cost *=
899  outline_length / language_model_ngram_rating_factor;
900  // Add the ngram_cost of the parent.
901  if (parent_vse != NULL) {
902  ngram_and_classifier_cost +=
904  ngram_cost += parent_vse->ngram_info->ngram_cost;
905  }
906 
907  // Shorten parent context string by unichar_step_len unichars.
908  int num_remove = (unichar_step_len + pcontext_unichar_step_len -
910  if (num_remove > 0) pcontext_unichar_step_len -= num_remove;
911  while (num_remove > 0 && *pcontext_ptr != '\0') {
912  pcontext_ptr += UNICHAR::utf8_step(pcontext_ptr);
913  --num_remove;
914  }
915 
916  // Decide whether to prune this ngram path and update changed accordingly.
917  if (parent_vse != NULL && parent_vse->ngram_info->pruned) pruned = true;
918 
919  // Construct and return the new LanguageModelNgramInfo.
921  pcontext_ptr, pcontext_unichar_step_len, pruned, ngram_cost,
922  ngram_and_classifier_cost);
923  ngram_info->context += unichar;
924  ngram_info->context_unichar_step_len += unichar_step_len;
926  return ngram_info;
927 }
928 
929 float LanguageModel::ComputeNgramCost(const char *unichar,
930  float certainty,
931  float denom,
932  const char *context,
933  int *unichar_step_len,
934  bool *found_small_prob,
935  float *ngram_cost) {
936  const char *context_ptr = context;
937  char *modified_context = NULL;
938  char *modified_context_end = NULL;
939  const char *unichar_ptr = unichar;
940  const char *unichar_end = unichar_ptr + strlen(unichar_ptr);
941  float prob = 0.0f;
942  int step = 0;
943  while (unichar_ptr < unichar_end &&
944  (step = UNICHAR::utf8_step(unichar_ptr)) > 0) {
945  if (language_model_debug_level > 1) {
946  tprintf("prob(%s | %s)=%g\n", unichar_ptr, context_ptr,
947  dict_->ProbabilityInContext(context_ptr, -1, unichar_ptr, step));
948  }
949  prob += dict_->ProbabilityInContext(context_ptr, -1, unichar_ptr, step);
950  ++(*unichar_step_len);
952  unichar_ptr += step;
953  // If there are multiple UTF8 characters present in unichar, context is
954  // updated to include the previously examined characters from str,
955  // unless use_only_first_uft8_step is true.
956  if (unichar_ptr < unichar_end) {
957  if (modified_context == NULL) {
958  int context_len = strlen(context);
959  modified_context =
960  new char[context_len + strlen(unichar_ptr) + step + 1];
961  strncpy(modified_context, context, context_len);
962  modified_context_end = modified_context + context_len;
963  context_ptr = modified_context;
964  }
965  strncpy(modified_context_end, unichar_ptr - step, step);
966  modified_context_end += step;
967  *modified_context_end = '\0';
968  }
969  }
970  prob /= static_cast<float>(*unichar_step_len); // normalize
971  if (prob < language_model_ngram_small_prob) {
972  if (language_model_debug_level > 0) tprintf("Found small prob %g\n", prob);
973  *found_small_prob = true;
975  }
976  *ngram_cost = -1.0*log2(prob);
977  float ngram_and_classifier_cost =
978  -1.0*log2(CertaintyScore(certainty)/denom) +
979  *ngram_cost * language_model_ngram_scale_factor;
980  if (language_model_debug_level > 1) {
981  tprintf("-log [ p(%s) * p(%s | %s) ] = -log2(%g*%g) = %g\n", unichar,
982  unichar, context_ptr, CertaintyScore(certainty)/denom, prob,
983  ngram_and_classifier_cost);
984  }
985  delete[] modified_context;
986  return ngram_and_classifier_cost;
987 }
988 
989 float LanguageModel::ComputeDenom(BLOB_CHOICE_LIST *curr_list) {
990  if (curr_list->empty()) return 1.0f;
991  float denom = 0.0f;
992  int len = 0;
993  BLOB_CHOICE_IT c_it(curr_list);
994  for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
995  ASSERT_HOST(c_it.data() != NULL);
996  ++len;
997  denom += CertaintyScore(c_it.data()->certainty());
998  }
999  assert(len != 0);
1000  // The ideal situation would be to have the classifier scores for
1001  // classifying each position as each of the characters in the unicharset.
1002  // Since we can not do this because of speed, we add a very crude estimate
1003  // of what these scores for the "missing" classifications would sum up to.
1004  denom += (dict_->getUnicharset().size() - len) *
1006 
1007  return denom;
1008 }
1009 
1011  int curr_col,
1012  bool word_end,
1013  BLOB_CHOICE *b,
1014  ViterbiStateEntry *parent_vse,
1015  WERD_RES *word_res,
1016  LMConsistencyInfo *consistency_info) {
1017  const UNICHARSET &unicharset = dict_->getUnicharset();
1018  UNICHAR_ID unichar_id = b->unichar_id();
1019  BLOB_CHOICE* parent_b = parent_vse != NULL ? parent_vse->curr_b : NULL;
1020 
1021  // Check punctuation validity.
