Previous topic

scipy.special.ellipe

Next topic

scipy.special.jv

scipy.special.ellipeinc

scipy.special.ellipeinc(phi, m) = <ufunc 'ellipeinc'>

Incomplete elliptic integral of the second kind

This function is defined as

\[E(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{1/2} dt\]
Parameters:

phi : array_like

amplitude of the elliptic integral.

m : array_like

parameter of the elliptic integral.

Returns:

E : ndarray

Value of the elliptic integral.

See also

ellipkm1
Complete elliptic integral of the first kind, near m = 1
ellipk
Complete elliptic integral of the first kind
ellipkinc
Incomplete elliptic integral of the first kind
ellipe
Complete elliptic integral of the second kind

Notes

Wrapper for the Cephes [R416] routine ellie.

Computation uses arithmetic-geometric means algorithm.

The parameterization in terms of \(m\) follows that of section 17.2 in [R417]. Other parameterizations in terms of the complementary parameter \(1 - m\), modular angle \(\sin^2(\alpha) = m\), or modulus \(k^2 = m\) are also used, so be careful that you choose the correct parameter.

References

[R416](1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html
[R417](1, 2) Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.