scipy.special.ellipe

scipy.special.ellipe(m) = <ufunc 'ellipe'>

Complete elliptic integral of the second kind

This function is defined as

\[E(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{1/2} dt\]
Parameters:

m : array_like

Defines the parameter of the elliptic integral.

Returns:

E : ndarray

Value of the elliptic integral.

See also

ellipkm1
Complete elliptic integral of the first kind, near m = 1
ellipk
Complete elliptic integral of the first kind
ellipkinc
Incomplete elliptic integral of the first kind
ellipeinc
Incomplete elliptic integral of the second kind

Notes

Wrapper for the Cephes [R414] routine ellpe.

For m > 0 the computation uses the approximation,

\[E(m) \approx P(1-m) - (1-m) \log(1-m) Q(1-m),\]

where \(P\) and \(Q\) are tenth-order polynomials. For m < 0, the relation

\[E(m) = E(m/(m - 1)) \sqrt(1-m)\]

is used.

The parameterization in terms of \(m\) follows that of section 17.2 in [R415]. Other parameterizations in terms of the complementary parameter \(1 - m\), modular angle \(\sin^2(\alpha) = m\), or modulus \(k^2 = m\) are also used, so be careful that you choose the correct parameter.

References

[R414](1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html
[R415](1, 2) Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.