1022  if (unicharset.get_ispunctuation(unichar_id)) consistency_info->num_punc++;
1023  if (dict_->GetPuncDawg() != NULL && !consistency_info->invalid_punc) {
1024  if (dict_->compound_marker(unichar_id) && parent_b != NULL &&
1025  (unicharset.get_isalpha(parent_b->unichar_id()) ||
1026  unicharset.get_isdigit(parent_b->unichar_id()))) {
1027  // reset punc_ref for compound words
1028  consistency_info->punc_ref = NO_EDGE;
1029  } else {
1030  bool is_apos = dict_->is_apostrophe(unichar_id);
1031  bool prev_is_numalpha = (parent_b != NULL &&
1032  (unicharset.get_isalpha(parent_b->unichar_id()) ||
1033  unicharset.get_isdigit(parent_b->unichar_id())));
1034  UNICHAR_ID pattern_unichar_id =
1035  (unicharset.get_isalpha(unichar_id) ||
1036  unicharset.get_isdigit(unichar_id) ||
1037  (is_apos && prev_is_numalpha)) ?
1038  Dawg::kPatternUnicharID : unichar_id;
1039  if (consistency_info->punc_ref == NO_EDGE ||
1040  pattern_unichar_id != Dawg::kPatternUnicharID ||
1041  dict_->GetPuncDawg()->edge_letter(consistency_info->punc_ref) !=
1044  consistency_info->punc_ref);
1045  consistency_info->punc_ref =
1046  (node != NO_EDGE) ? dict_->GetPuncDawg()->edge_char_of(
1047  node, pattern_unichar_id, word_end) : NO_EDGE;
1048  if (consistency_info->punc_ref == NO_EDGE) {
1049  consistency_info->invalid_punc = true;
1050  }
1051  }
1052  }
1053  }
1054 
1055  // Update case related counters.
1056  if (parent_vse != NULL && !word_end && dict_->compound_marker(unichar_id)) {
1057  // Reset counters if we are dealing with a compound word.
1058  consistency_info->num_lower = 0;
1059  consistency_info->num_non_first_upper = 0;
1060  }
1061  else if (unicharset.get_islower(unichar_id)) {
1062  consistency_info->num_lower++;
1063  } else if ((parent_b != NULL) && unicharset.get_isupper(unichar_id)) {
1064  if (unicharset.get_isupper(parent_b->unichar_id()) ||
1065  consistency_info->num_lower > 0 ||
1066  consistency_info->num_non_first_upper > 0) {
1067  consistency_info->num_non_first_upper++;
1068  }
1069  }
1070 
1071  // Initialize consistency_info->script_id (use script of unichar_id
1072  // if it is not Common, use script id recorded by the parent otherwise).
1073  // Set inconsistent_script to true if the script of the current unichar
1074  // is not consistent with that of the parent.
1075  consistency_info->script_id = unicharset.get_script(unichar_id);
1076  // Hiragana and Katakana can mix with Han.
1078  if ((unicharset.hiragana_sid() != unicharset.null_sid() &&
1079  consistency_info->script_id == unicharset.hiragana_sid()) ||
1080  (unicharset.katakana_sid() != unicharset.null_sid() &&
1081  consistency_info->script_id == unicharset.katakana_sid())) {
1082  consistency_info->script_id = dict_->getUnicharset().han_sid();
1083  }
1084  }
1085 
1086  if (parent_vse != NULL &&
1087  (parent_vse->consistency_info.script_id !=
1088  dict_->getUnicharset().common_sid())) {
1089  int parent_script_id = parent_vse->consistency_info.script_id;
1090  // If script_id is Common, use script id of the parent instead.
1091  if (consistency_info->script_id == dict_->getUnicharset().common_sid()) {
1092  consistency_info->script_id = parent_script_id;
1093  }
1094  if (consistency_info->script_id != parent_script_id) {
1095  consistency_info->inconsistent_script = true;
1096  }
1097  }
1098 
1099  // Update chartype related counters.
1100  if (unicharset.get_isalpha(unichar_id)) {
1101  consistency_info->num_alphas++;
1102  } else if (unicharset.get_isdigit(unichar_id)) {
1103  consistency_info->num_digits++;
1104  } else if (!unicharset.get_ispunctuation(unichar_id)) {
1105  consistency_info->num_other++;
1106  }
1107 
1108  // Check font and spacing consistency.
1109  if (fontinfo_table_->size() > 0 && parent_b != NULL) {
1110  int fontinfo_id = -1;
1111  if (parent_b->fontinfo_id() == b->fontinfo_id() ||
1112  parent_b->fontinfo_id2() == b->fontinfo_id()) {
1113  fontinfo_id = b->fontinfo_id();
1114  } else if (parent_b->fontinfo_id() == b->fontinfo_id2() ||
1115  parent_b->fontinfo_id2() == b->fontinfo_id2()) {
1116  fontinfo_id = b->fontinfo_id2();
1117  }
1118  if(language_model_debug_level > 1) {
1119  tprintf("pfont %s pfont %s font %s font2 %s common %s(%d)\n",
1120  (parent_b->fontinfo_id() >= 0) ?
1121  fontinfo_table_->get(parent_b->fontinfo_id()).name : "" ,
1122  (parent_b->fontinfo_id2() >= 0) ?
1123  fontinfo_table_->get(parent_b->fontinfo_id2()).name : "",
1124  (b->fontinfo_id() >= 0) ?
