scipy.special.ellipe¶
-
scipy.special.
ellipe
(m) = <ufunc 'ellipe'>¶ Complete elliptic integral of the second kind
This function is defined as
\[E(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{1/2} dt\]Parameters: m : array_like
Defines the parameter of the elliptic integral.
Returns: E : ndarray
Value of the elliptic integral.
See also
Notes
Wrapper for the Cephes [R414] routine ellpe.
For m > 0 the computation uses the approximation,
\[E(m) \approx P(1-m) - (1-m) \log(1-m) Q(1-m),\]where \(P\) and \(Q\) are tenth-order polynomials. For m < 0, the relation
\[E(m) = E(m/(m - 1)) \sqrt(1-m)\]is used.
The parameterization in terms of \(m\) follows that of section 17.2 in [R415]. Other parameterizations in terms of the complementary parameter \(1 - m\), modular angle \(\sin^2(\alpha) = m\), or modulus \(k^2 = m\) are also used, so be careful that you choose the correct parameter.
References
[R414] (1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html [R415] (1, 2) Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.