Previous topic

scipy.linalg.eig

Next topic

scipy.linalg.eigh

scipy.linalg.eigvals

scipy.linalg.eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)[source]

Compute eigenvalues from an ordinary or generalized eigenvalue problem.

Find eigenvalues of a general matrix:

a   vr[:,i] = w[i]        b   vr[:,i]
Parameters:

a : (M, M) array_like

A complex or real matrix whose eigenvalues and eigenvectors will be computed.

b : (M, M) array_like, optional

Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed.

overwrite_a : bool, optional

Whether to overwrite data in a (may improve performance)

check_finite : bool, optional

Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

homogeneous_eigvals : bool, optional

If True, return the eigenvalues in homogeneous coordinates. In this case w is a (2, M) array so that:

w[1,i] a vr[:,i] = w[0,i] b vr[:,i]

Default is False.

Returns:

w : (M,) or (2, M) double or complex ndarray

The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is (M,) unless homogeneous_eigvals=True.

Raises:

LinAlgError

If eigenvalue computation does not converge

See also

eig
eigenvalues and right eigenvectors of general arrays.
eigvalsh
eigenvalues of symmetric or Hermitian arrays
eigvals_banded
eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal
eigenvalues of symmetric/Hermitian tridiagonal matrices