1125  fontinfo_table_->get(b->fontinfo_id()).name : "",
1126  (fontinfo_id >= 0) ? fontinfo_table_->get(fontinfo_id).name : "",
1127  (fontinfo_id >= 0) ? fontinfo_table_->get(fontinfo_id).name : "",
1128  fontinfo_id);
1129  }
1130  if (!word_res->blob_widths.empty()) { // if we have widths/gaps info
1131  bool expected_gap_found = false;
1132  float expected_gap;
1133  int temp_gap;
1134  if (fontinfo_id >= 0) { // found a common font
1135  ASSERT_HOST(fontinfo_id < fontinfo_table_->size());
1136  if (fontinfo_table_->get(fontinfo_id).get_spacing(
1137  parent_b->unichar_id(), unichar_id, &temp_gap)) {
1138  expected_gap = temp_gap;
1139  expected_gap_found = true;
1140  }
1141  } else {
1142  consistency_info->inconsistent_font = true;
1143  // Get an average of the expected gaps in each font
1144  int num_addends = 0;
1145  expected_gap = 0;
1146  int temp_fid;
1147  for (int i = 0; i < 4; ++i) {
1148  if (i == 0) {
1149  temp_fid = parent_b->fontinfo_id();
1150  } else if (i == 1) {
1151  temp_fid = parent_b->fontinfo_id2();
1152  } else if (i == 2) {
1153  temp_fid = b->fontinfo_id();
1154  } else {
1155  temp_fid = b->fontinfo_id2();
1156  }
1157  ASSERT_HOST(temp_fid < 0 || fontinfo_table_->size());
1158  if (temp_fid >= 0 && fontinfo_table_->get(temp_fid).get_spacing(
1159  parent_b->unichar_id(), unichar_id, &temp_gap)) {
1160  expected_gap += temp_gap;
1161  num_addends++;
1162  }
1163  }
1164  expected_gap_found = (num_addends > 0);
1165  if (num_addends > 0) {
1166  expected_gap /= static_cast<float>(num_addends);
1167  }
1168  }
1169  if (expected_gap_found) {
1170  float actual_gap =
1171  static_cast<float>(word_res->GetBlobsGap(curr_col-1));
1172  float gap_ratio = expected_gap / actual_gap;
1173  // TODO(rays) The gaps seem to be way off most of the time, saved by
1174  // the error here that the ratio was compared to 1/2, when it should
1175  // have been 0.5f. Find the source of the gaps discrepancy and put
1176  // the 0.5f here in place of 0.0f.
1177  // Test on 2476595.sj, pages 0 to 6. (In French.)
1178  if (gap_ratio < 0.0f || gap_ratio > 2.0f) {
1179  consistency_info->num_inconsistent_spaces++;
1180  }
1181  if (language_model_debug_level > 1) {
1182  tprintf("spacing for %s(%d) %s(%d) col %d: expected %g actual %g\n",
1183  unicharset.id_to_unichar(parent_b->unichar_id()),
1184  parent_b->unichar_id(), unicharset.id_to_unichar(unichar_id),
1185  unichar_id, curr_col, expected_gap, actual_gap);
1186  }
1187  }
1188  }
1189  }
1190 }
1191 
1193  ASSERT_HOST(vse != NULL);
1194  if (params_model_.Initialized()) {
1195  float features[PTRAIN_NUM_FEATURE_TYPES];
1196  ExtractFeaturesFromPath(*vse, features);
1197  float cost = params_model_.ComputeCost(features);
1198  if (language_model_debug_level > 3) {
1199  tprintf("ComputeAdjustedPathCost %g ParamsModel features:\n", cost);
1200  if (language_model_debug_level >= 5) {
1201  for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) {
1202  tprintf("%s=%g\n", kParamsTrainingFeatureTypeName[f], features[f]);
1203  }
1204  }
1205  }
1206  return cost * vse->outline_length;
1207  } else {
1208  float adjustment = 1.0f;
1209  if (vse->dawg_info == NULL || vse->dawg_info->permuter != FREQ_DAWG_PERM) {
1211  }
1212  if (vse->dawg_info == NULL) {
1215  adjustment += ((vse->length - language_model_min_compound_length) *
1217  }
1218  }
1219  if (vse->associate_stats.shape_cost > 0) {
1220  adjustment += vse->associate_stats.shape_cost /
1221  static_cast<float>(vse->length);
1222  }
1224  ASSERT_HOST(vse->ngram_info != NULL);
1225  return vse->ngram_info->ngram_and_classifier_cost * adjustment;
1226  } else {
1227  adjustment += ComputeConsistencyAdjustment(vse->dawg_info,
1228  vse->consistency_info);
1229  return vse->ratings_sum * adjustment;
1230  }
1231  }
1232 }
1233 
1235  ViterbiStateEntry *vse,
1236  LMPainPoints *pain_points,
1237  WERD_RES *word_res,
1238  BestChoiceBundle *best_choice_bundle,
1239  BlamerBundle *blamer_bundle) {
1240  bool truth_path;
1241  WERD_CHOICE *word = ConstructWord(vse, word_res, &best_choice_bundle->fixpt,
1242  blamer_bundle, &truth_path);
1243  ASSERT_HOST(word != NULL);
1244  if (dict_->stopper_debug_level >= 1) {
1245  STRING word_str;
1246  word->string_and_lengths(&word_str, NULL);
1247  vse->Print(word_str.string());
1248  }
1249  if (language_model_debug_level > 0) {
1250  word->print("UpdateBestChoice() constructed word");
1251  }
1252  // Record features from the current path if necessary.
1253  ParamsTrainingHypothesis curr_hyp;
1254  if (blamer_bundle != NULL) {
1255  if (vse->dawg_info != NULL) vse->dawg_info->permuter =
1256  static_cast<PermuterType>(word->permuter());
1257  ExtractFeaturesFromPath(*vse, curr_hyp.features);
1258  word->string_and_lengths(&(curr_hyp.str), NULL);
1259  curr_hyp.cost = vse->cost; // record cost for error rate computations
1260  if (language_model_debug_level > 0) {
1261  tprintf("Raw features extracted from %s (cost=%g) [ ",
1262  curr_hyp.str.string(), curr_hyp.cost);
1263  for (int deb_i = 0; deb_i < PTRAIN_NUM_FEATURE_TYPES; ++deb_i) {
1264  tprintf("%g ", curr_hyp.features[deb_i]);
1265  }
1266  tprintf("]\n");
1267  }
1268  // Record the current hypothesis in params_training_bundle.
1269  blamer_bundle->AddHypothesis(curr_hyp);
1270  if (truth_path)
1271  blamer_bundle->UpdateBestRating(word->rating());
1272  }
1273  if (blamer_bundle != NULL && blamer_bundle->GuidedSegsearchStillGoing()) {
1274  // The word was constructed solely for blamer_bundle->AddHypothesis, so
1275  // we no longer need it.
1276  delete word;
1277  return;
1278  }
1279  if (word_res->chopped_word != NULL && !word_res->chopped_word->blobs.empty())
1280  word->SetScriptPositions(false, word_res->chopped_word);
1281  // Update and log new raw_choice if needed.
1282  if (word_res->raw_choice == NULL ||
1283  word->rating() < word_res->raw_choice->rating()) {
1284  if (word_res->LogNewRawChoice(word) && language_model_debug_level > 0)
1285  tprintf("Updated raw choice\n");
1286  }
1287  // Set the modified rating for best choice to vse->cost and log best choice.
1288  word->set_rating(vse->cost);
1289  // Call LogNewChoice() for best choice from Dict::adjust_word() since it
1290  // computes adjust_factor that is used by the adaption code (e.g. by
1291  // ClassifyAdaptableWord() to compute adaption acceptance thresholds).
1292  // Note: the rating of the word is not adjusted.
1293  dict_->adjust_word(word, vse->dawg_info == NULL,
1294  vse->consistency_info.xht_decision, 0.0,
1295  false, language_model_debug_level > 0);
1296  // Hand ownership of the word over to the word_res.
1298  dict_->stopper_debug_level >= 1, word)) {
1299  // The word was so bad that it was deleted.
1300  return;
1301  }
1302  if (word_res->best_choice == word) {
1303  // Word was the new best.
1305  AcceptablePath(*vse)) {
1306  acceptable_choice_found_ = true;
1307  }
1308  // Update best_choice_bundle.
1309  best_choice_bundle->updated = true;
1310  best_choice_bundle->best_vse = vse;
1311  if (language_model_debug_level > 0) {
1312  tprintf("Updated best choice\n");
1313  word->print_state("New state ");
1314  }
1315  // Update hyphen state if we are dealing with a dictionary word.
1316  if (vse->dawg_info != NULL) {
1317  if (dict_->has_hyphen_end(*word)) {
1319  } else {
1320  dict_->reset_hyphen_vars(true);
1321  }
1322  }
1323 
1324  if (blamer_bundle != NULL) {
1326  vse->dawg_info != NULL && vse->top_choice_flags);
1327  }
1328  }
1329  if (wordrec_display_segmentations && word_res->chopped_word != NULL) {
1330  word->DisplaySegmentation(word_res->chopped_word);
1331  }
1332 }
1333 
1335  const ViterbiStateEntry &vse, float features[]) {
1336  memset(features, 0, sizeof(float) * PTRAIN_NUM_FEATURE_TYPES);
1337  // Record dictionary match info.
1338  int len = vse.length <= kMaxSmallWordUnichars ? 0 :
1339  vse.length <= kMaxMediumWordUnichars ? 1 : 2;
1340  if (vse.dawg_info != NULL) {
1341  int permuter = vse.dawg_info->permuter;
1342  if (permuter == NUMBER_PERM || permuter == USER_PATTERN_PERM) {
1343  if (vse.consistency_info.num_digits == vse.length) {
1344  features[PTRAIN_DIGITS_SHORT+len] = 1.0;
1345  } else {
1346  features[PTRAIN_NUM_SHORT+len] = 1.0;
1347  }
1348  } else if (permuter == DOC_DAWG_PERM) {
1349  features[PTRAIN_DOC_SHORT+len] = 1.0;
1350  } else if (permuter == SYSTEM_DAWG_PERM || permuter == USER_DAWG_PERM ||
1351  permuter == COMPOUND_PERM) {
1352  features[PTRAIN_DICT_SHORT+len] = 1.0;
1353  } else if (permuter == FREQ_DAWG_PERM) {
1354  features[PTRAIN_FREQ_SHORT+len] = 1.0;
1355  }
1356  }
1357  // Record shape cost feature (normalized by path length).
1358  features[PTRAIN_SHAPE_COST_PER_CHAR] =
1359  vse.associate_stats.shape_cost / static_cast<float>(vse.length);
1360  // Record ngram cost. (normalized by the path length).
1361  features[PTRAIN_NGRAM_COST_PER_CHAR] = 0.0;
1362  if (vse.ngram_info != NULL) {
1363  features[PTRAIN_NGRAM_COST_PER_CHAR] =
1364  vse.ngram_info->ngram_cost / static_cast<float>(vse.length);
1365  }
1366  // Record consistency-related features.
1367  // Disabled this feature for due to its poor performance.
1368  // features[PTRAIN_NUM_BAD_PUNC] = vse.consistency_info.NumInconsistentPunc();
1371  features[PTRAIN_NUM_BAD_CHAR_TYPE] = vse.dawg_info == NULL ?
1373  features[PTRAIN_NUM_BAD_SPACING] =
1375  // Disabled this feature for now due to its poor performance.
1376  // features[PTRAIN_NUM_BAD_FONT] = vse.consistency_info.inconsistent_font;
1377 
1378  // Classifier-related features.
1379  features[PTRAIN_RATING_PER_CHAR] =
1380  vse.ratings_sum / static_cast<float>(vse.outline_length);
1381 }
1382 
1384  ViterbiStateEntry *vse,
1385  WERD_RES *word_res,
1386  DANGERR *fixpt,
1387  BlamerBundle *blamer_bundle,
1388  bool *truth_path) {
1389  if (truth_path != NULL) {
1390  *truth_path =
1391  (blamer_bundle != NULL &&
1392  vse->length == blamer_bundle->correct_segmentation_length());
1393  }
1394  BLOB_CHOICE *curr_b = vse->curr_b;
1395  ViterbiStateEntry *curr_vse = vse;
1396 
1397  int i;
1398  bool compound = dict_->hyphenated(); // treat hyphenated words as compound
1399 
1400  // Re-compute the variance of the width-to-height ratios (since we now
1401  // can compute the mean over the whole word).
1402  float full_wh_ratio_mean = 0.0f;
1403  if (vse->associate_stats.full_wh_ratio_var != 0.0f) {
1405  full_wh_ratio_mean = (vse->associate_stats.full_wh_ratio_total /
1406  static_cast<float>(vse->length));
1407  vse->associate_stats.full_wh_ratio_var = 0.0f;
1408  }
1409 
1410  // Construct a WERD_CHOICE by tracing parent pointers.
1411  WERD_CHOICE *word = new WERD_CHOICE(word_res->uch_set, vse->length);
1412  word->set_length(vse->length);
1413  int total_blobs = 0;
1414  for (i = (vse->length-1); i >= 0; --i) {
1415  if (blamer_bundle != NULL && truth_path != NULL && *truth_path &&
1416  !blamer_bundle->MatrixPositionCorrect(i, curr_b->matrix_cell())) {
1417  *truth_path = false;
1418  }
1419  // The number of blobs used for this choice is row - col + 1.
1420  int num_blobs = curr_b->matrix_cell().row - curr_b->matrix_cell().col + 1;
1421  total_blobs += num_blobs;
1422  word->set_blob_choice(i, num_blobs, curr_b);
1423  // Update the width-to-height ratio variance. Useful non-space delimited
1424  // languages to ensure that the blobs are of uniform width.
1425  // Skip leading and trailing punctuation when computing the variance.
1426  if ((full_wh_ratio_mean != 0.0f &&
1427  ((curr_vse != vse && curr_vse->parent_vse != NULL) ||
1428  !dict_->getUnicharset().get_ispunctuation(curr_b->unichar_id())))) {
1430  pow(full_wh_ratio_mean - curr_vse->associate_stats.full_wh_ratio, 2);
1431  if (language_model_debug_level > 2) {
1432  tprintf("full_wh_ratio_var += (%g-%g)^2\n",
1433  full_wh_ratio_mean, curr_vse->associate_stats.full_wh_ratio);
1434  }
1435  }
1436 
1437  // Mark the word as compound if compound permuter was set for any of
1438  // the unichars on the path (usually this will happen for unichars
1439  // that are compounding operators, like "-" and "/").
1440  if (!compound && curr_vse->dawg_info &&
1441  curr_vse->dawg_info->permuter == COMPOUND_PERM) compound = true;
1442 
1443  // Update curr_* pointers.
1444  curr_vse = curr_vse->parent_vse;
1445  if (curr_vse == NULL) break;
1446  curr_b = curr_vse->curr_b;
1447  }
1448  ASSERT_HOST(i == 0); // check that we recorded all the unichar ids.
1449  ASSERT_HOST(total_blobs == word_res->ratings->dimension());
1450  // Re-adjust shape cost to include the updated width-to-height variance.
1451  if (full_wh_ratio_mean != 0.0f) {
1453  }
1454 
1455  word->set_rating(vse->ratings_sum);
1456  word->set_certainty(vse->min_certainty);
1459  if (vse->dawg_info != NULL) {
1460  word->set_permuter(compound ? COMPOUND_PERM : vse->dawg_info->permuter);
1461  } else if (language_model_ngram_on && !vse->ngram_info->pruned) {
1462  word->set_permuter(NGRAM_PERM);
1463  } else if (vse->top_choice_flags) {
1465  } else {
1466  word->set_permuter(NO_PERM);
1467  }
1468  word->set_dangerous_ambig_found_(!dict_->NoDangerousAmbig(word, fixpt, true,
1469  word_res->ratings));
1470  return word;
1471 }
1472 
1473 } // namespace tesseract
bool updated
Flag to indicate whether anything was changed.
Definition: lm_state.h:225
bool AcceptablePath(const ViterbiStateEntry &vse)
static const UNICHAR_ID kPatternUnicharID
Definition: dawg.h:125
DawgPositionVector beginning_active_dawgs_
Bundle together all the things pertaining to the best choice/state.
Definition: lm_state.h:215
void string_and_lengths(STRING *word_str, STRING *word_lengths_str) const
Definition: ratngs.cpp:427
LanguageModel(const UnicityTable< FontInfo > *fontinfo_table, Dict *dict)
static const LanguageModelFlagsType kUpperCaseFlag
void set_length(int len)
Definition: ratngs.h:379
LanguageModelDawgInfo * dawg_info
Definition: lm_state.h:178
void default_dawgs(DawgPositionVector *anylength_dawgs, bool suppress_patterns) const
Definition: dict.cpp:565
LanguageModelNgramInfo * ngram_info
Definition: lm_state.h:182
LanguageModelDawgInfo * GenerateDawgInfo(bool word_end, int curr_col, int curr_row, const BLOB_CHOICE &b, const ViterbiStateEntry *parent_vse)
bool get_isalpha(UNICHAR_ID unichar_id) const
Definition: unicharset.h:449
AssociateStats associate_stats
Definition: lm_state.h:170
GenericVector< TBLOB * > blobs
Definition: blobs.h:436
DawgPositionVector * updated_dawgs
Definition: dict.h:81
bool is_apostrophe(UNICHAR_ID unichar_id)
Definition: dict.h:117
float ComputeCost(const float features[]) const
int dimension() const
Definition: matrix.h:530
inT64 NODE_REF
Definition: dawg.h:55
const STRING & unichar_string() const
Definition: ratngs.h:525
inT32 length() const
Definition: strngs.cpp:196
void set_rating(float new_val)
Definition: ratngs.h:367
virtual bool end_of_word(EDGE_REF edge_ref) const =0
WERD_CHOICE * raw_choice
Definition: pageres.h:224
void print() const
Definition: ratngs.h:564
void UpdateBestChoice(ViterbiStateEntry *vse, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle)
int size() const
Definition: unicharset.h:297
Struct to store information maintained by various language model components.
Definition: lm_state.h:193
PermuterType
Definition: ratngs.h:240
float ComputeDenom(BLOB_CHOICE_LIST *curr_list)
double language_model_penalty_non_dict_word
float ngram_cost
-ln(P_ngram_model(path))
Definition: lm_state.h:84
LanguageModelFlagsType top_choice_flags
Definition: lm_state.h:174
int stopper_debug_level
Definition: dict.h:620
bool PrunablePath(const ViterbiStateEntry &vse)
ViterbiStateEntry_LIST viterbi_state_entries
Storage for the Viterbi state.
Definition: lm_state.h:206
void set_permuter(uinT8 perm)
Definition: ratngs.h:373
static const LanguageModelFlagsType kSmallestRatingFlag
static const LanguageModelFlagsType kDigitFlag
void ComputeXheightConsistency(const BLOB_CHOICE *b, bool is_punc)
bool UpdateState(bool just_classified, int curr_col, int curr_row, BLOB_CHOICE_LIST *curr_list, LanguageModelState *parent_node, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle)
const Dawg * GetDawg(int index) const
Return i-th dawg pointer recorded in the dawgs_ vector.
Definition: dict.h:412
const UNICHARSET & getUnicharset() const
Definition: dict.h:97
void UpdateBestRating(float rating)
Definition: blamer.h:122
bool AddViterbiStateEntry(LanguageModelFlagsType top_choice_flags, float denom, bool word_end, int curr_col, int curr_row, BLOB_CHOICE *b, LanguageModelState *curr_state, ViterbiStateEntry *parent_vse, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle)
float x_height
Definition: pageres.h:295
int viterbi_state_entries_prunable_length
Number and max cost of prunable paths in viterbi_state_entries.
Definition: lm_state.h:208
float ComputeNgramCost(const char *unichar, float certainty, float denom, const char *context, int *unichar_step_len, bool *found_small_prob, float *ngram_prob)
PointerVector< LanguageModelState > beam
Definition: lm_state.h:231
int language_model_viterbi_list_max_num_prunable
uinT8 permuter() const
Definition: ratngs.h:344
int han_sid() const
Definition: unicharset.h:836
bool GuidedSegsearchStillGoing() const
Definition: blamer.cpp:501
void set_dangerous_ambig_found_(bool value)
Definition: ratngs.h:364
WERD_CHOICE * best_choice
Definition: pageres.h:219
static const LanguageModelFlagsType kLowerCaseFlag
static NODE_REF GetStartingNode(const Dawg *dawg, EDGE_REF edge_ref)
Returns the appropriate next node given the EDGE_REF.
Definition: dict.h:418
bool LogNewCookedChoice(int max_num_choices, bool debug, WERD_CHOICE *word_choice)
Definition: pageres.cpp:612
void print_state(const char *msg) const
Definition: ratngs.cpp:738
UNICHAR_ID get_other_case(UNICHAR_ID unichar_id) const
Definition: unicharset.h:631
const UnicityTable< FontInfo > * fontinfo_table_
DawgType type() const
Definition: dawg.h:127
static int Compare(const void *e1, const void *e2)
Definition: lm_state.h:126
bool PosAndSizeAgree(const BLOB_CHOICE &other, float x_height, bool debug) const
Definition: ratngs.cpp:132
bool get_ispunctuation(UNICHAR_ID unichar_id) const
Definition: unicharset.h:477
#define BOOL_INIT_MEMBER(name, val, comment, vec)
Definition: params.h:316
UNICHAR_ID unichar_id() const
Definition: ratngs.h:76
void InitForWord(const WERD_CHOICE *prev_word, bool fixed_pitch, float max_char_wh_ratio, float rating_cert_scale)
LanguageModelNgramInfo * GenerateNgramInfo(const char *unichar, float certainty, float denom, int curr_col, int curr_row, float outline_length, const ViterbiStateEntry *parent_vse)
void reset_hyphen_vars(bool last_word_on_line)
Definition: hyphen.cpp:32
WERD_CHOICE * ConstructWord(ViterbiStateEntry *vse, WERD_RES *word_res, DANGERR *fixpt, BlamerBundle *blamer_bundle, bool *truth_path)
float ngram_and_classifier_cost
-[ ln(P_classifier(path)) + scale_factor * ln(P_ngram_model(path)) ]
Definition: lm_state.h:86
static float ComputeOutlineLength(float rating_cert_scale, const BLOB_CHOICE &b)
Definition: associate.h:80
bool language_model_ngram_use_only_first_uft8_step
bool language_model_ngram_space_delimited_language
ViterbiStateEntry * competing_vse
Definition: lm_state.h:160
const char * string() const
Definition: strngs.cpp:201
double ProbabilityInContext(const char *context, int context_bytes, const char *character, int character_bytes)
Calls probability_in_context_ member function.
Definition: dict.h:370
void init_active_dawgs(DawgPositionVector *active_dawgs, bool ambigs_mode) const
Definition: dict.cpp:548
static const float kMaxAvgNgramCost
void set_certainty(float new_val)
Definition: ratngs.h:370
#define BOOL_MEMBER(name, val, comment, vec)
Definition: params.h:304
virtual UNICHAR_ID edge_letter(EDGE_REF edge_ref) const =0
Returns UNICHAR_ID stored in the edge indicated by the given EDGE_REF.
void DisplaySegmentation(TWERD *word)
Definition: ratngs.cpp:747
static void ExtractFeaturesFromPath(const ViterbiStateEntry &vse, float features[])
float rating() const
Definition: ratngs.h:79
#define INT_MEMBER(name, val, comment, vec)
Definition: params.h:301
inT16 fontinfo_id2() const
Definition: ratngs.h:88
Definition: cluster.h:45
MATRIX * ratings
Definition: pageres.h:215
DANGERR fixpt
Places to try to fix the word suggested by ambiguity checking.
Definition: lm_state.h:227
bool get_isupper(UNICHAR_ID unichar_id) const
Definition: unicharset.h:463
EDGE_REF dawg_ref
Definition: dawg.h:369
void set_hyphen_word(const WERD_CHOICE &word, const DawgPositionVector &active_dawgs)
Definition: hyphen.cpp:49
int tessedit_truncate_wordchoice_log
Definition: dict.h:626
TWERD * chopped_word
Definition: pageres.h:201
DawgPositionVector active_dawgs
Definition: lm_state.h:64
#define double_MEMBER(name, val, comment, vec)
Definition: params.h:310
bool AcceptableChoice(const WERD_CHOICE &best_choice, XHeightConsistencyEnum xheight_consistency)
Returns true if the given best_choice is good enough to stop.
Definition: stopper.cpp:50
virtual EDGE_REF edge_char_of(NODE_REF node, UNICHAR_ID unichar_id, bool word_end) const =0
Returns the edge that corresponds to the letter out of this node.
int LetterIsOkay(void *void_dawg_args, UNICHAR_ID unichar_id, bool word_end) const
Calls letter_is_okay_ member function.
Definition: dict.h:357
void adjust_word(WERD_CHOICE *word, bool nonword, XHeightConsistencyEnum xheight_consistency, float additional_adjust, bool modify_rating, bool debug)
Adjusts the rating of the given word.
Definition: dict.cpp:650
float viterbi_state_entries_prunable_max_cost
Definition: lm_state.h:209
void set_best_choice_is_dict_and_top_choice(bool value)
Definition: blamer.h:135
bool LogNewRawChoice(WERD_CHOICE *word_choice)
Definition: pageres.cpp:596
float rating() const
Definition: ratngs.h:325
static const LanguageModelFlagsType kXhtConsistentFlag
int get_script(UNICHAR_ID unichar_id) const
Definition: unicharset.h:611
const GenericVector< UNICHAR_ID > & normed_ids(UNICHAR_ID unichar_id) const
Definition: unicharset.h:783
void Print(const char *msg) const
Definition: lm_state.cpp:27
ViterbiStateEntry * parent_vse
Definition: lm_state.h:157
int hiragana_sid() const
Definition: unicharset.h:837
int GetBlobsGap(int blob_index)
Definition: pageres.cpp:732
#define tprintf(...)
Definition: tprintf.h:31
double language_model_ngram_nonmatch_score
Definition: strngs.h:44
void SetScriptPositions(bool small_caps, TWERD *word)
Definition: ratngs.cpp:528
int size() const
Definition: genericvector.h:72
float certainty() const
Definition: ratngs.h:82
void set_blob_choice(int index, int blob_count, const BLOB_CHOICE *blob_choice)
Definition: ratngs.cpp:290
const UNICHARSET * uch_set
Definition: pageres.h:192
DawgPositionVector very_beginning_active_dawgs_
void ComputeAssociateStats(int col, int row, float max_char_wh_ratio, ViterbiStateEntry *parent_vse, WERD_RES *word_res, AssociateStats *associate_stats)
XHeightConsistencyEnum xht_decision
DawgPositionVector * active_dawgs
Definition: dict.h:80
float CertaintyScore(float cert)
bool HasAlnumChoice(const UNICHARSET &unicharset)
Definition: lm_state.h:141
bool MatrixPositionCorrect(int index, const MATRIX_COORD &coord)
Definition: blamer.h:131
float ComputeAdjustedPathCost(ViterbiStateEntry *vse)
int common_sid() const
Definition: unicharset.h:832
static const float kBadRating
Definition: ratngs.h:273
bool TESS_API NoDangerousAmbig(WERD_CHOICE *BestChoice, DANGERR *fixpt, bool fix_replaceable, MATRIX *ratings)
Definition: stopper.cpp:151
unsigned char LanguageModelFlagsType
Used for expressing various language model flags.
Definition: lm_state.h:37
PermuterType permuter
Definition: dict.h:82
const MATRIX_COORD & matrix_cell()
Definition: ratngs.h:114
void AddHypothesis(const tesseract::ParamsTrainingHypothesis &hypo)
Definition: blamer.h:154
inT16 fontinfo_id() const
Definition: ratngs.h:85
bool get_isdigit(UNICHAR_ID unichar_id) const
Definition: unicharset.h:470
GenericVector< int > blob_widths
Definition: pageres.h:205
bool GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list, BLOB_CHOICE **first_lower, BLOB_CHOICE **first_upper, BLOB_CHOICE **first_digit) const
bool get_islower(UNICHAR_ID unichar_id) const
Definition: unicharset.h:456
int null_sid() const
Definition: unicharset.h:831
int viterbi_state_entries_length
Total number of entries in viterbi_state_entries.
Definition: lm_state.h:211
ViterbiStateEntry * best_vse
Best ViterbiStateEntry and BLOB_CHOICE.
Definition: lm_state.h:233
const char * id_to_unichar(UNICHAR_ID id) const
Definition: unicharset.cpp:266
int correct_segmentation_length() const
Definition: blamer.h:126
bool hyphenated() const
Returns true if we&#39;ve recorded the beginning of a hyphenated word.
Definition: dict.h:126
bool has_hyphen_end(UNICHAR_ID unichar_id, bool first_pos) const
Check whether the word has a hyphen at the end.
Definition: dict.h:143
void FillConsistencyInfo(int curr_col, bool word_end, BLOB_CHOICE *b, ViterbiStateEntry *parent_vse, WERD_RES *word_res, LMConsistencyInfo *consistency_info)
bool empty() const
Definition: genericvector.h:84
static int utf8_step(const char *utf8_str)
Definition: unichar.cpp:134
float features[PTRAIN_NUM_FEATURE_TYPES]
ViterbiStateEntry * GetNextParentVSE(bool just_classified, bool mixed_alnum, const BLOB_CHOICE *bc, LanguageModelFlagsType blob_choice_flags, const UNICHARSET &unicharset, WERD_RES *word_res, ViterbiStateEntry_IT *vse_it, LanguageModelFlagsType *top_choice_flags) const
const CHAR_FRAGMENT * get_fragment(UNICHAR_ID unichar_id) const
Definition: unicharset.h:682
#define ASSERT_HOST(x)
Definition: errcode.h:84
void Print(const char *msg)
Definition: lm_state.cpp:70
BLOB_CHOICE * curr_b
Pointers to BLOB_CHOICE and parent ViterbiStateEntry (not owned by this).
Definition: lm_state.h:156
void set_x_heights(float min_height, float max_height)
Definition: ratngs.h:340
double language_model_penalty_non_freq_dict_word
LMConsistencyInfo consistency_info
Definition: lm_state.h:169
int katakana_sid() const
Definition: unicharset.h:838
bool SizesDistinct(UNICHAR_ID id1, UNICHAR_ID id2) const
Definition: unicharset.cpp:472
const Dawg * GetPuncDawg() const
Return the points to the punctuation dawg.
Definition: dict.h:414
float ComputeConsistencyAdjustment(const LanguageModelDawgInfo *dawg_info, const LMConsistencyInfo &consistency_info)
int UNICHAR_ID
Definition: unichar.h:33
bool compound_marker(UNICHAR_ID unichar_id)
Definition: dict.h:108
void GenerateTopChoiceInfo(ViterbiStateEntry *new_vse, const ViterbiStateEntry *parent_vse, LanguageModelState *lms)
int SetTopParentLowerUpperDigit(LanguageModelState *parent_node) const